
1. INTRODUCTION 

In references [4-71, the formulation and analysis 
of a decision rule for target presence was derived for 
a radar using an array antenna, under the assumption 
of Gaussian noise with unknown covariance. It was 
assumed that a single N-length data vector (called the 
“primary” vector) may contain a signal or target return 
with known direction vector s and unknown complex 
amplitude b, while K > N other independent data 
vectors (called “secondary” vectors) are available that 
are zero mean, and share the same N x N Covariance 
matrix M. The generalized likelihood ratio test (GLRT) 
derived under these assumptions is given by 

Hi 
(1) 

)stk-1212 

stA-’s ( 1 + -ztM-’z ; )iKi- 
In this formula z is the primary data vector, and M is a 
sample covariance matrix based on the secondary data 
vectors: 

(2) 
l K  lih = - Z(k)Z(k)t. 

k=l 
K 

Similar detection problems leading to the same test 
statistic will also arise for other signal models. For 
example, the data vector can be modeled as a vector 
of multiple “looks” at a moving target where the phase 
shift between elements of the vector corresponds to a 
Doppler progression. The secondary data may then be 
taken as samples of data from other ranges. 

The test described by (1) is a constant false alarm 
rate (CFAR) detector, in which the probability of false 
alarm is independent of the true covariance matrix 
of the interference. The adaptive detector of Reed, 
Mallett, and Brennan (RMB) [8] used conventionally 
for interference rejection is the numerator of this test 
statistic. 

based on the GLRT assuming the covariance is 
known. After the test statistic is derived, the maximum 
likelihood estimate of the covariance matrix based on 
the secondary data is inserted in place of the known 
covariance. The resulting test statistic has the form 
of a normalized matched filter and it is also a CFAR 
detector. This test statistic does not contain the factor 
in parentheses, found in the denominator of the GLRT 
(1). This term is computationally intensive for real 
time systems, as it must be calculated for each new 
input sample. We note that this term tends to unity 
when K is large. 

signals on boresight (i.e., in the s direction), as well 
as for signals that are not matched to boresight. The 
performance of this test to signals that are aligned with 
the steering vector exhibits a small loss when compared 
with the GLRT detector at low signal-to-noise ratios 
(SNR). The new detector exhibits the interesting 

Here, a detection algorithm is derived that is 

The performance of our detector is determined for 
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property that the probability of detection (PD) is 
higher than that of the GLRT detector for high SNRs. 
The GLRT has no known optimality property, and this 
result demonstrates that the GLRT is not optimal in 
the Neyman-Pearson sense of maximizing the PD for 
a given probability of false alarm (PFA). However, the 
absence of the denominator term causes our test to be 
much more sensitive to signals that would appear in 
the sidelobes of the adapted antenna pattern. 

II. ADAPTIVE MATCHED FILTER 

The same signal model as that used in [5] is 
assumed. The signal vector z is assumed to be a 
complex Gaussian random vector with mean 0 under 
hypothesis Ho, mean bs under hypothesis HI, and 
covariance M. K additional data vectors are available 
that are assumed to have mean 0 and covariance M. 
These vectors may be used as secondary vectors to 
estimate the noise covariance. 

The procedure used to derive the test statistic is to 
assume that the covariance is known, and then to write 
the GLRT maximizing over the unknown parameter b. 
The resulting test statistic is the output power of the 
standard colored-noise matched filter. The maximum 
likelihood estimate of the covariance based on the 
secondary data alone is then substituted into this test. 

The derivation is begun by writing the GLRT 

Substituting the complex multivariate Gaussian density 
functions and canceling common terms yields 

(4) 
A = e- (z-bs)'M-'(z- bs)+ztM-'z  

We can now take the logarithm, and simplify to 

log(A) = 2Re(b*stM-'z) - Ib12stM-'s. 

