New Modulation Waveforms for Delay and Time-scale Spread Wideband Channels

Chandra R. Murthy (Joint work with Arunkumar K. P. and Muralikrishna P.) Indian Institute of Science, Bengaluru, India

Dec 15, 2022

Waveform Evolution in Terrestrial RF Communication

- High mobility communications in rural areas
 - Low frequencies preferred for long range
 - Large bandwidth desirable for high data rates
- UnderWater Acoustic (UWA), Ultra WideBand (UWB) channels need new waveforms

OFDM: A Widely Employed Waveform

- Designed for delay-spread channels
 - dominant waveform in 4G, 5G
- Known to be sensitive to
 - high vehicle speeds
 - temporal fluctuations (in the channel)

OTFS: A Recent Waveform

• Designed for narrowband, underspread channels

- Narrowband: Effect of Doppler pprox frequency shift
- Underspread: (Doppler spread) imes (Delay spread) $\ll 1$
- Useful in high-mobility scenarios

The UWA Channel

• Troubles of both deep space and terrestrial radio channels

- large propagation delay (as in deep space radio channels)
- fading and frequency dependent path loss (as in terrestrial radio channels)
- Large delay and Doppler spread \implies frequency and time selective

• Large fractional bandwidth: $\frac{B}{f_c} \implies$ UWA is a wideband channel

Doppler in UWA versus RF Communication

• Doppler causes time-scaling: $s(t) \rightarrow \sqrt{\alpha} s(\alpha t)$, where $\alpha \approx 1 \pm \frac{2|v|}{c}$

• If $s(t) \Rightarrow S(f)$ are Fourier transform pairs, then $\sqrt{\alpha}s(\alpha t) \Rightarrow \frac{1}{\sqrt{\alpha}}S(\frac{f}{\alpha})$

	UWA	RF
Communication Band, $f_L - f_H$	10 kHz – 20 kHz	400 MHz – 420 MHz
Fractional bandwidth, $\frac{B}{f_c}$	0.6667	0.0488
Wave speed, c (m/s)	1500	$3 imes 10^8$
Relative speed, v (m/s)	1.5	278
Doppler shift, δf_L (Hz)	20	741.3
Doppler shift, δf_H (Hz)	40	778.4
No. of subcarriers, N _{FFT}	1024	1024
Subcarrier spacing, Δf (Hz)	9.8	19500
Fractional Doppler shift, $\frac{\delta f_H}{\Delta f}$	4.1	0.04

Delay & Time-scale Spread Wideband Channel

• Delay-scale spread channel:

$$r_{s}(t) = \iint h(\tau, \alpha) \sqrt{\alpha} s\left(\alpha(t-\tau)\right) d\tau d\alpha$$

time-scale $\alpha = \frac{c-v}{c+v}$ (v: radial velocity of the scatterer, c: wave sound)

• Narrowband channel: if $B/f_c \ll 1$ and $v \ll \frac{c}{2BT}$ are satisfied, Doppler can be approximated by a frequency shift, $\nu \approx (\alpha - 1) f_c$,

$$r_{s}(t) = \iint h(\tau,\nu) s(t-\tau) e^{j2\pi\nu(t-\tau)} d\tau d\nu$$

- In a wideband channel: either $B/f_c \ll 1$ or $v \ll \frac{c}{2BT}$ is violated
- Most RF channels are narrowband, UWA & UWB channels are wideband

Outline

1 VBMC Communications

Delay-Scale Channel Model

- Core Idea: Variable Subcarrier Bandwidth
- Framework for Waveform Evaluation
- Numerical Results

