
E1 244: Detection and Estimation Theory
Spring 2011 – Test 2 Solutions

1. Let the observations Y1, Y2, . . . , YN be given by

Yn = Asn +Wn

where sn is a known sequence, and Wn is i.i.d. N (0, σ2).

(a) Assuming σ2 is known:

i. Find the ML estimator of A.
Solution:
Let y = (Y1, . . . , YN), s = (S1, . . . , SN) and w = (W1, . . . ,WN). Note that
w ∼ N (0, σ2IN×N). Now, the conditional distribution of y is given by:

fy|A,s(y|A, s) =
1

(
√

2πσ2)N
exp

{
−(y − As)T (y − As)

2σ2

}
(1)

Taking the derivative of the log fy|A,s(y|A, s) and equating to zero gives:

2(sTy)− 2A(sT s) = 0, (2)

which implies that

Â =
sTy

sT s
.

ii. Find the PDF of the ML estimator of A.
Solution:
Clearly, a linear combination of Gaussian random variables is a Gaussian
random variable. Therefore, it suffices to find the mean and the variance of
Â. It is easy to show that EÂ = A, and var(sTy) = σ2(sT s). This implies
that varÂ = σ2

sT s
.

iii. Does the asymptotic normality theorem hold?
Solution:
Since the estimate is Gaussian,

√
N(Â − A) ∼ N (0, Nσ

2

sT s
). In fact, this is

Gaussian for every N . Now, for N = 1, we will find the fisher information

iA, and show that iA = sT s
σ2 . Since iA = −E∂2fy|A,s(y|A,s)

∂A2 , differentiating (2)

again with respect to A, we get σ2

aT s
, which is a constant. Therefore, iA = σ2

aT s
.

Clearly, the variance is the reciprocal of the Fisher information iA. This
proves the asymptotic normality of Â.



(b) Assuming A is known:

i. Find the ML estimator of σ2 (or should we ask for σ?).
Solution:
Similar to part(a)-(i), it can be shown that the ML estimate of σ2 given A is

σ̂2 =
1

N
(y − As)T (y − As).

ii. Find the PDF of the ML estimator of σ.
Solution:
Clearly, (y−As)T (y−As) =

∑N
i=1 (Yi − ASi)2. Since (Yi−ASi) ∼ N (0, σ2),

σ̂2 is the sum of square of Gaussian random variables with zero mean and a
variance of σ2

N
, which is chi-square distributed with N/2 degrees of freedom.

Specifically, we have the following:

f
σ̂2|A,s(x) =

(
N√
2πσ2

)N/2
1

Γ
(
N
2

)xN/2−1e−
Nx
2σ2 .

iii. Does the asymptotic normality theorem hold?
Solution:
Yes. The Fisher information per sample is given by,

iσ2 = −E
(
∂ log fYi|A,Si(Yi|A, Si)

∂σ2

)2

=
1

2σ4
,

where in the above, we have used EW 4
i = 3σ4 to obtain the result. Now, by

central limit theorem, we have:

1
N

(y − As)T (y − As)− σ2√
2σ4

N2

→ N (0, 1), (3)

⇒
√
N

(
1

N
(y − As)T (y − As)− σ2

)
→ N (0,

2σ4

N
). (4)

Thus, the result follows.

2. Let Yi ∼ f(y|θ), i = 1, · · · , n. For the following models, derive the ML estimates of θ,
the CRB, and verify if the ML estimators are efficient.

(a) Poisson distribution with mean θ, i.e.,

f(y|θ) =
n∏
i=1

e−θθyi

(yi!)

Solution: The above pdf results in the log-likelihood function

ln f(y|θ) = −nθ + (ln θ)
n∑
i=1

yi −
n∑
i=1

ln(yi!).



Differentiating the above, it is easy to show that

θ̂ML = arg max
θ

ln f(y|θ) =
1

n

n∑
i=1

yi.

The Fisher information and CRB are found by

I(θ) = −E
[
∂2

∂θ2
f(y|θ)

]
=

1

θ2

n∑
i=1

E [yi] =
n

θ
,

and

CRB =
θ

n
The variance of the ML estimator can be evaluated as

Varθ

[
θ̂ML

]
= E[(θ̂2

ML − θ)2] =
1

n2
((n2 − n)θ2 + n(θ + θ2))− 2θ2 + θ2 =

θ

n
.

Thus the ML estimator achieves the CRB.

(b) Exponential distribution with mean
√
θ, i.e.,

f(y|θ) =
n∏
i=1

e−yi/
√
θ

√
θ

.