Maximizing this with respect to the unknown complex 
amplitude b yields 

(5) 

Substituting (6) into ( 5 )  and simplifying produces the 
test 

(7) 
J s ~ M - ~ z J ~  

< Q. StM-'S H~ 

This test statistic is proportional to the squared 
magnitude of the output of the colored noise linear 
matched Fiter, since the term in the denominator is a 
constant when the true covariance is known. 

If the noise covariance matrix were known, 
then we would use the detector described by (7). In 
general, the covariance matrix is unknown and must be 
accounted for by using adaptive techniques. The GLRT 
provides one such adaptive approach. We propose 

to account for not knowing the true covariance by 
the ad hoc procedure of substituting the maximum 
likelihood estimate based on the secondary data. Reed, 
Mallett, and Brennan used a similar approach in their 
maximum signal-to-noise formulation of the detection 
problem. The test form is then 

We call this test the adaptive matched filter (AMF) 
test. This test statistic has the RMB test statistic as the 
numerator, with a normalization that is the same as 
that which would be provided by the GLRT for a large 
number of secondary samples. This normalization will 
provide the desired CFAR behavior, and is a natural 
normalization factor to use for this purpose. 

methods. In Appendix A it is shown that this test 
statistic also results from a type of cell averaging 
CFAR where the cell average is made from the outputs 
of an RMB adaptive beamformer. 

secondary) in the likelihood maximization under each 
hypothesis. The AMF test makes no use of the primary 
vector to estimate the covariance, therefore poorer 
detection performance might be expected. In the 
following sections, the performance loss is shown to 
be small and that, in certain situations, the AMF test 
will actually outperform the GLRT 

The AMF test may also be derived by other 

The GLRT uses all the data (primary and 

I l l .  CFAR BEHAVIOR 

We now show that the AMF test statistic is 
independent of the true covariance matrix under Ho 
and thus it gives a constant false alarm rate test. 

be written 
Let U = MA1l2s, and y = M-'f2z. Then the test can 

where M 3 M-'/2MM-1/2. M is subject to the 
complex Wishart distribution with parameters K, N, 
and I, which is denoted C W ( K , N ; I )  [2]. 

Now a unitary transform is defined that rotates the 
whitened signal vector into the first elementary vector: 

de = U ~ U ,  e = [1,0 ,..., 01'. (10) 

The Fist column of U is the whitened signal vector 
U, and the other N - 1 columns form an arbitrary 
orthonormal basis for the orthogonal complement of 
the subspace spanned by U. The test then becomes 

(11) 
Idet(?1x/2 lete-'xl2 
d2etC-le etC-le H~ 

2 Q  - t =  - 

where x G Uty and C G UtMU. Then x is distributed 
N(0,I)  under Ho, and C is distributed CW(K,N;I) .  
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The actual covariance does not appear in this equation 
or in the underlying density functions, and thus this is 
a CFAR test. This test is independent of both the level 
and the structure of the true covariance, in contrast to 
the simple unknown level CFAR characteristic of many 
common CFAR detectors. 

IV. GENERALIZATION OF SIGNAL MODEL 

The equations to determine the performance of 
this detector are derived for a general signal case, 
where the signal may or may not lie in alignment with 
the look direction. The case where the signal is in 
alignment then is a simplification of the general signal 
model. In our model the signal is assumed to lie along 
some general direction vector p, hence the signal is 
now normally distributed N(0,M) on HO and N(bp,M) 
on HI. The steering vector of the array is assumed to 
be q. 