2 ODSS Communications

- Mellin Transform & ODSS Transmission Scheme
- Numerical Results

Transmitter & Channel Model

$$s(t) = \sum_{n=0}^{N-1} s_{BB}[n] \operatorname{sinc} (B(t - nT_s)) e^{j2\pi f_c t} \text{ (Transmitted waveform)}$$

$$r_s(t) = \sum_{p=1}^{N_p} h_p \sqrt{\alpha_p} s(\alpha_p (t - \tau_p)) \text{ (Propagation channel)}$$

$$= \sum_{p=1}^{N_p} h_p \sqrt{\alpha_p} \sum_{n=0}^{N-1} s_{BB}[n] \operatorname{sinc} (B(\alpha_p \overline{t - \tau_p} - nT_s)) e^{j2\pi f_c \alpha_p \overline{t - \tau_p}}$$

$$r(t) = r_s(t) + w(t) \text{ (Received signal)}$$

- Received signal in the baseband: $r_{BB,s}(t) = r_s(t)e^{-j2\pi f_c t}$
- The samples of the received signal in the baseband, $r_{BB,s}[m'] = r_{BB,s}(m'/F_s)$, can be expressed as

$$\begin{aligned} r_{\text{BB,s}}[m'] &= \sum_{m=0}^{M-1} s_{\text{BB}}[m] \sum_{p=1}^{P} h_p \sqrt{\alpha_p} e^{-j2\pi f_c \alpha_p \tau_p} \\ &\times e^{j2\pi f_c (\alpha_p - 1)m'/F_s} \text{sinc} \left(B(\alpha_p m' - m)/F_s - \alpha_p \tau_p B \right), \end{aligned}$$

for m' = 0, 1, ..., M' - 1, where $M' = \lfloor F_s T + F_s \tau_{max} \rfloor$ is the number of signal samples at the delay-scale channel output

Receiver Measurement Model

• Received signal vector including the additive receiver noise:

 $\mathbf{r} = H\mathbf{s} + \mathbf{w},$

where $\mathbf{w} \in \mathbb{C}^{M'}$ is the vector receiver noise samples w[m],

$$\mathbf{s} = [\mathbf{s}_{\mathsf{BB}}[0], \mathbf{s}_{\mathsf{BB}}[1], \dots, \mathbf{s}_{\mathsf{BB}}[M-1]]^T \in \mathbb{C}^M,$$

$$\mathbf{r} = [\mathbf{r}_{\mathsf{BB}}[0], \mathbf{r}_{\mathsf{BB}}[1], \dots, \mathbf{r}_{\mathsf{BB}}[M'-1]]^T \in \mathbb{C}^{M'},$$

 $r_{m'} = r_{BB}[m'] = r_{BB,s}[m'] + w[m']$, and $H \in \mathbb{C}^{M' \times M}$ is the delay-scale channel matrix whose $(m', m)^{\text{th}}$ entry is given by

$$H_{m',m} = \sum_{p=1}^{P} h_p \sqrt{\alpha_p} e^{-j2\pi f_c \alpha_p \tau_p} e^{j2\pi f_c (\alpha_p - 1)m'/F_s} \\ \times \operatorname{sinc} \left(B(\alpha_p m' - m)/F_s - \alpha_p \tau_p B \right)$$

1 VBMC Communications

Delay-Scale Channel Model

Core Idea: Variable Subcarrier Bandwidth

- Framework for Waveform Evaluation
- Numerical Results

2 ODSS Communications

- Mellin Transform & ODSS Transmission Scheme
- Numerical Results

Core Idea: Variable Subcarrier Bandwidth

- Signal arriving along *p*th path: $r_s^{(p)}(t) = h_p \sqrt{\alpha_p} s(\alpha_p(t \tau_p))$
- *p*th path signal spectrum: $R_s^{(p)}(f) = h_p \frac{1}{\sqrt{\alpha_p}} S\left(\frac{f}{\alpha_p}\right) e^{-j2\pi f \tau_p}$
- A component at f_0 in s(t) appears at $\alpha_p f_0$ in $r_s^{(p)}(t)$
- Spectrum expansion: $R_s^{(p)}(\alpha_p f_0) = h_p \frac{1}{\sqrt{\alpha_p}} S(f_0) e^{-j2\pi\alpha_p f_0 \tau_p}$

