Design and Optimization of Cell-Free Systems: Channel Estimation, Duplexing Scheme, and Synchronization

Anubhab Chowdhury

Supervisor: Chandra R. Murthy

Dept. of ECE, Indian Institute of Science

April 3, 2024

Introduction to Cell-Free

Cellular to Cell-Free: A Paradigm Shift

- Mitigates effects of path loss
- Improved macro-diversity
- Improved link reliability
- Uniform QoS
- 10× SE compared to cellular†

A typical CF-mMIMO setup

[†] G. Interdonato et al., "Ubiquitous cell-free massive MIMO communications," EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, p. 197, Dec. 2019

Cellular to Cell-Free: A Paradigm Shift

- Mitigates effects of path loss
- Improved macro-diversity
- Improved link reliability
- Uniform QoS
- 10× **SE** compared to cellular†

A typical CF-mMIMO setup

Key Idea

Multi-cell/multi-user interference of cellular mMIMO is treated as useful information-bearing signals

[†] G. Interdonato et al., "Ubiquitous cell-free massive MIMO communications," EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, p. 197, Dec. 2019

 Channel estimation: All APs need to estimate the channels from all UEs with low NMSE

- Channel estimation: All APs need to estimate the channels from all UEs with low NMSE
- Duplexing scheme: Enable simultaneous uplink and downlink transmission reception capability

- Channel estimation: All APs need to estimate the channels from all UEs with low NMSE
- Duplexing scheme: Enable simultaneous uplink and downlink transmission reception capability
- Load: Effects of limited capacity front-haul

- Channel estimation: All APs need to estimate the channels from all UEs with low NMSE
- Duplexing scheme: Enable simultaneous uplink and downlink transmission reception capability
- Load: Effects of limited capacity front-haul
- Scalability: Should all APs serve all the UEs?

- Channel estimation: All APs need to estimate the channels from all UEs with low NMSE
- Duplexing scheme: Enable simultaneous uplink and downlink transmission reception capability
- Load: Effects of limited capacity front-haul
- Scalability: Should all APs serve all the UEs?
- Mobility: Effects of channel aging

- Channel estimation: All APs need to estimate the channels from all UEs with low NMSE
- Duplexing scheme: Enable simultaneous uplink and downlink transmission reception capability
- Load: Effects of limited capacity front-haul
- Scalability: Should all APs serve all the UEs?
- Mobility: Effects of channel aging
- **Synchronization**: Effects of slowness of the speed of light ... so on...

We addressed

We addressed

Channel Estimation

- There is no inherent UE grouping/clustering
- All the APs in the vicinity of a UE need to obtain good channel estimates

Color code for orthogonal pilots.

Random allocation: Huge pilot contamination

- There is no inherent UE grouping/clustering
- All the APs in the vicinity of a UE need to obtain good channel estimates

Color code for orthogonal pilots.

- Random allocation: Huge pilot contamination
- Exhaustive search: prohibitive $\mathcal{O}(au_p^K)$

- There is no inherent UE grouping/clustering
- All the APs in the vicinity of a UE need to obtain good channel estimates

Color code for orthogonal pilots.

- Random allocation: Huge pilot contamination
- Exhaustive search: prohibitive $\mathcal{O}(au_p^K)$
- No pilot contamination: $\tau_p \geq K$

- There is no inherent UE grouping/clustering
- All the APs in the vicinity of a UE need to obtain good channel estimates

Color code for orthogonal pilots.

