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Massive MIMO-OFDM Systems with Low
Resolution ADCs: Cramér-Rao Bound, Sparse

Channel Estimation, and Soft Symbol Decoding
Sai Subramanyam Thoota and Chandra R. Murthy

Abstract—We consider the delay-domain sparse channel es-
timation and data detection/decoding problems in a massive
multiple-input-multiple-output (MIMO) orthogonal frequency
division multiplexing (OFDM) wireless communication sys-
tem with low-resolution analog-to-digital converters (ADCs).
The non-linear distortion due to coarse quantization leads
to severe performance degradation in conventional OFDM
receivers, which necessitates novel receiver techniques. First,
we derive Bayesian Cramér-Rao-lower-bounds (CRLB) on the
mean squared error (MSE) in recovering jointly compressible
vectors from quantized noisy underdetermined measurements.
Second, we formulate the pilot-assisted channel estimation as a
multiple measurement vector (MMV) sparse recovery problem,
and develop a variational Bayes (VB) algorithm to infer the
posterior distribution of the channel. We benchmark the MSE
performance of our algorithm with that of the CRLB, and
numerically show that the VB algorithm meets the CRLB. Third,
we present a soft symbol decoding algorithm that infers the
posterior distributions of the data symbols given the quantized
observations. We utilize the posterior statistics of the detected
data symbols as virtual pilots, and propose an iterative soft
symbol decoding and data-aided channel estimation procedure.
Finally, we present a variant of the iterative algorithm that
utilizes the output bit log-likelihood ratios of the channel decoder
to adapt the data prior to further improve the performance. We
provide interesting insights into the impact of the various system
parameters on the MSE and bit error rate of the proposed
algorithms, and benchmark them against the state-of-the-art.

Index Terms—Channel estimation, Cramér-Rao lower bound,
ADCs, massive MIMO, soft symbol decoding, variational Bayes.

I. INTRODUCTION

Recent research in wireless communications has inves-
tigated the use of a massive number of antennas at the
base station (BS) to increase the network capacity and data
rates [2]. The benefits of massive multiple input multiple
output (MIMO) communications are now very well under-
stood. However, they come at the expense of high power
consumption and hardware cost, which needs to be addressed
to make massive MIMO commercially viable. One potential
solution is to employ low-resolution analog-to-digital convert-
ers (ADCs) in the receivers [3]–[5]. The power consumption
of an ADC increases exponentially with its bit-width. Hence,
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in massive MIMO systems with one RF chain per antenna,
employing low-resolution ADCs can result in dramatic power
savings [6], [7]. Further, low resolution ADCs relax the strin-
gent linearity range requirements on the RF circuitry, which in
turn reduces the hardware cost [8]. However, they also bring
new challenges in the design of receivers, as advanced signal
processing techniques need to be used to counter the large
quantization noise introduced by them. This paper investigates
several key aspects of receiver design, and develops novel
receiver architectures in the context of multiuser massive
MIMO orthogonal frequency division multiplexing (OFDM)
communication with low resolution ADCs.

Three main challenges arise in the use of low resolution
ADCs in multi-user MIMO-OFDM systems. First, the non-
linearities introduced by coarse quantizers lead to sub-optimal
performance of conventional receivers such as (regularized)
zero-forcing (ZF/RZF) and minimum mean square error
(MMSE) detectors [9]. In a conventional OFDM receiver, we
remove the cyclic prefix (CP), decouple the subcarriers using
a discrete Fourier transform (DFT), and perform frequency
domain equalization on a per-subcarrier basis. However, in
low resolution ADC based systems, we obtain the complex
baseband time-domain samples after being coarsely quantized
by the ADC, and it is not possible to decouple the subcarriers
by a DFT operation, resulting in inter-carrier interference
(ICI). Due to this, conventional receivers may perform poorly
when low-resolution ADCs are employed.

Second, the pilot signals transmitted by the user equipment
(UE) for channel estimation at the BS are also received
through the low resolution ADCs. This necessitates the use of
long pilot sequences for accurate channel estimation, leading
to a loss in spectral efficiency [4], [10], [11].

Third, a channel encoder and decoder are integral parts of
any commercial wireless communication system, and are used
to correct for errors introduced by the channel. The channel
decoders require the bit log-likelihood ratios (LLRs), rather
than hard bit-decisions, to provide good performance. The bit
LLRs are a function of the posterior beliefs (probabilities) of
the data symbols. Therefore, the aim of the receiver is not only
to detect the data symbols, but also to obtain their posterior
beliefs (also known as soft symbols), based on the quantized
observations obtained from the low resolution ADCs.

We now briefly review the existing literature on channel
estimation and data detection in low resolution ADC based
multi-user MIMO systems, before presenting the key contri-
butions in this paper. Channel estimation in massive MIMO
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systems was considered in [4], [5], [12], while [13]–[20]
develop data detection methods in massive MIMO single
carrier (SC) and multi-carrier systems. Joint/iterative channel
estimation and data detection was considered in [8], [21]–
[25]. In [8], the authors develop a single iteration mutiuser
MIMO-OFDM channel estimator using convex optimization
techniques, and a data detector using a suboptimal soft-
output MMSE algorithm. A bilinear generalized approximate
message passing (BiGAMP) algorithm to solve the joint
channel estimation and data detection problem is developed
in [21], [23]. The authors in [21] also analyze the performance
of the BiGAMP algorithm using the replica method. Recently,
a variational Bayesian (VB) channel estimation and data
detection algorithm was developed in [25], in the context of
a single-user single input single output (SU-SISO) OFDM
system. While [25] restricts to a single OFDM symbol, we
consider a more general multiple pilot and data symbols
model in a multi-user massive MIMO-OFDM system.

An angular domain joint sparse channel estimation and
data detection algorithm using the sparse Bayesian learning
(SBL) framework in a hybrid millimeter wave communication
system was proposed in [22]. The idea here is to utilize
the decoded data symbols as virtual pilots for channel es-
timation. The receiver starts by forming an initial estimate
of the channel using the pilot symbols, which is used to
detect the data symbols. Then, in subsequent iterations, the
detected data symbols are used as virtual pilots to refine
the channel estimates and re-estimate the data symbols. This
process is repeated until a suitable convergence condition is
satisfied [26]. In [24], the authors adopt a supervised learning
framework to solve the single-iteration non-sparse channel
estimation and data detection problems in a massive MIMO-
OFDM system with single pilot and data symbol using one-
bit measurements. These approaches usually require careful
parameter tuning for fast convergence and accurate data detec-
tion. Moreover, several heuristics are required to transform the
detected data symbols into soft outputs which are required for
the subsequent channel decoding. Furthermore, none of the
above mentioned papers directly address all three challenges
mentioned in the preceding paragraphs.

In this paper, we develop an iterative delay-domain sparse
channel estimation and soft symbol decoding algorithm for
a massive MIMO-OFDM system with low resolution ADCs.
As a first step, we develop a benchmark to evaluate the per-
formance of any sparse channel estimator with measurements
acquired using low resolution ADCs. To this end, we consider
a general quantized compressed sensing problem, and derive
different types of Cramér-Rao lower bounds (CRLBs) on the
mean squared error (MSE) performance of an estimator [27],
[28]. We impose a two-stage hierarchical circularly symmetric
complex Gaussian prior on the estimand (in our case, the
channel) parameterized by a diagonal precision matrix. We
further impose a non-informative conjugate Gamma hyper-
prior on the diagonal elements of the precision matrix. This
results in a Student’s t-distributed marginalized prior on the
estimand, which is heavy-tailed and hence promotes sparse
solutions.

It is worth mentioning that CRLBs for the compressed

sensing problem with unquantized measurements have been
derived in [29]. In [30], [31], the CRLB on the MSE of an
estimator with 1-bit measurements is derived under a non-
sparse setting. While [30] derives the CRLB in a deterministic
setup, [31] obtains the Bayesian CRLB. To the best of our
knowledge, different types of CRLBs for the estimation of
jointly compressible vectors [32] from multi-bit quantized
noisy underdetermined measurements does not exist in the
literature. We develop a CRLB for this case in Sec. II. It
turns out that the expectations required to obtain the Bayesian
information matrix (BIM) are computationally intractable,
and, consequently, the CRLB cannot be obtained in closed
form. We therefore resort to numerical methods for evaluating
the bound. While our CRLB for the quantized compressed
sensing problem is of independent interest, we empirically
illustrate its utility in the context of sparse massive MIMO-
OFDM channel estimation by comparing it with the MSE
performance of our algorithm.