Figure 1: $f_L = 10$ kHz, $f_H = 20$ kHz, $\alpha_{max} = 1.001$, T = 20 ms, $\beta = 2$

VBMC Waveform: Parameters¹

- Communication band: $f_L f_H$, Symbol bandwidth: $\Delta f = \frac{\beta}{T}$, where T: symbol duration, β : pulse shaping factor
- *N* frequency cells of varying widths: $f_0 = f_L, f_1, f_2, \ldots, f_N$

$$N = \left\lfloor \frac{\log \left(f_H / f_L \right)}{\log \left(1 + \Delta f / f_L \right)} \right\rfloor$$

$$f_{n+1} = f_n (1 + \Delta f/f_L) = f_L (1 + \Delta f/f_L)^n, n = 0, 1, \dots, N-1$$

• Subcarrier bandwidth varies with *n*: $\delta f_n = \alpha_{\max}^{-1} f_n - \alpha_{\max} f_{n-1}$

¹Arunkumar K. P. and Chandra R. Murthy, "Variable Bandwidth Multicarrier Communications: A New Waveform for the Delay-Scale Channel", *SPAWC*, Oulu, Finland, July 2022

Chandra R. Murthy (OTFS SIG Seminar)

Dec 15, 2022 14 / 37

VBMC Waveform: Construction

1 VBMC Communications

- Delay-Scale Channel Model
- Core Idea: Variable Subcarrier Bandwidth
- Framework for Waveform Evaluation
- Numerical Results

2 ODSS Communications

- Mellin Transform & ODSS Transmission Scheme
- Numerical Results

VBMC Waveform: Digital Modulation

*n*th column of \mathbf{G}_T contains M_n samples of the *n*th VBMC subcarrier:

$$G_{T}(m,n) = egin{cases} c_n\left(rac{m-m_n}{F_s}-rac{T_n}{2}
ight), & m_n \leq m \leq m_n+M_n-1 \ 0, & ext{otherwise} \end{cases}$$

System Model: A Common Framework

MMSE Receiver

- Full Complexity Equalizer (FC-EQ): uses entire $D = G_R^H G_R$
- One-tap Equalizer (1-tap EQ): uses diagonal approximation of D

1 VBMC Communications

- Delay-Scale Channel Model
- Core Idea: Variable Subcarrier Bandwidth
- Framework for Waveform Evaluation
- Numerical Results

2 ODSS Communications

- Mellin Transform & ODSS Transmission Scheme
- Numerical Results

Composite Channel Matrices

Chandra R. Murthy (OTFS SIG Seminar)

ECE Dept., IISc, Bengaluru

BER Performance: Underspread and Overspread channels

SINR Statistics

SINR_n =
$$\frac{|D_{n,n}|^2}{\sum_{n' \neq n} |D_{n,n'}|^2 + \sigma_{v,n}^2}$$

Jain's Fairness Index

$$\mathcal{J}_D = \frac{|\sum_n D_{n,n}|^2}{N\sum_n |D_{n,n}|^2}$$

Figure 3: Jain's fairness index of the diagonal entries of OFDM, OTFS and VBMC composite channel matrix, *D*.

Chandra R. Murthy (OTFS SIG Seminar)

ECE Dept., IISc, Bengaluru

Dec 15, 2022 24 / 37

OTFS: Waveform for Narrowband Delay-Doppler Channels

- Designed for narrowband, underspread channels
- Useful in high-mobility scenarios
- Need new waveforms for wideband, overspread channels (UWA, UWB)

Outline

1 VBMC Communications

- Delay-Scale Channel Model
- Core Idea: Variable Subcarrier Bandwidth
- Framework for Waveform Evaluation
- Numerical Results