- Random allocation: Huge pilot contamination
- Exhaustive search: prohibitive $\mathcal{O}(\tau_p^K)$
- No pilot contamination: $\tau_p \geq K$
 - Proportionally reduces data transmission duration

Our Aim

Our Aim

Optimize the pilot length

- Reduce pilot contamination using least length pilot
- Maximize data duration

MMSE Channel Estimator

MMSE Channel Estimator

Local estimate of kth UE's channel at the mth AP Received signal at the *m*th AP

$$\hat{\mathbf{f}}_{mk} = \sqrt{\tau_p \mathcal{E}_{p,k}} \beta_{mk} c_{mk} \mathbf{y}_{p,m}$$

$$c_{mk} \triangleq (\tau_p \mathcal{E}_{p,k} \beta_{mk} + \tau_p \sum_{n \in \mathcal{P}_{I(k)} \setminus k} \mathcal{E}_{p,n} \beta_{mn} + N_0)^{-1}$$

Pilot reusing UEs

Key Observation

If pilot reusing UEs are far apart, then pilot contamination will be considerably lower

Clustering & Pilot Allocation

Clustering: Motivation

Orthogonality within the shaded region

Clustering: Motivation

Orthogonality within the shaded region

Key Observation

Only a **subset of APs** within the vicinity of a UE receives a signal with **sufficient strength** for decodability

Clustering: Mathematics

Define the shaded region:

$$r_{o} \triangleq \max \left\{ \max_{k \in \mathcal{U}} d_{m_{k}k}, d_{\mathsf{SNR}_{o}} \right\}$$

- 1 $d_{m_k k} = \min \{d_{mk}, \forall m \in A\}$: Max of all nearest APs' distances
- (2) $d_{\mathsf{SNR}_o} = \mathsf{max}_d \left\{ \frac{N\mathcal{E}_p\beta(d)}{N_0} \geq \gamma_{\min} \right\}$: Sufficient strength

Clustering: Mathematics

Define the shaded region:

$$r_{\mathsf{o}} \triangleq \max \left\{ \max_{k \in \mathcal{U}} d_{m_k k}, d_{\mathsf{SNR}_{\mathsf{o}}} \right\}$$

① $d_{m_k k} = \min \{d_{mk}, \forall m \in A\}$: Max of all nearest APs' distances

$$(2) d_{\mathsf{SNR}_{\mathsf{o}}} = \mathsf{max}_{d} \left\{ \frac{N \mathcal{E}_{\mathsf{p}} \beta(d)}{\mathsf{N}_{\mathsf{0}}} \geq \gamma_{\min} \right\} :$$
 Sufficient strength

■ Case 1: 1 > 2: There is no UE that is not connected to any AP

Clustering: Mathematics

Define the shaded region:

$$r_{o} \triangleq \max \left\{ \max_{k \in \mathcal{U}} d_{m_{k}k}, d_{\mathsf{SNR}_{o}} \right\}$$

- 1 $d_{m_k k} = \min \{d_{mk}, \forall m \in A\}$: Max of all nearest APs' distances
- (2) $d_{\mathsf{SNR}_o} = \mathsf{max}_d \left\{ \frac{\mathsf{N}\mathcal{E}_p\beta(d)}{\mathsf{N}_0} \geq \gamma_{\min} \right\}$: Sufficient strength
- Case 1: (1) > (2): There is no UE that is not connected to any AP
- Case 2: 1 < 2: Every UE is connected to all APs where the received signal strength is at least γ_{\min}

Formed Clusters

 \mathfrak{C} Set of AP indices $(\forall k \in \mathcal{U})$

$$\mathcal{U}_k \triangleq \{m \text{ s.t. } \|\mathbf{u}_k - \mathbf{a}_m\| \le r_0, \forall m \in \mathcal{A}\}$$

Set of UE indices $(\forall m \in A)$

$$A_m \triangleq \{k \text{ s.t. } \|\mathbf{u}_k - \mathbf{a}_m\| \le r_0, \forall k \in \mathcal{U}\}$$

AP-UE connections

Formed Clusters

 \mathfrak{C} Set of AP indices $(\forall k \in \mathcal{U})$

$$\mathcal{U}_k \triangleq \{m \text{ s.t. } \|\mathbf{u}_k - \mathbf{a}_m\| \le r_o, \forall m \in \mathcal{A}\}$$

