E2 212: Homework - 5

1 Topics

- Schur's theorem
- Unitary equivalence
- Normal matrices
- QR decomposition and Jordan form

2 Problems

- 1. Prove that for every matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, and for every $\epsilon > 0$, there exists a matrix \mathbf{A}_{ϵ} such that \mathbf{A}_{ϵ} is equivalent to a diagonal matrix, and $\|\mathbf{A} \mathbf{A}_{\epsilon}\|_{F} < \epsilon$. *Hint:* Use Schur's theorem.
- 2. Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$ be given, and suppose \mathbf{A} and \mathbf{B} are simultaneously similar to upper triangular matrices: that is, $\mathbf{S}^{-1}\mathbf{A}\mathbf{S}$ and $\mathbf{S}^{-1}\mathbf{B}\mathbf{S}$ are both upper triangular for some nonsingular \mathbf{S} . Show that every eigenvalue of $\mathbf{A}\mathbf{B} \mathbf{B}\mathbf{A}$ must be zero.
- 3. If $\mathbf{A} \in \mathbb{C}^{n \times n}$, show that rank of \mathbf{A} is not less than the number of nonzero eigenvalues of \mathbf{A} .
- 4. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a nonsingular matrix. Show that any matrix that commutes with A also commutes with \mathbf{A}^{-1} .
- 5. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is normal, and if \mathbf{x} and \mathbf{y} are eigenvectors corresponding to distinct eigenvalues, show that \mathbf{x} and \mathbf{y} are orthogonal.
- 6. Show that a normal matrix is unitary if and only if all its eigenvalues have absolute value 1.
- 7. Show that a given matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is normal if and only if

$$(\mathbf{A}\mathbf{x})^H(\mathbf{A}\mathbf{y}) = (\mathbf{A}^H\mathbf{x})^H(\mathbf{A}^H\mathbf{y}).$$

- 8. Let n_1, n_2, \ldots, n_k be given positive integers and let $A_j \in M_{n_j}$, $j = 1, 2, \ldots, k$. Show that the direct sum $\mathbf{A}_1 \oplus \ldots \oplus \mathbf{A}_k$ is normal if and only if each \mathbf{A}_j is normal.
- 9. Show that each \mathbf{A}_k produced by the QR algorithm is unitarily equivalent to $\mathbf{A}_0, k = 1, 2, \dots$
- 10. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be given. Define

$$K_{\lambda} \triangleq \{ \mathbf{x} \in \mathbb{C}^n : (\mathbf{A} - \lambda I)^p \mathbf{x} = 0 \text{ for some integer } p > 0 \}.$$

Prove that

- (a) If λ is an eigenvalue of \mathbf{A} , then K_{λ} is a \mathbf{A} -invariant subspace of \mathbb{C}^n , i.e., $\mathbf{A}\mathbf{y} \subseteq K_{\lambda}$ for all $\mathbf{y} \in K_{\lambda}$.
- (b) If λ is an eigenvalue of **A** with multiplicity m, then dim $(K_{\lambda}) \leq m$.

11. Find an invertible matrix ${\bf U}$ such that ${\bf U}^{-1}{\bf A}{\bf U}$ is in Jordan form when

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 0 & i \\ 0 & 2 & 0 \\ -i & 0 & 1 \end{array} \right],$$

where $i = \sqrt{-1}$.

12. Find the Jordan form of the following matrices

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -4 & 2 \\ -i & 0 & 1 \end{bmatrix}.$$