2 ODSS Communications

- Mellin Transform & ODSS Transmission Scheme
- Numerical Results

Key Ingredient: Mellin Transform²

• Mellin transform is matched to scale changes (geometrically samples the scale parameter):

$$\mathcal{M}_{x}(\beta) \triangleq \int_{0}^{\infty} \frac{1}{\sqrt{\alpha}} x(\alpha) e^{j2\pi\beta \log(\alpha)} d\alpha$$

and the inverse Mellin transform is given by:

$$x(\alpha) \triangleq \frac{1}{\sqrt{\alpha}} \int_{-\infty}^{\infty} \mathcal{M}_x(\beta) e^{-j2\pi\beta \log(\alpha)} d\beta, \alpha > 0.$$

- Mellin transform is invariant to time-scale changes (up to a phase shift): for a > 0, x(α) → M_x(β) ⇒ √ax(aα) → e^{-j2πβ log a}M_x(β)
- *Multiplicative* convolution between two scale-domain signals corresponds to the product of their Mellin transforms in the Mellin domain:

$$(x_1 \vee x_2)(\alpha) = \int_0^\infty \sqrt{\alpha} x_1(\alpha') x_2\left(\frac{\alpha}{\alpha'}\right) \frac{d\alpha'}{\alpha'} \xrightarrow{\mathcal{M}} \mathcal{M}_{x_1}(\beta) \mathcal{M}_{x_2}(\beta)$$

²J. Bertrand, P. Bertrand, and J.-P. Ovarlez, *The Mellin Transform*, 2nd ed. Boca Raton: CRC Press LLC, 2000

ODSS Transmitter

ODSS Transform (discrete IMFT):

$$X[n,m] = \frac{q^{-n/2}}{N} \sum_{k=0}^{N-1} \frac{\sum_{l=0}^{M(k)-1} x[k,l] e^{j2\pi \left(\frac{ml}{M(k)} - \frac{nk}{N}\right)}}{M(k)}$$

ODSS for Wideband Delay-Scale Channel

$$\underbrace{X[n,m]}_{\text{Modulator}} ODSS \underbrace{s(t)}_{h(\tau,\alpha)} \underbrace{Channel}_{h(\tau,\alpha)} r(t) \underbrace{ODSS}_{\text{Demodulator}} \underbrace{A_{g_{rx},r}(\tau,\alpha)}_{\text{Demodulator}}$$

$$s(t) = \sum_{n=0}^{N-1} \sum_{m=0}^{M(n)-1} X[n,m] q^{m/2} g_{tx} \left(q^m \left(t - \frac{n}{\alpha_0^m W} \right) \right)$$
(Modulator)

$$r(t) = \int \int h(\tau,\alpha) \sqrt{\alpha} s \left(\alpha(t-\tau) \right) d\tau d\alpha$$
(Propagation channel)

$$A_{g_{rx},r}(\tau,\alpha) = \int \sqrt{\alpha} g_{rx}^* \left(\alpha(t-\tau) \right) r(t) dt$$
(Demodulator)

$$= \sum_{n} \sum_{m} X[n,m] H_{n,m}(\tau,\alpha)$$

$$H_{n,m}(\tau,\alpha) = \iint h(\tau'',\alpha'') A_{g_{\mathsf{rx}},g_{\mathsf{tx}}} \left(\alpha'' q^n \left(\tau - \frac{m}{\alpha'' q^n W} - \tau'' \right), \frac{\alpha}{\alpha'' q^n} \right) d\tau'' d\alpha''$$

ODSS: Choice of q and W

- ICI is avoided if we choose -
 - **1** $q \ge \alpha_{\max}^2$, and **2** $W = \min(W_{m'>m}, W_{m'<m})$, where,

$$W_{m'>m} \triangleq \frac{1}{(1+\alpha_{\max})\,\tau_{\max}}$$
$$W_{m'$$

- Under the following assumptions:
 - 1 $h(\tau, \alpha)$ has a finite support: is non-zero only for $-\tau_{\max} \leq \tau \leq \tau_{\max}$ and $\frac{1}{\alpha_{\max}} \leq \alpha \leq \alpha_{\max}$, where $\alpha_{\max} \geq 1$, and
 - 2 robust bi-orthogonality holds between the transmit and receive pulses: the cross-ambiguity function vanishes in the neighborhood of all lattice points $(\frac{m}{q^nW}, q^n)$ except (0,1) corresponding to m = 0 and n = 0. That is, $A_{g_{rx},g_{tx}}(\tau,\alpha) = 0$ for $\tau \in (\frac{m}{q^nW} - \tau_{max}, \frac{m}{q^nW} + \tau_{max})$ and $\alpha \in (q^n/\alpha_{max}, q^n\alpha_{max})$ except when m = 0 and n = 0.

