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Abstract—Irregular repetition slotted aloha (IRSA) is a
grant-free random access protocol for massive machine-type
communications, in which users transmit replicas of their packet
in randomly selected resource blocks within a frame. In this
paper, we first develop a novel Bayesian user activity detection
(UAD) algorithm for IRSA, which exploits both the sparsity
in user activity as well as the underlying structure of IRSA
transmissions. Next, we derive the Cramér-Rao bound (CRB) on
the mean squared error in channel estimation. We empirically
show that the channel estimates obtained as a by-product of
the proposed UAD algorithm achieves the CRB. Then, we
analyze the signal to interference plus noise ratio achieved by
the users, accounting for UAD, channel estimation errors, and
pilot contamination. Finally, we illustrate the impact of these
non-idealities on the throughput of IRSA via Monte Carlo
simulations. For example, in a system with 1500 users and 10%
of the users being active per frame, a pilot length of as low
as 20 symbols is sufficient for accurate user activity detection.
In contrast, using classical compressed sensing approaches for
UAD would require a pilot length of about 346 symbols. Our
results reveal crucial insights into dependence of UAD errors
and throughput on parameters such as the length of the pilot
sequence, the number of antennas at the BS, the number of
users, and the signal to noise ratio.

Index Terms—Irregular repetition slotted aloha, grant-free
random access, massive machine-type communications, user
activity detection, channel estimation.

I. INTRODUCTION

Massive machine-type communications (MMTC) is
expected to serve around a million devices per square
kilometer [1]. Typical MMTC devices transmit short packets
to a central base station (BS), and are sporadically active [2].
To facilitate efficient random access for such MMTC
applications, distributed grant-free random access (GFRA)
protocols need to be used, as they can serve a large number
of users without incurring a large signaling overhead [3].
Since only a subset of users are active in any frame in
MMTC [2], it is essential for the BS to detect the set of
users that are active, before proceeding to perform channel
estimation and data decoding. This process is termed user
activity detection (UAD). Furthermore, without UAD, the BS
would waste valuable resources attempting to decode a large
number of users that have not transmitted any packets, i.e.,
users that are inactive. Knowing the subset of active users
not only saves computational resources by helping the BS
decide which users it needs to decode, it is also important
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for channel estimation, as will be seen in the sequel. Errors
arising from the UAD process, namely, false positives and
false negatives, deteriorate the channel estimates computed
at the BS, which in turn affects the data decoding. Hence,
it is crucial to account for these errors while analyzing the
performance of GFRA protocols.

A. Motivation

Irregular repetition slotted aloha (IRSA) is a popular GFRA
protocol in which users transmit replicas of their packets
in multiple resource blocks (RBs) in a frame [4]. Each RB
can accommodate a whole data packet. In IRSA, each user
samples their repetition factor d from a predefined distribution
independently of other users and then transmits replicas of its
packet in d RBs chosen uniformly at random from the set of
all RBs in the frame [4]. The indices of the RBs in which the
users transmit their packet replicas define the access pattern
matrix (APM), which we assume is known at the BS. This
assumption is explained in Sec. II. Due to the structure of the
APM, applying existing UAD algorithms to IRSA can lead
to suboptimal performance. In particular, it is necessary to
combine the information available in each RB in a principled
manner, to accurately detect the active users.

Typically, UAD and channel estimation is performed by
the BS using pilots transmitted by the users in their packet
headers. If the users employ mutually orthogonal pilots, there
is no pilot contamination, making UAD and channel estimation
simple. However, the length of orthogonal pilots scales linearly
with the total number of users, and hence the pilot overhead
quickly overshadows the data payload size as the number of
users gets large [5]. Thus, non-orthogonal pilots are used, and
the resulting pilot contamination leads to both UAD errors and
channel estimation errors. These effects must be accounted for
while analyzing the performance of IRSA. The main goal of
this paper is to understand the effect of system parameters
such as pilot length, SNR, and the number of antennas at the
BS on the performance of IRSA, accounting for UAD errors,
channel estimation errors, and pilot contamination.

B. Related Works

Early works in IRSA considered the collision model in
which only singleton RBs are decodable. Singleton RBs are
RBs in which only a single user has transmitted, and since
there are no collisions in such RBs, users can be decoded
with high probability. The decoding proceeds in iterations,
and occurs via inter-RB successive interference cancellation
(SIC), which refers to the removal of a packet replica from
all other RBs where the same packet was transmitted. The
decoding stops when there is no singleton RB available. The
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throughput of IRSA under the collision model is at most one
packet per RB [4], which is achievable asymptotically with
the number of RBs and users if the soliton distribution is used
to generate the repetition factors [6].

In the case where the BS is equipped with multiple antennas,
multiple users could potentially be decoded in an RB [7],
and thus singleton RBs are not necessary for decoding.
Any user with a sufficiently high instantaneous signal to
interference plus noise ratio (SINR) can first be decoded, and
the contribution of that user can be removed from the same
RB. This process, termed intra-RB SIC, refers to the removal
of interference of a packet replica from the same RB within
which it was decoded. After the user with the highest SINR
is decoded, other users could potentially be decoded as well.
By performing both intra-RB and inter-RB SIC, the packet
replicas of different users are removed from all RBs wherein
the same user has transmitted a packet. This model, which we
use in this paper, is termed as the SINR threshold model, and
it yields a higher throughput than the conventional singleton
decoding model. IRSA has been studied with the SINR
threshold model under scalar Rayleigh fading channels with
perfect channel state information (CSI) [8] and pure path loss
channels [9]. Coded slotted aloha (CSA), which is a variant
of IRSA, was recently analyzed with imperfect SIC [10].
The authors in [11] studied CSA with an acknowledgement
mechanism between frames. IRSA was analyzed with an SIC
limit, i.e., a limit on the maximum number of packets that
can be recovered in each RB, in [12]. The average age of
information in IRSA in MMTC has also been studied [13].
We have previously [14], [15] analyzed the IRSA protocol
accounting for channel estimation and pilot contamination,
with perfect UAD. In contrast, this paper focuses on UAD
in IRSA, and analyzes the impact of UAD errors on the
throughput.

To the best of our knowledge, the problem of UAD in
IRSA has not yet been considered in the literature. Further,
none of the existing works study the performance of IRSA
accounting for UAD errors, path loss, MIMO fading, pilot
contamination, and channel estimation errors. An initial study
into estimating the number of active users in IRSA was
conducted in [16], which does not identify the subset of
active users. UAD has been studied for massive random
access outside the context of IRSA [17], [18]. The activity
matrix to be estimated has jointly-sparse columns, i.e.,
columns that have the same sparse support [19]. Typical UAD
solutions involve compressed sensing-based solutions [20] or
a maximum aposteriori probability (MAP) detection [21]. The
sparse Bayesian learning (SBL) framework has been employed
to perform UAD in MMTC [22]. Faster SBL algorithms for
UAD in MMTC have also been developed [23]. Other low
complexity algorithms for UAD include approximate message
passing [24] and orthogonal matching pursuit [25]. These
approaches, however, cannot be used in IRSA due to the
structure imposed by the APM. A naïve approach would be
to perform UAD on an RB-by-RB basis and declare users
inactive if they are found to be inactive in all the RBs. As we
will show, this approach is inefficient and results in large error
rates, especially when non-orthogonal pilots are used.

C. Contributions

This paper proposes a novel UAD algorithm for IRSA, and
analyzes the throughput of IRSA, accounting for UAD and
channel estimation errors. Our main contributions are:

1) We develop a novel Bayesian algorithm to detect the set
of active users in IRSA in Sec. III. UAD in IRSA is a
joint-sparse signal recovery problem with a measurement
model with an important twist: different and unknown
subsets of the row indices of the joint-sparse matrix
participate in different measurements. Our algorithm is
an enhancement to the multiple sparse Bayesian learning
(MSBL) algorithm [26] to cater to this scenario.1

2) We derive the channel estimates at the BS for users in all
RBs in IRSA, acquired via non-orthogonal pilots, in Sec.
IV. We also derive the Cramér-Rao bound (CRB) on the
mean squared error (MSE) of the channels estimated by
our proposed UAD algorithm. We show that a genie-aided
minimum MSE (MMSE) estimator (that has knowledge
of the second-order statistics and the user activities)
achieves the CRB. Later, we also empirically show that
the MSE of the channel estimates output by the proposed
UAD algorithm meets the CRB.

3) Next, we analyze the SINR achieved by all the users in
all RBs in Sec. V, accounting for UAD errors, channel
estimation errors, and pilot contamination. The SINR
expression allows us to determine the throughput of
IRSA, accounting for the effect of UAD errors.

Our numerical experiments in Sec. VI show that there is
at least a 4-fold reduction in the number of pilot symbols
required to achieve a similar UAD performance as that of
existing approaches. The loss in performance due to UAD
errors can be recuperated by judiciously choosing the system
parameters such as pilot length, number of antennas, and SNR.
In essence, it is vital to account for both UAD and channel
estimation when analyzing the throughput of IRSA.

