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Introduction to Cell-Free



Cellular to Cell-Free: A Paradigm Shift

= Mitigates effects of path loss %ﬁ N %
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= Mitigates effects of path loss %ﬁ \
= Improved macro-diversity o e ,
= Improved link reliability U ﬁ
= Uniform QoS arp

= 10 SE compared to A typical CF-mMIMO setup

cellulary

Key ldea
? Multi-cell /multi-user interference of cellular mMIMO is treated
as useful information-bearing signals

T G. Interdonato et al., “Ubiquitous cell-free massive MIMO communications,”
EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, p. 197, Dec. 2019
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Signal Processing Challenges

= Channel estimation: All APs need to estimate the channels
from all UEs with low NMSE

= Duplexing scheme: Enable simultaneous uplink and
downlink transmission reception capability

= Load: Effects of limited capacity front-haul
= Scalability: Should all APs serve all the UEs?
= Mobility: Effects of channel aging

= Synchronization: Effects of slowness of the speed of light

.. SO On...
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Channel Estimation



Challenge in Joint Estimation

= There is no inherent UE
grouping/clustering

= All the APs in the vicinity of
a UE need to obtain good
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Challenge in Joint Estimation

= There is no inherent UE
grouping/clustering

= All the APs in the vicinity of
a UE need to obtain good

channel estimates

Color code for orthogonal pilots.

= Random allocation: Huge pilot contamination

= Exhaustive search: prohibitive O(7[)
= No pilot contamination: 7, > K

= Proportionally reduces data transmission duration
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Pilot length
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Typical TDD frame structure Data duration Contamination

Optimize the pilot length

e Reduce pilot contamination using least length pilot

e Maximize data duration




MMSE Channel Estimator
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MMSE Channel Estimator

Local estimate of Received signal
kth UE's channel at the mth AP
at the mth AP

—
fk= v/ Tpgp,kﬂr?k Yp,m

Cmk = (Tpgp,kﬁmk + 7p >. € 7nﬁmn + NO)_l
nepl(k)\*k

Pilot reusing UEs

Key Observation
? If pilot reusing UEs are far apart, then pilot contamination will
be considerably lower



Clustering & Pilot Allocation
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Orthogonality within the shaded region

Only a subset of APs within the vicinity of a UE receives a

? Key Observation

signal with sufficient strength for decodability
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Clustering: Mathematics

= Define the shaded region:

A
fo = max { maxd, d
o {kGZx/ myks SNRO}

@ Ak = min{dmk,Vm € A}: Max of all nearest APs’

distances NE-G(d
@ dsnr, = Maxy {‘/’5() > ymin}: Sufficient strength
o
= Case 1: @ > @: There is no UE that is not connected to

any AP

= Case 2: @ < @: Every UE is connected to all APs where
the received signal strength is at least Yy



Formed Clusters
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Formed Clusters

> Set of AP indices (Vk € U)
U 2 {mst. |ug —am| < rp,Vm e A}

> Set of UE indices (Vm € A)

*
0 100 200 300 100 500

Am 2 {k st |Juk — am|| < ro, Yk € U}

AP-UE connections

Problem Any two UEs that are
connected to a common

min 7p

) AP are assigned
subject to (), Pix)) =0, orthogonal pilot

Vk, k' € Am,Ym € U sequences




Two Views

Bipartite Graph Coloring Vertex Coloring

§< Edge: if two UEs are connected
0 to a common AP D
" A

o 1 D |
# i

Pu Vertices = UEs <"
.
AP -locations UE -locations
Edges from each UE: same color Any two vertices (UEs)
Edges into each AP: distinct connected by an edge (AP) must
color have distinct colors

Solve using minimum number of colors (orthogonal pilots)
G



How to color/assign pilots?

= Recall: Color is equivalent to orthogonal pilots
= Two questions:

= Which vertex (UE) do we choose at a given iteration?
= What color (pilot) do we assign to the selected vertex?



How to color/assign pilots?

= Recall: Color is equivalent to orthogonal pilots

= Two questions:
= Which vertex (UE) do we choose at a given iteration?
= What color (pilot) do we assign to the selected vertex?

K Enumerate for each vertex: @
= # distinct colored vertices @
connected to it ‘
= # of vertices connected to it @ ’@ @

> Tabulate color (pilot) set: @ @
Color

Repetition factor

T S

At some point in time (2




Algorithm

Input U ={1,2,...,K}, C =0 (colors)
[11: while I/ # () do

[2]:

[3]:

[4]:
[5]:

[6]:
[71:
(8]:
[9]:
[10]:

[11): end

Select k € {: the maximum number of distinct colored
vertices connected to it.
Tie-break: Choose k € I{ with the maximum number of
vertices connected to it.
Tie-break: Choose any k € I{ at random
Assign color:
c(k)=min c(p)eC
subject to c(k') # c(p),Vk' € {I s.t. exy € E}.
if c(k) =0 then
Assign a new color c(k) to vertex k
Update Color Set: C < C U c(k)
end




lllustration
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Comparative Study




Performance of the Algorithm
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Pilot Length
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Key Message

= Minimizes the pilot length at the same time ensures no

contamination among the clustered APs

= Low complexity solution for pilot allocation: does not require
SINR exchange
= Algorithm is known to be optimal for all bipartite graph

Reference

A. Chowdhury and C. R. Murthy, "Pilot Length Minimization

via AP-UE Clustering in Cell-Free Systems,” ICASSP 2024,
Seoul, Republic of Korea, Apr. 2024, pp. 9216-9220.
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Virtual FD: DTDD & CF

Can we achieve FD per-
formance with HD hard-
ware, thus avoiding self-
interference?

0 S il I
50 100 150 200 250
Sum UL-DL SE (bps/Hz/slots)

Promise of DTDD HD CF

YES!: Cell-Free MIMO
with HD APs & Dynamic
TDD

% UL Scheduled AP § DL Scheduled AP

= =

D UL UE ﬂ DL UE - - # UL Signal - -» DL Signal

Virtual FD

[Anubhab & Chandra: TCOM, Jul. 2022, WCL Mar. 2023, TCOM Jan. 2024] (1



Uplink Synchronization
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Uplink Synchronization
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CF-MIMO systems can not be
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Uplink Synchronization

T2k T4k : ;
B y e N,
) _1th sth
UE, e OFéM it | omn}[ Symbol
ol T T T
KL L
- D 1 i—1th it
,,,,,, —t ) e UE, | CP | OFDM Symbol OFDM Symbol
AP iy, CPU T ' Y G
i y o | [ I s i
a %/ UEs3| 1 1 OFDM Symbol OFDM Symbol
AP Iy | R T
— Back-haul links nter-Carrier , ‘Inter-Symbol Interference

Interference

Tmk:Normalized delay between mth AP and kth UE

Key Observation
CF-MIMO systems can not be synchronous!

= Mathematical framework to analyze UL asynchrony and SE

= Interference aware combining to combat ICI and IS

[Anubhab & Chandra: SPAWC, Sep. 2023]
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Thank You... Questions?

Anubhab Chowdhury: anubhabc@iisc.ac.in
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