Next, we use a statistical inference framework to compute
the posterior distributions of the UEs’ channels and data
symbols given the quantized received pilot and data observa-
tions. We adopt a minorization-maximization based procedure
called variational Bayesian (VB) inference, which is a princi-
pled approach for developing low-complexity algorithms for
high-dimensional inference problems with guaranteed conver-
gence from any initialization. The key novelty lies in how we
construct the underlying probabilistic graphical models and
how we identify and group the latent variables. The latent
variables can also be used to compute side information such
as the signal-to-noise ratio (SNR), which can, in turn, be used
for link adaptation. Our main contributions are as follows:

• We derive the Bayesian CRLB for the MSE incurred
by an estimator for recovering jointly compressible vec-
tors from quantized compressed sensing measurements.
Specifically, we impose a hierarchical circularly symmet-
ric complex Gaussian prior on the estimand, parameter-
ized by a diagonal precision matrix. The precision matrix
is in turn hyper-parameterized by a Gamma distribution.
Although the CRLB is not available in closed-form, it
can be evaluated by numerical methods.

• We consider both deterministic and random cases for
the precision matrix to obtain two different CRLBs on
the MSE of jointly compressible vectors. Also, in the
case of exactly-sparse signals, we derive a support-aware
CRLB, which assumes the knowledge of the support set,
to compute the bound. We analytically show that our
derived CRLB subsumes both the unquantized and 1-bit
CRLBs as special cases.

• We exploit the lag/delay domain sparsity of the channels
to formulate channel estimation in a massive MIMO-
OFDM system as a quantized MMV sparse signal re-
covery problem. We develop a VB algorithm to infer the
posterior distributions of the channels. We benchmark the
MSE performance of the VB channel estimator with the
derived Bayesian CRLB, and empirically show that the
estimator meets the CRLB.

• We then develop a quantized VB soft symbol decoding
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algorithm that uses the estimated channels to obtain
the posterior beliefs of the data symbols. We use these
posterior statistics to generate virtual pilots, and present
a data-aided channel estimation procedure to refine the
initial channel estimates. Based on this, we develop an
iterative algorithm that alternately runs the soft symbol
decoder and data-aided channel estimator steps. Finally,
we generate the bit LLRs from the posterior symbol
probabilities, and input them to the channel decoder.

• We also present a variant of the iterative channel esti-
mation and data decoding algorithm, which utilizes the
aposteriori bit LLRs output from the channel decoder to
adapt the prior used by the data detector. The resulting
combined channel estimator, data detector and channel
decoder further improves the system performance.

We evaluate the normalized MSE (NMSE) and coded bit-
error-rate (BER) performance of the VB algorithms, and
bechmark it against the state-of-the-art BiGAMP based joint
channel estimator and data detector [21] and the conventional
soft MMSE detector. Further, we study the impact of the
system parameters on the performance of our algorithm, and
provide several interesting insights.

One of the main takeaways from our work is that VB is
a powerful and flexible technique for designing receivers in
massive MIMO-OFDM systems, particularly when the BS
employs low resolution ADCs. This is because the subcarriers
are no longer orthogonal after the quantization step. Due
to this, conventional subcarrier-by-subcarrier data detection
performs poorly (See Fig. 11). Also, our choice of latent
variables and approximate posterior distributions is crucial for
obtaining analytically and computationally tractable solutions.
Another key takeaway is that the assumption of perfect
CSI at the receiver significantly overestimates the system
performance, which we illustrate through empirical studies
in Sec. VII. Therefore, it is important to account for channel
estimation errors while designing receivers, especially when
both received pilots and data are coarsely quantized.

Notation: We denote matrices, vectors and scalars by bold-
face upper case, boldface lower case, and lowercase letters,
respectively. AT , AH and |A| denote the transpose, conjugate
transpose, and determinant of A, respectively. A⊗B denotes
the Kronecker product of A and B. diag(x) returns a diagonal
matrix with the entries of x on the diagonal. E and ⟨·⟩ both
denote the expectation operation. f(x) ≜ 1√

2π
exp(−x2

2 ) and

F (x) ≜ 1√
2π

∫ x

−∞ exp(− t2

2 )dt denote the probability density
and cumulative distribution functions of a standard normal
random variable evaluated at x. Γ(a) ≜

∫∞
0

ta−1 exp(−t) dt
denotes the Gamma function evaluated at a > 0. IM , 0M and
1M denote an M ×M identity matrix, M ×M zero matrix
and all-ones vector of size M × 1, respectively. ℜ and ℑ are
the real and imaginary part operators, respectively.

II. QUANTIZED COMPRESSED SENSING AND BAYESIAN
CRAMÉR-RAO LOWER BOUND

We consider the estimation of high-dimensional jointly
compressible vectors X = [x1, . . . ,xT ] ∈ CN×T from quan-
tized low-dimensional measurements Y = [y1, . . . ,yT ] ∈

CM×T , where M < N .1 The measurements are obtained as

Y = Qb (ΦX+W) , (1)

where Φ ∈ CM×N is a known measurement matrix, and
W ∈ CM×T is the additive noise matrix whose entries
are independent and identically distributed (i.i.d.) circularly
symmetric complex Gaussian random variables with mean 0
and variance σ2

w. Qb(·) denotes an element-wise scalar b-
bit quantizer of both real and imaginary components of its
argument. We assume a common support structure on the
columns of X. In many applications, the signals are not
exactly sparse, i.e., many entries may not be exactly equal to
zero. An example is the effective wireless channel with the
non-ideal transmit and receive filters. Therefore, we consider
compressible signals [32] instead, where there are only a few
entries with high magnitude and the remaining entries have
very low magnitude. Here, by common support structure, we
mean that the indices of the large magnitude entries are the
same in each column of X.

A b-bit quantizer on a real valued input z is defined as
Qb(z) = Li, z ∈ [δi, δi+1), i = 0, 1, . . . , B − 1, where
B = 2b is the number of quantization levels, −∞ = δ0 <
δ1 < · · · < δB = ∞ are the quantization thresholds, and
L0, L1, . . . , LB−1 are the quantizer outputs. We now derive
the Bayesian CRLB on the MSE of any estimator of X.

To develop the CRLB, we impose a two-stage hierarchical
prior on X [33]. That is, xℓ ∼ CN (xℓ;0,P

−1)∀ ℓ, where P
is a diagonal precision matrix containing the hyperparameters
α = [α1, . . . , αN ]T . As mentioned earlier, we assume a non-
informative conjugate Gamma hyperprior on αn, ∀n with
shape and rate parameters a and r, respectively:

p(X |P) =

T∏
ℓ=1

|P|
πN

exp(−xH
ℓ Pxℓ), (2)

p(α; a, r) =

N∏
n=1

ra

Γ(a)
αa−1
n exp(−rαn), (3)

where |P| denotes the determinant of P and Γ(a) denotes the
Gamma function.

Now, we compute the BIM for the above model. For this,
we need the joint probability distribution p(Y,X,P;Φ, σ2

w).
Denoting the unquantized measurements by Z, we write (1)
as Y = Qb(Z), where Z = [z1, . . . , zT ] ∈ CM×T . It is
convenient to transform the system from the complex field to
the real field as follows:

Φ̃ =

[
ℜ(Φ) −ℑ(Φ)
ℑ(Φ) ℜ(Φ)

]
, x̃ℓ =

[
ℜ(xℓ)
ℑ(xℓ)

]
, ỹℓ =

[
ℜ(yℓ)
ℑ(yℓ)

]
,

z̃ℓ =

[
ℜ(zℓ)
ℑ(zℓ)

]
, w̃ℓ =

[
ℜ(wℓ)
ℑ(wℓ)

]
, ℓ = 1, . . . , T, (4)

where ℜ(·) and ℑ(·) denote the real and imaginary part
operators, respectively. Let us denote σ̃2

w =
σ2
w

2 , Ñ = 2N ,
M̃ = 2M . In (4), wℓ is the ℓth column of W. Now, the
system model becomes Ỹ = Qb(Z̃) = Qb(Φ̃X̃ + W̃).

1In the context of massive MIMO-OFDM communication systems as
described in Section III, Y and X will denote the quantized received signal
at the BS and the channel matrix, respectively.
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Let us denote the precision matrix for the real field by P̃
(≜ diag([2αT , 2αT ]T )), where diag(·) returns a diagonal
matrix. Now, the prior becomes

p(X̃ | P̃) =

T∏
ℓ=1

|P̃| 12

(2π)
Ñ
2

exp

(
− x̃T

ℓ P̃x̃ℓ

2

)
. (5)

Since the columns of X̃ are independent of each other, the
BIM has a block diagonal structure with the off diagonal
blocks as all-zero matrices. With this prior, we present the
expression for the BIM in the following theorem.