Notation: The symbols a, a, A, [A]i,:, [A]:,j , 0N , 1N , and
IN denote a scalar, a vector, a matrix, the ith row of A,
the jth column of A, all-zero vector of length N , all ones
vector of length N , and an identity matrix of size N × N ,
respectively. [a]S and [A]:,S denote the elements of a and the
columns of A indexed by the set S respectively. diag(a) is
a diagonal matrix with diagonal entries given by a, whereas
blkdiag(A,B) is a block diagonal matrix with A and B as the
diagonal blocks. A⊗B is the Kronecker product of A and B,
and A � B denotes that A−B is positive semi-definite. [N ]
denotes the set {1, 2, . . . , N}. | · |, ‖ · ‖, ‖ · ‖F , [·]T , [·]H , E[·],
and Ea [·] denote the magnitude, `2 norm, frobenius norm,
transpose, conjugate transpose, unconditional expectation, and
the expectation conditioned on a, respectively. The superscript
p is used as a descriptive superscript in association with a
symbol that is related to the pilots. All the other superscripts
(or subscripts) that have not been defined as above are indices.

1Our UAD algorithm can be applied to other variants of IRSA such as CSA
since it entails only a minor change in the structure of the APM.
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II. SYSTEM MODEL

An IRSA system is considered with M single-antenna users
communicating with a BS equipped with N antennas. The
users are assumed to be spread randomly within a cell, with
the BS located at the cell center. These users communicate
with the BS over frames consisting of T RBs. The RBs can
be slots, subcarriers or both. In every frame, a small subset of
the M users, called active users, attempt to deliver a packet
each to the BS. In a given frame, the activity coefficient of the
mth user is denoted by am, where am = 1 if the mth user is
active, and am = 0 otherwise. Note that am can change from
one frame to the next, and the subset of active users (and hence
am) is unknown at the BS. The users transmit replicas of their
packet according to the random matrix G ∈ {0, 1}T×M , which
is called the access pattern matrix (APM). Here, gtm = [G]tm
is the access pattern coefficient of the mth user in the tth RB.
If gtm = 1, the mth user transmits its packet in the tth RB
provided am = 1, and if gtm = 0, the mth user does not
transmit its packet in the tth RB even if am = 1. If am = 0,
the mth user is inactive in the current frame, and does not
transmit in any RB.

At the BS, the received signal in the tth RB is a
superposition of the packets transmitted by the active users
that have chosen to transmit in the tth RB. The packets of
the users undergo both path loss and fading. We assume that
the path loss component and the second-order statistics of the
fading component are known at the BS, and that the fading
channel remains constant for the duration of an RB.2 Each
packet replica comprises a header containing pilot symbols and
a payload which includes the coded data and cyclic redundancy
check (CRC) symbols. In the pilot phase, if am = 1, the mth
user transmits a τ−length pilot sequence pm ∈ Cτ in each
packet replica (i.e., if gtm = 1). Each pilot symbol has an
average power P p, and the average power of the pilot sequence
is E[‖pm‖2] = τP p. The received pilot signal Y

p
t ∈ CN×τ at

the BS across the N antennas in the tth RB is thus

Y
p
t =

∑M
m=1amgtmhtmpHm + N

p
t , (1)

where Np
t ∈ CN×τ is the complex additive white Gaussian

noise at the BS with [Np
t ]:,j

i.i.d.∼ CN (0N , N0IN ), ∀ j ∈ [τ ]
and t ∈ [T ], where N0 is the noise variance. Here, htm =√
βmvtm is the uplink channel vector of the mth user in the tth

RB, where βm is the known path loss coefficient and vtm is the
unknown fading vector with vtm

i.i.d.∼ CN (0N , σ
2
hIN ), ∀ t ∈

[T ] and m ∈ [M ], and channel variance σ2
h .

In the data phase, if am = 1, the mth user transmits a
data symbol3 xm in each packet replica that it transmits. The
data symbol satisfies E[xm] = 0 and E[|xm|2] = P , where P
denotes the data power. The received data signal yt ∈ CN , at
the BS in the tth RB, is

yt =
∑M
m=1amgtmhtmxm + nt, (2)

2For simplicity of exposition, we consider i.i.d. Rayleigh fading between
the users and the BS in each RB, although it is straightforward to extend the
results to the correlated fading scenario.

3To derive SINR in any given RB, only one data symbol is written out
from the multiple data symbols in each packet.

where nt ∈ CN is the complex additive white Gaussian noise
at the BS with nt

i.i.d.∼ CN (0N , N0IN ), ∀ t ∈ [T ].
In IRSA, if the mth user is active, it samples its repetition

factor dm from a predefined distribution, independently of
other users. Then it chooses dm RBs from a total of T RBs
uniformly at random, and transmits replicas of its packet in
these dm RBs. The APM is formed as [G]tm = gtm, t ∈
[T ],m ∈ [M ], where gtm = 1 if the mth user has chosen
to transmit in the tth RB, and gtm = 0 otherwise.4 This
generation of repetition factors is scalable to a large number
of users and is completely distributed in nature, and is thus
appropriate for MMTC. In practice, the random subset of RBs
is generated using a pseudo-random number generator, whose
seed completely determines the sequence [4].5 This seed can
be pre-programmed at each user, and made available to the
BS. In this case, it is reasonable to assume that the BS has
knowledge of G. Also, the APM can be generated in an offline
fashion and stored at the BS. However, it is important to note
that although the BS knows the subset of RBs in which a user
would transmit its packet replicas if it were active, the BS still
does not have the knowledge of which users are active in a
given frame.

A. SIC-based Decoding in IRSA

The decoding process in IRSA proceeds as follows. The BS
first detects the set of active users (denoted by âm). Then, it
estimates the channels for all the users detected to be active in
the RBs for which gtm = 1. It uses these channel estimates to
combine the received data signal across the BS antennas, and
attempts to decode the user’s data packet, treating interference
from other users as noise. If it successfully decodes any user,
which can be verified via the CRC, it performs SIC in all
RBs which that user has transmitted, with both inter-RB and
intra-RB SIC. The channels are re-estimated for the remaining
users, and this decoding process proceeds iteratively.

In this work, the decoding of any user’s packet is abstracted
into an SINR threshold model as in [8], [9]. That is, the packet
can be decoded correctly if and only if the SINR of an active
user’s packet in an RB is greater than a threshold denoted by
γth, the packet can be decoded correctly. The value of γth is
usually chosen to be ≥ 1 for a narrowband system [8]; it is a
parameter for the purposes of our analysis.

We now briefly describe how to evaluate the performance
of IRSA under the abstract SINR threshold-based decoding
model. We first estimate the user activity coefficients for all
users over the frame. For the users detected to be active, we
compute channel estimates and SINR achieved in all RBs in
which the users detected to be active have transmitted their
packets. This SINR accounts for the CSI available at the BS
and errors in the UAD process, as we will see in Sec. V. If
we find a user with SINR ≥ γth in some RB, we mark the

4Note that users who are inactive in a given frame can also be virtually
considered to have chosen the RBs in which they are scheduled to transmit,
even though they do not transmit in any RB.

5For example, the seed could be a function of the current frame index and
the user ID, such as, seed = [Current Frame Index; User ID]. Using simple
pseudo-random number generators and with no computational speed-up, we
can generate 106 random numbers within a few ms on a mid-range laptop.
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data packet as having been decoded successfully, and remove
that user from the set of users yet to be decoded. Also, the
contribution of the user’s packet is removed from all RBs
that contain a replica of that packet. In the next iteration,
the channels are re-estimated from the residual pilot symbols
after SIC, the SINRs are recomputed in all RBs, and the
decoding of users’ packets continues. The iterations stop when
no additional users are decoded in two successive iterations
or if all users detected to be active have been successfully
decoded. The system throughput T is calculated as the number
of correctly decoded unique packets divided by the number of
RBs. Note that the throughput accounts for packet losses that
occur due to users that are incorrectly detected to be active,
as well as due to failures in the SIC-based decoding process.

The rest of the paper is organized as follows. Sec. III
outlines the proposed UAD algorithm, and Sec. IV describes
the channel estimation process. The detailed derivation of the
SINR accounting for both UAD errors and channel estimation
errors is presented later in Sec. V.

III. USER ACTIVITY DETECTION

In this section, we describe our user activity detection
(UAD) algorithm. For this purpose, we consider the conjugate
transpose of the received pilot signal in the tth RB from (1) as
Yt , Y

p
t
H , with Nt , N

p
t
H . The signal Yt can be factorized

into the product of the product of two matrices as follows:

Yt︸︷︷︸
τ×N

= [p1, . . . ,pM ]︸ ︷︷ ︸
P


a1gt1h

H
t1

...
aMgtMhHtM


︸ ︷︷ ︸

Xt

+ Nt︸︷︷︸
τ×N

. (3)

Here, P ∈ Cτ×M contains the known pilot sequences of the
M users as its columns, and Xt ∈ CM×N contains the tth row
of the known APM G, the unknown user activity coefficients,
and the unknown channels. Note that the ith row of Xt is
nonzero only if ai = 1 and gti = 1, i.e., when the ith user is
active and transmits in the tth RB.

