E1 244: Homework - 2

Assigned: 2 Feb 2011

1 Topics

• MVUE, ML and MMSE estimation

2 Problems

1. Consider the observation model

$$Z = \frac{1}{\theta} + V$$

where V is a Gaussian random variable with zero mean and unit variance. Let $\psi = g(\theta) = 1/\theta$. In this problem we consider the estimation of the unknown parameters θ and ψ .

- (a) Assume that θ is a nonrandom parameter.
 - i. Find the ML estimator $\hat{\psi}_{ML}$ of ψ .
 - ii. Find the ML estimator $\hat{\theta}_{ML}$ os θ .
- (b) Assume that θ is a realization of a random parameter Θ with probability density

$$p_{\Theta}(\theta) = \frac{1}{\theta^2 \sqrt{2\pi}} \exp\{-\frac{1}{2\theta^2}\} \quad \theta \neq 0.$$

Assume also that Θ and V are independent.

- i. Find the maximum a posteriori estimator $\hat{\Phi}_{MAP}$ of $\Phi = g(\Theta)$.
- ii. Find the maximum a posteriori estimator $\hat{\Theta}_{MAP}$ of Θ .
- 2. This problem refers back to Problem 6 of HW1. Recall that $\mathbf{Y} = [Y_1 Y_2 \cdots Y_n]^T$ was a random vector where the individual components were i.i.d. Poisson random variables with parameter θ . Previously, you showed that $T(\mathbf{Y}) = Y_1 + Y_2 + \cdots + Y_n$ is a complete sufficient statistic for θ , that $T(\mathbf{Y})$ is Poisson with parameter $n\theta$, and you found the MVUE and ML estimators for

$$\phi = g(\theta) = P_{\theta}\{Y_1 = 0\} = e^{-\theta}.$$

(Actually, a slightly more general result was found before.) These estimators were (for n > 1)

$$\hat{\phi}_{MVUE} = \left(\frac{n-1}{n}\right)^{T(\mathbf{y})}$$
$$\hat{\phi}_{ML} = e^{-T(\mathbf{y})/n}.$$
(1)

- (a) Solve part (d) of HW1, Problem 6, if you have not yet done so.
- (b) Find the CRLB for estimating θ based upon the *n* observations.
- (c) The ML estimate for θ is $\hat{\theta}_{ML}(\mathbf{y}) = T(\mathbf{y})/n$. Is $\hat{\theta}_{ML}(\mathbf{y})$ unbiased? Is it efficient? (Note: an estimator is *efficient* if it achieves the CRB.) Is it an MVUE?

- (d) Now consider estimation of $\phi = e^{-\theta}$. Why can we say that $\hat{\phi}_{ML}$ is biased without calculation? Calculate the bias directly. From your result show that the ML estimator is asymptotically $(n \to \infty)$ unbiased.
- (e) Directly calculate the variance of $\hat{\phi}_{ML}$ as a function of θ and n and argue that the estimator is consistent.
- (f) Find the CRLB for estimating $\phi = e^{-\theta}$ based upon the *n* observations and express it as a function of θ .
- (g) Does the unbiased estimator $\hat{\phi}_{MVUE}$ meet the CRLB for finite n? Answer the question without calculation.
- (h) Now calculate the variance of $\hat{\phi}_{MVUE}$ expressed as a function of θ and n. Form the ratio

 $\frac{\operatorname{Var}_{\theta}\{\hat{\phi}_{MVUE}(\mathbf{Y})\}}{\text{the CRLB for }\phi}$

and directly explore the efficiency question of (f).

- 3. Prove the factorization criterion for a sufficient statistic in the case of discrete distributions. Attempt to generalize your proof to the case of continuous distributions assuming whatever regularity conditions you need.
- 4. Srinath et al., Problem 5.5. We have N independent observations, $z_i, i = 1, ..., N$ of a Gaussian variable with mean m (known) and variance σ^2 , which is unknown. Obtain $\hat{\sigma}_{ML}^2$. Is this estimate unbiased? Is this efficient? What is the variance of this estimate?
- 5. Srinath et al., Problem 5.13. Let X_1, \ldots, X_n be a random sample from a density that is uniform on $(\theta \frac{1}{2}, \theta + \frac{1}{2})$. Note that θ is a location parameter and that $X_i \theta$ is uniformly distributed on $(-\frac{1}{2}, \frac{1}{2})$. Let Y_1, \ldots, Y_n denote the corresponding interval for θ . Find the confidence coefficient for this interval.
- 6. Srinath et al., Problem 5.15. Let X_1, X_2 denote a random sample of size 2 from a $\mathcal{N}(\theta, 1)$ distribution. let Y_1, Y_2 be the corresponding ordered sample. Determine γ where $P(Y_1 < \theta < Y_2) = \gamma$. Find the expected length of the interval (Y_1, Y_2) .