Theorem 1: The ℓth diagonal block of the BIM required to
compute the CRLB for the MSE of a Bayesian sparse signal
estimator using quantized compressive measurements is given
by (6) on the next page, where the expectation E[·] is w.r.t.
the joint probability distribution p(Ỹ, X̃, P̃; Φ̃, σ̃2

w, a, r),

η̃
(hi)
mℓ ≜

z̃
(hi)
mℓ −

∑Ñ
n=1 Φ̃mnx̃nℓ

σ̃w
, (7)

η̃
(lo)
mℓ ≜

z̃
(lo)
mℓ −

∑Ñ
n=1 Φ̃mnx̃nℓ

σ̃w
, (8)

where ℓ ∈ {1, . . . , T}, z̃
(lo)
mℓ and z̃

(hi)
mℓ are the lower and

upper quantization thresholds corresponding to the (m, ℓ)th

entry of Ỹ, respectively. Φ̃mn and x̃nℓ denote the (m,n)th

and (n, ℓ)th entries of Φ̃ and X̃, respectively. f(·) and F (·)
denote the probability density function (PDF) and cumulative
distribution functions (CDF) of a standard normal random
variable, respectively.

Proof: The result follows from direct computation of the
BIM, and is detailed in the supplementary material.

Note that the BIM depends on the probability distribution
of the hyperparameters only through their expected values.

We provide a step by step procedure to compute the
Bayesian CRLB using (6). Given a realization of X generated
according to a prior distribution p(X|P), we denote the
instance specific BIM at iteration τ as M̃

(τ)
ℓ (Φ̃, a, r, σ̃2

w)
which is given by (9). Here, we use the law of iterated
expectation, and the range of summation over ỹmℓ is the
number of discrete quantization levels. We provide a recipe to
compute the instance specific BIM for the multi-bit quantized
compressed sensing case in Algorithm 1.

Next, we use the chain rule to convert the real valued BIM
to a complex valued BIM as

M
(τ)
ℓ (Φ, a, r, σ2

w) =

=
1

4

([
M̃

(τ)
ℓ (Φ̃, a, r, σ̃2

w)
]
ℜℜ

+
[
M̃

(τ)
ℓ (Φ̃, a, r, σ̃2

w)
]
ℑℑ

)
+

j

4

([
M̃

(τ)
ℓ (Φ̃, a, r, σ̃2

w)
]
ℜℑ

−
[
M̃

(τ)
ℓ (Φ̃, a, r, σ̃2

w)
]
ℑℜ

)
,

where M
(τ)
ℓ (Φ, a, r, σ2

w) is the ℓth diagonal block of the
complex BIM. Finally, the instance specific CRLB is

CRLB(τ)(Φ, a, r, σ2
w)

= blkdiag

[([
M

(τ)
ℓ (Φ, a, r, σ2

w)
]−1
)T

ℓ=1

]
, (10)

where blkdiag(·) returns a block diagonal matrix. We use

Algorithm 1 Computation of M̃(τ)
ℓ (Φ̃, a, r, σ̃2

w)

Input: Φ̃, X̃, {z̃(lo)
mℓ , z̃

(hi)
mℓ }M̃m=1, a, r, σ̃w.

Output: M̃
(τ)
ℓ (Φ̃, a, r, σ̃2

w).
1: Initialize J = 0

M̃
.

2: for m = 1 to M̃ do
3: for ỹmℓ = {L0, . . . , LB−1} do
4: Compute η̃

(hi)
mℓ and η̃

(lo)
mℓ using (7) and (8).

5: Compute

J(m,m) = J(m,m) + η̃
(hi)
mℓ f(η̃

(hi)
mℓ )− η̃

(lo)
mℓ f(η̃

(lo)
mℓ )

+

(
f(η̃

(hi)
mℓ )− f(η̃

(lo)
mℓ )

)2
F (η̃

(hi)
mℓ )− F (η̃

(lo)
mℓ )

6: end for
7: J(m,m) = σ̃−2

w J(m,m).
8: end for
9: Compute M̃

(τ)
ℓ (Φ̃, a, r, σ̃2

w) = Φ̃TJΦ̃+ a
r IÑ .

the inverse property of block diagonal matrices to obtain
(10), which reduces the complexity in computing the CRLB.
We vary τ from 1 to τmax, compute the instance specific
CRLB using independent random realizations of X, and then
compute the average Bayesian CRLB as

CRLB(Φ, a, r, σ2
w) =

1

τmax

τmax∑
τ=1

CRLB(τ)(Φ, a, r, σ2
w). (11)

The MSE of an estimator is lower bounded by the trace of
the CRLB in (11). In the derivation above, we consider that
the precision matrix P is random, which leads to a Bayesian
bound. We can also consider the case where the precision
matrix is deterministic. In this context, we contrast three types
of bounds: (a) Support-aware Bayesian CRLB: Precision
matrix is random, but the support set is known. (b) Hybrid
CRLB: Random X parameterized by a deterministic P. (c)
Bayesian CRLB: Random X parameterized by a random P
with a conjugate hyperprior.

For the support-aware Bayesian CRLB, the BIM is com-
puted as follows: For the columns in the support set, the
diagonal entries of E[P] in the complex BIM are equal
to a

r , and the remaining columns are removed from the
measurement matrix, to compute the CRLB. We note that
the support-aware Bayesian CRLB provides a lower bound
on the MSE in the estimation of exact sparse vectors.

In the case of hybrid CRLB, the expectation term E[P̃]
in (6) is replaced by the deterministic and known P̃. We
generate a compressible signal using a generative model with
a circularly symmetric complex normal prior parameterized
by the known precision matrix, and average the CRLB over
multiple realizations as in (11).

For the Bayesian CRLB, we use the mean of the Gamma
hyperprior for E[P] = a

r IN in the complex case. Note
that this does not require the realization of the precision
parameters; it only depends on the shape and rate parameters.

Next, we consider the two special cases, namely, 1-bit and
infinite-bit quantization of the noisy compressive measure-
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M̃ℓ(Φ̃, a, r, σ̃2
w) = E

[
− ∂2

∂x̃ℓ∂x̃T
ℓ

log p(Ỹ, X̃, P̃; Φ̃, σ̃2
w, a, r)

]

= Φ̃T diag

 1

σ̃2
w

E

 η̃(hi)
mℓ f(η̃

(hi)
mℓ )− η̃

(lo)
mℓ f(η̃

(lo)
mℓ )

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )

+

(
f(η̃

(hi)
mℓ )− f(η̃

(lo)
mℓ )

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )

)2
M̃

m=1

Φ̃+ E[P̃]. (6)

M̃
(τ)
ℓ (Φ̃, a, r, σ̃2

w) = Φ̃T diag

 1

σ̃2
w

LB−1∑
ỹmℓ=L0

η̃
(hi)
mℓ f(η̃

(hi)
mℓ )− η̃

(lo)
mℓ f(η̃

(lo)
mℓ ) +

(
f(η̃

(hi)
mℓ )− f(η̃

(lo)
mℓ )

)2
F (η̃

(hi)
mℓ )− F (η̃

(lo)
mℓ )




M̃

m=1

Φ̃+ E[P̃]. (9)

ments, and specialize the derived CRLB to these two cases.
It is easy to see that the second term E[P̃] in the BIM given
in (6) depends only on the hyperparameters and not on the
quantizer. So, we only discuss the first term in the sequel.
The BIMs for the unquantized and 1-bit cases are obtained
by careful algebraic manipulation of the multi-bit BIM, and
we provide the details in the supplementary material.

A. Infinite-bit Quantized Compressed Sensing

The following Lemma is useful for obtaining the BIM in
the infinite-bit quantized compressed sensing case.

Lemma 1: For η, δ ∈ R,

lim
δ→0

(η + δ) f(η + δ)− ηf(η)

F (η + δ)− F (η)
= 1− η2, (12)

and

lim
δ→0

(
f(η + δ)− f(η)

F (η + δ)− F (η)

)2

= η2, (13)

where f(·) and F (·) are as defined earlier.
As the number of bits b increases, the difference between

the quantization intervals z̃
(lo)
mℓ and z̃

(hi)
mℓ decreases, and tends

to zero as b → ∞. Therefore, if we apply Lemma 1 to each
term inside the expectation in (6), it becomes unity, which
results in the ℓth diagonal block of the BIM as

M̃ℓ(Φ̃, a, r, σ̃2
w) =

Φ̃T Φ̃

σ̃2
w

+ E[P̃]. (14)

Next, we compute the BIM for the 1-bit quantization case.

