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Multiple Support Recovery Using Very Few
Measurements Per Sample

Lekshmi Ramesh, Chandra R. Murthy, and Himanshu Tyagi

Abstract—In the problem of multiple support recovery, we are
given access to linear measurements of multiple sparse samples
in Rd. These samples can be partitioned into ` groups, with
samples having the same support belonging to the same group.
For a given budget of m measurements per sample, the goal
is to recover the ` underlying supports, in the absence of the
knowledge of group labels. We study this problem with a focus
on the measurement-constrained regime where m is smaller than
the support size k of each sample. We design a two-step procedure
that estimates the union of the underlying supports first, and then
uses a spectral algorithm to estimate the individual supports.
Our proposed estimator can recover the supports with m <
k measurements per sample, from Õ(k4`4/m4) samples. Our
guarantees hold for a general, generative model assumption on
the samples and measurement matrices. We also provide results
from experiments conducted on synthetic data and on the MNIST
dataset.

Index Terms—Compressed sensing, support recovery, concen-
tration inequalities, spectral clustering.

I. INTRODUCTION

WE study the problem of multiple support recovery
using linear measurements, where there are n random

samples X1, . . . , Xn taking values in Rd, such that for each
i ∈ [n], supp(Xi) ∈ {S1, . . . ,S`} almost surely,1 with
Si ⊂ [d] and Si ∩ Sj = ∅ for all i 6= j. We assume that
the samples Xi are sparse and that |Si| = k � d, i ∈ [`]. We
are given low dimensional projections of these samples using
m × d matrices Φ1, . . . ,Φn. In our setting, we focus on the
regime where we have access to very few measurements per
sample, namely, when m < k. Given access to the projections
Yi = ΦiXi, i ∈ [n], and the projection matrices, we seek to
recover the underlying supports {S1, . . . ,S`}.

This is a generalization of the well-studied problem of
recovering a single unknown support from multiple linear
measurements [1]–[5], which has been applied to solve in-
verse problems in imaging, source localization, and anomaly
detection [6]–[9]. It is also related to the study of sparse
random effects in mixed linear models [10], [11]. Mixed
linear models are a generalization of linear models where
an additional additive correction component is included to
model a class-specific correction to the average behavior. This
residual correction term is commonly known as the random
effect term. It is often assumed to be generated from an
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1The support of a vector x ∈ Rd is the set {u ∈ [d] : xu 6= 0}.

unknown prior distribution with zero-mean, coming from a
parametric family whose parameters are estimated by using the
class-specific data. The problem of multiple support recovery
is also discussed in [12], [13] under the assumption of slowly
varying supports.

There are two sets of unknowns in the setting described
above – the labels, indicating which support was chosen for
each sample, and the ` supports S1, . . . ,S`. Note that given
the knowledge of the labels, one could group together samples
with the same support, and use standard algorithms to recover
the support. However, in the absence of labels, the problem of
recovering the supports is much harder. A naive scheme could
be to just estimate each support individually, in which case
m = O(k log(d−k)) measurements per sample [14], [15] are
sufficient even in the presence of noise. But can we do better if
we exploit the joint structure present across the samples, since
there will be several samples that have the same support? In
this work, we show that one can operate in the measurement-
constrained regime of m < k, when a sufficiently large number
of samples is available.

A. Prior work

For the special case with n = ` = 1, when there is a single
k-sparse sample of length d, it is known that m = Θ(k log(d−
k)) measurements are necessary and sufficient to recover the
support [14] with noisy measurements, when the inputs are
worst-case. For the case with a single common support across
multiple samples (i.e., ` = 1 and n > 1), several previous
works have studied the question of support recovery in the
m > k setting [1], [2], [4].

On the other hand, in the m < k regime, it was shown
recently in [5], [16] that n = Θ((k2/m2) log d) samples are
necessary and sufficient, assuming a subgaussian generative
model on the samples and measurement matrices and that
the measurement matrices are drawn independently across
samples. In fact, the lower bound of [5] applies to the worst-
case setting as well, showing that while k overall measure-
ments2 suffice when m exceeds k, at least (roughly) k2/m
measurements are required when m < k.

In [17], the problem of recovering the union of supports
from linear measurements is considered. The setting allows for
overlaps in the supports, but otherwise places no constraints.
The results when applied to the case of disjoint supports lead
to a requirement of m = O(k log d) measurements per sample,
and therefore are not applicable to our setting. Another line
of related works is on multi-task learning/multi-task sparse

2The overall measurements in our model are nm.
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estimation [18]–[20] that use hierarchical Bayesian models and
focus on recovering the samples, rather than the supports, and
so still require at least k measurements per sample. However,
none of these results shed light on how to recover multiple
supports when we are constrained to observe less than k
measurements per sample.

We also note that the setting we introduce can be used
to study the problem of performing inference tasks in a dis-
tributed setting. This includes problems such as user profiling
and heavy hitters detection in a distributed setting [21]–[23].
In particular, the problem consists of n users with each user
having a d-dimensional vector. This vector represents, for
example, the profile of the user with scores/preferences for
d attributes (e.g. websites visited). The idea is that even
though there will be a large number of users, there will
be a small set of k “significant” attributes that determine
different user groups, with users in the same group having
preferences for similar attributes. One can think of these profile
vectors as being approximately sparse, or as being exactly
sparse by storing only the largest score values. The goal of
each user is to communicate in an efficient way the profile
vector to the center, so that the center can estimate, exactly
or approximately, the different groups of attributes. In our
setting, each user would compute a linear sketch of its profile
(using the sketch matrix shared from the center) and then
communicate the m-dimensional sketch to the center.

The measurement constrained regime is relevant here since
the availability of a large number of users can help to reduce
the sketch length per user (and therefore communication from
user to center) to less than k (this is the m < k regime that we
study in our work). In our work, we characterize the scaling
of n that is required to guarantee recovery of the different
supports (the significant attributes) at the center. Studying
the disjoint support case is a first step in this direction, and
algorithms for the general overlapping case can be built on
ideas from the basic case.

There has also been some recent work in the literature on
mixture of sparse linear regressions that considers the related
problem of recovering multiple sparse vectors from linear
measurements [20], [24]–[28], and some recent developments
on a more general setting of mixture of low-rank models [29].
The mixture of sparse linear regressions problem shares some
similarities with the m = 1 case in our setting, but there are
some important differences. Unlike our setting, these works
consider the samples to be deterministic and do a worst-case
analysis. In particular, samples are drawn uniformly at random
from a fixed unknown set of ` vectors and then observed
through linear measurements. In our setting, on the other
hand, it is the set of ` supports that is fixed and unknown,
and the sample values can be arbitrary. Further, when ` = 1
in the mixture of sparse linear regressions setting, we have
multiple observations from the same unknown sparse vector,
thus reducing the problem to the standard compressed sensing
problem. On the other hand, with ` = m = 1 in our
setting, we obtain a single observation from different sparse
vectors sharing a common support. The latter setting is harder
and requires Ω(k2 log d) samples to recover the common
support [5].

B. Contributions and Techniques

Our approach builds on the following simple but crucial
observation: since each sample is k-sparse with support equal
to one of the Si (with the Si being disjoint), the sample
covariance matrix (1/n)

∑n
i=1XiX

>
i exhibits a block struc-

ture under an unknown permutation of rows and columns.
This motivates the use of spectral clustering to recover the
underlying supports. However, we only have access to low-
dimensional projections of the data.

To circumvent this difficulty, we compute Φ>i Yi and use
these as a proxy for the data, and form an estimate of the
diagonal entries of the covariance matrix of the samples. We
build further on this idea and propose an estimator that first
determines the union of the ` supports from Φ>i Yi using the
estimator in [5]. We then construct an affinity matrix using the
proxy samples Φ>i Yi and apply spectral clustering to estimate
individual supports from the union.

