E2 312: Homework - 1

Assigned on: 10 Aug. 2015, due 24 Aug. 2015

1 Topics

- Some review problems in linear algebra
- Wishart matrices, their distribution, and properties

2 Problems

1. Let $\mathbf{v}_1, \ldots, \mathbf{v}_N$ be given. Define $\mathbf{w}_1, \ldots, \mathbf{w}_N$ as $\mathbf{w}_1 = \mathbf{v}_1$, and

$$\mathbf{w}_i = \mathbf{v}_i - \sum_{j=1}^{i-1} \mathbf{w}_j \frac{\mathbf{v}_i^T \mathbf{w}_j}{\mathbf{w}_j^T \mathbf{v}_j}, \quad i = 2, \dots, N.$$

Assume $\mathbf{w}_i \neq \mathbf{0}, i = 1, 2, \dots, N$. Show that \mathbf{w}_k is orthogonal to $\mathbf{w}_i, k < i$.

2. Given a positive definite matrix \mathbf{R} and a real symmetric matrix Θ of the same size as \mathbf{R} , show that there exists a real nonsingular matrix \mathbf{B} such that $\mathbf{B}^T \mathbf{R}^{-1} \mathbf{B} = \mathbf{I}$ and $\mathbf{B}^T \Theta \mathbf{B} = \mathbf{D}$, where \mathbf{D} is a real diagonal matrix.

(*Hint:* Theorem A.2.2 in Anderson's textbook.)

- Show that the characteristic function of the chi-squared distribution with 1 degree of freedom, denoted by χ²(1), is given by 1/√1-2is.
 (*Hint:* We want to find E(exp(isY²)) where Y ~ N(0,1). Expand the exponential as a power series and evaluate the expectation term-by-term.)
- 4. Let $\mathbf{x}_1, \ldots, \mathbf{x}_{n+1} \in \mathbb{R}^N$ be i.i.d. $\sim \mathcal{N}(\mu, \mathbf{R})$. Let $\bar{\mathbf{x}} \triangleq \frac{1}{n+1} \sum_{i=1}^{n+1} \mathbf{x}_i$, and $\mathbf{A} \triangleq \sum_{i=1}^{n+1} \mathbf{x}_i \mathbf{x}_i^T$. Show that $\bar{\mathbf{x}}$ and \mathbf{A} are independently distributed, and show that \mathbf{A} is distributed as $\sum_{i=1}^{n} \mathbf{z}_i \mathbf{z}_i^T$ where $\mathbf{z}_1, \ldots, \mathbf{z}_n \in \mathbb{R}^N$ are i.i.d. $\sim \mathcal{N}(0, \mathbf{R})$. What is the pdf of $\bar{\mathbf{x}}$?
- 5. (Anderson, Pb. 7.1) A transformation from rectangular to polar coordinates is

$$y_1 = w \sin \theta_1,$$

$$y_2 = w \cos \theta_1 \sin \theta_2,$$

$$y_3 = w \cos \theta_1 \cos \theta_2 \sin \theta_3,$$

$$\vdots$$

$$y_{n-1} = w \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{n-2} \sin \theta_{n-1}$$

$$y_n = w \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{n-2} \cos \theta_{n-1}$$

where $-\frac{1}{2}\pi < \theta_i \le \frac{1}{2}\pi$, $i = 1, ..., n - 2, -\pi < \theta_{n-1} \le \pi$, and $0 \le w < \infty$.

- (a) Prove $w^2 = \sum_{i=1}^n y_i^2$.
- (b) Show that the Jacobian is $w^{n-1}\cos^{n-2}\theta_1\cos^{n-3}\theta_2\cdots\cos\theta_{n-2}$
- 6. (Anderson, Pb. 7.2) Show that

$$\int_{-\pi/2}^{\pi/2} \cos^{h-1}\theta d\theta = \frac{\Gamma(\frac{1}{2}h)\Gamma(\frac{1}{2})}{\Gamma(\frac{1}{2}(h+1))}$$

7. (Anderson, Pb. 7.3) Use Problems 5 and 6 to prove that the surface area of a sphere of unit radius in n dimensions is

$$C(n) = \frac{2\pi^{\frac{1}{2}n}}{\Gamma(\frac{1}{2}n)}.$$

- 8. (Anderson, Pb. 7.4) Use Problems 5, 6 and 7 to show if the density of $\mathbf{y}^T = (y_1, \ldots, y_n)$ is $f(\mathbf{y}^T \mathbf{y})$, then the density of $u = \mathbf{y}^T \mathbf{y}$ is $\frac{1}{2}C(n)f(u)u^{\frac{1}{2}n-1}$.
- 9. (Anderson, Pb. 7.5) Use Problem 8 to show that if $y_1, \ldots y_n$ are i.i.d. $\sim \mathcal{N}(0,1)$, then $U = \sum_{i=1}^n y_i^2$ has the density $u^{\frac{1}{2}n-1}e^{-\frac{1}{2}u}/[2^{\frac{1}{2}n}\Gamma(\frac{1}{2}n)]$.