B. 1-bit Quantized Compressed Sensing

For the 1-bit quantized compressed sensing case, we con-
sider the output of the quantizer as the sign of its input. Thus,
if we denote the (m, ℓ)th entry of Ỹ and Z̃ as ỹmℓ and z̃mℓ,
respectively, then ỹmℓ = +1 if z̃mℓ ≥ 0, and ỹmℓ = −1
otherwise. We simplify the BIM in the Lemma below.

Lemma 2: The ℓth diagonal block of the BIM required to
compute the CRLB for the MSE of a Bayesian sparse signal
estimator using 1-bit compressive measurements is given by

M̃ℓ(Φ̃, a, r, σ̃2
w) = E[P̃]+

Φ̃T diag

 1

σ̃2
w

E

 ξ̃mℓf(ξ̃mℓ)

F (ξ̃mℓ)
+

(
f(ξ̃mℓ)

F (ξ̃mℓ)

)2
M̃

m=1

Φ̃,

(15)

where E[·] is w.r.t. p(Ỹ, X̃, P̃; Φ̃, σ̃2
w, a, r). Here, ξ̃mℓ ≜

ỹmℓ

∑Ñ
n=1 Φ̃mnx̃nℓ

σ̃w
, ℓ ∈ {1, . . . , T}, and the other notation are

as in Theorem 1.
It is worth mentioning that the BIMs for the unquantized

compressed sensing in [29] and 1-bit compressed sensing in
[30] (Fisher information matrix in [30]), are special cases of
the BIM for multi-bit compressed sensing. The BIM for the 1-
bit compressed sensing case in (15) can be further simplified
(along the same lines as in [30]) to get

M̃ℓ(Φ̃, a, r, σ̃2
w)

= Φ̃T diag

(
1

σ̃2
w

E

[
(f(ν̃mℓ))

2

F (ν̃mℓ) (1− F (ν̃mℓ))

])M̃

m=1

Φ̃+ E[P̃]

(16)

where ν̃mℓ =
∑Ñ

n=1 Φ̃mnx̃nℓ

σ̃w
, and the first expectation is

w.r.t. p(X̃, P̃).
We now turn to the massive MIMO-OFDM wireless com-

munication system, and present the system model for the
channel estimation and soft symbol decoding problems.

III. DESCRIPTION OF MASSIVE MIMO-OFDM SYSTEM
AND PROBLEM STATEMENTS

We consider the uplink (UL) of a single cell massive
MIMO-OFDM system with Nr antennas at the BS and K
single antenna user equipments (UEs), where Nr ≥ K. Fig. 1
shows the system model. Each UE encodes and interleaves
its information bits, and maps them to constellation symbols.
The symbols are then loaded onto the subcarriers and OFDM
modulated using an inverse discrete Fourier transform (IDFT).
After passing the OFDM modulated data symbols through
a parallel to serial converter, a cyclic prefix (CP) is added,
RF up-converted to the passband, and transmitted over a
frequency-selective wireless channel to the BS. At the BS,
the received RF signal is down-converted to baseband, the
CP is removed, the signal is sampled, and quantized using
b-bit ADCs to obtain the complex baseband signal.

We assume that the coherence interval of the channel is at
least τp + τd OFDM symbols. Each UE transmits τp pilot
OFDM symbols followed by τd data OFDM symbols. In
conventional OFDM systems, pilots are embedded in the same
OFDM symbol along with the data, at specific subcarriers.
However, due to the quantization errors introduced by the
low resolution ADCs, this results in severe inter-carrier inter-
ference between the pilot and data subcarriers, which cannot
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Figure 1. Massive MIMO-OFDM wireless communication system model.

be canceled to obtain channel estimates. So, in this work, we
consider a model where the pilot OFDM symbols are distinct
from the data OFDM symbols. We denote the number of
subcarriers by Nc.2 The unquantized received pilot and data
signals at the nth

r receive antenna in the nth symbol interval
(0 ≤ n ≤ Nc−1) within the tth pilot and data OFDM symbol
durations, respectively, are 3

z(p)nr
[t][n] =

K∑
k=1

L−1∑
ℓ=0

hnr,k[ℓ]x
(p)
k [t][n− ℓ] + w(p)

nr
[t][n],

z(d)nr
[t][n] =

K∑
k=1

L−1∑
ℓ=0

hnr,k[ℓ]x
(d)
k [t][n− ℓ] + w(d)

nr
[t][n],

(17)

where t ∈ {1, . . . , τp} and t ∈ {τp + 1 . . . τp + τd}
for the pilot and data phases, respectively, hnr,k[ℓ] is the
complex channel gain of the ℓth delay tap of the chan-
nel between the kth UE and the nth

r receive antenna at
the BS, distributed as CN (hnr,k[ℓ]; 0, βkℓ), where βkℓ is
the large scale fading coefficient (LSFC), L is the total
number of delay taps of the frequency selective channel,
x
(p)
k [t] = [x

(p)
k [t][0], . . . , x

(p)
k [t][Nc − 1]] and x

(d)
k [t] =

[x
(d)
k [t][0], . . . , x

(d)
k [t][Nc− 1]] are the pilot and data symbols

transmitted in the time domain by the kth UE in the tth OFDM
symbol, respectively, and w

(p)
nr [t][n] and w

(d)
nr [t][n] are the

complex additive white Gaussian noise during the pilot and
data phases, respectively, with mean 0 and variance σ2

w.

A. Delay-Domain Sparse Channel Estimation Model

In this subsection, we reformulate the received signal
model above to utilize the lag-domain sparsity for channel
estimation. We denote the channel sparsity, i.e., the maximum
number of nonzero delay taps in the channel, by Lsp, where
Lsp ≪ L. We vectorize the unquantized received pilot signal

2We do not explicitly include any guard subcarriers in our system model.
However, we note that Nc can be considered the number of active subcarriers
without loss of generality.

3We do not explicitly include the effects of the transmit and receive
filters in our system model. However, we consider their effect in one of
the simulation results, and observe only a marginal performance loss.

in the tth OFDM symbol at the nth
r receive antenna as

z(p)nr
[t] =

[
z
(p)
nr [t][0] z

(p)
nr [t][1] . . . z

(p)
nr [t][Nc − 1]

]T
=

K∑
k=1

X
(p)

k [t]hnr,k +w(p)
nr

[t] ∈ CNc×1, (18)

where hnr,k = [hT
nr,k

,0T
Nc−L]

T ∈ CNc×1, hnr,k =

[hnr,k[0], . . . , hnr,k[L − 1]]T ∈ CL×1 is the kth UE’s fre-
quency selective channel, and X

(p)

k [t] ∈ CNc×Nc is a circulant
matrix whose first column is x

(p)
k [t]. Since any circulant

matrix is diagonalized by the unitary DFT matrix with the
frequency domain coefficients as the eigenvalues, we repre-
sent (18) as

z(p)nr
[t] =

K∑
k=1

FH
Nc

X
(p)
k [t]FNc,Lhnr,k +w(p)

nr
[t]

= (1T
K ⊗ FH

Nc
)X(p)[t] (IK ⊗ FNc,L)hnr +w(p)

nr
[t],

where ⊗ denotes the matrix Kronecker product oper-
ator, X

(p)
k [t] = FNcX

(p)

k [t]FH
Nc

is a diagonal matrix
with its entries as the pilots loaded on the subcarriers,
X(p)[t] = diag(X(p)

1 [t], . . . ,X
(p)
K [t]) ∈ CKNc×KNc , hnr

=
[hT

nr,1, . . . ,h
T
nr,K

]T ∈ CKL×1 is the vectorized lag domain
frequency selective channel between all the users and the nth

r

BS antenna. FNc
∈ CNc×Nc and FNc,L ∈ CNc×L are the

DFT and the L column truncated DFT matrices, respectively.
Note that hnr

is a sparse vector with sparsity KLsp. We stack
the received vector of all the Nr antennas and τp pilot OFDM
symbols to obtain the unquantized received pilot matrix as
shown in (19) on the next page, where Z(p) ∈ CτpNc×Nr ,
Φ(p) ∈ CτpNc×KL, H = [h1, . . . ,hNr

] ∈ CKL×Nr is a row
sparse channel matrix, and W(p) is the additive noise matrix.