This clustering based approach to support recovery is new,
and very different from traditional approaches to sparse re-
covery in the multiple sample setting. It reduces the support
recovery problem to that of recovering the structure of a
certain block matrix, a question which has been studied
in the literature on community detection on graphs [30]–
[33], and for which many algorithms are known. However,
unlike the community detection problem where an instance
of the adjacency matrix is available as an observation, the
affinity matrix constructed in our case has a more complicated
structure and requires a separate, careful analysis.

We show that using our algorithm, it is possible to recover
all the supports with fewer than k measurements per sample.
Our algorithm is easy to implement and has computational
complexity that scales linearly with ambient dimension d and
number of samples n. Our main result is an upper bound on the
sample complexity of the multiple support recovery problem,
stated in Theorem 1. In similar spirit to [5], which studied
the case of a single unknown support in the measurement-
constrained regime of m < k, our work provides an algorithm
for the multiple support recovery problem in this regime. The
analysis of our algorithm involves studying spectral properties
of the (random) affinity matrix that has dependent and heavy-
tailed entries. We characterize these spectral quantities for
the expected affinity matrix, which we show has a block
structure, and then use results from matrix perturbation and
matrix concentration to obtain performance guarantees for our
algorithm.

Also, we provide experimental results on synthetic and real
datasets, and show that the proposed algorithm is able to
recover the unknown supports with very few measurements
per sample. While our guarantees are for the case of disjoint
supports, some simple heuristics can be used to handle the case
of overlapping supports in practice, as we show in Section V.

C. Organization

In the next section, we formally state the problem and the
assumptions we make in our generative model setting. This is
followed by a statement of our main result, which provides
an upper bound on the sample complexity of multiple support
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recovery. We describe the estimator in Section III, and analyze
its performance in Section IV. We provide experimental results
in Section V. The technical results required for the proofs in
Section IV are available in the appendices, while algebraic
details of the proofs are provided in the full version the paper
available at [34].

D. Notation

For a matrix A, we denote its (u, v)th entry by Auv . For
a collection of matrices {Ai}ni=1, we use Ai(u, v) to denote
the (u, v)th entry of the ith matrix. Also, for a vector Xj , Xji

denotes the ith component of Xj . For sets S and S ′, S∆S ′ =
(S\S ′) ∪ (S ′\S) denotes their symmetric difference. For a
vector a ∈ Rd, supp (a) denotes the subset {i ∈ [d] : ai 6= 0},
diag(a) denotes the d×d diagonal matrix with entries of a on
the diagonal, and [d] denotes the set {1, 2, . . . , d}. For a matrix
A, we use ‖A‖op

def
= sup‖x‖2=1 ‖Ax‖2 to denote the operator

norm of A. When A is symmetric, ‖A‖op equals the magnitude
of the largest eigenvalue of A. We use the shorthand Zn1 to de-
note independent and identically distributed random variables
Z1, . . . , Zn. For u > 0, we use Γ(u)

def
=
∫∞

0
xu−1e−xdx to

denote the gamma function evaluated at u.

II. PROBLEM FORMULATION AND MAIN RESULT

We consider a Bayesian setup for modeling samples
X1, . . . , Xn taking values in Rd with supp (Xi)

def
= {j ∈

[d] : Xij 6= 0} ∈ {S1, . . . ,S`}, where Si ⊂ [d] are unknown
sets such that |Si| = k. Specifically, we consider distributions
P(1), . . . ,P(`) with3

supp
(

P(i)
)

= {x ∈ Rd : supp(x) = Si}, i ∈ [`],

and n i.i.d. samples X1, . . . , Xn taking values in Rd and
generated from a common mixture distribution

PS1,...,S` =
1

`

∑̀
i=1

P(i), (1)

parameterized by the tuple (S1 . . . ,S`). In fact, we assume that
P(i) is a multivariate subgaussian distribution (see Appendix B
for the definition of a subgaussian random variable) with
zero mean and diagonal covariance matrix Kλi = diag (λi),
where the parameter λi is a d-dimensional vector for which
supp (λi) = Si, i ∈ [`]. More concretely, we make the
following assumption.

Assumption 1. For a sample Xj ∼ P(i), j ∈ [n], i ∈ [`], and
an absolute constant c, EP(i)

[
XjX

T
j

]
= diag (λi) with λi ∈

R
d
+, supp (λi) = Si, and Xj has independent, zero-mean

entries with its tth entry Xjt satisfying Xjt ∼ subG(cλit),
t ∈ [d]. Furthermore, for each i ∈ [`] and t ∈ Si, λit = λ0 >
0, and EP(i)

[
X4
jt

]
= ρ.

For samples X1, . . . , Xn generated as above, we are given
access to projections Yi = ΦiXi, i ∈ [n], where the matrices
Φi ∈ Rm×d are random and independent for different i ∈

3We consider distributions P with densities fP with respect to the Lebesgue
measure and define supp (P) = {x ∈ Rd : fP(x) > 0}.

Fig. 1: Multiple support recovery from linear measurements.
For every i ∈ [n], the support supp(Xi) ∈ {S1, . . . ,S`}. Us-
ing {Yi,Φi}ni=1, the center computes estimates {Ŝ1, . . . , Ŝ`}
of the true supports.

[n]. Figure 1 gives a pictorial representation of the problem
setting. Our analysis requires handling higher order moments
of the entries of the measurement matrices, which motivates
the following assumption.

Assumption 2. The m×d measurement matrices Φ1, . . . ,Φn
are independent, with entries that are independent and zero-
mean. Furthermore, Φi(u, v) ∼ subG(c′/m), and the moment
conditions E

[
Φi(u, v)2

]
= 1/m and E

[
Φi(u, v)2q

]
= cq/m

q

hold for q ∈ {2, 3, 4}, where cq and c′ are absolute constants.

The assumption above holds, for example, when Φi(u, v) ∼
N (0, 1/m) or when Φi(u, v) are Rademacher, i.e., take values
from {1/

√
m,−1/

√
m} with equal probability. Also, these

moment assumptions can be relaxed to hold up to constant fac-
tors from above and below, i.e., E

[
Φi(u, v)2q

]
= Θ(1/mq).

Our goal is to recover the supports {S1, . . . ,S`} using
{Yi,Φi}ni=1. The error criterion will be the average of the
per support errors, measured using the set difference between
the true and estimated supports. Specifically, denote by Σ′`,d
the set consisting of all ` tuples of subsets (S1, . . . ,S`) such
that Si ⊂ [d], i ∈ [`], and Si ∩ Sj = ∅, for all i 6= j. Let
Σk,`,d ⊂ Σ′`,d be such that |Si| = k, for all i ∈ [`]. Denote by

G`
def
= {σ : [`] → [`]} the set of all permutations on [`]. We

have the following definition.

Definition 1. An (n, ε, δ)-estimator for Σk,`,d is a mapping
e : (Y n1 ,Φ

n
1 ) 7→ (Ŝ1, . . . , Ŝ`) ∈ Σ′`,d for which

PS1,...,S`

(
∃σ ∈ G` s.t.

∑̀
i=1

∣∣∣Si∆Ŝσ(i)

∣∣∣ < k`2ε

)
≥ 1− δ,

(2)

for all (S1, . . . ,S`) ∈ Σk,`,d, where S1∆S2 denotes the
symmetric difference between sets S1 and S2.

For fixed `,m, k, d, ε, and δ, the least n such that we can
find an (n, ε, δ)-estimator for Σk,`,d is termed the sample
complexity of multiple support recovery, which we denote by
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n∗(`,m, k, d, ε, δ). In our main result stated below, we provide
an upper bound on n∗(`,m, k, d, ε, δ).

Theorem 1. Let m, k, d, ` ∈ N with log k ≥ 2. Further,
let (log k`)2 ≤ m < k, and 1/k` ≤ ε ≤ 1/`. Then,
under Assumptions 1 and 2, the sample complexity of multiple
support recovery satisfies

n∗(`,m, k, d, ε, δ) = O

(
max

{
1

ε

(
k`

m

)4

(log k)4 log k` log
1

δ
,

k2`2

m2
log

k`(d− k`)
δ

})
.

