E1 244: Homework - 6

Assigned: 30 Mar. 2011

1 Topics

- Bayesian detection
- NP Testing

2 Problems

1. Find the Bayes rule and minimum Bayes risk for a binary H.T. with uniform costs and equal priors, with

$$p_{0}(y) = \begin{cases} c_{0}y^{2} & |y| \leq 1\\ 0 & \text{else} \end{cases}$$
$$p_{1}(y) = \begin{cases} c_{1}(3 - |y|) & |y| \leq 3\\ 0 & \text{else} \end{cases}$$

where c_0 and c_1 are constants.

2. A communication system uses binary signaling by sending one of the following two signals: $s_1(t)$ to send one, and $s_0(t)$ to send zero, where $s_1(t) = -As(t), s_0(t) = As(t), A > 0$, and

$$s(t) = \begin{cases} 1 & 0 < t < 1 \\ 0 & \text{else} \end{cases}$$

The transmitted signal is corrupted by zero mean white Gaussian noise n(t) with autocorrelation function $R_n(\tau) = \sigma^2 \delta(\tau)$, so that the received signal is given by

$$y(t) = \begin{cases} -As(t) + n(t) & 1 \text{ sent} \\ As(t) + n(t) & 0 \text{ sent} \end{cases}$$

The receiver computes the decision statistic

$$Z = \int_{-\infty}^{\infty} y(t) s(t) dt$$

The receiver would like to decide whether 0 or 1 was sent, or (if it is not confident about a 0/1 decision), erase the signal. We would like to obtain a Bayesian decision rule for doing this as follows.

Let $\Theta = \{0,1\}$ and $\mathcal{A} = \{0,1,e\}.$ The observation is Z . Assume the cost structure

$$C(a,\theta) = \begin{cases} 1 & a \neq \theta, a = 0, 1 \\ 0 & a = \theta \\ c & a = e \end{cases}$$

where $\theta = 0, 1$ and where $c \in (0, 1)$ is the cost of an erasure.

- (a) Find the Bayes rule for equal priors. Simplify the form of the rule as much as possible and specify its dependence on the problem parameters c, A, and σ^2 .
- (b) For $d = A/\sigma = 5$, find c and a corresponding Bayesian decision rule δ_A so that the probability of erasure p_1 is twice the probability of error p_2 . Compare with the values of p_1 and p_2 for a Bayesian decision rule δ_B corresponding to c = 1/2.
- 3. NP Testing. Consider the hypothesis testing problem

$$H_0$$
 : $r_i = n_i$, $i = 1, ..., N, (N \text{ odd})$
 H_1 : $r_i = m + n_i$,

and let $\mathbf{r} \triangleq [r_1, \ldots, r_N]^T$.

(a) Find the Log-Likelihood Ratio (LLR), defined as

$$LLR = \log\left(\frac{p(\mathbf{R}|H_1)}{p(\mathbf{R}|H_0)}\right)$$

- (b) (LLR as a random variable.) Find $p(LLR | H_0)$ and $p(LLR | H_1)$. Plot.
- (c) Matlab. Define $\delta(r_i)$ as

$$\delta(r_i) = \begin{cases} 1 & r_i \ge \eta \\ 0 & \text{otherwise} \end{cases}$$

And let $\delta^{(1)}(\mathbf{r})$ be

$$\delta^{(1)}(\mathbf{r}) = \begin{cases} 1 & \sum_{i=1}^{N} \delta(r_i) \ge (N-1)/2 \\ 0 & \text{otherwise} \end{cases}$$

That is, $\delta^{(1)}(\mathbf{r})$ takes a *majority vote* among $\delta(r_i)$. Find P_F , P_D and plot the ROC.

(d) Find the α -level NP test and plot its ROC. Compare with (d).