Now, we quantize the received signal using low-resolution
ADCs. A b-bit quantizer on a real valued input z is defined
as Qb(z) = Li, z ∈ [δi, δi+1), i = 0, 1, . . . , B − 1, where
B = 2b is the number of quantization levels, δ0 < δ1 < · · · <
δB are the quantization thresholds, and L0, L1, . . . , LB−1

are the quantizer outputs. In this paper, for simplicity and
concreteness, we consider a uniform quantizer, where δl =
(−B/2 + l)∆, l = 1, . . . , B − 1, ∆ is the quantization step
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Z(p) =


z
(p)
1 [1] . . . z

(p)
Nr

[1]
...

. . .
...

z
(p)
1 [τp] . . . z

(p)
Nr

[τp]

 =

 (1T
K ⊗ FH

Nc
)X(p)[1] (IK ⊗ FNc,L)

...
(1T

K ⊗ FH
Nc

)X(p)[τp] (IK ⊗ FNc,L)

H+W(p) ≜ Φ(p)H+W(p). (19)

size, and Ll = (δl + δl+1)/2, l = 0, . . . , B − 1. However,
we note that the foregoing development is applicable to any
other quantizer also. We set the dynamic range of the real and
imaginary parts of the quantizer using the expected received
signal power, PR, as δ0 = −2.5

√
PR/2, δB = 2.5

√
PR/2. In

practice, we quantize any value below δ0 to L0, and any value
above δB to LB−1. Also, in practical systems, an automatic
gain control unit is used to ensure that the power in the analog
baseband signal is approximately equal to a predefined value,
PR, before quantization. Our choice of δ0 and δB is motivated
by the fact that the absolute value of a Gaussian distributed
zero mean real-valued random variable with variance PR/2
exceeds 2.5

√
PR/2 with probability less than 0.01, i.e., the

quantizer gets overloaded with low probability. We quantize
the received pilots in (19) using the b-bit ADCs to obtain the
quantized received pilots as

Y(p) = Qb(Z
(p)) = Qb(Φ

(p)H+W(p)) ∈ CτpNc×Nr . (20)

Our first goal is to obtain an estimate of H given Y(p) and
Φ(p) in (20). Note that, if τpNc < KL, (20) represents an
underdetermined system of equations. In order to exploit the
lag-domain sparsity in the channel, as in [34], we use a two
stage hierarchical prior on H i.e., ∀ i, hi ∼ CN (hi;0,P

−1),
where the precision matrix P is diagonal and contains the hy-
perparameters α = [α1, . . . , αKL]

T as its diagonal elements.
Further, we impose a Gamma hyperprior on α. This results
in a Student’s t-distributed prior on hi, which is known to
promote sparse channel estimates [33]. After estimating H,
our goal is to decode the data symbols. Next, we describe the
signal model in the data transmission phase.

B. MIMO-OFDM Data Detection Model

We vectorize the unquantized received data at the nth
r

receive antenna during the tth OFDM symbol in (17) as

z(d)nr
[t] =

[
z
(d)
nr [t][0] z

(d)
nr [t][1] . . . z

(d)
nr [t][Nc − 1]

]T
=

K∑
k=1

Htime
nr,kF

H
Nc

x
(d)
k [t] +w(d)

nr
[t], (21)

where t ∈ {τp + 1, . . . , τp + τd} and x
(d)
k [t] =[

x
(d)
k [t][0] . . . x

(d)
k [t][Nc − 1]

]T
= FNc

x
(d)
k [t] ∈ CNc×1

is the M -QAM modulated data symbols loaded on the subcar-

riers, where x
(d)
k [t] =

[
x
(d)
k [t][0] . . . x

(d)
k [t][Nc − 1]

]T
∈

CNc×1 is the time domain transmitted signal of the kth user.
Also, Htime

nr,k
∈ CNc×Nc is a circulant matrix with the first col-

umn as hnr,k (from (18)). Using the diagonalizability prop-
erty of a circulant matrix, we represent (21) as shown in (22)
on the next page, where Hfreq

nr,k
= FNcH

time
nr,k

FH
Nc

∈ CNc×Nc

is diagonal, containing the frequency domain representation of

hnr,k, x(d)[t] ≜
[
x
(d)T

1 [t] . . . x
(d)T

K [t]

]T
, 1K is the K×1

all-ones vector, and 0 is an Nc×Nc all-zero matrix. Now, we
vectorize and stack the signal received over the Nr receive
antennas and τd OFDM data symbols to obtain Z(d) as shown
in (23) on the next page, where D ∈ CNrNc×KNc is the mea-
surement matrix for data detection, X(d) ∈ CKNc×τd is the
transmit data matrix, and W(d) is the additive white Gaussian
noise matrix during the data phase. Now, we quantize the
received signal (23) using the b-bit ADCs to obtain

Y(d) = Qb(Z
(d)) = Qb

(
DX(d) +W(d)

)
. (24)

Our goal in this part is to decode the data symbols X(d)

given Y(d) and D. With the posterior distribution of X(d)

in hand, our next task is to perform data-aided channel
estimation to refine the channel estimates. We explain the
model for this problem in the next subsection.

C. Virtual Pilots-Aided MIMO-OFDM Channel Estimation

From section III-A, we write the unquantized pilot received
signal as Z(p) = Φ(p)H + W(p). Similar to the pilot
reception phase, if we consider the decoded data as known
virtual pilot symbols, then we can write the received data
signal as Z(d)[t] = (1T

K ⊗FH
Nc

)
〈
X(d)[t]

〉
(IK ⊗ FNc,L)H+

W(d)[t], where t = {τp + 1, . . . , τp + τd},
〈
X(d)[t]

〉
=

diag
(〈

X
(d)
1 [t]

〉
, . . . ,

〈
X

(d)
K [t]

〉)
∈ CKNc×KNc , and〈

X
(d)
k [t]

〉
= diag

(〈
x
(d)
k [t]

〉)
∈ CNc×Nc . Here,

〈
x
(d)
k [t]

〉
are the posterior means of the decoded data symbols of the
kth user during the tth OFDM symbol. We stack Z(p) and
Z(d)[t] to obtain an expression for the unquantized received
signal over one coherence interval as shown in (25) on the
next page, where Φ ∈ C(τp+τd)Nc×KL is the augmented
measurement matrix and W ∈ C(τp+τd)Nc×Nr is the additive
white Gaussian noise matrix. The b-bit quantized received
signal after the ADCs then reads

Y = Qb(Z) = Qb(ΦH+W) ∈ C(τp+τd)Nc×Nr . (26)

Our goal is to estimate of H given Y and Φ. Once we
estimate H, we use it to obtain D as in (24), which in turn is
used to refine the posterior beliefs of the M−QAM modulated
data symbols in the next data decoding iteration.

In the next section, we present our solutions to the above
channel estimation and data detection problems.

IV. QUANTIZED VB CHANNEL ESTIMATION

Our goal is to infer the posterior distributions of the chan-
nels and the LLRs of the data symbols, given the quantized
pilot and data observations. To this end, we adopt a statistical
inference approach, where we represent the received pilot
and data signals in a probabilistic graphical model. Exact
computation of the posterior distributions is computationally
intractable, as it requires solving high dimensional integrals
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z(d)nr
[t] =

K∑
k=1

FH
Nc

Hfreq
nr,k

x
(d)
k [t] +w(d)

nr
[t] = (1T

K ⊗ FH
Nc

)


Hfreq

nr,1
0 . . . 0

0 Hfreq
nr,2

. . . 0
...

...
. . .

...
0 . . . 0 Hfreq

nr,K



x
(d)
1 [t]

x
(d)
2 [t]

...
x
(d)
K [t]

+w(d)
nr

[t]

= (1T
K ⊗ FH

Nc
)Hfreq

nr
x(d)[t] +w(d)

nr
[t]. (22)

Z(d) =


z
(d)
1 [τp + 1] . . . z

(d)
1 [τp + τd]

...
. . .

...
z
(d)
Nr

[τp + 1] . . . z
(d)
Nr

[τp + τd]

 =


(1T

K ⊗ FH
Nc

)Hfreq
1

(1T
K ⊗ FH

Nc
)Hfreq

2
...

. . .
...

(1T
K ⊗ FH

Nc
)Hfreq

Nr

 [x(d)[τp + 1] . . . x(d)[τp + τd]
]
+W(d)

= DX(d) +W(d), (23)

Z =


Z(p)

Z(d)[τp + 1]
...

Z(d)[τp + τd]

 =


Φ(p)

(1T
K ⊗ FH

Nc
)
〈
X(d)[τp + 1]

〉
(IK ⊗ FNc,L)

...
. . .

