
The CS theory tells us that when certain conditions hold, namely that the func-
tions {φm} cannot sparsely represent the elements of the basis {ψn} (a condition
known as incoherence of the two dictionaries [20–22,91]) and the number of measure-
ments M is large enough, then it is indeed possible to recover the set of large {α(n)}
(and thus the signal x) from a similarly sized set of measurements y. This incoherence
property holds for many pairs of bases, including for example, delta spikes and the
sine waves of a Fourier basis, or the Fourier basis and wavelets. Significantly, this
incoherence also holds with high probability between an arbitrary fixed basis and a
randomly generated one.

2.8.3 Methods for signal recovery

Although the problem of recovering x from y is ill-posed in general (because
x ∈ RN , y ∈ RM , and M < N), it is indeed possible to recover sparse signals
from CS measurements. Given the measurements y = Φx, there exist an infinite
number of candidate signals in the shifted nullspace N (Φ) + x that could generate
the same measurements y (see Section 2.4.1). Recovery of the correct signal x can be
accomplished by seeking a sparse solution among these candidates.

Recovery via `0 optimization

Supposing that x is exactly K-sparse in the dictionary Ψ, then recovery of x from
y can be formulated as the `0 minimization

α̂ = arg min ‖α‖0 s.t. y = ΦΨα. (2.9)

Given some technical conditions on Φ and Ψ (see Theorem 2.1 below), then with high
probability this optimization problem returns the proper K-sparse solution α, from
which the true x may be constructed. (Thanks to the incoherence between the two
bases, if the original signal is sparse in the α coefficients, then no other set of sparse
signal coefficients α′ can yield the same projections y.) We note that the recovery
program (2.9) can be interpreted as finding a K-term approximation to y from the
columns of the dictionary ΦΨ, which we call the holographic basis because of the
complex pattern in which it encodes the sparse signal coefficients [21].

In principle, remarkably few incoherent measurements are required to recover
a K-sparse signal via `0 minimization. Clearly, more than K measurements must
be taken to avoid ambiguity; the following theorem establishes that K + 1 random
measurements will suffice. (Similar results were established by Venkataramani and
Bresler [92].)

Theorem 2.1 Let Ψ be an orthonormal basis for RN , and let 1 ≤ K < N . Then the
following statements hold:
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1. Let Φ be an M × N measurement matrix with i.i.d. Gaussian entries with
M ≥ 2K. Then with probability one the following statement holds: all sig-
nals x = Ψα having expansion coefficients α ∈ RN that satisfy ‖α‖0 = K can
be recovered uniquely from the M-dimensional measurement vector y = Φx via
the `0 optimization (2.9).

2. Let x = Ψα such that ‖α‖0 = K. Let Φ be an M ×N measurement matrix with
i.i.d. Gaussian entries (notably, independent of x) with M ≥ K + 1. Then with
probability one the following statement holds: x can be recovered uniquely from
the M-dimensional measurement vector y = Φx via the `0 optimization (2.9).

3. Let Φ be an M × N measurement matrix, where M ≤ K. Then, aside from
pathological cases (specified in the proof), no signal x = Ψα with ‖α‖0 = K can
be uniquely recovered from the M-dimensional measurement vector y = Φx.

Proof: See Appendix A.

The second statement of the theorem differs from the first in the following respect:
when K < M < 2K, there will necessarily exist K-sparse signals x that cannot be
uniquely recovered from the M -dimensional measurement vector y = Φx. However,
these signals form a set of measure zero within the set of all K-sparse signals and can
safely be avoided if Φ is randomly generated independently of x.

Unfortunately, as discussed in Section 2.5.2, solving this `0 optimization prob-
lem is prohibitively complex. Yet another challenge is robustness; in the setting of
Theorem 2.1, the recovery may be very poorly conditioned. In fact, both of these
considerations (computational complexity and robustness) can be addressed, but at
the expense of slightly more measurements.

Recovery via `1 optimization

The practical revelation that supports the new CS theory is that it is not necessary
to solve the `0-minimization problem to recover α. In fact, a much easier problem
yields an equivalent solution (thanks again to the incoherency of the bases); we need
only solve for the `1-sparsest coefficients α that agree with the measurements y [20–
22,24–27,29]

α̂ = arg min ‖α‖1 s.t. y = ΦΨα. (2.10)

As discussed in Section 2.5.2, this optimization problem, also known as Basis Pur-
suit [80], is significantly more approachable and can be solved with traditional linear
programming techniques whose computational complexities are polynomial in N .