The direction vectors may be normalized so that 

ptp = qtq = 1 

Ai E (qtM-'q) (13) 

(12) 

and the following definitions are made 

Summarizing [6], these terms may be used to 
describe the SNR That is, the maximum S N R  is 

SNR,,, = IbI2A, (15) 

attained when the signal lies along the axis for which 
the detector is steered. When the signal does not lie 
in the steering direction, then there is an S N R  loss. 
The S N R  that results when the array is steered in the 
direction corresponding to q is 

The term qtM-'p can be interpreted as an inner 
product of p and q. Thus the inner product measure 
of distance cos8 may be used to relate the SNR to the 
maximum S N R  [7J We make the definition that 

U E SNR,, = SN%,cos28 (17) 

then 

We can think of SNR, as the SNR in the subspace 
spanned by the adapted steering direction, and likewise 

c 5 SNR,, sin2 8 (19) 

can be viewed as the SNR in the orthogonal subspace. 

V. PERFORMANCE EVALUATION 

A. Derivation of Test Performance 

The analysis of this detector is similar to the 
analysis given in [5], and uses the same notation. 
Appropriate whitening and unitary transforms are 
performed to reformulate the AMF test in the 
statistically equivalent form 

The variable z has been redefined in this equation to 
be the whitened rotated primary data vector x in (11). 

The steps made to form this representation are 
identical to those used to show that the test statistic is 
independent of the underlying covariance matrix. Here, 
because of the generalization of the signal model, 
the actual mean direction vector may not have been 
transformed to the first elementary vector. With this in 
mind, z is now normally distributed N(0,I) under Ho 
and N(bA,f,I) under HI. The transformed covariance 
estimate S has the complex Wishart distribution 
CW(K,N;I) ,  and the signal direction vector is given 
bY 

(21) 
1 

P. f E -UtM-'/2 
A, 

The unitary transform U is required to rotate the 
whitened direction vector to the first elementary 
vector e E [1,0,. . . ,O]t. Following [5], the vector f is 
decomposed into components parallel and orthogonal 
to e, and decomposing S as well: 

p E (1 + Z B S ~ ~ Z E ) - ' .  (5) 

The test statistic can now be simplified to the form 

and thus the test may be expressed 

where v is now normally distributed N(0,l) or 
N ( J ~ T A , ~  C-e, 1). 

The GLRT is expressed in a similar form without 
the p factor in the threshold. T is an independent 
random variable which is distributed chi-squared (x2)  
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with L complex degrees-of-freedom. Expression (27) 
has the form of a scalar CFAR test, in which the 
threshold is multiplied by the random loss-factor p. 

[6], and it is given by the formula 
The density of the lass factor p has been derived in 

x cmfp(p;L  + 1,N + m - 1) (28) 

where c is given in (19) and we have defined L 
K + 1 - N .  The central Beta density function is 

(n + m - l)! 
(n - l)!(m - l)!  

x”-’(l- q m - 1 .  fp(x;n,m) = 

An alternative form for f ( p )  may be derived 
by expressing f (p )  in terms of the confluent 
hypergeometric function, and using Kummer’s first 
transformation [l] to yield [6] 

with L = K + l - N  

B. Evaluation of the Probability of False Alarm 

The PFA for the AMF test is calculated when the 
signal mean is equal to 0; consequently the orthogonal 
SNR term c is 0 and the density functions reduce to 
the central Beta density function. The PFA will then 
have the same form as the PFA of the GLRT [4, 51 
except for the presence of the factor p in the threshold. 
As shown in [A, the PFA for the GLRT is given by 

1 
P F & m  = - 

(1 +ay 

where a = y/( l  - y), and y is the threshold term of 
(1). To determine the false alarm probability for the 
Ah4F test, the term a can be replaced with pa, and 
the expectation with respect to the loss factor p can be 
taken to yield 

PFAAMF = PFAAMF I pf(p)dp I’ 
This has been evaluated through numerical integration, 
and also by means of an expansion into an infinite 
series, integration term by term, and derivation of 
truncation bounds, with the same results. Iterative 
procedures based on bisection and Newton’s method 
have been used to find a when a particular PFA is 
specified. 