...
(1T

K ⊗ FH
Nc

)
〈
X(d)[τp + τd]

〉
(IK ⊗ FNc,L)

H+W =

[
Φ(p)

Φ(d)

]
H+W ≜ ΦH+W. (25)

Y(p)Z(p)Φ(p)

σ2
w

H

X(p)[1]

X(p)[τp]

...

Figure 2. Bayesian network model for the channel estimation problem (20).

Y(d)Z(d)D

σ2
w

X(d)

Hfreq
1

Hfreq
Nr

...

Figure 3. Bayesian network model for the data detection problem (24).

over H, x(d)
1 [τp +1], . . . ,x

(d)
K [τp + τd] to obtain the partition

functions P (Y(p)) and P (Y(d)). This motivates the need for
approximate inference techniques, where we replace the exact
posterior distribution with a distribution that is close to the
original in a particular distance measure, and is also easy
to compute. We will show that this leads to computationally
tractable algorithms for the problem at hand. An excellent
introduction to approximate inference can be found in [35].

We present Bayesian network graphical models for the
channel estimation, data detection and data-aided channel esti-
mation problems in Figures 2, 3, and 4, respectively. We use
shaded circles, transparent circles, and squares to represent
the observations, latent variables, and deterministic variables.
In our channel estimation and data detection problems, the

YZΦ

σ2
w

HΦ(p)

Φ(d)

X(p)[1]

X(p)[τp]

...

〈
X(d)[τp + 1]

〉

〈
X(d)[τp + τd]

〉
...

Figure 4. Bayesian network graphical model for the data-aided channel
estimation problem in (26).

quantized received pilot and data signals are the observations,
and the channel and data symbols are the latent variables.
Also, the pilot symbols and noise variance are deterministic
and known. In the following paragraphs, we briefly describe
variational Bayesian (VB) inference, which is the approximate
inference technique adopted in this paper to solve the pilot-
aided channel estimation problem given in (20).

VB is an iterative procedure to compute approximate poste-
rior distributions of the latent variables given the observations.
In this, we first write the logarithm of the observations Y(p)

as the sum of two terms and lower-bound it as

ln p(Y(p)) = L(q) + KL(q ∥ p) ≥ L(q), (27)

where L(q) ≜
∫
q(H) ln

{
p(Y(p),H;Φ(p),σ2

w)
q(H)

}
dH and

KL(q∥p) ≜ −
∫
q(H) ln

{
p(H|Y(p),Φ(p),σ2

w)
q(H)

}
dH ≥ 0 are the



9

evidence lower bound (ELBO) and non-negative Kullback
Leibler (KL) divergence terms, respectively. Here, q(H) is
a posterior distribution which is arbitrary, and can be approx-
imated and optimized. Note that q(H) depends on Y(p), but
we do not explicitly include it in the notation for brevity.
In the above, maximizing the ELBO L(q) would render a
distribution q that is close to the original model evidence. We
formally state the ELBO maximization problem as

qopt = argmax
q∈P

L(q) = argmin
q∈P

KL(q ∥ p), (28)

where P is the space of probability distributions. The maxi-
mum of L(q) occurs when q(H) = p(H|Y(p),Φ(p), σ2

w), but
computing it is intractable. Therefore, we impose a factorized
structure on each column of H i.e., q(H) =

∏Nr

i=1 qi(hi).
Substituting this in the ELBO, and simplifying it by fixing
one of the factors, say qj(hj), we get

L(q) = −KL
(
qj∥p̃(Y(p),hj ;Φ

(p), σ2
w)
)
+ constant, (29)

where the constant terms do not depend on
qj(hj), and p̃(Y(p),hj ;Φ

(p), σ2
w) is defined using

ln p̃(Y(p),hj ;Φ
(p), σ2

w) ≜ Ei ̸=j

[
ln p(Y(p),H;Φ(p), σ2

w)
]
+

constant, where the notation Ei ̸=j [.] denotes the expectation
with respect to the distributions q1(h1), . . . , qNr

(hNr
)

except qj(hj). Now, L(q) is maximized when the KL
divergence term in (29) is minimized, which happens when
qj(hj) = p̃(Y(p),hj ;Φ

(p), σ2
w). Therefore, the optimal

marginal distribution is

qj(hj) = const × exp
(
Ei̸=j

[
ln p(Y(p),H;Φ(p), σ2

w)
])

,

(30)

where the constant is chosen such that qj becomes a prob-
ability distribution. Thus, VB is an iterative algorithm that
falls in the category of minorization-maximization (MM),
which solves a maximization problem by iteratively obtaining
a lower bound on the objective function as in (27), and
maximizing it. It is known that MM based optimization
converges to a stationary point of the original optimization
problem from any initialization [36].

We note that the marginal distribution in (30) is still hard
to compute, as p(Y(p),H;Φ(p), σ2

w) contains terms involving
the difference of the CDF of complex Gaussian random
vectors. Hence, we add Z(p) also as a latent variable. This
leads to a closed form solution as described below.

We use the Bayesian network in Fig. 2 to express the log-
arithm of the joint probability distribution of the observations
and latent variables as

ln p(Y(p),Z(p),H,α;Φ(p), σ2
w, a, r)

= ln p(Y(p) |Z(p)) + ln p(Z(p) |H;Φ(p), σ2
w)

+ ln p(H|P) + ln p(α; a, r), (31)

where the prior distributions of H and α are

p(H|P) =

Nr∏
n=1

|P|
πKL

exp
(
−hH

n Phn

)
, (32)

p(α; a, r) =

KL∏
k=1

ra

Γ(a)
αa−1
k exp (−rαk) , (33)

respectively. We set a and r to small values (say, 10−4)
such that the hyperprior p(α; a, r) is non-informative. We
approximate the posterior p(Z(p),H,α |Y(p);Φ(p), σ2

w, a, r)
of the latent variables as the factorized distribution:

p(Z(p),H,α |Y(p);Φ(p), σ2
w, a, r)

≈ qH(H)qZ(Z
(p))qα(α)

=

Nr∏
n=1

qhn(hn)

Nr∏
n=1

qzn(z
(p)
n )

KL∏
k=1

qαk
(αk), (34)

where we define Z(p) ≜ [z
(p)
1 , . . . , z

(p)
Nr

] and H ≜
[h1, . . . ,hNr

]. Next, we express the conditional probability
distributions of the observations and latent variables that
are needed to compute the posterior distributions under the
factorized structure as

p(Y(p) |Z(p)) =

τpNc∏
t=1

Nr∏
n=1

1

(
ℜ(z(p)tn ) ∈

(
ℜ(z(lo)

tn ),ℜ(z(hi)
tn )
))

× 1

(
ℑ(z(p)tn ) ∈

(
ℑ(z(lo)

tn ),ℑ(z(hi)
tn )
))

≜
Nr∏
n=1

1

(
z(p)n ∈

(
z(lo)
n , z(hi)

n

))
, (35)

p(Z(p) |H;Φ(p), σ2
w)

=

Nr∏
n=1

1

(πσ2
w)

τpNc
exp

(
− 1

σ2
w

∥z(p)n −Φ(p)hn∥2
)
, (36)

where z
(p)
tn is the (t, n)th entry of Z(p), 1(·) is the indicator

function, z(lo)
tn and z(hi)

tn are the lower and upper quantization
thresholds corresponding to the (t, n)th entry of Y(p), respec-
tively. The posterior distributions of the latent variables are
computed by finding the expectations of the logarithm of the
joint distribution (31) with respect to the latent variables, and
are provided in closed form in the following three Lemmas.
The proofs for the Lemmas follow from (30), and are provided
in the supplementary material.

Lemma 3 (Computation of qH(H)): The posterior distri-
bution qH(H) is complex normal with the covariance matrix
of each of its columns and mean given by

ΣH =

(
1

σ2
w

Φ(p)HΦ(p) + ⟨P⟩
)−1

, (37)

⟨H⟩ = 1

σ2
w

ΣHΦ(p)H
〈
Z(p)

〉
, (38)

respectively. Here, ⟨P⟩ = diag(⟨α⟩), and
〈
Z(p)

〉
and ⟨α⟩ are

the posterior means of qZ(Z(p)) and qα(α), respectively.
Lemma 4 (Computation of qZ(Z(p))): The posterior distri-

bution qZ(Z
(p)) is truncated complex normal with mean〈

Z(p)
〉
= Φ(p) ⟨H⟩

+
σw√
2

f
(

Z(lo)−Φ(p)⟨H⟩
σw/

√
2

)
− f

(
Z(hi)−Φ(p)⟨H⟩

σw/
√
2

)
F
(

Z(hi)−Φ(p)⟨H⟩
σw/

√
2

)
− F

(
Z

(lo)
n −Φ(p)⟨H⟩

σw/
√
2

) , (39)
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Algorithm 2 Quantized VB Channel Estimation

Input: Y(p), Φ(p), τp, σw, Nr, K, L, Nc

Output: ⟨H⟩
1: Initialize ⟨Z(p)⟩, ⟨α⟩, a, r.
2: repeat
3: ⟨P⟩ = diag(⟨α⟩)
4: Compute ΣH using (37).
5: Compute ⟨H⟩ using (38).
6: Compute

〈
Z(p)

〉
using (39).