Let Gt = {i ∈ [M ] | gti = 1} be the set of users who
would have transmitted in the tth RB, had they all been active
in the current frame, and Mt = |Gt| be the number of such
users. Since the BS has knowledge of Gt, it can remove the
contributions of the users who do not transmit in the tth RB.
We thus obtain a column-reduced pilot matrix Pt , [P]:,Gt ∈
Cτ×Mt and a row-reduced channel matrix Zt , [Xt]Gt,: ∈
CMt×N in the tth RB. Hence, (3) can be rewritten as

Yt︸︷︷︸
τ×N

=
[
pi1 , . . . ,piMt

]
︸ ︷︷ ︸

Pt


ai1h

H
ti1

...
aiMth

H
tiMt


︸ ︷︷ ︸

Zt

+ Nt︸︷︷︸
τ×N

, (4)

where Gt = {i1, i2, . . . , iMt
}. The above results in an

under-determined system of linear equations in the MMTC
regime (since τ � Mt � M ), with rows of Zt being either
all zero or all nonzero. The columns of Zt thus share a
common support, i.e., they are joint-sparse. This structure is

Table I: Hyperparameter notation in Algorithm 1.

Symbol Quantity
γ Hyperparameter vector of all M users
Γ Diagonal matrix with γ as it’s diagonal entries
γt Hyperparameter vector of the Mt users who would

have transmitted in the tth RB had they been active
Γt Diagonal matrix with γt as it’s diagonal entries

γj/γjt /Γ
j
t Hyperparameters in the jth MSBL iteration

γ̃jt Auxiliary variable used to store γj

γpr Threshold used to declare support

referred to as a multiple measurement vector (MMV) recovery
problem in compressed sensing. Note that the above step
reduces the dimension of the matrix to be estimated, but
does not solve the UAD problem. The support recovery of
Zt from (4) can be performed with well known algorithms
from compressed sensing literature to recover the activity
coefficients in the each of the T RBs. By doing so, we
would obtain an RB-specific activity estimate for each user.
However, the activity coefficient for any user is the same
across the T RBs, and thus we need a way to infer {ai}
using information available in all T RBs. One naïve way to
do this is to declare users to be active in the current frame if
they are detected to be active in at least κ RBs, where κ is a
parameter that can be optimized. As we will see, this leads to
very poor performance compared to the algorithm presented
in the sequel. In the following paragraph, we briefly discuss
Multiple sparse Bayesian learning (MSBL) [26], which sets
the stage for presenting our enhancement that combines the
information gleaned from each RB in a principled manner.
The notation we will now use is described in Table I.

MSBL is an empirical Bayesian algorithm that recovers
the joint-sparse columns of Zt from linear underdetermined
measurements Yt. In MSBL, a hierarchical Gaussian prior is
imposed on the columns of Zt as

p(Zt;γt) =
∏N
n=1p([Zt]:,n;γt) =

∏N
n=1CN (0Mt ,Γt), (5)

where the columns of Zt are i.i.d. and Γt = diag(γt). Here,
the elements of γ ∈ RM+ are unknown hyperparameters and
γt , [γ]Gt ∈ RMt

+ picks the hyperparameters for the users
who would have transmitted in the tth RB had they been active
in the current frame. Such a hierarchical Bayesian model is
known to result in sparse solutions for the maximum likelihood
estimates of γt [26], [27]. Recovering the hyperparameters
would yield the users’ activities since [γ]m models the
variance of the mth user’s channel. The hyperparameters in γt
are estimated by maximizing the log-likelihood log p(Yt;γt),
with p(Yt;γt) =

∏N
n=1 p([Yt]:,n;γt). Here, p([Yt]:,n;γt) =

CN (0τ ,Σγt) because of the linear measurement model in (4),
with Σγt = N0Iτ+PtΓtP

H
t . Thus, the log-likelihood reads as

log(p(Yt;γt)) ∝ −N log |Σγt | − Tr(Σ−1
γt YtY

H

t ). (6)

This is a non-convex function of γt, and its maximizer cannot
be found in closed form. In MSBL, expectation maximization
(EM) is used to optimize the cost function iteratively [28].

Let j denote the iteration index in EM. In the jth MSBL
iteration, the notations γjt , [γj ]Gt and [γjt ]i denote the
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hyperparameter vector of the users in the set denoted by Gt and
the ith entry of γjt , respectively. The EM procedure consists
of two steps in each iteration. The first step, termed the E-step,
updates the covariance Σj+1

t and mean µj+1
tn of the posterior

p([Zt]:,n|[Yt]:,n,γ
j
t ) as [27]

Σj+1
t = Γjt − ΓjtP

H
t (N0Iτ + PtΓ

j
tP

H
t )−1PtΓ

j
t , (7)

µj+1
tn = N−1

0 Σj+1
t PH

t [Yt]:,n, n ∈ [N ]. (8)

The second step, known as the M-step, updates the
hyperparameter for the ith user in the tth RB as

[γj+1
t ]i =

1

N

N∑
n=1

([Σj+1
t ]i,i + |[µj+1

tn ]i|2), i ∈ [Mt]. (9)

This M-step estimates the variance of the channel of the ith
user in the tth RB, and this hyperparameter update contains
the information from the tth RB only. The above two steps
are performed for all T RBs. Before the next E-step, the
hyperparameter updates across the RBs must be combined.

A. The Proposed UAD Algorithm
The main novelty of our UAD algorithm lies in exploiting

the access pattern coefficients across RBs to find a single
hyperparameter update, which we term as the new M-step.
For this purpose, let γ̃j+1

t ∈ RM+ be an auxiliary variable
for the tth RB that is updated as [γ̃j+1

t ]Gt = γj+1
t ∈ RMt

+

and zero otherwise. The hyperparameter update for the mth
user is obtained at the BS by combining the estimated
hyperparameters for that user across all the RBs using the
knowledge of gtm as

[γj+1]m =
1

dm

T∑
t=1

gtm[γ̃j+1
t ]m, m ∈ [M ]. (10)

Here dm =
∑T
t=1 gtm is the repetition factor of the mth

user. Note that, in conjunction with (9), this new M-step is
equivalent to executing an M-step that maximizes the overall
log-likelihood,

∑T
t=1 log p(Yt;γt), based on the knowledge

of the APM at the BS. Effectively, since it estimates the
variance of the channel of the mth user by averaging the
estimated variances of the channels in each RB, it combines
the information obtained from all RBs in computing the
hyperparameter update. By iterating between the E- and
M-steps, the EM algorithm converges to a saddle point or a
local maximizer of the overall log-likelihood [28]. Further, the
EM procedure has been empirically shown to correctly recover
the support of Zt, provided τ and N are large enough [26]. In
turn, this leads to significantly lower false positive and false
negative rates in UAD, as we will empirically show later.

The overall UAD procedure is summarized in Algorithm 1.
The algorithm is run for jmax iterations. As the iterations
proceed, the hyperparameters corresponding to inactive users
converge to zero, resulting in sparse estimates. At the end
of the EM iterations, the estimated activity coefficient âm
for the mth user is obtained by thresholding [γjmax ]m at a
value γpr. The algorithm also outputs the MAP estimates of
the channels X̂t in each of the T RBs with [X̂t]Gt,: = Ẑt
and [X̂t][M ]\Gt,: = 0(M−Mt)×N , and the channel estimates of
users across all RBs are stacked in X̂ = [X̂1, . . . , X̂T ].

Algorithm 1: UAD in IRSA

Input: τ,N, T,M,N0,G,P, {Yt}Tt=1, {dm}Mm=1, γpr, jmax

1 Initialize: γ0 = 1M
2 Compute: Gt = {m ∈ [M ] | gtm = 1}, Mt = |Gt|,

Pt = [P]:,Gt , t ∈ [T ]
3 for j = 0, 1, 2, . . . , jmax do
4 for t = 1, 2, . . . , T do
5 Compute: Γjt = diag([γj ]Gt)

Σj+1
t = Γjt − ΓjtP

H
t (N0Iτ + PtΓ

j
tP

H
t )−1PtΓ

j
t

µj+1
tn = N−1

0 Σj+1
t PH

t [Yt]:,n, 1 ≤ n ≤ N6

7 [γj+1
t ]i =

1

N

N∑
n=1

([Σj+1
t ]i,i + |[µj+1

tn ]i|2),i ∈ [Mt]

8 [γ̃j+1
t ]Gt = γj+1

t , [γ̃j+1
t ][M ]\Gt = 0M−Mt

9 end
10 [γj+1]m =

∑T
t=1 gtm[γ̃j+1

t ]m∑T
t=1 gtm

, 1 ≤ m ≤M
11 end

12 Output: âm =

{
1, [γjmax ]m ≥ γpr

0, [γjmax ]m < γpr
, 1 ≤ m ≤M ,

Ẑt = [µjmax

t1 µjmax

t2 . . .µjmax

tN ], 1 ≤ t ≤ T

We now discuss the complexity of our algorithm in terms of
the number of floating point operations (flops). Each MSBL
iteration has O(τ2M) flops, if the pilot matrix is of size
τ ×M [26]. In our algorithm, each iteration contains T RBs,
where the size of the reduced pilot matrix is τ ×Mt in the
tth RB. Also, the new M-step has lower complexity order
than the E-step. Thus, the overall per-iteration complexity of
Algorithm 1 is O(τ2MS), where MS =

∑T
t=1Mt ≈ d̄M ,

where d̄ is the average repetition factor.