Remark 1. For values of ε lower than 1/`k, the result from
Theorem 1 continues to hold with ε set to 1/`k. This is
because ε = 1/`k corresponds to exact recovery of the
supports.

We present the algorithm that attains this performance in
the next section, and prove the theorem in Section IV-C.

Our estimator works in two steps by estimating the union
of supports first and then estimating each support, and the
sample complexity bound above is obtained by analyzing each
of the two steps. To the best of our knowledge, this is the
first estimator that can recover multiple supports under the
constraint of m < k linear measurements per sample. We
also note that for the problem of recovering a single support
exactly, it was shown in [5] that roughly Ω((k/m)2 log k(d−
k)) samples are necessary. Thus, our sample complexity upper
bound above matches this lower bound quadratically. However,
there is a gap between the lower bound and the upper bound,
which is an interesting problem for future research.

III. THE ESTIMATOR

Our first step will be to recover the union of the ` underlying
supports, and then refine this estimate to finally recover
the individual supports. To estimate the union, we use the
estimator described in [16]. Following this, we use a spectral
clustering based approach to recover the individual supports.
We provide more details in the next two subsections.

A. Recovering the union of supports

We first observe that the samples Xi have an effective
covariance matrix whose diagonal has support equal to the
union of the supports, which allows us to use the results from
[5] to recover the union. Specifically, we form “proxy samples”
X̂i = Φ>i Yi = Φ>i ΦiXi and use the diagonal of the sample
covariance matrix of X̂i as an estimate for the diagonal of the
covariance matrix for Xi. We will show that the k` largest
entries of the recovered diagonal correspond to the union of
the supports.

Formally, define Sun
def
= ∪`i=1Si to be the union of the `

unknown disjoint supports and note that |Sun| = k`. We use
the estimator described in [5] and form the statistic λ̃ ∈ Rd
as follows. First, define vectors a′1, . . . , a

′
n with entries

a′ji
def
= (Φ>jiYj)

2, i ∈ [d]. (3)

E [T ] =

µ0 µs µd µd

µs µ0 µd µd

µd µd µ0 µs

µd µd µs µ0





}
S1

}
S2

Fig. 2: Block structure of the expected clustering matrix
when ` = 2 and the supports are disjoint, under appropriate
permutation of rows and columns.

Each a′j , j ∈ [n], can be thought of as a crude estimate for
the variances along the d coordinates obtained using the jth
sample. We then define the average of these vectors as

λ̃
def
=

1

n

n∑
j=1

a′j . (4)

This statistic captures the variance along each coordinate of
Xi. Due to the averaging across samples, we expect a larger
value of the statistic along coordinates that are present in at
least one of the supports. On the other hand, coordinates that
are not present any support should result in a smaller value
of the statistic. As shown in [5], such a separation between
the estimate values indeed occurs when n is sufficiently large.
The algorithm declares the indices of the k` largest entries of
λ̃ as the estimate for Sun. Letting λ̃(1) ≥ · · · ≥ λ̃(k`) represent
the sorted entries of λ̃, the estimate Ŝun for the union is

Ŝun = {(1), . . . , (k`)}, (5)

where we assume the size of the union to be known. In
practice, λ̃ can be used to estimate the size of the union as well
by sorting the entries of λ̃ and using the index where there is
a sharp decrease in the values as the estimate for k`, similar
to the approach of using scree plots to determine model order
in problems such as PCA [35].

B. Recovering individual supports

We now describe the main step of our algorithm where we
partition the coordinates in Ŝun recovered in the first step into
disjoint support estimates Ŝ1, . . . , Ŝ`. We will use a′1, . . . , a

′
n

described in (3) for this purpose. Since we now have an
estimate for the union, we will restrict a′i to coordinates in Ŝun,
and denote them as ai ∈ Rk`+ . Also, without loss of generality,
we set Ŝun = [k`].4

Our approach is the following: we construct a k`×k` affinity
matrix T and perform spectral clustering using this matrix,
which will partition the coordinates in [k`] into ` groups. The
main step here is to construct an affinity matrix T that can
provide reliable clustering, and we will use the per-sample
variance estimates a1, . . . , an for this purpose. The idea is that
for any coordinate pair (u, v) ∈ [k`] × [k`], if both u and v

4This is to keep notation simple. For a general Ŝun, we can have a function
g : [k`] → Ŝun that provides the mapping of each coordinate of ai to its
corresponding value in Ŝun as indicated in step 7 of Algorithm 1.
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belong to the same support, then we expect the product aiuaiv
to have a “large” value for most of the sample indices i ∈ [n].
On the other hand, if u and v belong to different supports, then
aiuaiv will be close to zero for most i ∈ [n]. Although each
ai individually is not a good estimate for the support of Xi,
the averaging over n makes the estimate reliable. Formally,
we construct the k`× k` matrix T with entries

Tuv
def
=

1

n

n∑
j=1

ajuajv, (u, v) ∈ [k`]× [k`]. (6)

The key observation here is that the expected value of the
random matrix T has a block structure when the rows and
columns are appropriately permuted, and this block structure
corresponds to memberships of each of the indices in [k`] to
one of the underlying supports. This is illustrated in Figure 2
for ` = 2, and we will examine this structure in detail in the
next section. A well-known method to find these memberships
is to use spectral clustering [31], [36], which uses properties
of the eigenvectors of block-structured matrices to determine
the partition. For instance, when ` = 2, the sign of the second
leading eigenvector of E [T ] provides a way to partition the
coordinates in [k`] into two groups. When ` > 2, spectral
clustering makes use of multiple eigenvectors and a nearest
neighbor step to identify the partition. A full description of
the solution in the general case is provided in Algorithm 1.

In practice, we only have access to T , and not E [T ] to
which the discussion above applies. In what follows, we
show that the eigenvectors of T itself suffice, provided we
have sufficiently many samples. At a high level, our analysis
follows that of spectral clustering in the stochastic block model
(SBM) setting and the goal is to show that the eigenvectors
of E [T ] and its “perturbed” version T are close to each
other. This can be shown using the Davis-Kahan theorem from
matrix perturbation theory, which states that the angle between
any two corresponding eigenvectors of T and E [T ] is small
provided the error matrix T − E [T ] has small spectral norm.
The key challenge, therefore, is to control ‖T − E [T ] ‖op.

Unlike typical settings, the entries of T are not independent,
in addition to being heavy tailed. Standard methods based on
the ε-net argument are, therefore, difficult to apply in this
setting. One strategy could be to show exponential concen-
tration around the mean for each entry of T . Once each entry
of T is bounded with high probability, one can bound the
Frobenius norm and therefore the spectral norm of the error
matrix. However, the moment generating function (MGF) of
each summand in (6) is unbounded, so deriving a tail bound
for the sum requires a more careful tail splitting method (see,
for example, [37, Exercise 2.1.7]), and leads to measurement
matrix dependent quantities that are difficult to handle. Due
to the same reason, techniques from matrix concentration that
involve bounding the MGF of the summands [38, Theorem
6.1, Theorem 6.2] cannot be used in our setting.

To circumvent this difficulty, we turn to a beautiful result
by Rudelson [39], that characterizes the expected value of the
quantity ‖T−E [T ] ‖op, when T is a sum of independent rank-
one matrices and only requires certain moment assumptions
on the summands. This is exactly our setting since (6) can

Algorithm 1: Multiple support recovery
Input: Measurements {Yi}ni=1, Measurement matrices

{Φi}ni=1, k, `
Output: Support estimates Ŝ1, . . . , Ŝ`

1 Form variance estimates a′1, . . . , a
′
n with entries

a′ji = (Φ>jiYj)
2, i ∈ [d].

2 Compute

λ̃ =
1

n

n∑
i=1

a′i.

Sort entries of λ̃ to get λ̃(1) ≥ · · · ≥ λ̃(d) and output
estimate for union

Ŝun = {(1), . . . , (k`)}.

