E1 244: Homework - 1

Date assigned: 13 Jan 2010

1 Topics

- Bayesian estimation
- Classical estimation

2 Problems

- 1. Show that, if X is a non-negative random variable, $\mathbf{E}(X) = \int_0^\infty Pr(X > t) dt = \int_0^\infty (1 F(t)) dt$.
- 2. Suppose that Θ is a random parameter uniformly distributed on the interval [0, 1]. Noisy observations

$$Y_k = X_k + \Theta, \qquad k = 1, 2, \dots, n,$$

are made where $\{X_k\}$ are i.i.d. and independent of Θ . The common marginal pdf of the $\{X_k\}$ is

$$f_X(x) = \begin{cases} e^{-x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

- (a) Find the minimum mean squared error estimate of Θ .
- (b) Find the maximum aposteriori probability estimate of Θ .
- (c) Find the minimum absolute error estimate of Θ .
- (d) What happens to these estimators as $n \to \infty$?
- 3. Bayesian sufficiency Under the Bayesian formulation, the parameter θ is random, $\Theta \sim p_{\Theta}(\theta)$ where $p_{\Theta}(\theta)$ is the prior distribution. The statistical model $p_{\theta}(x)$ is given by

$$p_{\theta}(x) \triangleq p_{X|\Theta}(x|\theta) = \frac{p_{X,\Theta}(x,\theta)}{p_{\Theta}(\theta)}$$

A statistic t(X) is Bayesian sufficient, if, for whatever the prior distribution $p_{\Theta}(\theta)$, the posterior distribution $n_{X|\Theta}(x|\theta)n_{\Theta}(\theta)$

$$f_{\Theta|X}(\theta|x) = \frac{p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)}{p_X(x)}$$

involves data only through t(x). Show that the Bayesian sufficiency is equivalent to the classical notion of sufficiency.

4. Suppose that Z_1, Z_2, \ldots, Z_m are i.i.d. samples from a uniform distribution on the interval $(0, \theta)$, $0 < \theta < \infty$. Let Y_1, Y_2, \ldots, Y_m be the order statistics for the sample. Prove that Y_m is a sufficient statistic. (Hint: use the factorization theorem.)

5. Suppose that $\theta > 0$ is a parameter of interest and that given θ , $\{Y_k, 1 \leq k \leq n\}$ is a set of i.i.d. observations with marginal distribution function

$$F_{\theta}(y) = [F(y)]^{1/\theta}, y \in \mathbf{R}$$

where F is a known distribution function with pdf f.

(a) Show that

$$\hat{\theta}_{MV}(y) = -\frac{1}{n} \sum_{k=1}^{n} \log F(y_k)$$

is a minimum variance unbiased estimate of θ .

(b) Suppose now that θ is replaced by a random variable Θ drawn at random using the prior density

$$w(\theta) = c^m \frac{e^{-c/\theta}}{\Gamma(m)\theta^{m+1}}, \quad \theta > 0$$

where c and m are positive constants. Use the fact that $E(\Theta) = c/(m-1)$ to show that the MMSE estimator of Θ from **Y** is

$$\hat{\theta}_{MMSE}(\mathbf{y}) = \frac{c - \sum_{k=1}^{n} \log F(y_k)}{m + n - 1}.$$

- (c) Compare $\hat{\theta}_{MV}$ and $\hat{\theta}_{MMSE}$ with regard to the role of prior information.
- 6. Let $\mathbf{Y} = [Y_1, Y_2, \dots, Y_n]^T$ be a random vector where the individual components are i.i.d Poisson random variables with parameter θ .
 - (a) Show that $T(\mathbf{Y}) = Y_1 + Y_2 + \cdots + Y_n$ is a complete sufficient statistic for θ . You must explain why it is sufficient and why it is complete.
 - (b) Show that $T(\mathbf{Y})$ is also Poisson. Start with n = 2 and use induction. What is the parameter for the distribution of $T(\mathbf{Y})$?
 - (c) For any (fixed) integer $k \ge 0$ find an MVUE of the probability

$$P_{\theta}\{Y_1 = k\}.$$

(d) For any (fixed) integer $k \ge 0$ find the ML estimator of the probability

$$P_{\theta}\{Y_1 = k\}.$$

Is this ML estimator unbiased?