Based on the estimated activity âi and the true activity ai,
the set of all users can be divided into four disjoint subsets

A = {i ∈ [M ] | âiai = 1}, (11a)
F = {i ∈ [M ] | âi(1− ai) = 1}, (11b)
M = {i ∈ [M ] | (1− âi)ai = 1}, (11c)
I = {i ∈ [M ] | (1− âi)(1− ai) = 1}. (11d)

A is the true positive set of users, i.e., the users that are
correctly detected to be active. F is the false positive set of
users, i.e., the users that are detected to be active and are truly
inactive.M is the false negative set of users, i.e., the users that
are detected to be inactive, but are actually active. I is the true
negative set of users, i.e., the users that are correctly detected
to be inactive. False positive and false negative users together
form the errors in the UAD process, and the error rates for
such users are discussed in Sec. VI. After the active users are
detected, the next task is to estimate the channels from the
active users. However, before describing channel estimation,
we take a small detour to explain why traditional compressed
sensing approaches are not effective for frame-based UAD in
IRSA-based multiple access.
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B. Why One-Shot UAD Does Not Work

By stacking the received signal in (3) across all RBs, we
can estimate the user activity coefficients in one-shot across
all RBs. We now briefly explain why this performs poorly.
The received pilot signals in all RBs can be stacked as

Y = [Y1Y2 . . .YT ] = PX + [N1N2 . . .NT ],

X =


a1g11h

H
11 . . . a1gT1h

H
T1

...
. . .

...
aMg1MhH1M . . . aMgTMhHTM

 ∈ CM×NT . (12)

The above structure is not an MMV recovery problem
because the rows of X are not completely all zero or all
nonzero. If the ith user is inactive, then the ith row of X is all
zero. However if the ith user is active, then the ith row of X is
not all nonzero. Only the blocks of the ith row corresponding
to the RBs in which the ith user has transmitted in (i.e., where
gti = 1) are all nonzero and the other blocks are all zero. Since
IRSA results in the transmission of replicas in only a small
subset of the T RBs, only a few blocks of the ith row are
nonzero. Different blocks of each row of X corresponding to
active users have different block-sparse supports. If an MMV
recovery algorithm is applied across all RBs in one shot as
in (12), a pilot length of τ = Ω(Ma log M

Ma
) can achieve a

vanishing activity error rate as N → ∞, where Ma is the
average number of active users in each RB [29]. For example,
with M = 1500 and Ma = 150, τ = Ω(346) achieves
vanishing error rates in a massive MIMO regime. These pilot
lengths are infeasible in practice, and thus, in practical regimes
of interest, one-shot UAD performs poorly.

IV. CHANNEL ESTIMATION

In addition to performing UAD, Algorithm 1 also outputs
an initial channel estimate for each user that is detected to be
active, as a by-product. However, as the decoding iterations
proceed, the interference cancellation can help improve the
accuracy of the channel estimates, when the channels of the
remaining users are re-estimated after each SIC operation.
We now derive MMSE channel estimates in each decoding
iteration for all the users that have been detected to be
active. MMSE channel estimation is also required to compute
meaningful expressions for the SINR [30].

Since MMSE estimates are recomputed in every iteration,
the signals and channel estimates are indexed by the decoding
iteration k. Let the set of users who have not yet been decoded
in the first k − 1 iterations be denoted by Sk, with Smk ,
Sk \ {m}, and S1 = [M ]. The received pilot signal at the BS,
in the tth RB during the kth decoding iteration, is

Ypk
t =

∑
i∈Skaigtihtip

H
i + Np

t . (13)

In this section, we assume perfect SIC for simplicity of
analysis; we study the performance variation under imperfect
SIC in Sec. VI. This received signal is contributed from all
users who are truly active in the current frame. The BS wishes
to compute channel estimates for users who are detected to be
active, i.e., for the users in Â = {i ∈ [M ] | âi = 1}, which
is output by Algorithm 1. For this purpose, the received pilot

signal is right combined with the pilot pm, ∀m ∈ Â∩Gt∩Sk,
to obtain the post-combining pilot signal as

y
pk
tm = Y

pk
t pm =

∑
i∈Skaigtihti(p

H
i pm) + N

p
tpm, (14)

which is further used for estimating the channel between the
BS and the user in the tth RB [7]. The MMSE channel estimate
is given by the following theorem.

Theorem 1. The MMSE estimate ĥktm of the channel htm is
calculated from the post-combining pilot signal as

ĥktm = ηktmypk
tm, ∀m ∈ Sk, (15)

where ηktm ,
âmgtmβmσ

2
h‖pm‖2

N0‖pm‖2 +
∑
i∈Sk âigtiβiσ

2
h |pHi pm|2

.

Further, the estimation error h̃ktm , ĥktm−htm is uncorrelated
with the channel htm, and is distributed as CN (0N , δ

k
tmIN ).

Here, δktm is the estimation error variance and is given by

δktm = βmσ
2
h

(∑
i∈Smk

|pHi pm|2âiaigtiβiσ2
h +N0‖pm‖2∑

i∈Sk |p
H
i pm|2âiaigtiβiσ2

h +N0‖pm‖2

)
.

Proof. See Appendix A. �

Remark 1: The channel estimate is composed of a scaling
coefficient ηktm and the post-combining pilot signal ypk

tm. ηktm
is computed at the BS and is a function of the estimated
activity coefficients âi. Thus, false positive users feature in
the denominator of ηktm and affect the channel estimates of
other users. The BS also computes channel estimates for
these false positive users.6 Since false negative users are
detected to be inactive, the BS does not account for the
interference caused by them while computing ηktm. From (14),
y
pk
tm contains signals from other truly active users if pilots

are not orthogonal, and is thus a function of the true activity
coefficients ai. Also, false negative users contribute to ypk

tm,
and thus both types of errors affect the estimates of other users.
Remark 2: In the above theorem, δktm accounts for the pilot
contamination from other true positive users. False positive
users are omitted from the expression for δktm because such
users do not contaminate the pilots of other users. Only true
positive users contribute to δktm. When orthogonal pilots are
used, pHi pm = 0,∀i 6= m, there is no pilot contamination,
and thus δktm = βmσ

2
hN0/(âmamgtmβmσ

2
h‖pm‖2 +N0).

A. Cramér-Rao Bound

In this subsection, we derive the Cramér-Rao bound (CRB)
[31] on the mean squared error (MSE) of the channel estimated
under the hierarchical Bayesian model given by (5). The signal
Yt = PtZt + Nt from (4) is first vectorized as

yt︸︷︷︸
Nτ×1

, vec(Yt) = Φt︸︷︷︸
Nτ×NMt

zt︸︷︷︸
NMt×1

+ nt︸︷︷︸
Nτ×1

, (16)

where Φt , (IN ⊗Pt), zt , vec(Zt), and nt , vec(Nt).

6Since false positive users will fail an error check, the BS can potentially
try to identify such users as data decoding proceeds and compute better
quality channel estimates. However, we make no such assumption, and thus,
our channel estimation procedure models a worst-case scenario where false
positive users contaminate the channel estimates of other true positive users.
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After stacking the received pilot signal across all RBs
as y = [yT1 , . . . ,y

T
T ]T , with z = [zT1 , . . . , z

T
T ]T , n =

[nT1 , . . . ,n
T
T ]T , and Φ = blkdiag{Φ1, . . . ,ΦT }, we obtain

y = Φz + n. (17)

Here, we wish to estimate z ∈ CNMS from an observation
y ∈ CNTτ via a measurement matrix Φ ∈ CNTτ×NMS , with
MS =

∑T
t=1Mt. Let J denote the NMS × NMS Fisher

information matrix (FIM) associated with the vector z. It is
easy to see that J = blkdiag{J1, . . . ,JT }, where Jt is the
NMt ×NMt sub-block of the FIM corresponding to the tth
RB. Specifically, the CRB derived in this work is the hybrid
Cramér-Rao bound [31], which is a bound analogous to the
CRB for the estimation problem in MSBL. Due to the block
diagonal structure of the FIM, the CRB for any estimate ẑt of
zt is given by

E[(ẑt − zt)(ẑt − zt)
H ] � J−1

t . (18)

Theorem 2. The sub-block of the FIM associated with the
channel vector zt = vec(Zt) in the tth RB is given by

Jt = IN ⊗N−1
0

(
PH
t Pt +N0Γ

−1
t

)
, (19)

where Γt = diag([γ]Gt) picks the hyperparameters for the Mt

users in the tth RB. Further, the CRB for any estimate [Ẑt]:,n
of [Zt]:,n in the tth RB across the nth antenna is given by