3 Restrict a′1, . . . , a
′
n to the coordinates in Ŝun, to get

a1, . . . , an. Also, let g : [k`]→ Ŝun denote the
mapping from the coordinates of ai to the true
coordinate in Ŝun.

4 Construct affinity matrix T ∈ Rk`×k` as

T =
1

n

n∑
i=1

aia
>
i .

5 Compute the ` leading eigenvectors v̂1, . . . , v̂` of T
and let these be the columns of V̂ ∈ Rk`×l.

6 (The `-means step) Find C = arg minU∈U` ‖U − V̂ ‖2F ,
where U` is the set of all k`× ` matrices with at most
` distinct rows.

7 Denote the indices of identical rows of C as sets
Ŝ ′1, . . . , Ŝ ′`. Declare

Ŝi = {g(j) ∈ Ŝun : j ∈ Ŝ ′i}.

equivalently be represented as T = (1/n)
∑n
i=1 aia

>
i . An

application of Markov inequality followed by the Davis-Kahan
theorem then shows that the eigenvectors of T and E [T ] are
close to each other. We provide more details about the analysis
in the next section.

IV. ANALYSIS OF THE ESTIMATOR

A. Recovering the union: Analysis

Our analysis of the probability of exactly recovering Sun
using the estimator in (5) follows the approach in [5]. The key
difference is that the samples are now drawn from a mixture
of subgaussian distributions. In the next result, we show that
if X is drawn from the mixture described in (1), then it is
subgaussian with covariance matrix Kλun where λun = λ1 ∨
· · · ∨ λ`, where ∨ denotes entrywise maximum. This helps
us to determine the effective parameter that characterizes the
input distribution, after which we can use the result from [5].
We prove this result for the two component mixture; it can be
extended easily to the general case.
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Lemma 2. Let X and Y be zero-mean subgaussian random
variables with parameters a2 and b2, respectively. Further,
let PX and PY denote the distributions of X and Y . Then,
the random variable Z with distribution given by the mixture
qPX+(1−q)PY with q ∈ [0, 1] is subgaussian with parameter
max{a2, b2}.

Proof. Upon bounding the MGF of Z, we see that

E
[
eθZ
]

= qE
[
eθX

]
+ (1− q)E

[
eθY
]

≤ qe θ
2a2

2 + (1− q)e θ
2b2

2

≤ e θ
2c2

2 ,

where c = max{a, b}.

Thus, the samples X1, X2, . . . , Xn have entries that are
independent and subgaussian with covariance matrix Kλun ,
where λun = λ1 ∨ · · · ∨ λ`. Therefore, results from [5]
imply that we can recover Sun from the variance estimate
(4) by retaining the k` largest entries. In particular, a direct
application of [5, Theorem 3] with support size set to k`, gives
us the following result.

Theorem 3. Let Ŝun described in (5) be the estimate for the
union Sun. Then, for every δ > 0,

Pr
(
Ŝun 6= Sun

)
≤ δ,

provided m ≥ (log k`)2 > 1, and

n ≥ c
(
k2`2

m2
log

k`(d− k`)
δ

)
,

for an absolute constant c.

As we discussed in the introduction, if we had labels
for each sample indicating which support it belongs to, we
could directly use the estimator from [5] after grouping the
samples with the same support together. This would require
O((k2`/m2) log k(d− k)) samples. On the other hand, when
the labels are unknown, the number of samples required even
to estimate the union of the supports is higher, as seen from
the theorem above.

B. Recovering individual supports: Analysis

Our analysis is based on the fact that the expected affinity
matrix has a block structure (under an appropriate permutation
of its rows and columns), which we prove in the next lemma.

Lemma 4 (Block structure of E [T ]). Under Assumptions 1
and 2, for the matrix T ∈ Rk`×k` in (6), E [T ] has entries
given by

E [Tuv] =


µ0, if u = v,

µs, if u 6= v, (u, v) ∈ Si × Si for any i ∈ [`],

µd, otherwise,

where the parameters µ0, µs, and µd depend on k, m, and `
and can be explicitly calculated.

The proof of Lemma 4 appears in the supplementary mate-
rial and involves computing the expected values of expressions

containing higher order terms in Φi and Xi. Before we
proceed, we note the following extension of the “median trick”
(see, for example, [40]) which shows that the dependence of
sample complexity on δ is at most a factor of O(log 1/δ),
provided we can find an (n, ε, 1/4)-estimator.

Lemma 5 (Probability of error boosting). For δ ∈ (0, 1) and
` ∈ N, if we can find an (n, ε, 1/4)-estimator for Σk,`,d, then
we can find an

(
nd8 log 1

δ e, 3ε, δ
)
-estimator for Σk,`,d.

We provide the proof in Appendix A-A.
Thus, from here on, we fix our error requirement to δ =

1/4 and seek (n, ε, 1/4)-estimators with the least possible n.
We characterize the performance of the clustering step in the
following theorem. The analysis of this step is conditioned on
exact recovery of the union Sun in the first step.

Theorem 6. Let ν1 ≥ · · · ≥ νk` denote the ordered eigenval-
ues of E [T ] ∈ Rk`×k`, and define ∆` = ν`−ν`+1 when ` ≥ 2.
For every ε ∈ [1/`k, 1/`), there exists an (n, ε, 1/4)-estimator
for Σk,`,k` provided

n ≥ cmax{1, ‖E [T ] ‖op}
ε∆2

`

· E
[
max
i∈[n]
‖ai‖22

]
· log k`,

for an absolute constant c.

The result above applies to any setting where we have i.i.d.
samples a1, . . . , an whose covariance has a block structure
under permutation, and the goal is to group the coordinates
of ai based on the unknown block structure. We provide the
proof of Theorem 6 at the end of this section.

The next two results provide us with bounds on the spec-
tral quantities ‖E [T ] ‖op and ∆`, and on E

[
maxi∈[n] ‖ai‖22

]
appearing in Theorem 6.

Lemma 7. Under Assumptions 1 and 2, we have

‖E [T ] ‖op ≤ ρ
k2`

m2
+ λ2

0

k3`

m2
, and ∆` ≥

λ2
0k

`
.

Lemma 8. For every q ∈ N and i ∈ [n], we have E [‖ai‖q2] ≤

cq0(Γ(q))2λq0

(
k
√
k`
m

)q
. Further, when log k ≥ 2, it follows that

E
[
maxi∈[n]‖ai‖22

]
≤ n

2
log kE

[
‖a1‖log k

2

] 2
log k

.

The proof of Lemma 7 is provided in the supplementary
material and the proof of Lemma 8 appears in Appendix A-B.
We close this section with the proof of Theorem 6.

Proof of Theorem 6. Recall that the proof is conditioned on
exact recovery of the union Sun. Further, for notational sim-
plicity, we set Sun = [k`]. We divide the proof into two steps.
Step 1. Relating probability of error to perturbation.

Denote the event that Algorithm 1 labels more than εk`
coordinates incorrectly by E . The following result relates the
error probability to a perturbation bound.

Lemma 9 (Error to perturbation bound). Let V and V̂ ,
respectively, be k` × ` matrices with ith column given by vi
and v̂i, 1 ≤ i ≤ `, where v1, . . . , v` and v̂1, . . . , v̂` denote
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the normalized eigenvectors of E [T ] and T , respectively,
corresponding to their ` largest eigenvalues. Then,

Pr (E) ≤ Pr

(
‖V̂ − V O‖F ≥

1

2

√
ε`

2

)
, (7)

where O ∈ R`×` is a random orthonormal matrix and the
probability on the right hand side is over the joint distribution
of V̂ and O.

The proof of this lemma builds on the analysis in [36] and
requires us to use some properties of V , which we note in the
lemma below.

Lemma 10 (Properties of V ). For 1 ≤ i ≤ k`, denote by vi

the ith row of V . Then, the following properties hold:
1) (Identity of rows of V capture the partition) vi = vj

if and only if i and j belong to the same support, i.e.,
i, j ∈ St for some t ∈ [`].