ODSS: Input-Output Relation

 ODSS scheme results in an ISI/ICI free symbol measurements (in the delay-scale domain), and time-independent scalar (complex) channel gains:

$$\hat{Y}[n,m] = H_{n,m}[n,m]X[n,m] + W[n,m]$$

• Matrix-vector form

$\hat{\mathbf{Y}} = \mathbf{D}\mathbf{X} + \mathbf{W}$

where $\hat{\mathbf{Y}} \in \mathbb{C}^{M_{\text{tot}} \times 1}$: obtained by stacking $\hat{Y}[n, m]$, $\mathbf{D} \in \mathbb{C}^{M_{\text{tot}} \times M_{\text{tot}}}$: diagonal matrix formed by stacking $H_{n,m}[n, m]$ along diagonal, $\mathbf{X} \in \mathbb{C}^{M_{\text{tot}} \times 1}$: data symbol vector obtained by stacking X[n, m], $\mathbf{W} \in \mathbb{C}^{M_{\text{tot}} \times 1}$: additive noise • Data decoding proceeds after an MMSE equalizer on $\hat{\mathbf{Y}}$:

$$\mathbf{\hat{Z}} = \mathbf{D}^{H} \left(\mathbf{D}\mathbf{D}^{H} + \sigma_{W}^{2} \mathbf{I} \right)^{-1} \mathbf{\hat{Y}},$$

where σ_W^2 is the noise variance in the delay-scale domain

• The data symbol vector is then obtained as follows:

$$\mathbf{\hat{x}} = \mathcal{S}\left(\mathcal{T}_{\mathsf{iMF}}^{-1}\mathbf{\hat{Z}}
ight),$$

where the operator S(.) slices each entry in the input vector to the nearest symbol in the transmitted constellation

ODSS Subcarriers

Figure 4: Panel 1: Subcarrier waveforms, for n = 0, 1, ..., 6, on an example dyadic (q = 2) tiling. A total of $N_7 = 127$ subcarriers are tiled in the symbol duration. Panel 2: ODSS subcarrier spectra (for n = 0, 1, ..., 6).

Outline

1 VBMC Communications

- Delay-Scale Channel Model
- Core Idea: Variable Subcarrier Bandwidth
- Framework for Waveform Evaluation
- Numerical Results

2 ODSS Communications

- Mellin Transform & ODSS Transmission Scheme
- Numerical Results

BER Performance: ODSS, VBMC, OFDM & OTFS

Modulation scheme for wideband time-varying channels

- Arunkumar K.P. & C.R. Murthy, "Orthogonal Delay Scale Space Modulation: A New Technique for Wideband Time-Varying Channels", *IEEE TSP*, June 2022. (IEEE ComSoc's best reading list in the area of OTFS and Delay Doppler Signal Processing)
- **2** Variable bandwidth multicarrier communications
 - Arunkumar K.P. & C.R. Murthy, "Variable Bandwidth Multicarrier Communications: A New Waveform for the Delay-Scale Channel", SPAWC, Oulu, Finland, July 2022. (student best paper award)

Matlab codes available: https://ece.iisc.ac.in/~cmurthy/ ODSS_VBMC_Performance_Simulation.zip

- New chirp based waveforms (VBMC, ODSS) for ultra-wideband com.
- New waveforms performs well under 1-tap equalizer (due to low ICI, high SINR & Jain Index)
- In the over-spread scenario, the relative performance is even better

Thank You! Questions? email: cmurthy@IISc.ac.in