7: Compute ⟨αk⟩ using (41), k = 1, . . . ,KL.
8: until stopping condition is met

where Z(lo) and Z(hi) are the lower and upper quantization
levels corresponding to the observation Y(p), respectively,
and ⟨H⟩ is the posterior mean of qH(H). Also, f(·) and
F (·) are the PDF and CDF of a standard normal random
variable, respectively, computed element-wise on the real and
imaginary parts of the argument. The division operation in
(39) is also performed element-wise.

Lemma 5 (Computation of qαk
(αk), k = 1, . . . ,KL):

The posterior distribution qαk
(αk) follows a Gamma

distribution with shape and rate parameters given by

ãk = a+Nr and r̃k = r +

Nr∑
n=1

⟨|hkn|2⟩, (40)

respectively. Its mean is given by

⟨αk⟩ =
a+Nr

r +
∑Nr

n=1⟨|hkn|2⟩
, (41)

where hkn is the (k, n)th element of H, and ⟨|hkn|2⟩ =
|⟨hkn⟩|2 +ΣH[k, k].

Note that we have included the subscript k in ãk for
consistency of notation, even though it is independent of k.
From (37), (38), (39), and (41), we see that the statistics of the
posterior distributions qH(H), qZ(Z(p)), and qα(α) depend
on each other. The VB algorithm proceeds iteratively by
randomly initializing the posteriors and alternately computing
each of the posterior distributions until a suitable convergence
condition is satisfied. Once the algorithm converges, we use
the posterior mean from (38) as the final channel estimate.
Then, we compute the DFT of the lag domain channel
estimates, and use them for data decoding. We present VB
channel estimation procedure in Algorithm 2.

V. QUANTIZED VB SOFT SYMBOL DECODING

In this section, we develop a VB algorithm for soft symbol
decoding in MIMO-OFDM systems using the system model
in (24), reproduced here for convenience:

Y(d) = Qb(Z
(d)) = Qb

(
DX(d) +W(d)

)
, (42)

where Y(d) = [y(d)[τp + 1], . . . ,y(d)[τp + τd]] ∈ CNrNc×τd ,
Z(d) = [z(d)[τp + 1], . . . , z(d)[τp + τd]] ∈ CNrNc×τd , X(d) =
[x(d)[τp + 1], . . . ,x(d)[τp + τd]] ∈ CKNc×τd , x(d)[t] =

[x
(d)
1t , . . . , x

(d)
KNc,t

]T , D ∈ CNrNc×KNc , W(d) ∈ CNrNc×τd .
We represent the corresponding Bayesian network in Fig. 3.

Similar to Sec. IV, we consider the unquantized received
data signal as a latent variable, and express the logarithm of
the joint probability distribution of the observations and the
latent variables as

ln p
(
Y(d),Z(d),X(d)|D, σ2

w

)
= ln p(Y(d)|Z(d))

+ ln p
(
Z(d)|X(d),D, σ2

w

)
+ ln p(X(d)). (43)

We factorize the posterior distribution of Z(d) and X(d) as

p
(
Z(d),X(d) |Y(d),D, σ2

w

)
≈ qZ

(
Z(d)

) τp+τd∏
t=τp+1

KNc∏
k=1

qxkt

(
x
(d)
kt

)
, (44)

where Z(d) = [z
(d)
τp+1, . . . , z

(d)
τp+τd

], and x
(d)
kt is the kth

component of x(d)[t]. We write the conditional probability
distributions in (43) as follows:

p(Y(d) |Z(d)) = 1

(
Z(d) ∈ (Z(lo),Z(hi))

)
, (45)

p(Z(d) |X(d);D, σ2
w)

=

τp+τd∏
t=τp+1

1

(πσ2
w)

NrNc
exp

(
− 1

σ2
w

wwwz(d)[t]−Dx(d)[t]
www2

2

)
,

where 1(·) is the indicator function, Z(lo),Z(hi) are the entry-
wise lower and upper quantization intervals of the real and
imaginary components of Y(d). We present the posterior dis-
tributions that maximize the ELBO in the following two Lem-
mas. The computation of the posterior distribution qZ

(
Z(d)

)
is similar to the computation of the posterior distribution of
the unquantized pilot received signal in Lemma 4. Therefore,
we omit the proof of Lemma 7 to avoid repetition. The proof
of Lemma 6 is available in the supplementary material.

Lemma 6 (Computation of qxkt
(x

(d)
kt )): The posterior

qxkt

(
x
(d)
kt

)
follows a Boltzmann distribution with the

probability mass function

qxkt

(
x
(d)
kt = sm

)
=

exp
(
fkt(sm)

)
∑

s′∈M exp
(
fkt(s′)

) (46)

for m = 1, . . . ,M, where k ∈ {1, . . . ,KNc}, t ∈ {τp +
1, . . . , τp+τd}, M = {s1, . . . , sM} is the signal constellation
set of cardinality M , and fkt(s) is shown in (47) on the
next page, where ℜ and ∗ denote the real part and complex
conjugate operators, respectively, D:,k is the kth column of D,〈
z(d)[t]

〉
and

〈
x
(d)
k′t

〉
are the posterior means of qzt

(z(d)[t])

and qxk′t(x
(d)
k′t), respectively.

We compute the mean and mean square value of qxkt
(xd,kt)

as follows:〈
x
(d)
kt

〉
=
∑
s∈M

s qxkt
(s),

〈
|x(d)

kt |
2
〉
=
∑
s∈M

|s|2 qxkt
(s).

Lemma 7 (Computation of qZ
(
Z(d)

)
): The posterior dis-

tribution qZ
(
Z(d)

)
is truncated complex normal, with mean
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fkt(s) = − 1

σ2
w

(
∥D:,k∥2 |s|2 − 2ℜ

[
DH

:,k

(〈
z(d)[t]

〉
−

KNc∑
k′=1
k′ ̸=k

D:,k′

〈
x
(d)
k′t

〉)
s∗
])

+ ln p(x
(d)
kt = s), (47)

Algorithm 3 Quantized VB Soft Symbol Decoding

Input: Y(d),D, M = {s1, . . . , sM}, τp, τd, σw, K, Nc.
Output: qX(X(d)),

〈
X(d)

〉
1: Initialize

〈
Z(d)

〉
, ⟨X(d)⟩ = 0KNc×τd

2: repeat
3: for k = 1 to KNc do
4: for t = τp + 1 to τp + τd do
5: Compute qxkt

(
x
(d)
kt = s

)
using (46) ∀s ∈ M.

6: Compute ⟨x(d)
kt ⟩ =

∑
s∈M s qxkt

(x
(d)
kt = s).

7: end for
8: end for
9: Compute

〈
Z(d)

〉
using (48).

10: until stopping condition is met

〈
Z(d)

〉
= D

〈
X(d)

〉
+

σw√
2

f
(

Z(lo)−D⟨X(d)⟩
σw/

√
2

)
− f

(
Z(hi)−D⟨X(d)⟩

σw/
√
2

)
F
(

Z(hi)−D⟨X(d)⟩
σw/

√
2

)
− F

(
Z(lo)−D⟨X(d)⟩

σw/
√
2

) , (48)

where Z(lo) and Z(hi) are defined in (45),
〈
X(d)

〉
contains the

posterior means of qxkt
(x

(d)
kt ) ∀k, t as its entries, f(·), F (·),

and the division operation are as defined in Lemma 4.
As mentioned in Section IV, the VB algorithm starts

by randomly initializing the latent variables, and iteratively
computes the posterior distributions of data symbols. We use
the posterior distributions of the data symbols in (46) to
calculate the bit LLRs. We present the quantized VB soft
symbol decoding procedure in Algorithm 3. Next, we describe
the data-aided channel estimation procedure.