2) (Minimum distance property) For any two distinct rows
vi and vj , ‖vi − vj‖22 ≥ 2/k.

We provide the proof of Lemma 10 in Appendix A-C.

Proof of Lemma 9. We begin by observing that it suffices to
show that

Pr (E) ≤ Pr

(
‖C − V O‖F ≥

√
ε`

2

)
, (8)

where C is the matrix found in Step 6 of Algorithm 1 and
is random since V̂ is random. Indeed, by Lemma 10, V has
` distinct rows, whereby V O, too, has ` distinct rows since
O is orthonormal. That is, V O ∈ U`. Therefore, by triangle
inequality, we get

‖C − V O‖F ≤ ‖C − V̂ ‖F + ‖V O − V̂ ‖F (9)

= min
U∈U`

‖U − V̂ ‖F + ‖V O − V̂ ‖F (10)

≤ 2‖V O − V̂ ‖F , (11)

where the final bound holds since V O belongs to U`. Thus, (8)
will imply (7). Note that even if the matrix O were to depend
on V and V̂ and therefore be random, the result above holds
with probability one, and the only property we require from
O is orthonormality.

It remains to establish (8). To that end, we define

I def
= {i ∈ [k`] : ‖viO − ci‖2 < 1/

√
2k}, (12)

where vi and ci are the ith row of V and C, respectively. Our
claim is that Algorithm 1 does not make an error in labeling
the coordinates in I, unless |Ic| > εk`. To see this, note that
for any two distinct indices i, j ∈ I we have

‖viO − vjO‖2 ≤ ‖viO − cj‖2 + ‖vjO − cj‖2 (13)

≤ ‖viO − ci‖2 + ‖ci − cj‖2 + ‖vjO − cj‖2
(14)

<

√
2

k
+ ‖ci − cj‖2. (15)

Thus, if ci = cj , we must have ‖viO − vjO‖2 <
√

2/k,
which by the second property in Lemma 10 implies that viO =

vjO. Therefore, when the labels given by the algorithm for
coordinates i and j coincide (this happens only when ci = cj),
then viO = vjO. But then, by the first property in Lemma 10,
the coordinates i and j must have been in the same part of S.

We have shown that the indices in I that are assigned the
same label by the algorithm must come from the same part
in S. We still need to verify that coordinates from the same
part in S do not get assigned to different parts. We show this
cannot happen unless |Ic| > εk`, and this is where we use the
assumption that ε < 1/`. Indeed, if |Ic| ≤ εk` < k, then at
least one element from each part S1, . . . ,S` must be in I, since
|Si| = k for every i. By our previous observation, elements
in each of these parts in I must be assigned different labels
by the algorithm, which means that it must assign at least `
different labels to the elements in I. Thus, if the algorithm
assigns two elements in the same part Si different labels, it
will assign more that ` different labels, which is not allowed.

Therefore, all the indices in I are correctly labeled when
|Ic| ≤ εk`. Then, clearly, in this case the error event E does
not hold. It follows from the definition of I that

Pr (E) ≤ Pr (|Ic| > εk`) (16)

≤ Pr

(∣∣∣∣ {i : ‖ci − viO‖2 ≥
1√
2k

} ∣∣∣∣ > εk`

)
(17)

≤ Pr

(
‖C − V O‖2F >

ε`

2

)
, (18)

where in the final step we used the fact that the second step
implies ‖C − V O‖2F =

∑k`
i=1 ‖ci − viO‖22 ≥ εk`/2k. This

completes the proof of (8).

Step 2: Controlling the perturbation.
In view of Lemma 9, we only need to control the perturba-

tion ‖V̂ −V O‖F . We do this using the following extension of
the Davis-Kahan theorem, which also fixes the choice of O.

Theorem 11 (Perturbation of eigenspace). [41] Let A and Â
be d× d symmetric matrices with eigenvalues ν1 ≥ · · · ≥ νd
and ν̂1 ≥ · · · ≥ ν̂d, respectively. Let V and V̂ be d × `
matrices consisting of the ` leading normalized eigenvectors
of A and Â, respectively. Then, there exists an orthonormal
matrix O ∈ R`×` such that

‖V̂ − V O‖F ≤ 2
√

2
min{

√
`‖Â−A‖op, ‖Â−A‖F }

ν` − ν`+1
.

(19)

By applying this result with T and E [T ] in the role of Â
and A, respectively, we get that there exists an orthonormal
matrix O such that

‖V̂ − V O‖F ≤
2
√

2

∆`
min{

√
`‖T − E [T ] ‖op, ‖T − E [T ] ‖F },

(20)

where ∆`
def
= ν`−ν`+1. Combining this bound with our earlier

bound from Lemma 9, we get

Pr (E) ≤ Pr

(
‖T − E [T ] ‖op ≥

∆`
√
ε

8

)
(21)
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≤ 8

∆`
√
ε
· E [‖T − E [T ] ‖op] , (22)

where the last step uses Markov’s inequality.
To bound the expected value on the right hand side, we

use the following extension of a result of Rudelson [39]. As
pointed out earlier, the original bound in [39] was restricted
to isotropic Zis, and we show that it extends to arbitrary i.i.d.
Zis with an extra factor. The proof is provided in Appendix
A-D.

Theorem 12 (Extension of a result in [39]). Let Z ∈ RN
be a random vector such that A = E

[
ZZ>

]
. Let Z1, . . . , Zn

be independent copies of Z. Then, there exists an absolute
constant c such that

E

[∥∥∥∥ 1

n

n∑
i=1

ZiZ
>
i −A

∥∥∥∥
op

]
≤ 1

2

(
α2 + α

√
α2 + 4‖A‖op

)
,

(23)

where

α = c

√
E
[
maxi∈[n] ‖Zi‖22

]
logN

n
.

Using this bound in (22) with N = k`, we obtain

Pr (E) ≤ 4

∆`
√
ε

(
α2 + α

√
α2 + 4‖E [T ] ‖op

)
. (24)

The proof is completed upon noting that α can be made
smaller than 1/2 using n ≥ cE

[
maxi∈[n] ‖ai‖22

]
log k`, in

which case α
√
α2 + 4‖E [T ] ‖op ≤ α

√
8 max{1, ‖E [T ] ‖op}.

The error probability above can thus be made less than 1/4 if
n ≥ c(log k`) max{1, ‖E [T ] ‖op}E

[
maxi∈[n] ‖ai‖22

]
/(∆2

`ε).

In the next section, we combine the results from Theorems 3
and 6 to show the sample complexity bound of Theorem 1.

C. Proof of Theorem 1

The proof of Theorem 1 now follows by combining guar-
antees for the union recovery step from Theorem 3 and the
clustering step from Theorem 6.

We begin by applying Theorem 3 to get that Ŝun coincides
with Sun = ∪`i=1Si with probability close to 1. Throughout, we
condition on this event occurring. However, to avoid technical
difficulties, we assume that a different set of independent
samples is used to recover Sun than those used to recover
S1, . . . ,S` – thus, the overall number of samples needed
will be the sum of samples needed for union recovery in
Theorem 3 and the sample complexity determined in our
analysis below. In particular, the clustering step dominates the
sample complexity of our algorithm.

Next, upon substituting the bounds from Lemma 7 and
Lemma 8 into Theorem 6, we see that for ε-approximate
recovery of the supports it suffices to have

n ≥ c

ε
λ2

0

k3`

m2

`2

λ4
0k

2
· n

2
log k

×
(
λ0
k
√
k
√
`

m
(log k)2

)2

· log(k`) (25)
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Fig. 3: Probability of approximate support recovery with d =
100, ε = 0.2, ` = 2, and varying k/m ratios.
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Fig. 4: Probability of approximate support recovery with d =
100, ε = 0.2, m = 4, k = 10, and varying `.

=
c

ε

k4`4

m4
n

2
log k (log k)4 log(k`). (26)

For n ≥ c((1/ε)(k`/m)4 · (log k)4 log(k`)), n
1

log k = O(1),
which completes the proof in view of the sufficient condition
for n above.