C. Evaluation of the Probability of Detection 

The conditional PD for the AMF test given 
be expressed in a finite sum expression as [3] 

where a is the S N R  component defined earlier, and 
where Gm is the incomplete Gamma function 

m-1 k 
Gm@) = e-Y b. 

k=O 

Unlike the GLRT, the AMF test includes the loss 
factor in the threshold as well as in the mean or SNR 
component. The expectation of the PD with respect to 
the random variable p must be taken to evaluate the 
unconditional PD. The PD can be written as 

This equation has been directly computed through 
numerical integration using the finite sum form of the 
density function (28). Additionally, this equation has 
been evaluated through the use of the infinite series 
form of the density function, integration term by term 
to express the PD as a series expression containing two 
finite and three infinite series. Bounds for the three 
infiite series were obtained using methods similar to 
that of Shnidman [9]. The results using this method 
were then used to verify the results of the numerical 
integration. 

In order to evaluate the PD numerically, a single 
routine has been written to evaluate the PD of a scalar 
CFAR detector: 

(36) 
The numerical integration technique of finding the 
unconditional PD consists of repeatedly calling 
the routine with a and a replaced by up and ap,  
weighting the result by fp@), and summing. When this 
procedure is performed for the AMF test, the equation 
implemented is 

I-1 

PDAMF = ApCPDCFAR(iApa, iApa,L)fp(iAhp), 
i =O 

(37) 
1 
I A p = -  
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with a defined in (17) as the SNR component parallel 
to the direction vector. I is chosen to yield a suitably 
small error by successively doubling the number of 
terms until the probability of detection varies less than 
some e. 

The corresponding equation for the GLKT is 
numerically integrated in the same manner with the 
equation implemented being 

I-1 

PDGIJ~~  = A P C P D C F A R ( ( Y , ~ A ~ ~ , L ) ~ , ( ~ A ~ ) .  (38) 

If a in (37) or (38) is now replaced by 7 a  where 
7 is a random loss, the PD for the Swerling target 
fluctuation models [lo] may be found. For these cases, 
7 is subject to a x2 distribution with the number of 
degrees of freedom dependent upon the Swerling 
model chosen. For the Swerling I model, there will be 
only one complex degree of freedom, and the density 
function for 7 is 

i=O 

f7 = e-7. (39) 
If the expectation with respect to 7 is taken on 
Gm ( 7 ~ ) ~  (34), then 

and the conditional PD is then found (after some 
algebra) to be 

This expression can be numerically integrated with 
respect to the loss factor p. Using the same procedure 
for the GLRT yields 

In these cases, no signal mismatch is assumed. For 
comparison, the PD for the Swerling I matched filter 

(43) p~~~ = e-a/(l+o). 
is 131 

VI. PERFORMANCE RESULTS 

A. Performance to Matched Signals 

In order to gain a better understanding of the 
detection properties of this detector, we fxst look 
at signals aligned with the steering vector. In this 
case, the loss factor density reduces to the central 
Beta density, and the loss is dependent only on the 
dimensional parameters. The density of the loss factor 
is then 

f(p) = fp(p;L + 1 3  - 1). (44) 

212 

PD vs SNR 
I O  I I I , , I , , , 1 , 

K=ZO. N=10 

0 IO 20 
SNR (dB) 

Fig. 1. Probability of detection, N = 10, K = 20. 

PD vs SNR 
I O  I I , . , . I I , , 

K=50. N=10 3 

0 0  ' ' 1 ,  . ,  

0 IO 20 
SNR fdb) 

Fig. 2 Probability of detection, N = 10, K = 50. 

Receiver operating characteristic curves are 
generated by first determining the threshold required 
to achieve a desired false alarm probability. Using 
this threshold, the SNR is varied and the PD 
calculated. Plotting the PD as a function of S N R  
results in the characterization of a particular test. 
Some characteristic curves for the known covariance 
matched-filter detector, the AMF detector and 
the GLRT detector are plotted in Figs. 14. R s t  
parameters are given directly on the figures. The 
curves for the known covariance were generated using 
Shnidman's techniques [9] for evaluation of Marcum's 
Q-function. 