\bigcirc Set of UE indices $(\forall m \in A)$

$$A_m \triangleq \{k \text{ s.t. } \|\mathbf{u}_k - \mathbf{a}_m\| \le r_0, \forall k \in \mathcal{U}\}$$

AP-UE connections

Problem

$$\begin{aligned} & \text{min } \tau_p \\ & \text{subject to } \langle \varphi_{l(k)}, \varphi_{l(k')} \rangle = 0, \\ & \forall k, k' \in \mathcal{A}_m, \forall m \in \mathcal{U}_k \end{aligned}$$

Formed Clusters

$$\bigcirc$$
 Set of AP indices $(\forall k \in \mathcal{U})$

$$\mathcal{U}_k \triangleq \{m \text{ s.t. } \|\mathbf{u}_k - \mathbf{a}_m\| \le r_0, \forall m \in \mathcal{A}\}$$

Set of UE indices
$$(\forall m \in A)$$

$$A_m \triangleq \{k \text{ s.t. } \|\mathbf{u}_k - \mathbf{a}_m\| \le r_o, \forall k \in \mathcal{U}\}$$

AP-UE connections

Problem

$$\begin{aligned} & \text{min } \tau_p \\ & \text{subject to } \langle \varphi_{l(k)}, \varphi_{l(k')} \rangle = 0, \\ & \forall k, k' \in \mathcal{A}_m, \forall m \in \mathcal{U}_k \end{aligned}$$

Any two UEs that are connected to a common AP are assigned orthogonal pilot sequences

Two Views

Edges from each UE: same color Edges into each AP: distinct color

Any two vertices (UEs) connected by an edge (AP) must have distinct colors

Solve using minimum number of colors (orthogonal pilots)

How to color/assign pilots?

- Recall: Color is equivalent to orthogonal pilots
- Two questions:
 - Which vertex (UE) do we choose at a given iteration?
 - What color (pilot) do we assign to the selected vertex?

How to color/assign pilots?

- Recall: Color is equivalent to orthogonal pilots
- Two questions:
 - Which vertex (UE) do we choose at a given iteration?
 - What color (pilot) do we assign to the selected vertex?

C Enumerate for each vertex:

- # distinct colored vertices connected to it
- # of vertices connected to it
- Tabulate color (pilot) set:

Color	Repetition factor
O, O, O	1
	2

Algorithm

[2]:

[4]: [5]:

[6]:

[8]:

[10]: [11]: end

```
Input : \bar{\mathcal{U}} = \{1, 2, \dots, K\}, \ \mathcal{C} = \emptyset \ (\text{colors})
[1]: while \bar{\mathcal{U}} \neq \emptyset do
          Select k \in \bar{\mathcal{U}}: the maximum number of distinct colored
          vertices connected to it.
          Tie-break: Choose k \in \overline{\mathcal{U}} with the maximum number of
[3]:
            vertices connected to it.
          Tie-break: Choose any k \in \bar{\mathcal{U}} at random
           Assign color:
                                 c(k) = \min c(p) \in C
                            subject to c(k') \neq c(p), \forall k' \in \{1 \text{ s.t. } e_{kl} \in \mathcal{E}\}.
           if c(k) = \emptyset then
                Assign a new color c(k) to vertex k
[7]:
                Update Color Set: C \leftarrow C \cup c(k)
          end
[9]:
```

Illustration

Graph formed by connecting UEs (vertices) that share common AP(s)

Colored AP-UE connections:
Distinct colors correspond to distinct orthonormal pilot sequences

Comparative Study

Performance of the Algorithm

Comparison with existing schemes

Pilot Length

Scaling of pilot length with number of UEs (K)

Key Message

- Minimizes the pilot length at the same time ensures no contamination among the clustered APs
- Low complexity solution for pilot allocation: does not require SINR exchange
- Algorithm is known to be optimal for all bipartite graph

Reference

A. Chowdhury and C. R. Murthy, "Pilot Length Minimization via AP-UE Clustering in Cell-Free Systems," ICASSP 2024, Seoul, Republic of Korea, Apr. 2024, pp. 9216-9220.

