E2 212: Homework - 7

1 Topics

- Variational characterization of eigenvalues
- Congruent matrices

2 Problems

- 1. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a Hermitian matrix, let $\mathbf{x} \in \mathbb{C}^n$ be a given nonzero vector, and let $\alpha \triangleq \mathbf{x}^H \mathbf{A} \mathbf{x} / \mathbf{x}^H \mathbf{x}$. Show that there exists at least one eigenvalue of \mathbf{A} in the interval $(-\infty, \alpha]$ and at least one in $[\alpha, \infty)$.
- 2. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Show that the following three optimization problems all have the same solution:
 - (a) $\max_{\mathbf{x}^H \mathbf{x}=1} \mathbf{x}^H \mathbf{A} \mathbf{x}$
 - (b) $\max_{\mathbf{x}\neq 0} \frac{\mathbf{x}^H \mathbf{A} \mathbf{x}}{\mathbf{x}^H \mathbf{x}}$
 - (c) $\min_{\mathbf{x}^H \mathbf{A} \mathbf{x} = 1} \mathbf{x}^H \mathbf{x}$
- 3. Show that, if λ_i is any eigenvalue of $\mathbf{A} \in \mathbb{C}^{n \times n}$ (not necessarily Hermitian), then, one has the bounds

$$\min_{\mathbf{x}\neq 0} \left| \frac{\mathbf{x}^H \mathbf{A} \mathbf{x}}{\mathbf{x}^H \mathbf{x}} \right| \le |\lambda_i| \le \max_{\mathbf{x}\neq 0} \left| \frac{\mathbf{x}^H \mathbf{A} \mathbf{x}}{\mathbf{x}^H \mathbf{x}} \right|, i = 1, 2, \dots, n.$$
(1)

- 4. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is Hermitian and if $\mathbf{x}^H \mathbf{A} \mathbf{x} \ge 0$ for all \mathbf{x} in a k-dimensional subspace, then prove that \mathbf{A} has at least k nonnegative eigenvalues.
- 5. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mathbf{B} \in \mathbb{C}^{n \times n}$ be two Hermitian matrices. Prove that

$$\lambda_k(\mathbf{A} + \mathbf{B}) - \lambda_k(\mathbf{A}) \le \rho(\mathbf{B})$$

for all k = 1, 2, ..., n, where $\rho(\mathbf{B})$ is the spectral radius of \mathbf{B} , and where the eigenvalues of \mathbf{A} and $\mathbf{A} + \mathbf{B}$ are arranged, as usual, in increasing order.

6. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mathbf{B} \in \mathbb{C}^{n \times n}$ are Hermitian matrices with eigenvalues arranged in increasing order, and if $1 \le k \le n$, show that

$$\lambda_k(\mathbf{A} + \mathbf{B}) \le \min\{\lambda_i(\mathbf{A}) + \lambda_j(\mathbf{B}) : i + j = k + n\}.$$

- 7. If $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mathbf{B} \in \mathbb{C}^{n \times n}$ are Hermitian matrices with all the eigenvalues of $\mathbf{A} \mathbf{B}$ being nonnegative, then prove that $\lambda_i(\mathbf{A}) \geq \lambda_i(\mathbf{B})$ for all i = 1, 2, ..., n, where the eigenvalues of both matrices are arranged in increasing order, as usual.
- 8. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be Hermitian. Show that \mathbf{A} is congruent to the identity matrix if and only if all the eigenvalues of \mathbf{A} are positive.
- 9. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mathbf{B} \in \mathbb{C}^{n \times n}$ be Hermitian matrices and assume that \mathbf{A} is positive definite. Then prove that

- (a) There exists a non singular matrix $\mathbf{S} \in \mathbb{C}^{n \times n}$ and a real diagonal \mathbf{D} such that $\mathbf{S}^H \mathbf{A} \mathbf{S} = \mathbf{I}$, and $\mathbf{S}^H \mathbf{B} \mathbf{S} = \mathbf{D}$.
- (b) The diagonal entries of \mathbf{D} are the eigenvalues of $\mathbf{A}^{-1}\mathbf{B}$, and the columns of \mathbf{S} are the eigenvectors of $\mathbf{A}^{-1}\mathbf{B}$ corresponding to these eigenvalues.
- 10. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ have entries $a_{ij} = 1$ for all $i \neq j$, and $a_{ii} = n$ for each i. Show that \mathbf{A} is invertible.