V. SIMULATIONS

A. Synthetic data

In this subsection, we evaluate the performance of Al-
gorithm 1 on synthetic data for various parameter values.
Through these simulations, our goal is to see how the per-
formance of the algorithm varies as a function of the ratio
k/m and ` for a fixed d.

We first choose d = 100, ` = 2 and consider three
different values of k/m. We generate two disjoint subsets
S1 and S2 of [d], each of size k. Then, for a given n, we
generate n/2 samples with each support, with values on the
support drawn from the standard normal distribution in Rk.
Measurement matrices {Φi}ni=1 are generated independently
with i.i.d. N (0, 1/m) entries and multiplied with the samples
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to obtain measurements {Yi}ni=1. These measurements are
given as input to the support recovery algorithm, which
produces estimates for the union, as well as the individual
supports, which we denote by Ŝ1 and Ŝ2. For each value of
(k,m, n), we run 100 trials and declare it a success if the
error

∑2
i=1 |Ŝi∆Sσ(i)| < 2εk. The plot in Figure 3 shows the

success rate over the 100 trials as a function of the number
of samples n, with ε set as 0.2. Note that the number of
measurements taken per sample, m, is much smaller than the
support size, k, of each sample. We can see from Figure 3
that for a fixed probability of success, the number of samples
required increases with k/m, which agrees with the result
in Theorem 1. In Figure 4, we show the variation in the
probability of approximate recovery as a function of n for the
number of supports ` = {2, 3, 4, 5}, with k and m (and hence
their ratio) held fixed. We can see that the number of samples
required to achieve a given probability of recovery increases
with `. Our current experiments however do not reveal whether
the dependence on these parameters is tight.

B. MNIST dataset
As an application involving natural data, we consider the

problem of reconstructing handwritten images from very few
linear measurements. We apply the multiple support recovery
algorithm to the MNIST dataset [42], which consists of 60, 000
images of handwritten digits, each of size 28 × 28. Each
(grayscale) image is a sample in our setting, and the support
of the sample essentially identifies the digit. This dataset
fits well into our hypothesis that there is a small set of
unknown supports underlying the data – handwritten images
corresponding to the same digit can be thought of as having
roughly the same pattern (support) in the pixel domain. Thus,
the vectorized version of images of the same digit will have
approximately the same support. We note that the task here
is to recover the images of the digits from low dimensional
projections, and not to learn a classifier using the dataset.

In our experiments, the vectorized version of each image
(a 784 × 1 vector) is projected onto m = 100, 200 or 500
dimensions using Gaussian measurement matrices described
in Assumption 2. Given these low dimensional projections,
the goal is to identify the underlying digits. We fix ` = 2 and
consider the example of digits 1 and 5 as shown in Figure 5.
The support size of each digit is roughly in the range 150 −
200. It can be seen that Algorithm 1 can identify the distinct
digits even when m < k. Also, the labels of the ground truth
digits (supports) can be different from the recovered ones, as
seen in Figure 5(a), where digits 1 and 5 are flipped. This is
allowed, since our goal is to recover all the supports up to
a permutation of support labels. For comparison, we used the
Group LASSO algorithm on the projected samples, which tries
to recover the individual samples (images) itself. However, it
requires a much larger number of measurements per sample
(for example, about m = 500 in this case). In fact, previously
known algorithms for sparse recovery do not perform well in
the low measurement regime of m < k, and we have used
Group LASSO as an example to illustrate this fact.

We note that since these are handwritten digits, the support
of samples coming from the same digit can also vary to

(a) m = 100, n = 2000 (b) m = 100, n = 2000

(c) m = 200, n = 2000 (d) m = 200, n = 2000

(e) m = 500, n = 2000 (f) m = 500, n = 2000

Fig. 5: Recovery performance of Algorithm 1 ((a),(c),(e)), and
Group LASSO ((b),(d),(f)).

some extent. However, the averaging across samples in our
estimator takes care of this problem. Further, the supports from
different digits need not be disjoint. To handle overlaps, we
use the observation that λ̃ can provide an estimate for the
intersection of supports as well. The plot of sorted entries of
λ̃ shows a sharp drop in values at two locations, one around
the intersection and another around the union. We include this
estimate of intersection of supports into our final estimate. This
method performs well in practice, as can be seen in the results
of Figure 5, where digits 1 and 5 have significant overlap.

C. Computational complexity

The first step in our algorithm for estimating the union
involves computing the average variance along each of the d
coordinates and requires O(mnd) operations. The clustering
step involves computing the T matrix and its ` leading eigen-
vectors which requires O(k3`3 + k2`2n) operations, followed
by the `-means step which requires O(k`3) operations per
iteration. Other algorithms for recovering multiple supports
do not perform well when m < k, and have computational
complexity that scales quadratically or worse with d. For
instance, the sparse Bayesian learning based algorithm from
[18] has a complexity of O(d2) per iteration, and LASSO-
based procedures have a complexity of O(d2) or O(d3) per
iteration, depending on the specific algorithm used.

VI. DISCUSSION

Throughout in this work, we assumed that the distinct
supports were pairwise disjoint sets. In the case of overlapping
supports, the structure of the expected affinity matrix, and
consequently its spectrum, changes. For the special case of
` = 2, overlapping supports can be handled by a simple
modification of the sign-based estimate. Instead of partitioning
the coordinates in the union estimate based on the sign
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of the eigenvector, we now use a threshold τ > 0 and
declare coordinates with values in [−τ, τ ] as belonging to both
supports (values above τ or below −τ are assigned to different
supports). The optimal τ can be explicitly characterized in
terms of the parameters of the problem. Given our current
algorithm, a simple way to handle this case for general `
would be to use fuzzy `-means, which returns scores for each
coordinate indicating how likely it is to belong to a certain
support. However, choosing a threshold to decide the supports
using the scores is difficult in general. Some other approaches
have been explored in the graph clustering literature, but these
do not apply directly to our setting. Other extensions of this
work include studying the performance of the algorithm under
different support sizes, and prior distribution with non-uniform
mixing weights. Also, our work shows a sufficient condition on
the number of samples required for multiple support recovery;
obtaining the necessary condition is a challenging task in gen-
eral and requires characterizing the distance between mixture
distributions. Using a component wise distance bound leads to
the same lower bound as in [5] (with an additional 1/` factor),
and obtaining a better lower bound seems difficult.

APPENDIX A
REMAINING PROOFS FROM SECTION IV-B

A. Proof of Lemma 5 (Probability of error boosting)

Given an (n, ε, 1/4)-estimator for Σk,`,d, we apply it to
L independent blocks of data. Specifically, denoting this
estimator by e, consider independent copies (Y n(t),Φn(t)),
1 ≤ t ≤ L, of (Y n,Φn). For t ∈ [L], let

(Ŝ1,t, . . . , Ŝ`,t) := e(Y n(t),Φn(t))

denote the output for the estimator applied to the tth block.
We now describe a procedure to output a final estimate for

the supports using the estimates (Ŝ1,t, . . . , Ŝ`,t) from the L
blocks of samples. For each t ∈ [L], we check if there is a set
I ⊆ [L]\{t} of cardinality N ≥ L/2 satisfying

min
σt∈G`

1

k`

∑̀
i=1

|Ŝi,t∆Ŝσt(i),t′ | ≤ 2ε, ∀ t′ ∈ I. (27)

That is, we look for a t for which (Ŝ1,t, . . . , Ŝ`,t) are close to
L/2 other estimates. This indicates “robustness” of the esti-
mate from the tth block, making it an appropriate proxy for the
median. Our final estimate is (S̄1, . . . , S̄`) = (Ŝ1,t, . . . , Ŝ`,t),
where t is an index which satisfies the property above.

We show that for L ≥ d8 ln 1
δ e the estimator above consti-

tutes an (nL, 3ε, δ)-estimator for Σk,`,d. Indeed, denoting

Zt = 1

(
∃σ ∈ G` s.t.