E[([Ẑt]:,n − [Zt]:,n)([Ẑt]:,n − [Zt]:,n)H ]

� N0

(
PH
t Pt +N0Γ

−1
t

)−1

, 1 ≤ n ≤ N. (20)

Proof. See Appendix B. �

Remark: Note that the right hand side in (20) is independent of
the antenna index. Also, from (18), the MSE of any estimate
Ẑt of Zt in the tth RB can be bounded below by Tr(J−1

t ) as

E[‖Ẑt − Zt‖2F ] ≥ Tr
(

IN ⊗N0

(
PH
t Pt +N0Γ

−1
t

)−1
)

= NTr
(

Γt − ΓtP
H
t

(
N0Iτ + PtΓtP

H
t

)−1

PtΓt

)
, (21)

where the last step is obtained by using the Woodbury matrix
identity and Tr(IN ⊗A) = NTr(A). Considering the signals
received across the entire frame, the effective MSE of the
estimate X̂ of X can thus be bounded as

MSE = E[‖X̂−X‖2F ] =
∑T
t=1E[‖X̂t −Xt‖2F ],

=
∑T
t=1E[‖Ẑt − Zt‖2F ]

≥ NN0

∑T
t=1Tr

(
PH
t Pt +N0Γ

−1
t

)−1

. (22)

The channel variance can be calculated as

E[‖X‖2F ] =
∑T
t=1E[‖Xt‖2F ] =

∑T
t=1Tr(E[ZtZ

H
t ])

=
∑T
t=1Tr(IN ⊗ Γt) = N

∑T
t=1Tr(Γt)

= N
∑M
m=1dm[γ]m. (23)

Hence, the normalized mean squared error (NMSE) of any

channel estimate X̂ of X can be bounded as

NMSE ,
E[‖X− X̂‖2F ]

E[‖X‖2F ]
(24)

≥ N0∑M
m=1dm[γ]m

T∑
t=1

Tr
(
PH
t Pt +N0Γ

−1
t

)−1

. (25)

To better understand the above expressions, we consider the
case of orthogonal pilots, i.e., PH

t Pt = τP pIMt , applicable
when τ ≥Mt, ∀t ∈ [T ]. In this case, the MSE is bounded as

MSE ≥ N
T∑
t=1

Mt∑
i=1

(
τP p

N0
+ [Γ−1

t ]i,i

)−1

= N
M∑
m=1

dm

(
τP p

N0
+ 1

[γ]m

)−1

= N
M∑
m=1

dm[γ]m
1+[γ]m

τP p

N0

,

and the NMSE can be bounded as

NMSE ≥ 1∑M
m=1 dm[γ]m

M∑
m=1

dm[γ]m
1+[γ]m

τP p

N0

. (26)

The above bound is for a given set of repetition factors {dm},
hyperparameters γ, the pilot SNR τP p

N0
, and is independent of

the number of antennas N . As τ →∞, the MSE goes to zero.
We now describe an estimator that achieves the CRB.

Lemma 1. Assuming the knowledge of the true
hyperparameters, the CRB is achieved by the MMSE
channel estimate:

Ẑt =
(
PH
t Pt +N0Γ

−1
t

)−1

PH
t Yt. (27)

Proof. The MSBL algorithm iteratively calculates the MAP
estimate. Since the posterior p([Zt]:,n|[Yt]:,n;γt) is Gaussian
distributed, the MAP estimate is the same as the mean of the
distribution, which coincides with the MMSE estimate in (27).
Upon substituting the above estimate into the MSE expression
in (21), it is easy to show that the CRB is achieved. �

Remark: The above estimator requires knowledge of Γt,
which in turn needs the user activity coefficients, and is
thus a genie-aided estimator. In practice, one could use the
hyperparameter estimates output by Algorithm 1 in place of
Γt to obtain a “plug-in” MMSE estimator. However, such
an estimator need not achieve the CRB. Nonetheless, as
empirically shown in Sec. VI, the channel estimates obtained
using (8) does achieve the CRB. (See Figs. 5 and 6.)

V. SINR ANALYSIS

In this section, the SINR of each user in all the RBs
where it has transmitted data is derived, accounting for
pilot contamination, estimated user activities, and estimated
channels. Let ρktm denote the SINR of the mth user in the tth
RB in the kth decoding iteration. Similar to (2), the received
data signal in the tth RB and kth iteration is

ykt =
∑
i∈Skaigtihtixi + nt. (28)

Let Mk
t = |Â ∩ Gt ∩ Sk| be the number of users who

are detected to be active and have transmitted in the tth
RB, but have not been decoded in the first k − 1 iterations.
Â is obtained as an output of Algorithm 1. A combining
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ỹktm = akHtm ĥktmamgtmxm − akHtm h̃ktmamgtmxm +
∑
i∈Smk ∩A

akHtmhtiaigtixi +
∑
i∈Smk ∩M

akHtmhtiaigtixi + akHtmnt. (30)

matrix Ak
t ∈ CN×Mk

t is used at the receiver in the tth RB
and kth decoding iteration. For each m ∈ [Mk

t ], the vector
aktm = [Ak

t ]:,m combines the received data signal as

ỹktm = [AkH
t ykt ]m = akHtm ykt . (29)

This post-combining data signal is used to decode the mth
user and is composed of five terms as seen in (30). The
term T1 , akHtm ĥktmamgtmxm is the desired signal of the
mth user; the term T2 , akHtm h̃ktmamgtmxm is due to the
estimation error h̃ktm of the mth user’s channel; the term T3 ,∑
i∈Smk ∩A

akHtmhtiaigtixi models the inter-user interference
from other true positive users (who have transmitted in
the tth RB and have not yet been decoded); the term
T4 ,

∑
i∈Smk ∩M

akHtmhtiaigtixi is the interference from false
negative users (who have transmitted in the tth RB, but
cannot be decoded since they are declared to be inactive);
and T5 , akHtmnt is the additive noise.

To compute the SINR, the power of the post-combining
data signal is calculated conditioned on the channel
estimates [7]. This is equivalent to computing the power of the
post-combining data signal conditioned on the post-combining
pilot signal as Ez[|ỹktm|2] = Ez[|T1 + T2 + T3 + T4 + T5|2].
Here, z contains the post-combining pilot signals of all Mk

t

users yet to be decoded. Since noise is uncorrelated with data,
T5 is uncorrelated with the other terms. As MMSE channel
estimates are uncorrelated with their estimation errors [7], T1

is uncorrelated with T2. Since the data signals of different
users are independent, T3 and T4 are independent of each
other and the other terms as well. Thus, all the five terms are
uncorrelated and the power in the received signal is simply
the sum of the powers of the individual components

Ez[|ỹktm|2] =
∑5
i=1Ez[|Ti|2]. (31)

We now compute the SINR in the following theorem.

Theorem 3. The signal to interference plus noise ratio (SINR)
achieved by the mth user in the tth RB in the kth decoding
iteration can be written as

ρktm =
Gainktm

N0 + Estktm + MUIktm + FNUktm
, ∀m ∈ Sk, (32)

where Gainktm represents the useful signal power of the mth
user, Estktm represents the interference power caused due to
estimation errors of all true positive users, MUIktm represents
the multi-user interference power of other true positive users,
and FNUktm represents the interference power caused due to
the false negative users. These can be expressed as

Gainktm = P âmamgtm
|akHtm ĥktm|2

‖aktm‖2
, (33a)

Estktm = P
∑
i∈Sk âiaigtiδ

k
ti, (33b)

MUIktm = P
∑
i∈Smk

âiaigti
|akHtm ĥkti|2

‖aktm‖2
, (33c)

FNUktm = P
∑
i∈Smk

(1− âi)aigtiβiσ2
h . (33d)

Proof. See Appendix C. �

Remark: The interference components in the SINR expression
are contributed only by truly active users, i.e., the true
positive and false negative users. False positive users do not
contribute towards the received data signal. Even though they
do not cause interference, false positive users still affect data
decoding of other (true positive) users via their influence on the
channel estimates, which also feature in the SINR expression.
Further, the SINR for such false positive users is zero.7 In
contrast, false negative users contribute to the received pilot
and data signals, affecting both the channel estimates and data
decoding of true positive users. Since the BS does not detect
or decode such users, their SINR is zero as well, and thus the
system performance degrades due to such false negative users.
True negative users do not contribute to the received pilot or
data signal, and thus do not affect the decoding of other users.
Thus, ρktm = 0, ∀ m ∈ F ∪M∪ I.

The SINR expression derived in Theorem 3 is applicable to
any chosen combining scheme. For example, with regularized
zero forcing combining [7], Ak

t is computed as

Ak
t = Ĥk

t (ĤkH
t Ĥk

t + λIMk
t

)−1, (34)

where λ is the regularization parameter, and Ĥk
t is an N×Mk

t

matrix containing the channel estimates of the Mk
t users as its

columns. The corresponding SINR is obtained by substituting
the columns of the above combining matrix into (32). The
system throughput can now be calculated from (32) via the
decoding model described in Sec. II-A. We note that, in
practice, the BS does not compute the SINR; it simply tries to
decode each user that is detected to be active, in the RBs it has
chosen for transmission. However, the decoding succeeds only
if the SINR exceeds the chosen threshold. Thus, we use the
SINR threshold based abstraction to determine which packets
are successfully decoded and hence the throughput.