From these curves, we can see that there is 
less than 1 dB additional loss in the AMF detector 
compared with the GLRT detector. This slight 
advantage to the GLRT detector decreases at 
increasing SNRs and there is a crossover in detector 
performance for signals aligned with the steering vector 
where the AMF detector has a higher performance. 
This is shown in the expanded graph of Fig. 5. No 
claim to optimality is made for the GLRT, and this is 
one example of a technique that is superior. 

Several of the graphs are for K = 2 N  which 
corresponds to approximately 3 dB loss in SNR for 
an adaptive beamformer [SI. We can see from the plots 
that additional S N R  in excess of the 3 dB is required 
for the adaptive detection algorithms to have a PD that 
is equal to that of the known covariance detector. 

Figs. 6 and 7 illustrate the PD when the Swerling 
fluctuation is included. The change in the shape of the 
detection curves is typical of the Swerling model. 

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 28, NO. 1 JANUARY 1992 

~ ~- 

Authorized licensed use limited to: INDIAN INSTITUTE OF SCIENCE. Downloaded on January 21, 2010 at 01:38 from IEEE Xplore.  Restrictions apply. 



3. 
SNR (dR) 

Probability of detection, N = 4, K = 8. 

Fig. 4. Probability of detection, N = 32, K = 64. 

PD v s  S N R  

P F A = I  Oe-02 I 

1 
1 

0 0 5  

! 

Fig. 5. Probability of detection, N = 4, K = 8; expanded to show 
detail. 

0 I O  20 
SNR ( d R )  

Fig. 6. Swerling I probability of detection, N = 10, K = 20. 

B. Ferformance to Mismatched Signals 

When analyzing the PD curves, one must keep in 
mind when detection is desired. We desire to detect a 
target when it is aligned with the steering vector, i.e., 
when cos2@ = 1. When there is significant separation 
between the steering vector and the target directions, 

PD vs S N R  

0 2  

0 I O  70 
SNK (db) 

Fig. 7. Swerling I probability of detection, N = 10, K = 50. 

10 20 30 
SNR (dR) 

Fig. 8. AMF probability of detection with mismatch, N = 10, 
K =U). 

G L R T  PD Y S  S N R  w i t h  mismatch 

Fig. 9. GL€?T probability of detection with mismatch, N = 10, 
K=20. 

cos2@ will be less than 1 and detection is normally 
undesirable. 

With this in mind, we discuss Figs. 8-11, the 
detection curves under mismatched conditions. Here, 
the PFA is fixed, the mismatch parameter cos2@ is 
stepped from 0.1 to 1.0 in 0.1 steps, and the PD is 
calculated as the total SNR is varied. In these plots, 
the crossover in detector performance (i.e., equal PD 
for GLRT and AMF with a given value of cos2@) is 
seen to occur at lower SNRs. This implies a lowering 
of the PD sidelobes of the GLRT detector at high SNR 
levels compared with the AMF detector, preventing 
signals from burning through, and being detected. 
For large N the fust sidelobe for a uniform linear 
array with receiver only noise is at -13.4 dB or 
cos2@ = 0.04503. There is then a significant difference 
in sidelobe performance for these two detectors. 

between the detectors, plots of the difference in S N R  
In order to point out the performance difference 
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A M F  PD YS SNR with mismatch  

0 IO 20 30 
SNR (dBI 

Fig. 10. AMF probability of detection with mismatch, N = 10, 
K = 50. 

GLRT PD YS SNR with mismatch 
I O  

0 6  

Fig. 11. GLRT probability of detection with mismatch, N = 10, 
K = 50. 