There is no free lunch, however; according to the theory, more than K + 1 mea-
surements are required in order to recover sparse signals via Basis Pursuit. Instead,
one typically requires M ≥ cK measurements, where c > 1 is an oversampling factor.
As an example, we quote a result asymptotic in N . For simplicity, we assume that
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Appendix A
Proof of Theorem 2.1

We first prove Statement 2, followed by Statements 1 and 3.
Statement 2 (Achievable, M ≥ K + 1): Since Ψ is an orthonormal basis, it

follows that entries of the M×N matrix ΦΨ will be i.i.d. Gaussian. Thus without loss
of generality, we assume Ψ to be the identity, Ψ = IN , and so y = Φα. We concentrate
on the “most difficult” case where M = K + 1; other cases follow similarly.

Let Ω be the index set corresponding to the nonzero entries of α; we have |Ω| = K.
Also let ΦΩ be the M ×K mutilated matrix obtained by selecting the columns of Φ
corresponding to the indices Ω. The measurement y is then a linear combination of the
K columns of ΦΩ. With probability one, the columns of ΦΩ are linearly independent.
Thus, ΦΩ will have rank K and can be used to recover the K nonzero entries of α.

The coefficient vector α can be uniquely determined if no other index set Ω̂ can
be used to explain the measurements y. Let Ω̂ 6= Ω be a different set of K indices
(possibly with up to K − 1 indices in common with Ω). We will show that (with
probability one) y is not in the column span of ΦΩ̂, where the column span of the
matrix A is defined as the vector space spanned by the columns of A and denoted by
colspan(A).

First, we note that with probability one, the columns of ΦΩ̂ are linearly inde-
pendent and so ΦΩ̂ will have rank K. Now we examine the concatenation of these
matrices

[
ΦΩ ΦΩ̂

]
. The matrix

[
ΦΩ ΦΩ̂

]
cannot have rank K unless colspan(ΦΩ) =

colspan(ΦΩ̂), a situation that occurs with probability zero. Since these matrices have
M = K + 1 rows, it follows that

[
ΦΩ ΦΩ̂

]
will have rank K + 1; hence the column

span is RK+1.
Since the combined column span of ΦΩ and ΦΩ̂ is RK+1 and since each matrix

has rank K, it follows that colspan(ΦΩ) ∩ colspan(ΦΩ̂) is a (K − 1)-dimensional
linear subspace of RK+1. (Each matrix contributes one additional dimension to the
column span.) This intersection is the set of measurements in the column span of

ΦΩ that could be confused with signals generated from the vectors Ω̂. Based on
its dimensionality, this set has measure zero in the column span of ΦΩ; hence the
probability that α can be recovered using Ω̂ is zero. Since the number of sets of K
indices is finite, the probability that there exists Ω̂ 6= Ω that enables recovery of α is
zero.

Statement 1 (Achievable, M ≥ 2K): We first note that, if K ≥ N/2, then
with probability one, the matrix Φ has rank N , and there is a unique (correct)
reconstruction. Thus we assume that K < N/2. The proof of Statement 1 follows
similarly to the proof of Statement 2. The key fact is that with probability one,
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all subsets of up to 2K columns drawn from Φ are linearly independent. Assuming
this holds, then for two index sets Ω 6= Ω̂ such that |Ω| = |Ω̂| = K, colspan(ΦΩ) ∩
colspan(ΦΩ̂) has dimension equal to the number of indices common to both Ω and Ω̂.
A signal projects to this common space only if its coefficients are nonzero on exactly
these (fewer than K) common indices; since ‖α‖0 = K, this does not occur. Thus
every K-sparse signal projects to a unique point in RM .

Statement 3 (Converse, M ≤ K): If M < K, then there is insufficient infor-
mation in the vector y to recover the K nonzero coefficients of α; thus we assume
M = K. In this case, there is a single explanation for the measurements only if there
is a single set Ω of K linearly independent columns and the nonzero indices of α are
the elements of Ω. Aside from this pathological case, the rank of subsets ΦΩ̂ will
generally be less than K (which would prevent robust recovery of signals supported

on Ω̂) or will be equal to K (which would give ambiguous solutions among all such

sets Ω̂). �
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