E1 244: Homework - 4

Assigned: 03 Mar. 2011

1 Topics

• Kalman Filtering

2 Problems

1. Consider a sequence $\{X_k\}_{k=0}^{\infty}$ of binary random variables, each taking on the values 0 or 1. Suppose that this sequence has the Markov property

$$P\{X_k = x_k | X_0 = x_0, \dots, X_{k-1} = x_{k-1}\} = P\{X_k = x_k | X_{k-1} = x_{k-1}\} \stackrel{\triangle}{=} p_{x_k, x_{k-1}}$$

for all integers $k \geq 1$, and for all binary sequences $\{x_k\}_{k=0}^{\infty}$. Consider the observation model

$$Y_k = X_k + N_k, \quad k = 0, 1, 2, \dots$$

where $\{N_k\}_{k=0}^{\infty}$ is an i.i.d. sequence, independent of $\{X_k\}_{k=0}^{\infty}$, and having the common marginal probability density function f. For each integer $k \geq 0$, let $\hat{X}_{k/k}$ denote the MMSE estimate of X_k given measurements $\{Y_0, Y_1, \ldots, Y_k\}$, and let $\hat{X}_{k/k-1}$ denote the MMSE estimate of X_k given the measurements $\{Y_0, Y_1, \ldots, Y_{k-1}\}$. Define

$$\hat{X}_{0/-1} = E\{X_0\} = P\{X_0 = 1\}.$$

Show that $\hat{X}_{k/k}$ and $\hat{X}_{k/k-1}$ satisfy the joint recursions

$$\hat{X}_{k/k} = \frac{\hat{X}_{k/k-1} f(y_k - 1)}{\hat{X}_{k/k-1} f(y_k - 1) + (1 - \hat{X}_{k/k-1}) f(y_k)}$$

$$\hat{X}_{k+1/k} = p_{1,1} \hat{X}_{k/k} + p_{1,0} (1 - \hat{X}_{k/k})$$

for $k \geq 0$.

2. Suppose that the steady state equation in the Kalman filter model is modified as follows:

$$X_{k+1} = F_k X_k + G_k W_k + \Gamma_k s_k \qquad k \ge 0$$

where s_k is a known sequence of vectors (a control input) and Γ_k is a known sequence of matrices of appropriate dimension.

- (a) Find the appropriate modification of the Kalman recursions.
- (b) Repeat where each s_k is allowed to be a function of the past measurement, i.e., of Z(k) (feedback control).
- 3. Let $L(\cdot)$ be a scalar function with $L(0)=0, L(y)\geq L(z)$ for $\|y\|\geq \|z\|, L(y)=L(-y),$ and with $L(\cdot)$ convex. Let $P_{X|Y}(x|y)$ be symmetric about $\hat{x}=E\{X|Y=y\}$. Prove that for all z

$$E\{L(X - \hat{x}|Y = y)\} \le E\{L(X - z)|Y = y\}.$$

4. With $P_k = E\{X_k X_k^T\}$ and assuming the standard Kalman filter setup from class show that

$$P_{k+1} - \Sigma_{k+1|k} \ge 0$$

and interpret the result.

5. Let P_k be a sequence of nonnegative definite matrices such that for some nonnegative definite matrix P and for all k

$$P \ge P_{k+1} \ge P_k$$

Show that the limit $\lim_{k\to\infty} P_k$ exists.

6. Consider the following Bayesian estimation problem. Observations of the following form are made of a random variable X

$$Y_k = X + (1 + \alpha D)V_k, \quad 1 \le k \le N,$$

where $\alpha > 0$, and the statistical assumptions are that:

- $X \sim \mathcal{N}(\mu_x, \sigma_x^2)$ and the measurement noise is i.i.d. with $V_k \sim \mathcal{N}(0, \sigma_v^2)$.
- D is a zero-one random variable with $P\{D=1\}=q$.
- The random variables X, D, and $\{V_k\}_{k=1}^{\infty}$ are statistically independent.

The model is for a measurement scenario where two sensors are available to make measurements of a quantity. One sensor is "good" (variance σ_v^2) and the other sensor is "bad" (variance $(1+\alpha)^2\sigma_v^2$). We do not know apriori which sensor has been used.

(a) The minimum mean-squared error estimator of X given $\underline{Y} = [Y_1, Y_2, \dots, Y_N]$ is of the form

$$E\{X|\underline{Y} = \underline{y}\} = C_0(\underline{y})L_0(\underline{y}) + C_1(\underline{y})L_1(\underline{y})$$

where the $L_i(y)$ are linear functions and the coefficients $C_i(y)$ are nonlinear functions.

- i. Explain how the formula above comes about. (Hint: condition on the value of D.)
- ii. Find explicit formulas for $L_0(y)$ and $L_1(y)$.
- iii. Demonstrate how to get the coefficients $C_0(\underline{y})$ and $C_1(\underline{y})$ but don't carry out the calculations.
- (b) Derive the complete formula for the minimum mean-squared error linear estimator of X given Y.