Virtual FD & Synchronization: A Quick Look

Question

Can we achieve **FD performance** with **HD hardware**, thus avoiding selfinterference?

Question

Can we achieve FD performance with HD hardware, thus avoiding selfinterference?

Answer

YES!: Cell-Free MIMO with HD APs & Dynamic TDD

Question

Can we achieve FD performance with HD hardware, thus avoiding selfinterference?

Answer

YES!: Cell-Free MIMO with HD APs & Dynamic TDD

Virtual FD

Question

Can we achieve FD performance with HD hardware, thus avoiding selfinterference?

Promise of DTDD HD CF

Answer

YES!: Cell-Free MIMO with HD APs & Dynamic TDD

Virtual FD

Uplink Synchronization

 τ_{mk} : Normalized delay between mth AP and kth UE

Uplink Synchronization

Key Observation

CF-MIMO systems can not be synchronous!

Uplink Synchronization

 $\tau_{mk}\!\!:\!\! \text{Normalized delay between }m\text{th AP}$ and kth UE

Key Observation

CF-MIMO systems can not be synchronous!

- Mathematical framework to analyze UL asynchrony and SE
- Interference aware combining to combat ICI and ISI

[Anubhab & Chandra: SPAWC, Sep. 2023]

Overall Publications

- [J1] A. Chowdhury and C. R. Murthy, Half-Duplex APs with Dynamic TDD vs. Full-Duplex APs in Cell-Free Systems, accepted in IEEE *Transactions on Communications*. Jan. 2024
- [J2] A. Chowdhury and C. R. Murthy, On the Sum Spectral Efficiency of Dynamic TDD Enabled Cell-Free Massive MIMO Systems, *IEEE Wireless Communications Letters*, vol. 12, no. 3, pp. 481-485, Mar. 2023
- [J3] A. Chowdhury, R. Chopra, and C. R. Murthy, Can Dynamic TDD Enabled Half-Duplex Cell-Free Massive MIMO Outperform Full-Duplex Cellular Massive MIMO?, *IEEE Transactions on Communications*, vol. 70, no. 7, pp. 4867-4883, Jul. 2022
- [J4] A. Chowdhury, P. Sasmal, C. R. Murthy, and R. Chopra, On the Performance of Distributed Antenna Array Systems with Quasi-Orthogonal Pilots, *IEEE Transactions on Vehicular Technology*, vol. 71, no. 3, pp. 3326-3331, Mar. 2022

Continued

- [C1] A. Chowdhury and C. R. Murthy, Pilot Length Minimization via AP-UE Clustering in Cell-Free Systems, accepted in *IEEE ICASSP*, Seoul, Korea, Apr. 2024
- [C2] A. Chowdhury and C. R. Murthy, How Resilient are Cell-Free Massive MIMO OFDM Systems to Propagation Delays?, *Proc. IEEE SPAWC*, Shanghai, China, Sep. 2023.
- [C3] A. Chowdhury and C. R. Murthy, Comparative Study of Dynamic TDD with Full-Duplex in Cell-Free Massive MIMO Systems, *NCC*, Guwahati, India, Feb. 2023.
- [C4] A. Chowdhury, C. R. Murthy, and R. Chopra, Dynamic TDD Enabled Distributed Antenna Array Massive MIMO System, *Proc. IEEE SAM*, Trondheim, Norway, Jun. 2022.
- [C5] A. Chowdhury, P. Sasmal, and C. R. Murthy, Comparison of Orthogonal vs. Union of Subspace Based Pilots for Multi-Cell Massive MIMO Systems, *Proc. IEEE SPAWC*, Atlanta, Georgia, USA, May 2020.

Thank You... Questions?

Anubhab Chowdhury: anubhabc@iisc.ac.in