1

k`

∑̀
i=1

|Si∆Ŝσ(i),t| ≤ ε

)
,

by our assumption for the estimator e we have

EP(S1,...,S`)
[Zt] ≥

3

4
.

Furthermore, Zt are independent for different t ∈ [L]. Thus,
by Hoeffding’s inequality,

P(S1,...,S`)

(
L∑
t=1

Zt ≤
L

2

)
≤ e−L8 , ∀ (S1, . . . ,S`) ∈ Σk,`,d.

In particular, for L ≥ d8 ln 1
δ e, with probability exceeding

1− δ there exist5 M ≥ L/2 + 1 indices t1, . . . , tM ∈ [L] and
permutations σ1, . . . , σM ∈ G` such that

1

k`

∑̀
i=1

|Si∆Ŝσj(i),tj | ≤ ε, ∀ j ∈ [M ]. (28)

Note that since |A∆B| is a metric for subsets of [d], the
estimate (Ŝ1,t, . . . , Ŝ`,t) for t = t1 satisfies (27) when (28)
holds; in fact, any index among {t1, ..., tM} can serve this
purpose. However, the estimate described earlier need not
select any of these indices. Yet, we now show that any other
index chosen by the procedure will work as well, provided (28)
holds.

To that end, denote by I ′ the set {t1, . . . , tM} of indices
satisfying (28), and recall the set I found by our estimation
procedure earlier. Then, when |I ′| ≥ L/2 + 1, which holds
with probability exceeding 1− δ,

|I ∩ I ′| ≥ |I|+ |I ′| − L ≥ 1,

whereby there exists an index t ∈ [L] and permutations σ, σ ∈
G` such that

1

k`

∑̀
i=1

|Si∆Ŝσ(i),t| ≤ ε and
1

k`

∑̀
i=1

|Si∆Ŝσ(i),t| ≤ 2ε.

It follows that the permutation σ′ = σ ◦ σ−1 satisfies

1

k`

∑̀
i=1

|Si∆Sσ′(i)| ≤ 3ε,

which completes the proof.

B. Proof of Lemma 8
As noted in the proof of Theorem 1, the clustering step in

our algorithm is analyzed under the assumption that the union
of supports is exactly recovered in the first step, whereby we
can set Ŝun = Sun.

We will first show the bound on E
[
maxi∈[n] ‖ai‖22

]
, fol-

lowed by the moment bound for E [‖ai‖q2]. We start by noting
that for any q ≥ 2,

E
[
max
i∈[n]
‖ai‖22

]
= E

[(
max
i∈[n]
‖ai‖q2

) 2
q

]
(29)

≤ E

[( n∑
i=1

‖ai‖q2
) 2
q

]
(30)

≤
(
E

[
n∑
i=1

‖ai‖q2

]) 2
q

(31)

= n
2
q

(
E [‖a1‖q2]

) 2
q

, (32)

5Without loss of generality, we assume L to be even.
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where we used Jensen’s inequality in the third step. For
log k ≥ 2, upon setting q = log k in the inequality above,
we get

E
[
max
i∈[n]
‖ai‖22

]
≤ n

2
log k

(
E
[
‖a1‖log k

2

]) 2
log k

. (33)

We now proceed to bound E [‖ai‖q2]. In the rest of the proof,
we will denote ai ∈ Rd by a, and with some abuse of notation,
denote by Φi the ith column of Φ. By using the definition of
a, we have

‖a‖2q2 =

( ∑
i∈Sun

a2
i

)q
=

( ∑
i∈Sun

(Φ>i ΦSXS)4

)q
(34)

=

( ∑
i∈Sun

(α>i XS)4

)q
(35)

=

( ∑
i∈Sun

(X>S AiXS)2

)q
, (36)

where αi = Φ>SΦi as defined before and Ai
def
= αiα

>
i . To

compute the expectation of the term in the last step, we first
condition on Φ and note that

E
[( ∑

i∈Sun

(X>S AiXS)2

)q∣∣∣∣Φ]
= (k`)qE

[(
1

k`

∑
i∈Sun

(X>S AiXS)2

)q∣∣∣∣Φ]
≤ (k`)q−1

∑
i∈Sun

E
[
(X>S AiXS)2q|Φ

]
, (37)

where we used |Sun| = k`, and the convexity of the function
xq for x ≥ 0, q ∈ N. The quantity on the right essentially
involves the (2q)th moment of a subexponential random vari-
able (see Appendix B for definition). To see that the quadratic
form X>S AiXS is subexponential, we use the Hanson-Wright
inequality (cf. [43]) to get

P(|X>S AiXS − µ| ≥ t|Φ)

≤ 2 exp

(
−min

{
t2

λ2
0‖Ai‖2F

,
t

λ0‖Ai‖op

})
, (38)

where µ = E
[
X>S AiXS |Φ

]
= λ0‖αi‖22. Lemma 13 in

Appendix B can now be used to bound the moment in (37).
Specifically, we get

E[(X>S AiXS)2q|Φ]

≤ 2q · (16)q
(

Γ(q)λ2q
0 ‖Ai‖

2q
F + Γ(2q)λ2q

0 ‖Ai‖2qop
)

+ 22qµ2q

(39)

≤ 3q · (16)qΓ(2q)λ2q
0 ‖αi‖

4q
2 , (40)

where we used ‖Ai‖F = ‖Ai‖op = ‖αi‖22. Next, taking
expectation over Φ, we obtain

E
[
(X>S AiXS)2q

]
≤ c′qΓ(2q)λ2q

0 E
[
‖αi‖4q2

]
, (41)

where c′q = 3q · (16)q . Thus, combining the result above with

(37), we get

E
[( ∑

i∈Sun

(X>S AiXS)2

)q]
≤ c′qΓ(2q)λ2q

0 (k`)q
∑
i∈Sun

E
[
‖αi‖4q2

]
(42)

= c′qΓ(2q)λ2q
0 (k`)q

(∑
i∈S

E
[
‖αi‖4q2

]
+

∑
i∈Sun\S

E
[
‖αi‖4q2

])
. (43)

When i ∈ S,

E[‖αi‖4q2 ] = E

(‖Φi‖42 +
∑

j∈S\{i}

(Φ>i Φj)
2

)2q
 (44)

≤ 22q

E
[
‖Φi‖8q2

]
+ E

( ∑
j∈S\{i}

(Φ>i Φj)
2

)2q
 ,

(45)

and when i ∈ Sun\S ,

E
[
‖αi‖4q2

]
≤ E

(∑
j∈S

(Φ>i Φj)
2

)2q
 . (46)

Since Φi has independent, subgaussian entries with parameter
1/m, we see that ‖Φi‖22 ∼ subexp(c′/m, c′′/m) with c′ = 128
and c′′ = 8 [5, Lemma D.2]. This gives, using Lemma 13,

E
[
(‖Φi‖22)4q

]
≤ 2q(16)q

(
Γ(2q)

c′2q

m2q
+ Γ(4q)

c′′4q

m4q

)
(47)

+ (E
[
‖Φi‖22

]
)4q

≤ 4q(16)qc′2qΓ(4q)
1

m2q
+ 1, (48)

where we used c′ > c′′2. Using similar arguments, we
note that Φ>i Φj |Φi is subgaussian with parameter ‖Φi‖22/m,
which implies that, conditioned on Φi,

∑
j∈S\{i}(Φ

>
i Φj)

2 is
subexp(c′(k−1)‖Φi‖42/m2, c′′‖Φi‖22/m). Then, using Lemma
13 again, we get

E
[( ∑

j∈S\{i}

(Φ>i Φj)
2

)2q]

≤ c′qEΦi

[
Γ(q)c′q

(
k − 1

m2

)q
‖Φi‖4q2 + Γ(2q)c′′2q

(
‖Φi‖22
m

)2q
]

+ 22q

(
E

 ∑
j∈S\{i}

(Φ>i Φj)
2

)2q

≤ c′qc
′qΓ(q)