VI. NUMERICAL RESULTS

In this section, the UAD and channel estimation
performance of Algorithm 1 and the impact of UAD errors
on the throughput of IRSA are studied via Monte Carlo
simulations. In each run, independent realizations of the user
activities, user locations, the APM, and the fades experienced
by the users are generated. The results in this section are for
T = 50 RBs, Ns = 103 Monte Carlo runs, jmax = 100
iterations, γpr = 10−4, path loss exponent α = 3.76, and
channel variance σ2

h = 1 [7]. The pilot sequences are generated
as pm

i.i.d.∼ CN (0τ , P
pIτ ) as in [5]. The users are spread

uniformly at random locations within a cell of radius rmax =

7The BS computes noise-based channel estimates for false positive users.
Even if the SINR for such users happens to exceed γth, their packets will fail
an error check, and thus their SINR can be set to zero.
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Fig. 1: ROC of UAD: comparison with existing approaches.

1000 m, and the path loss is calculated as βm = (rm/r0)−α,
where rm is the radial distance of the mth user from the
BS and r0 = 100 m is the reference distance. The soliton
distribution [6] with ks = 27 and as = 0.02 is used to generate
the repetition factors.8

The user activity coefficients are generated as am
i.i.d.∼

Ber(pa), where pa = 0.1 is the per-user activity probability.
The system load L is defined as the average number of active
users per RB, L = Mpa/T . The number of users contending
for the T RBs is computed in each simulation based on the
load L as M = bLT/pae. The SNR for the mth user is
calculated as SNRm = Pσ2

hβm/N0. The received SNR of a
user at the edge of the cell at the BS is termed as the cell edge
SNR. The power levels of all users is set to the same value,
P , chosen such that the signal from a user at a distance rmax

from the BS is received at the cell edge SNR. This ensures that
all users’ signals are received at an SNR greater than or equal
to the cell edge SNR, in singleton RBs.9 The power levels of
users is set to P = P p = 20 dB [7] and N0 is chosen such
that the cell edge SNR is 10 dB, unless otherwise stated.10

A. Error Rates for UAD

In this subsection, the error rates for the recovery of user
activity coefficients in IRSA is presented. The metrics used
to characterize the UAD performance are false positive rate,
FPR , |F|

|F|+|I| , and false negative rate, FNR , |M|
|M|+|A| . FPR

is the fraction of inactive users declared to be active whereas
FNR is the fraction of active users declared to be inactive.

Fig. 1 shows the receiver operating characteristic (ROC)
plot, and compares the performance of the proposed algorithm
with existing approaches such as the maximum likelihood
(ML), non-negative least squares (NNLS), and MMV,
proposed in [18]. Here, the threshold γpr is varied to generate
the curves, and the FNR is plotted versus the FPR for N = 4
and L = 3, which corresponds to M = 1500 total users.

8The soliton distribution achieves near optimal throughputs [9]. Here, we
reuse the same distribution to generate dm.

9If the cell edge SNR is such that the cell edge user’s packet is decodable,
then all users’ packets are decodable with high probability in singleton RBs.

10In cases where the cell edge SNR is varied, the noise variance N0 is
varied according to the required cell edge SNR.

Fig. 2: Impact of pilot length on error rates.

The existing algorithms are applied to (4) to detect the ith
user’s activity âti in the tth RB and the user is declared
active if it is detected to be active in at least κ RB, i.e.,
âi = 1{

∑T
t=1 â

t
i ≥ κ}. We use κ = 1 since it yields the

lowest FNR. Note that all of these algorithms estimate users’
activities in each RB, whereas our algorithm combines the
estimated hyperparameters in a principled manner as seen in
(10), which is then used to infer the activities, and thus yields
far fewer errors. The proposed algorithm outperforms all three
approaches which have themselves shown an improvement
over other compressed sensing based algorithms such as
approximate message passing [18]. The ML approach with
τ = 40 intersects with the proposed algorithm with τ = 10,
and at the point of intersection, Algorithm 1 offers a 4-fold
reduction in the pilot length compared to the ML approach
while achieving the same UAD performance. Further, the
proposed algorithm with τ = 15 significantly outperforms all
the other approaches, and achieves a near-ideal performance.

Next, in Fig. 2, we plot the error rates (i.e., the FNR and
FPR) of Algorithm 1 versus the pilot length for varied L with
N = 16. As the load is increased from L = 1 to L = 2, 3, the
total number of users over the T RBs increases from M = 500
to M = 1000, 1500, and a longer pilot length is needed for
accurate UAD. Thus, there is a significant improvement of the
error rates with the pilot length τ . This is important, since
short packets are used in MMTC, and using non-orthogonal
pilots with as few as 20 symbols yields very low error rates
with as many as 1500 users. As noted earlier, with classical
compressed sensing approaches for UAD, one would require
Ω(346) pilot symbols for accurate UAD in the same settings.

Next, we illustrate the variation of the FNR with the number
of antennas for varied L and τ , in Fig. 3. The FNR is observed
to increase with an increase in L. The FNR also reduces with
an increase in N or τ since the total number of measurements
available in the received pilot signal increases, which improves
the recovery of user activities in each RB. For τ = 10, the
FNR saturates with N for L = 2/3, whereas for τ = 15,
the FNR saturates at high L and reduces for low to medium
L. This is because the performance of MSBL depends more
critically on the number of rows τ in the received signal than
the number of columns N [26]. Thus, at a given load, if τ is
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Fig. 3: FNR for different pilot lengths and loads.

Fig. 4: Effect of cell edge SNR on error rates.

too low, the FNR improves only slowly with N , but if τ is
large enough, the FNR improves dramatically with N . Hence,
as the load increases, it is important to increase τ as well.
In our approach, we solve a reduced problem in each RB as
seen in (4), after accounting for the APM. Due to this, in the
tth RB, τ = Ω(Mtpa log Mt

Mtpa
) = Ω(−Mtpa log pa) would

achieve a vanishing error rate. This guarantee is applicable
when τ > Mtpa, which is the average number of non-zero
entries to be recovered in each column of Zt in (4). For ks =
27, the average repetition factor is d̄ = 4, and thus on an
average, Mt = Ld̄

pa
= 120, 80, 40 for L = 3, 2, 1, and of the

order τ = 28, 19, 10 pilot symbols are required, respectively,
to achieve a low error rate for Algorithm 1 as N gets large.

In Fig. 4, the error rates are plotted against the cell edge
SNR for varied L and τ = 10. For low L, the error rates
first linearly reduce with SNR and then saturate at high SNR.
The FPR for L = 1 requires longer simulations to capture the
point where it saturates with SNR. For high L, both the error
rates saturate very quickly with the SNR. As the load L is
decreased, the error rates reduce since there are fewer users
to be detected. As seen earlier, for a fixed L, increasing the
pilot length can decrease the rates and the error rates reduce
at the point of saturation. In the noise limited regime, i.e.,
SNR < −5 dB, the error rates are high since the Bayesian
estimation process performs poorly at such low SNRs.

Fig. 5: Impact of pilot length on NMSE: The curves labeled True
show the NMSE with the estimates output by Algorithm 1.

Fig. 6: Effect of cell edge SNR on NMSE.

B. Normalized Mean Squared Error

Fig. 5 shows the impact of the pilot length τ on the
normalized mean squared error (NMSE) of the channels
estimated using Algorithm 1. The NMSE is calculated as
E[‖X− X̂‖2F ]/E[‖X‖2F ], where X is the channel matrix from
(12) and X̂ is the corresponding matrix of channel estimates
obtained from the UAD algorithm. It is observed that the
NMSE converges to the same value at all L as τ is increased
to 40, and the value the NMSE converges to decreases with
SNR. As τ increases, UAD is perfect and the effect of pilot
contamination is reduced, resulting in nearly the same NMSE
at all loads. Also, at low τ , the NMSE is higher for L = 3
compared to L = 1, since we have to estimate channels
for a larger number of users – both UAD errors and pilot
contamination contribute to a worsening of performance. The
normalized CRB from (25) is also plotted for the system under
all the configurations. It is seen that the gap between the true
NMSE and the normalized CRB reduces as τ increases. The
NMSE is insensitive to the value of N , as both the numerator
and the denominator of the NMSE scale equally with N .
Hence, we do not study the impact of N on the NMSE.

Fig. 6 shows the impact of SNR on NMSE. The NMSE
saturates with an increase in SNR for both L at τ = 10, since
the UAD performance saturates and any increase in SNR does
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Fig. 7: Effect of system load L.

