E1 244: Homework - 8

Assigned: 06 Apr 2011

1 Topics

- UMP, LMP and Generalized LRTs
- The general Gaussian problem

2 Problems

1. Srinath, Pb. 3.21 Let X_1, X_2, \ldots, X_n be a random sample from the Poisson distribution

$$P_{\theta}(x) = \frac{e^{-\theta}\theta^x}{x!} \quad x = 0, 1, 2, \dots$$

Let $\theta_0 > 0$ be a specific value of θ .

- (a) Find the UMP test for deciding between $\mathcal{H}_0: \theta = \theta_0$ vs. $\mathcal{H}_1: \theta > \theta_0$.
- (b) Find the α -level LMP test for testing $\mathcal{H}_0: \theta = \theta_0$ vs. $\mathcal{H}_1: \theta \neq \theta_0$.
- (c) Find the generalized LRT for testing $\mathcal{H}_0: \theta = \theta_0$ vs. $\mathcal{H}_1: \theta \neq \theta_0$.
- 2. Srinath, Pb. 3.27 Consider the following composite hypothesis-testing problem. The observations are

$$\mathcal{H}_1: Z_k = Y_k + V_k \quad k = 1, 2, \dots, K \mathcal{H}_0: Z_k = V_k \qquad k = 1, 2, \dots, K$$

with Y_k and V_k i.i.d. random variables with densities $\mathcal{N}(0, \sigma_y^2)$ and $\mathcal{N}(0, 1)$, where σ_y is unknown.

- (a) Does a UMP test exist?
- (b) If a UMP test does not exist, find a generalized LRT.
- 3. Suppose that the observations $y \in \mathbb{Z}$ are modeled by a family of probability densities $\{p_{\theta} : \theta \in \Lambda\}$ where Λ is an interval in the real line. We consider the test of a simple hypothesis $\mathcal{H}_0 : \theta = \theta_0$ against a composite two-sided alternative $\mathcal{H}_1 : \theta \neq \theta_0$. Since UMP tests for this type of problem usually do not exist we consider LMP tests. We also consider only nonrandomized tests for simplicity. Recall that the detection probability of a test δ is

$$P_D(\delta, \theta) = \int_{\mathcal{Z}_1} p_{\theta}(y) dy, \ \theta \in \Lambda$$

where $Z_1 \subset Z$ is the critical region of δ . The LMP α -level test of this type of problem can be shown to be equivalent to the following optimization problem: find the region Z_1 such that

$$P_D(\delta, \theta_0) = \int_{\mathcal{Z}_1} p_{\theta_0}(y) dy = \alpha$$

$$P'_D(\delta, \theta_0) = \int_{\mathcal{Z}_1} p'_{\theta_0}(y) dy = 0$$

$$P''_D(\delta, \theta_0) = \int_{\mathcal{Z}_1} p''_{\theta_0}(y) dy \text{ is maximum.}$$

In the above, the derivatives are all w.r.t. θ , i.e.,

$$P'_{D}(\delta,\theta_{0}) = \left. \frac{\partial P_{D}(\delta,\theta_{0})}{\partial \theta} \right|_{\theta=\theta_{0}} \text{ and } P'_{\theta_{0}}(y) = \left. \frac{\partial p_{\theta}(y)}{\partial \theta} \right|_{\theta=\theta_{0}}$$

and similarly for P_D'' and $p_{\theta}''(y)$.

- (a) Assuming whatever regularity conditions you need, give the argument leading to the optimization problem above. We require that the resulting test be locally unbiased, i.e., $P_D(\delta, \theta) \ge P_D(\delta, \theta_0)$ in the neighborhood of θ_0 .
- (b) Solve the optimization problem in the sense of specifying the form of the optimal critical region \mathcal{Z}_1^* .
- (c) If p_{θ} is the family $\mathcal{N}(\theta, \sigma^2)$ where the variance is assumed known, show that the two-sided LMP test amounts to comparing $(y \theta_0)^2$ to a threshold. For a given level α , compute the threshold and the resulting detection probability.
- 4. Srinath, Pb. 3.16 Consider the following binary hypothesis-testing problem:

$$\mathcal{H}_0: \mathbf{Z} = \mathbf{m}_0 + \mathbf{V}$$
 vs. $\mathcal{H}_1: \mathbf{Z} = \mathbf{m}_1 + \mathbf{V}$

where $\mathbf{Z} = [Z_1 \ Z_2]^T$, $\mathbf{m}_0 = [m_{10} \ m_{20}]^T$, $\mathbf{m}_1 = [m_{11} \ m_{21}]^T$, and $V = [V_1 \ V_2]^T$, with V_1 and V_2 being independent Gaussian random variables with mean zero and variance σ^2 .

- (a) Find the minimum probability of error receiver for equally likely hypotheses if the vectors \mathbf{m}_1 and \mathbf{m}_2 are known constants.
- (b) How does the test simplify if $\mathbf{m}_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ and $\mathbf{m}_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$.
- (c) If $\mathbf{m}_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ and you were allowed to choose a unit-norm \mathbf{m}_2 , which vector would you recommend?
- 5. Srinath, Pb. 3.18 Consider the following binary hypothesis-testing problem:

$$\mathcal{H}_0: \mathbf{Z} = \mathbf{m}_0 + \mathbf{V}$$
 vs. $\mathcal{H}_1: \mathbf{Z} = \mathbf{m}_1 + \mathbf{V}$

where $\mathbf{Z}, \mathbf{m}_0, \mathbf{m}_1$ and \mathbf{V} are vectors of dimension N and \mathbf{V} is Gaussian with mean zero and covariance matrix Σ . For equally likely hypotheses and a minimum probability of error criterion, find the optimum decision rule. Find the receiver structure and the probability of error for the case $\Sigma = \sigma^2 I$.