SYR difference for cons t an t  PD 

r K.20 N = I O  
20 7- , , , T---~ 

P P I \ = )  O e - 0 6  

I 

l O . A . ' ' ,  1 1 ' 
10 20 

SLK (d8) 

Fig. 12 SNR difference to achieve constant probability of 
detection, N = 10, K = 20. 

required to achieve the PD of the GLRT detector 
are shown in Figs. 12 and 13. For given PFA and 
cos28 values, we vary the SNR, determine the PD 
for the AMF test then find the additional S N R  that 
is required for the GLRT detector to have the same 
PD. The crossover points are obvious when the curves 
are presented in this manner. These points show 
the superiority of the GLRT detector in rejecting 
mismatched signals. These plots also show that at low 
SNR levels, there is no practical difference in the 
detectm, although the PD is low in this region. 

Figs. 14-17 illustrate the mainlobe and first 
sidelobe for the PD when the covariance is due only 
to receiver noise. In this case, the loss factor will have 
the characteristic sin(N$/2)/ sin($/2) response; the 
argument $ of this function is the horizontal axis. The 
reduction in threshold level for the AMF detector due 
to mismatch is shown in the increase in the PD in what 

214 

SNR difference for cons tan t  PD 

10 20 
SNR idRI 

Rg. 11 SNR difference to achieve constant probability of 
detection, N = 10, K = 50. 

A M F  PD vs 0 

Fig. 14. AMF probability of detection versus angle, N = 10, 
K&.. 

Fig. 15. G W  probability of detection versus angle, N = 10, 
K = 20. 

A M F - P D  vs 0 

K = 5 0  N = I O  
PFA=I  Oe-06 

Fig. 16. AMF probability of detection versus angle, N = 10, 
K = 50. 

would be nulls of the sin(N$/2)/sin($/2) response. 
The "omnidirectional" characteristic of this detector is 
also shown by the higher PD as a function of angle. 

The difference in the PD at high signal-to-noise 
levels can be explained by analyzing the test statistics. 
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GLRT PD vs 6 
100 I " '  

K=50. N = I O  

0 0  0 5  I O  
L / ( P n / N )  

Flg. 17. GLRT probability of detection versus angle, N = 10, 
K = 50. 

Assume that the true noise covariance is the identity 
I, and that the estimate Of the covariance matrix is 
perfect The AMF test statistic then takes the form 

If the signal is not orthogonal to the assumed direction 
we can rewrite this as 

Hi 

This is. compared with the GLRT written in the same 

is performed using the technique of Reed, Mallet, 
and Brennan [8]. The secondary data for covariance 
estimation have been taken from the data in other 
range bins. Now use the beamforming outputs along 
the boresight from the secondary data in an unknown 
level CFAR detector: 

Expanding the right-hand side of (All)  yields 

Now the covariance estimate &l may be substituted for 
the sum of the outer products of the data: 

The right side can then be simplified to 

and this can be written as the AMF test 

IstM-'z12 H1 p a. 
st&l-'s 

The left-hand side of this equation for the GLRT test 
will approach an asymptote at high SNRs, while for the 
AMF test, the left hand side is unbounded. The GLRT 
then will have a maximum separation that will allow 
detection at a given threshold, while the AMF test will 
allow large signals that are nearly orthogonal to the 
steering direction to be detected. 

VII. CONCLUSION 

We have proposed the Ah4F detector, a simple 
alternative to the GLRT detector. Both of these tests 
are CFAR tests, and have comparable performance to 
signals aligned with the assumed direction of arrival. 
The generalized likelihood-ratio test is not optimal 
in the Neyman-Pearson sense as the AMF test has a 
probability of detection that is higher than that of the 
GLRT for some situations. The AMF does not provide 
the rejection for signals that are misaligned with the 
assumed direction of arrival as well as the GLRT and 
this may be undesirable for some applications. 

APPENDIX A. ALTERNATE DERIVATION OF A M F  
TEST STATISTIC 

The AMF test statistic can be derived in an 
alternate manner. Assume that adapted beamforming 
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