Fig. 8: Impact of estimated UAD.

not improve the quality of the channel estimates. For τ = 20,
the NMSE linearly reduces with SNR up to 20 dB. At higher
τ , the NMSE is lower since there are more measurements
available in the received pilot signal to obtain both better UAD
performance and high quality channel estimates. Further, the
gap between the true NMSE and the normalized CRB reduces
with an increase in SNR for τ = 20. Thus, the CRB, which is
achieved by the genie-aided estimator in (27), is also achieved
by the estimates in Algorithm 1 as τ and SNR are increased.

C. Throughput Accounting for UAD and Channel Estimation

The performance of IRSA can be characterized by its
throughput, which is defined as the number of packets that
were successfully decoded at the BS as a fraction of the total
number of RBs.11 Note that, at a system load of L, the average
throughput of the system is upper bounded by L packets per
RB, since there are, on average, LT unique packets transmitted
per frame of duration T RBs. In this subsection, the SINR
analysis presented in Sec. V is used to evaluate the throughput
of IRSA with UAD and estimated channels. The number of
successfully decoded packets per RB for each simulation is

11We note that the throughput T of IRSA is directly related to the packet
loss rate PLR and the spectral efficiency R as T = L(1− PLR) and R =
T × log2(1 + γth), respectively [4].

Fig. 9: Impact of pilot length τ on throughput.

calculated as described in section II-A, and the throughput of
the system is found by averaging over the simulations.

Fig. 7 shows the system throughput, T (successfully
decoded packets per RB), evaluated for different pilot lengths
under UAD and estimated CSI, with threshold γth = 16 and
regularization parameter λ = 1, as a function of the load L. For
τ ≥ 20, the throughputs exceed unity, which is the throughput
of perfectly coordinated orthogonal access. In the moderate
load regime (L < 2), the system can serve more users, and
thus the throughput increases linearly with load. As the load is
increased further, the system becomes interference limited as
there are too many users sharing the same resources, thereby
decreasing the SINR and the throughput. Also, as the pilot
length τ increases, UAD performance improves, better quality
channel estimates are obtained, and the corresponding SINR
increases. The orthogonal pilots curve is obtained by allocating
τ = M = bLT/pae for each L, and this achieves nearly the
same performance as the case where perfect CSI is available
at the BS. At L = 2, there are M = 1000 users that need to
be served. For τ = 80 and 400, the achievable throughputs
are T = 1.5 and 2, respectively. At a load of L = 1.5, the
throughput obtained with τ = 80 is identical to the one offered
by the orthogonal pilots, which would need a pilot length of
τ = M = 750. This shows one can use significantly fewer
number of pilot symbols and still achieve the same throughput
as fully orthogonal pilots, at low to medium loads.

Figure 8 quantifies the effect of UAD on the performance
of IRSA, by plotting the throughput against the system load
under perfect and estimated user activities. Here, γth = 16 and
λ = 1 as in the previous figure. In both cases, the throughput
increases linearly with L till it hits a maximum and then
reduces. With a pilot length τ = 5, the gap between estimated
and perfect UAD is at its maximum of 0.7 (packets/RB) at
L = 1.2. As the pilot length is increased, the gap reduces
to a maximum of 0.1 (packets/RB) at L = 2 for τ = 20
and a negligibly small difference for τ = 30. This shows that
for lower pilot lengths, UAD performance has a significant
effect on the throughput. For higher pilot lengths, the UAD
is nearly perfect, and, in this regime, channel estimation and
data decoding limits the performance. Thus, UAD is the easier
problem in practical regimes of interest.
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Fig. 10: Effect of number of antennas N .

In Fig. 9, we investigate the effect of pilot length on the
system throughput at different L and SNRs. The threshold is
set to γth = 10 and regularization parameter to λ = 10−2

for the rest of the results. At a cell edge SNR of −5 dB, the
system throughput is very low due to poor UAD as well as
poor quality channel estimates. The throughput saturates with
an increase in τ for all loads. Even though more measurements
are available at high τ , even if the UAD process is successful
and the channel estimates are accurate, the low SNR results
in data decoding failures, which limits the throughput. As the
cell edge SNR is increased to 10 dB, the system performance
dramatically improves. At this SNR, optimal throughputs of
T = L is achieved with τ = 10/25 for L = 1/2, respectively,
which correspond to M = 500/1000 total users and on an
average Mpa = 50/100 active users, respectively. For L =
3, the optimal throughput is obtained at τ = 70, which is
not depicted here. As seen previously, the UAD problem is
dominant for very low τ for these loads, and for higher τ ,
channel estimation dominates the performance. To summarize,
the pilot length has a significant impact on the performance of
IRSA and is instrumental in yielding near-optimal throughputs.

In Fig. 10, the system throughput is plotted against the
number of antennas at the BS for different L and τ , under
both perfect and estimated UAD. The gap between the perfect
and estimated UAD throughputs for L = 2, 3 and τ = 5
increases with N , and the gap is the highest at N = 128. This
is because the UAD performance saturates with N for high
L at low τ . Due to the combined effect of UAD errors, pilot
contamination, and interference, low pilot lengths adversely
impact both the UAD performance and system throughput. For
τ = 20, increasing N has a dramatic impact at high L, and the
curves with perfect and estimated UAD overlap completely.
Nearly optimal throughputs of T = L can be achieved with
N = 16, 32 antennas for L = 2, 3. At τ ≥ 20, increasing the
number of antennas improves UAD, and increases both the
array gain and the decoding capability of the BS, leading to
more users getting decoded with RZF. In particular, at L = 3,
the rise in throughput as N is increased from 8 to 32 shows the
impact of the number of antennas in improving the throughput.

In Fig. 11, we illustrate the impact of cell edge SNR on
the throughput. In the noise-limited regime (SNR < 0 dB), an

Fig. 11: Impact of cell edge SNR.

Fig. 12: ROC comparison with different pilot sequences.

increase in SNR increases the throughput. Beyond an SNR of 0
dB, increasing SNR only marginally increases the throughput
for all L and τ and the system becomes interference-limited
for τ = 10. This is because both signal and interference
powers get scaled equally, and the SINR remains the same.
At τ = 40, for L = 1 and 2, optimal throughputs can be
obtained at a cell edge SNR = 0 dB. However, the throughput
for L = 3 saturates beyond 10 to 15 dB SNR and does
not yield the optimal throughput of T = 3 due to high L
and low τ . In summary, the throughput can be improved by
increasing the pilot length, number of antennas, and SNR
judiciously: unilaterally increasing one of the three can lead
to the throughput saturating at a value lower than T = L.

In Fig. 12, we plot the ROC curves for UAD in IRSA for
different pilot sequences, with N = 4, L = 3, and T = 50.
The non-orthogonal pilots, labeled as BPSK and QPSK,
contain random pilot symbols belonging to the respective PSK
constellations, and Zadoff-Chu (ZC) sequences are generated
according to [32]. ZC sequences require prime τ ; we use
τ = 7. With mutually orthogonal pilot sequences, such as
Hadamard and discrete Fourier transform (DFT), τ sequences
of length τ can be generated. Thus, we perform orthogonal
pilot reuse (OPR), where each user randomly selects a pilot
sequence from the available set of τ pilot sequences, similar
to [11]. We see that all the pilot sequences have similar
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Fig. 13: Performance comparison of different pilot sequences.

Fig. 14: Effect of imperfect SIC.

UAD performance. In particular, QPSK, BPSK, and Gaussian
pilot sequences have nearly identical performance; DFT and
Hadamard sequences have identical UAD performance.

In Fig. 13, we compare the throughput obtained when
several orthogonal and non-orthogonal pilot sequence sets
are used, with perfect UAD, N = 16, γ = 6, and
λ = 1. Random QPSK, Gaussian, and BPSK pilots have
identical performance, and ZC sequences result in a marginally
lower throughput at high loads. In the T = L regime, the
performance of non-orthogonal pilots is better than OPR.
Too much pilot reuse, which is worse with OPR due to the
smaller set of available pilots, deteriorates the performance.
The use of non-orthogonal pilots provides better diversity,
since there is a richer set of pilot sequences, leading to better
performance [20]. Thus, non-orthogonal pilot sequences result
in better throughput and nearly identical UAD performance
compared to OPR.

We now investigate the effect of imperfect SIC due to
channel estimation errors on the performance of IRSA.
Under imperfect SIC, the post-combined data signal from
(30) contains an extra term,

∑
i∈S1\Sk akHtm h̃kiti aigtixi, that

represents the residual interference due to channel estimation,
where ki denotes the iteration in which the ith user was
decoded. Thus, the SINR in (32) contains an extra term
in the denominator, ImpSICktm = P

∑
i∈S1\Sk âiaigtiδ

ki
ti ,

which represents the power of the residual interference due to
imperfect SIC, where δkiti is the power of the MMSE estimation
error of the ith user in the tth RB who has been decoded in the
kith decoding iteration. Fig. 14 studies the effect of imperfect
SIC on the performance of IRSA, with random BPSK pilots.
We also assume perfect UAD here, since we wish to address
the effect of imperfect SIC. The gap between the perfect
SIC and imperfect SIC curves reduce as the pilot length is
increased. The gap is negligible at τ = 20, and is very high
at τ = 5. Thus, at higher pilot lengths, the effect of imperfect
SIC due to channel estimation errors can be ignored.

