E1 244: Homework - 7

Assigned: 06 Apr 2011

1 Topics

• NP testing

2 Problems

1. Poor Chapter II 2(b) Given the parametric model

$$f(y|\theta_1, \theta_2) = \begin{cases} \theta_1 y + \theta_2, & 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

consider the following binary hypotheses

$$\mathcal{H}_0: (\theta_1, \theta_2) = \left(\frac{2}{3}, \frac{2}{3}\right)$$
 vs. $\mathcal{H}_1: (\theta_1, \theta_2) = (0, 1).$

Find the NP detector for an α -level test (i.e., $P_F = \alpha$) and plot the ROC.

2. Poor Chapter II 10 Suppose a single observation Y is generated from

$$Y = \theta \lambda + N$$

Where $N\sim \mathcal{U}(-1,2)$ and $\lambda\in (0,2)$ a known constant. The two hypotheses are given by

$$\mathcal{H}_0: \theta = 0$$
 vs. $\mathcal{H}_1: \theta = 1$.

- (a) Find the NP detection rule for an α -level test.
- (b) Find the probability of detection P_D as a function of α and λ . Plot the ROC.
- 3. Gaussian vs. Uniform Consider the following simple binary hypotheses:

$$\mathcal{H}_0: Y \sim \mathcal{N}(0, \sigma^2)$$
 vs. $\mathcal{H}_1: Y \sim \mathcal{U}(-\sqrt{3}\sigma, \sqrt{3}\sigma).$

Both distributions have mean zero and variance σ^2 .

- (a) First, think intuitively about how you would detect \mathcal{H}_0 versus \mathcal{H}_1 . For example, what would \mathcal{Z}_0 and \mathcal{Z}_1 look like?
- (b) Derive the Neyman-Pearson detector for a given $\alpha \in (0, 1)$. Verify your intuition.
- (c) Plot the ROC curve for $\sigma = 1$. How does it change as σ^2 increases?
- 4. Rework the above problem replacing \mathcal{H}_0 with \mathcal{H}_1 .
- 5. Gaussian vs. Exponential Consider

$$\mathcal{H}_0: Y \sim \begin{cases} \frac{2}{\sqrt{2\pi\sigma}} e^{-\frac{y^2}{2\sigma^2}}, & y \ge 0\\ 0 & \text{otherwise} \end{cases} \quad \text{vs.} \quad \mathcal{H}_1: Y \sim \frac{1}{\sigma} e^{-\frac{x}{\sigma}}, \end{cases}$$

both having the same variance but different means μ_0 and μ_1 respectively.

(a) Consider first the simple threshold detector

$$\delta(y) = \begin{cases} 1, & y > \frac{\mu_0 + \mu_1}{2} \\ 0 & \text{otherwise} \end{cases}$$

Find the P_F and P_D for this detector.

- (b) Derive the NP detector for a given $P_F = \alpha$. Is the above detector the NP detector for some value of α ?
- (c) Plot the ROC curves of the two detectors.