(
k − 1

m2

)q(
1 + 2c′qc

′2qΓ(2q)
1

mq

)
+ c′qc

′′2qΓ(2q)
1

m2q

(
1 + c′qc

′2qΓ(2q)
1

mq

)
+ 22q

(
k − 1

m

)2q

≤ 5c′qc
′2qΓ(2q)

(
k

m

)2q

.
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Combining these results and substituting into (43), we get

E
[( ∑

i∈Sun

(X>S AiXS)2

)q]
≤ c′qΓ(2q)λ2q

0 (k`)q−1

(∑
i∈S

E
[
‖αi‖4q2

]
+

∑
i∈Sun\S

E
[
‖αi‖4q2

])
(49)

≤ 5c′2q c
′2qΓ(2q)λ2q

0 (k`)q−1

(
kΓ(2q)

(
k

m

)2q

+ (k`− k)Γ(2q)

(
k

m

)2q)
(50)

= 5c′2q c
′2q(Γ(2q))2λ2q

0

(
k
√
k`

m

)2q

. (51)

Rescaling the exponent, we get

E [‖a‖q2] = E

[( ∑
i∈Sun

(X>S AiXS)2

) q
2

]
(52)

≤ 5c2q/2c
′q(Γ(q))2λq0

(
k
√
k`

m

)q
(53)

Noting that c′(5c2q/2)1/q ≤ 45 · 8c′ = c0, we obtain the result.

C. Proof of Lemma 10

(i) To show the first property, we note that the true covari-
ance matrix can be decomposed as E [T ] = WBW> +
(µ0 − µs)I , where W ∈ {0, 1}k`×` encodes the block
structure, and B ∈ R`×` contains the distinct values
from each block. In particular, for 1 ≤ i ≤ k` and
1 ≤ j ≤ `, define

Wij =

{
1, if i ∈ Sj ,
0, otherwise,

(54)

and, for 1 ≤ i ≤ ` and 1 ≤ j ≤ `, define

Bij =

{
µs, if i = j,

µd, otherwise.
(55)

Since E [T ] and WBW> have the same set of eigenvec-
tors, we will show that the matrix V ∈ Rk`×` consisting
of the ` leading eigenvectors of WBW> has the desired
property. To that end, first note that there are only `
unique rows in W , one unique row corresponding to
each block. We will show that V also consists of `
unique rows, in exact correspondence with the rows of
W . To do so, we will follow [36, Lemma 3.1] and
show that V is essentially a row-transformed version
of W , i.e., there exists an invertible matrix H ∈ R`×`
such that WH = V . We start by considering the eigen
decomposition

(W>W )
1
2B(W>W )

1
2 = UΛU, (56)

where Λ ∈ R`×` is diagonal and U ∈ R`×` is an
orthonormal matrix. Left multiplying by W (W>W )−

1
2

and right multiplying by (W>W )−
1
2W> in the equation

above, we get,

WBW> = WHΛ(WH)>, (57)

where H def
= (W>W )−

1
2U . Finally, right multiplying by

WH and noting that (WH)>WH = I , we have

WBW> ·WH = WH · Λ, (58)

implying that the columns of WH are the normalized
eigenvectors of WBW>.
We have thus shown that V = WH . Let vi and wi denote
the ith row of V and W , respectively. If vi = vj for some
i 6= j, then wiH = wjH . Since H = (W>W )−

1
2U is

invertible, this implies wi = wj . Conversely, if wi = wj

for some i 6= j, then wiH = wjH , which implies vi =
vj .

(ii) Using the fact that V = WH from (i), we have for
vi 6= vj ,

‖vi − vj‖2 = ‖(wi − wj)H‖2 (59)

≥
√

2νmin(H), (60)

where νmin(H)
def
= min‖x‖2=1 ‖x>H‖2, and we used

‖wi − wj‖2 =
√

2 for wi 6= wj . Now,

min
‖x‖2=1

‖x>H‖22 = min
‖x‖2=1

x>HH>x (61)

= min
‖x‖2=1

x>(WW>)−1x (62)

=
1

k
, (63)

where we used HH> =
(W>W )−

1
2UU>(WW>)−

1
2 = (WW>)−1 and

the fact that WW> = k diag (I). Putting everything
together, we get

‖vi − vj‖22 ≥
2

k
. (64)

D. Proof of Theorem 12

The proof is similar to that of [39], and we highlight the
steps needed to extend the result to general A. In particular,
following similar arguments as in [39], it can be shown that

E
[∥∥∥∥ 1

n

n∑
i=1

ZiZ
>
i −A

∥∥∥∥
op

]

≤ c
√

logN

n

√
E
[
max
i∈[n]
‖Zi‖22

]√√√√E

[∥∥∥∥ n∑
i=1

ZiZ>i

∥∥∥∥
op

]
,

(65)

Now,

E

[∥∥∥∥ n∑
i=1

ZiZ
>
i

∥∥∥∥
op

]
≤ nE

[∥∥∥∥ 1

n

n∑
i=1

ZiZ
>
i −A

∥∥∥∥
op

+ ‖A‖op

]
(66)

= n(β + ‖A‖op), (67)
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where β def
= E

[∥∥∥∥ 1
n

∑n
i=1 ZiZ

>
i −A

∥∥∥∥
op

]
. It follows from (65)

and (67) that

β ≤ c
√

logN

n

√
E
[
max
i∈[n]
‖Zi‖22

]√
β + ‖A‖op. (68)

Letting α = c
√

(logN)/n
√
E
[
maxi∈[n] ‖Zi‖22

]
, we have the

solution

β ≤ 1

2

(
α2 + α

√
α2 + 4‖A‖op

)
, (69)

which completes the proof.

APPENDIX B
MOMENT AND CONCENTRATION BOUNDS FOR

SUBGAUSSIAN RANDOM VARIABLES

Definition 2. A random variable X is subgaussian with
variance parameter σ2, denoted X ∼ subG(σ2), if

logE
[
eθ(X−E[X])

]
≤ θ2σ2/2, (70)

for all θ ∈ R.

Definition 3. A random variable X is subexponential with
parameters σ2 and b > 0, denoted X ∼ subexp(σ2, b), if

logE
[
eθ(X−E[X])

]
≤ θ2σ2/2, (71)

for all |θ| < 1/b.

Lemma 13. Let X be a subexponential random variable with
parameters v2 and b > 0, i.e., for every t > 0,

Pr (|X − E [X] | ≥ t) ≤ 2 exp

(
−min

{
t2

2v2
,
t

2b

})
. (72)

Then, for q ∈ N, and an absolute constant c,

E
[
|X − E [X] |2q

]
≤ 2q · (16)q

(
Γ(q)v2q + b2qΓ(2q)

)
.

(73)

Proof. We first express the tail bound for X in a form that is
easier to evaluate, and then use standard arguments (see, for
example, [44, Theorem 2.3]) to derive the moment bound. We
have,

Pr (|X − E [X] | ≥ t) ≤ 2 exp

(
−min

{
t2

2v2
,
t

2b

})
(74)

≤ 2 exp

(
−t2

2(v2 + bt)

)
, (75)

that is,

Pr
(
|X − E [X] | ≥ bu+

√
b2u2 + 2v2u

)
≤ e−u. (76)

With this tail bound, we can now derive the stated moment
bound by using

E
[
|X − E [X] |2q

]
= 2q

∫ ∞
0

Pr (|X − E [X] | ≥ t) t2q−1dt.

(77)

In particular, upon substituting t = bu +
√
b2u2 + 2v2u, we

get

E
[
(X − E [X])2q

]
≤ 2q

∫ ∞
0

e−u(bu+
√
b2u2 + 2v2u)2q−1

×
(
b+

b2u+ v2

√
b2u2 + 2v2u

)
du,

(78)

which after simplification yields

E
[
(X − E [X])2q

]
≤ 2q · (16)q

(
b2qΓ(2q) + v2qΓ(q)

)
.

(79)
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