VII. CONCLUSIONS

This paper studied the impact of UAD on the throughput
of IRSA, which is a GFRA protocol that involves repetition
of packets across different RBs. A novel Bayesian algorithm
was proposed to detect the set of active users in IRSA,
which exploited the knowledge of the APM, and combined the
hyperparameter updates across all RBs to yield an improved
UAD performance. Next, the channel estimates were derived
accounting for UAD errors. A Cramér-Rao bound was then
derived for the channels estimated under the hierarchical
Bayesian model used to develop the proposed algorithm. Then,
the SINR of all users was derived accounting for UAD,
channel estimation errors, and pilot contamination. The effect
of these errors on the throughput was studied via extensive
simulations. Many new insights into the design of the IRSA
protocol were discussed, namely, the complexity of UAD
compared to channel estimation, and the improvement of
both UAD and throughput with respect to τ , N , SNR, and
L. The results underscored the importance of accounting
for UAD errors and channel estimation, in studying the
throughput offered by the IRSA protocol in MMTC. We
assumed perfect RB- and frame- level synchronization across
users and the BS; future work can consider relaxing this
assumption. Exploiting the asynchronous nature of random
access transmissions to detect active users and estimate their
channels instead of orthogonal/non-orthogonal pilots is also
an interesting direction for future work.

APPENDIX A: PROOF OF THEOREM 1

Since the channel coefficients are Gaussian distributed, the
MMSE estimator is ĥktm , Ez [htm], where z contains the
post-combining pilot signals for all users detected to be active.
The channel estimation error h̃ktm , ĥktm−htm is uncorrelated
with the received pilot signal and the estimate itself [7]. The
conditional statistics of a Gaussian random vector x are

Ez [x] = E [x] + KxzK
−1
zz

(
z− E [z]

)
, (35a)

Kxx|z = Kxx −KxzK
−1
zz Kzx. (35b)

Here, Kxx, Kxx|z, and Kxz are the unconditional covariance
of x, the conditional covariance of x conditioned on z, and
the cross-covariance of x and z, respectively. From (35a), the
MMSE channel estimate ĥktm can be calculated as

ĥktm = E [htmypkH
tm ]E[ypk

tmypkH
tm ]−1ypk

tm
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=
âmgtmβmσ

2
h‖pm‖2

(N0‖pm‖2 +
∑
i∈Sk âigtiβiσ

2
h |pHi pm|2)

y
pk
tm , η

k
tmy

pk
tm.

The above is computed based on the users detected to
be active and is thus a function of estimated activity
coefficients âi. From (35b), the conditional covariance of the
channel htm is calculated conditioned on z, which contains
the post-combining pilot signals for users detected to be
active. Also, Khtmhtm = βmσ

2
hIN , Khtmz = E[htmypkH

tm ]
= ‖pm‖2amgtmβmσ2

hIN . Thus, the conditional covariance is

Khtmhtm|z = Khtmhtm −KhtmzK
−1
zz Kzhtm

= (βmσ
2
h − ηktm‖pm‖2amgtmβmσ2

h)IN , δktmIN .

Here, δktm = βmσ
2
h

(∑
i∈Sm

k
|pHi pm|2âiaigtiβiσ2

h +N0‖pm‖2∑
i∈Sk

|pHi pm|2âiaigtiβiσ2
h +N0‖pm‖2

)
represents the interference caused due to estimation errors of
other true positive users. It is a function of the pilots of the
other true positive users only and not the pilots of false positive
users. False positive users are omitted from the above because
such users do not contaminate the pilots of other users. The
conditional correlation follows from its definition as

Ez[htmhHtm] = Khtmhtm|z + Ez[htm]Ez[htm]H

= δktmIN + ĥktmĥkHtm .

The unconditional and conditional means of the error are
E[h̃ktm] = E[ĥktm−htm] = 0 and Ez[h̃ktm] = Ez[ĥktm−htm] =
ĥktm − ĥktm = 0. The conditional covariance of the error is

Kh̃ktmh̃ktm|z
= Ez[h̃ktmh̃kHtm ] = Ez[(ĥktm−htm)(ĥktm−htm)H ]

= Ez[htmhHtm]− ĥktmĥkHtm = δktmIN .

Since hktm ∼ CN (0N , βmσ
2
hIN ), the estimate ĥktm

and the error h̃ktm are distributed as CN (0N ,
ηktm‖pm‖2amgtmβmσ2

hIN ) and CN (0N , δ
k
tmIN ) respectively.

Also, MMSE estimates are uncorrelated with their errors [7].

APPENDIX B: PROOF OF THEOREM 2

The FIM sub-block associated with zt in the tth RB is
defined as Jt = Jt1 + Jt2 [31], with

Jt1 = E

[(
∂ log p(zt)

∂z∗t

)(
∂ log p(zt)

∂z∗t

)H]
,

Jt2 = E

E
(∂ log p(yt|zt)

∂z∗t

)(
∂ log p(yt|zt)

∂z∗t

)H ∣∣∣∣∣zt

 .

The conditional probability of yt given zt is
CN (Φtzt, N0IτN ), whereas the channel vector zt is
distributed as CN (0NMt

, IN ⊗ Γt). Hence, the log of the
conditional probabilities behave as

log p(zt) ∝ −zHt (IN ⊗ Γt)
−1zt,

log p(yt|zt) ∝ −
‖yt −Φtzt‖22

N0
.

Upon taking the derivative and then calculating the required
expectations, it is straightforward to show that Jt1 = IN⊗Γ−1

t

and Jt2 = IN ⊗ (PH
t Pt/N0). Further, the sub-blocks of Jt

corresponding to different antennas are identical and equal to
PH
t Pt/N0 + Γ−1

t . The result follows.

APPENDIX C: PROOF OF THEOREM 3

In order to compute the SINR, we first compute the power
of the individual components. The desired signal power is

Ez[|T1|2] = Ez[|akHtm ĥktmamgtmxm|2] = Pa2
mg

2
tm|akHtm ĥktm|2.

The powers of ai and gti are dropped, since they are
binary-valued. In order to account for zero data rates for false
positive users, the desired signal power is non-zero only for
true positive users and the desired gain is written as

Gainktm ,
Ez[|T1|2]

‖aktm‖2
= P âmamgtm

|akHtm ĥktm|2

‖aktm‖2
. (36)

The power of the estimation error term is calculated as

Ez[|T2|2] = Ez[|akHtm h̃ktmamgtmxm|2] = Pa2
mg

2
tmδ

k
tm‖aktm‖2.

Next, the power of the first inter-user interference term is

Ez[|T3|2] = Ez

[∣∣∣∑i∈Smk ∩A
akHtmhtiaigtixi

∣∣∣2]
= P

∑
i∈Smk ∩A

a2
i g

2
tia

kH
tmEz[htih

H
ti ]a

k
tm

(a)
= P

∑
i∈Smk ∩A

a2
i g

2
tia

kH
tm (δktiIN + ĥktiĥ

kH
ti )aktm

= P
∑
i∈Smk ∩A

a2
i g

2
ti(‖aktm‖2δkti + |akHtm ĥkti|2), (37)

where (a) follows from Theorem 1. Here, Ez[|T2|2]+Ez[|T3|2]
represents the contribution of estimation error components of
all true positive users and multi-user interference components
of other true positive users. We now split the normalized
version of the above into the sum of the error component
Estktm and the multi-user interference MUIktm as follows

Estktm , P
∑
i∈Sk âiaigtiδ

k
ti, (38)

MUIktm , P
∑
i∈Smk

âiaigti
|akHtm ĥkti|2

‖aktm‖2
. (39)

The power of the second inter-user interference term is

Ez[|T4|2] = Ez

[∣∣∣∑i∈Smk ∩M
akHtmhtiaigtixi

∣∣∣2]
(b)
= P

∑
i∈Smk ∩M

a2
i g

2
tia

kH
tmE[htih

H
ti ]a

k
tm

= P
∑
i∈Smk ∩M

a2
i g

2
tia

kH
tm (βiσ

2
hIN )aktm

= P
∑
i∈Smk ∩M

a2
i g

2
tiβiσ

2
h‖aktm‖2, (40)

where the conditional expectation is dropped in (b) since the
BS does not have the knowledge of the channel estimates
of false negative users. The normalised power of the false
negative users is calculated as

FNUktm , P
∑
i∈Smk

(1− âi)aigtiβiσ2
h . (41)

Finally, the noise power is calculated as

Ez[|T5|2] = Ez[|akHtmnt|2] = N0‖aktm‖2. (42)

Since the five terms in the received signal in (30) are mutually
uncorrelated, a meaningful expression for the SINR can be
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obtained by dividing the useful signal power from (36) by the
sum of the interference and the noise powers (which follow
from (38), (39), (41), and (42)) [7], [30]. The SINR can thus
be calculated as in (32) for all the users.
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