E9 203: Homework - 2

Assigned on: 28 Jan. 2015, due 09 Feb. 2015

1 Topics

- Review of norms and related concepts
- Uniqueness and uncertainty
- Basic algorithms

2 Problems

1. Show that the solution to

$$\min_{\mathbf{x}} J(\mathbf{x}) \triangleq \|B\mathbf{x}\|_2^2 \text{ s. t. } A\mathbf{x} = \mathbf{b},$$

where $A \in \mathbb{R}^{m \times N}, B \in \mathbb{R}^{N \times N}, \mathbf{x} \in \mathbb{R}^N, \mathbf{b} \in \mathbb{R}^m$ and when $B^T B$ is invertible, is given by

$$\hat{\mathbf{x}} = (B^T B)^{-1} A^T (A (B^T B)^{-1} A^T)^{-1} \mathbf{b}.$$

2. Given $A \in \mathbb{C}^{m \times N}$ and $\tau > 0$, show that the solution of

$$\min_{\mathbf{z}\in\mathbb{C}^N} \|A\mathbf{z}-\mathbf{y}\|_2^2 + \tau \|\mathbf{z}\|_2^2$$

is given by

$$z^{\#} = \left(A^{H}A + \tau \mathbf{I}\right)^{-1} A^{H} \mathbf{y}.$$

- 3. Assume $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $A = I + \mathbf{u}\mathbf{v}^T$. Show that if A is nonsingular, then $A^{-1} = I + \alpha \mathbf{u}\mathbf{v}^T$, for some scalar α . Find the corresponding α .
- 4. (Golub and Van Loan, P2.2.2) Prove the Cauchy-Schwartz inequality

$$\mathbf{x}^T \mathbf{y} \Big| \le \|\mathbf{x}\|_2 \|\mathbf{y}\|_2. \tag{1}$$

 $\textit{Hint:} \textit{ Use the inequality } (a\mathbf{x} + b\mathbf{y})^T (a\mathbf{x} + b\mathbf{y}) \geq 0 \textit{ for suitable scalars } a \textit{ and } b.$

5. (Golub and Van Loan, P2.2.4) Show that, if $\mathbf{x} \in \mathbb{R}^n$,

$$\begin{aligned} \|\mathbf{x}\|_{2} &\leq \|\mathbf{x}\|_{1} \leq \sqrt{n} \|\mathbf{x}\|_{2} \\ \|\mathbf{x}\|_{\infty} &\leq \|\mathbf{x}\|_{2} \leq \sqrt{n} \|\mathbf{x}\|_{\infty} \\ \|\mathbf{x}\|_{\infty} &\leq \|\mathbf{x}\|_{1} \leq n \|\mathbf{x}\|_{\infty} \end{aligned}$$

When is the equality attained?

- 6. (Golub and Van Loan, P2.2.8) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and define $\psi : \mathbb{R} \to \mathbb{R}$ by $\psi(\alpha) \triangleq \|\mathbf{x} \alpha \mathbf{y}\|_2$. Show that ψ is minimized when $\alpha = \mathbf{x}^T \mathbf{y} / \mathbf{y}^T \mathbf{y}$.
- 7. Given $\mathbf{x} \in \mathbb{R}^N_+$ with $\mathbf{x}_1 \ge \mathbf{x}_2 \ge \cdots \ge \mathbf{x}_N \ge 0$, show that for each $1 \le s \le N$ and r > 1

$$f(\mathbf{x}) \triangleq \sum_{j=s}^{N} \mathbf{x}_{j}^{r}$$

is a convex function of \mathbf{x} .

8. (Determinant of a Vandermonde Matrix) The Vandermonde matrix associated with $x_0, x_1, \ldots, x_N \in \mathbb{C}$ is defined as

$$\mathbf{V} \triangleq \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^N \\ 1 & x_1 & x_1^2 & \cdots & x_1^N \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^N \end{bmatrix}.$$

Show that the determinant of ${\bf V}$ equals

$$\det \mathbf{V} = \prod_{0 \le k < l \le N} (x_l - x_k).$$

- 9. (Foucart and Rauhut, Thm. 2.13) Given $A \in \mathbb{C}^{m \times N}$, the following statements are equivalent:
 - (a) Every s-sparse vector $\mathbf{x} \in \mathbb{C}^N$ is the unique s-sparse solution of $A\mathbf{z} = A\mathbf{x}$, that is, if $A\mathbf{x} = A\mathbf{z}$ and both \mathbf{x} and \mathbf{z} are s-sparse, then $\mathbf{x} = \mathbf{z}$.
 - (b) The null space $\mathcal{N}(A)$ does not contain any 2s-sparse vector other than the zero vector, that is,

$$\mathcal{N}(A) \cup \{ \mathbf{z} \in \mathcal{C}^N : \|\mathbf{z}\|_0 \le 2s \} = \{ \mathbf{0} \}$$

- (c) For every $S \in [N]$ with $\operatorname{card}(S) \leq 2s$, the submatrix A_S is injective as a map from \mathbb{C}^S to \mathbb{C}^m .
- (d) Every set of 2s columns of A is linearly independent.
- 10. (Foucart and Rauhut, Ex. 3.1) Let q > 1 and let $A \in \mathbb{C}^{m \times N}$ with m < N. Prove that there exists a 1-sparse vector that is *not* a minimizer of

$$\min_{\mathbf{z}\in\mathbb{C}^N} \|\mathbf{z}\|_q \text{ subject to } A\mathbf{z} = \mathbf{y}.$$

11. (Foucart and Rauhut, Ex. 3.2) Given $A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$, show that the vector $\mathbf{x} = \begin{bmatrix} 1, e^{i2\pi/3}, e^{i4\pi/3} \end{bmatrix}^T$ is the unique solution to

$$\min_{\mathbf{z}\in\mathbb{C}^N} \|\mathbf{z}\|_1 \text{ subject to } Az = A\mathbf{x}.$$

This shows that, in the complex setting, a unique ℓ_1 minimizer is not necessarily *m*-sparse, where *m* is the number or rows of *A*.