Hint for part (c):
∑n

i=1 yi has an Erlang distribution with shape parameter n and

scale parameter 1/
√
θ, hence

Eθ


[

n∑
i=1

yi

]2
 = θn(n+ 1)

and

Eθ


[

n∑
i=1

yi

]4
 = θ2n(n+ 1)(n+ 2)(n+ 3)

Solution: The log-likelihood function is given by

ln f(y|θ) =
n∑
i=1

(
1√
θ
e
− yi√

θ

)
= −n

2
log θ − 1√

θ

n∑
i=1

yi.

The ML estimator is found by differentiating w.r.t. θ as

θ̂ML = arg max
θ

ln f(y|θ) =

[∑n
i=1 yi
n

]2

.

The Fisher Information and the CRB are found by

I(θ) = −E
[
∂2

∂θ2
f(y|θ)

]
=

n

4θ2
, CRB =

4θ2

n
.



The MSE of the estimator can be found using the given hints as

E
[
(θ̂ML − θ)2

]
= E

[
θ̂2
ML

]
− 2θE

[
θ̂ML

]
+ θ2 = θ2

(
4

n
+

11

n2
+

6

n3

)
.

The estimator is thus not efficient but it is asymptotically efficient (since the
higher order terms decay faster than n.

3. In this problem, the equations for extended Kalman (EKF) filter when state equation
and/or observation equation are nonlinear, are derived.

xn = f(xn−1) +Gun

yn = h(xn) + vn

f() and h() are functions of appropriate dimensions.

(a) First consider the modified state model that has known deterministic input,

xn = Fn−1xn−1 +Gun + tn

where tn is known. The observation equation is

yn = Hnx + vn

Determine the equations for this modified state model.
Hint: Write xn = x′n + E[xn], where x′n is the value of xn when tn = 0. Then
find the Kalman filter for zero mean signal filter x′n.
Also, let y′n = yn −HnE[xn], to get observation equation in usual form.
Solution:
We can write the equations as,

x′n = Fn−1x
′
n−1 +Gun

y′n = Hnx
′ + vn

Also the mean satisfies
E[xn] = Fn−1E[xn−1] + tn (5)

Then the MMSE estimate of xn is,

x̂′n|n−1 = x̂n|n−1 − E[xn]

x̂′n−1|n−1 = x̂n−1|n−1 − E[xn−1]

Also we have prediction equation as,

x̂′n|n−1 = Fnx̂′n−1|n−1

or
x̂n|n−1 − E[xn] = Fn(x̂n−1|n−1 − E[xn−1])



From (5) this reduces to

x̂n|n−1 = Fnx̂n−1|n−1 + tn

For the correction equation,

x̂′n|n = x̂′n|n−1 +Kn(y′n −Hnx̂′n|n−1)

Which reduces to usual expression,

x̂n|n = x̂n|n−1 +Kn(yn −Hnx̂n|n−1)

(b) Now, first linearize using a first order Taylor expansion about the estimate of
xn−1,

f(xn−1) ≈ f(x̂n−1|n−1)

+
∂f

∂xn−1

∣∣∣∣
xn−1=x̂n−1|n−1

(xn−1 − x̂n−1|n−1)

h(xn) ≈ h(x̂n|n−1)

+
∂h

∂xn

∣∣∣∣
xn=x̂n|n−1

(xn − x̂n|n−1)

Denote the Jacobians by,

Fn−1 =
∂f

∂xn−1

∣∣∣∣
xn−1=x̂n−1|n−1

Hn =
∂h

∂xn

∣∣∣∣
xn=x̂n|n−1

And write down the state and observation equations in form (a).

Solution:
The expressions are,

xn = Fn−1xn−1 +Gun + (f(x̂n−1|n−1)− Fn−1x̂n−1|n−1)

yn = Hnx + vn + (h(x̂n|n−1)−Hnx̂n|n−1).

We have the modified observation equation

yn = Hnx + vn + zn,

with zn known. On writing y′n = yn − zn, we have expression in usual form.

(c) Combine above two results to get the EKF.
Solution:
The solutions are,

x̂n|n−1 = Fnx̂n−1|n−1 + tn

x̂n|n = x̂n|n−1 +Kn(yn − zn +Hnx̂n|n−1).



But

tn = f(x̂n−1|n−1)− Fn−1x̂n−1|n−1

zn = h(x̂n|n−1)−Hnx̂n|n−1,

so that finally

x̂n|n−1 = f(x̂n−1|n−1)

x̂n|n = x̂n|n−1 +Kn(yn − h(x̂n|n−1)).