VI. ITERATIVE QUANTIZED VB CHANNEL ESTIMATION
AND SOFT SYMBOL DECODING

In this section, we merge the channel estimation and soft
symbol decoding into an iterative algorithm that improves on
the system performance obtained by only executing Algo-
rithms 2 and 3. We utilize the data-aided channel estimation
system model to refine the channel estimates in an iterative
fashion. Recall our system model (26) from section III-C:
Y = Qb(Z) = Qb(ΦH+W). We start with the pilot based
channel estimation Algorithm 2 followed by the soft symbol
decoding Algorithm 3. Now, we utilize the posterior means
of the decoded data symbols to form a new measurement
matrix Φ that is input to the channel estimation block. In
a VB procedure, we obtain the posterior distribution of a
given latent variable by computing the expectation of the joint
probability distribution w.r.t. the posterior distributions of all
the other latent variables. This in turn means that its posterior
distribution depends only on the posterior statistics of the
other latent variables. Moreover, in the context of soft symbol
decoding, the posterior statistics of the data symbol enter
the equivalent measurement equation through their posterior

TABLE I.
PER-ITERATION COMPLEXITY OF THE QVB ALGORITHM 4

Matrix Order Complexity〈
X(d)

〉
MK2N3

cNrτd

ΣH K2L2Nc(τp + τd)

⟨H⟩ KLNc(KL+Nr)(τp + τd)〈
Z(d)

〉
KN2

cNrτd

⟨Z⟩ KLNcNr(τp + τd)

means (see (47) and (48)). Therefore, we use the posterior
means of the data symbols to construct a new measurement
matrix for iterative channel estimation.

The data-aided channel estimation procedure follows the
same steps as in Algorithm 2 except that its inputs Y(p) and
Φ(p) are replaced by Y and Φ, respectively. The derivation
is similar to Sec. IV; we provide the final expressions of the
posterior statistics of the latent variables below.

ΣH =

(
1

σ2
w

ΦHΦ+ ⟨P⟩
)−1

, ⟨H⟩ = 1

σ2
w

ΣHΦH ⟨Z⟩ , (49)

⟨αk⟩ =
a+Nr

r +
∑Nr

n=1⟨|hkn|2⟩
, k = 1, . . . ,KL, (50)

⟨Z⟩ = Φ ⟨H⟩+ σw√
2

f
(

Z(lo)−Φ⟨H⟩
σw/

√
2

)
− f

(
Z(hi)−Φ⟨H⟩

σw/
√
2

)
F
(

Z(hi)−Φ⟨H⟩
σw/

√
2

)
− F

(
Z(lo)−Φ⟨H⟩

σw/
√
2

) ,
(51)

where Z(lo) and Z(hi) are the lower and upper quantization
thresholds corresponding to Y. The other notations are as
defined in Lemma 4. We repeat this process of channel
estimation and data decoding for a fixed number of iterations.
Finally, we use the posterior distribution of the transmit
symbols to obtain the bit LLRs, which are deinterleaved and
input to the channel decoder. We present the iterative VB
channel estimation and soft symbol decoding in Algorithm 4.

Now, we present a variant of the iterative channel estima-
tion and soft symbol decoding Algorithm 4 that marginally
improves the performance. We use the aposteriori bit LLRs
from the channel decoder to adapt the data prior that is input
to the soft symbol detector in the next iteration. We interleave
the posterior bit LLRs output by the channel decoder, and gen-
erate the extrinsic information to compute the symbol LLRs
Then, instead of using a uniform prior on the data symbols,
we bias the data detector by a non-uniform data prior. In
every outer iteration of the iterative channel estimator and
soft symbol decoder, we increase the probability mass on the
data symbol output by the extrinsic information progressively
by a judiciously chosen step size. At lower SNRs, such prior
adaptation may lead to error propagation effects, but at SNRs
of interest, this leads to performance improvement. We show
a block diagram for one outer iteration of the iterative channel
estimation and soft symbol decoding algorithm with data prior
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Algorithm 4 Iterative Quantized VB Channel Estimation and
Soft Symbol Decoding

Input: Y(p), Y(d), X(p), M = {s1, . . . , sM}, M , τp, τd, σw,
Nr, K, L, Nc, MAX ITER.

Output: ⟨H⟩, qX(X(d)), ⟨X(d)⟩
1: Initialize ⟨H⟩, ⟨α⟩, ⟨X(d)⟩ = 0KNc×τd , a, r
2: Initial Channel Estimation: Run Algorithm 2.
3: repeat
4: Soft Symbol Decoding:
5: repeat
6: Compute D using (23).
7: for k = 1 to KNc do
8: for t = τp + 1 to τp + τd do
9: Compute qxkt

(
x
(d)
kt = s

)
using (46) ∀s ∈ M.

10: Compute ⟨x(d)
kt ⟩ =

∑
s∈M s qxkt

(x
(d)
kt = s).

11: end for
12: end for
13: Compute

〈
Z(d)

〉
using (48).

14: until stopping condition is met
15: Data-Aided Channel Estimation:
16: Compute Φ using (25), ãk = a+Nr, k = 1, . . . ,KL.
17: Initialize ⟨Z⟩, ⟨α⟩.
18: repeat
19: ⟨P⟩ = diag(⟨α⟩)
20: Compute ΣH and ⟨H⟩ using (49).
21: Compute ⟨αk⟩ using (50), k = 1, . . . ,KL.
22: Compute ⟨Z⟩ using (51).
23: until stopping condition is met
24: until MAX ITER times

adaptation in Fig. 5. We use this algorithm in our simulations,
unless specified otherwise.

A. Computational Complexity

In this subsection, we analyze the per-iteration number
of floating point operations (flops) in the VB algorithm as
a function of the system dimensions. Table I shows the
order (O) of the per-iteration computational complexity of
the steps involved in one iteration of Algorithm 4. The
complexity scales cubically with the number of subcarriers, as
the square of the number of users and the channel length, and
linearly with the number of receive antennas, constellation
size, and number of pilot and data symbols. In particular, the
complexity is linear in the number of data symbols τd, unlike
maximum likelihood approaches where the complexity grows
exponentially with τd. The complexity of the conventional
MIMO-OFDM MMSE channel estimation algorithm scales
cubically with the number of users and the channel length,
whereas the complexity of BiGAMP scales linearly with
the pilot and data symbols, subcarriers, number of users
and channel length, and returns hard decisions of the data
symbols. Note that, in order to speed up computations, we can
precompute the PDF and CDF of a standard normal variable
and store them in a lookup table.

VII. SIMULATION RESULTS

In the following subsections, we first evaluate the Bayesian
and hybrid CRLBs developed in Sec. II, and then study
the NMSE and coded BER performance of the iterative VB
channel estimation and soft symbol decoding algorithm.

A. Cramér-Rao Lower Bounds

In this subsection, we evaluate the Bayesian and hybrid
CRLBs on the NMSE of any estimator of a compress-
ible signal using quantized measurements. We compute the
CRLBs for the recovery of joint sparse vectors from compres-
sive measurements acquired using a random underdetermined
measurement matrix Φ ∈ CM×N , whose entries are i.i.d. and
complex normal distributed with mean 0 and variance 1. We
generate each column of a compressible signal X ∈ CN×L

by sampling from a complex normal distribution with mean
0 and precision matrix P = diag(α). The precision matrix
is generated using a Gamma distribution with shape and
rate parameters a and r, respectively. We show the decay
profile of the sorted magnitudes of compressible signals of
length N = 512, generated using different shape and rate
parameters, in Fig. 6. The rapid decay of the coefficients
shows that the signals are compressible. We fix N = 512,
T = 20, and set the rate parameter to 10−8 for all the
simulations in this subsection. We define the SNR as 1/σ2

w.
In this case, since the support set of the jointly compressible
signals contains all the indices, the support-aware CRLB
and Bayesian CRLB coincide. Hence, we evaluate only the
Bayesian and hybrid CRLBs.

Figure 7 shows the NMSE of the VB algorithm for the
unquantized (labeled “UQ”) and 3 bits quantization (labeled
“3 bits”) cases, and the Bayesian (labeled “BCRLB”) and
hybrid CRLBs (labeled “HCRLB”), as a function of the
shape parameter of the Gamma hyperprior of the precision
matrix. We set the number of measurements to 250 and the
SNR to 40 dB. In the case of hybrid CRLB, we know the
generative model of the compressible signal, which provides
extra information. Hence, the hybrid CRLB is a tight lower
bound on the performance of the VB algorithm. The Bayesian
CRLB only uses the parameters for the Gamma hyperprior
and is therefore looser. Also, the Bayesian CRLB for the
unquantized and 3 bits almost overlap on each other, whereas
there is a small gap between the two in the case of hybrid
CRLB. As the shape parameter increases, the peak value of
the compressible signal decreases, and hence the compress-
ibility of the signal decreases. Due to this, the NMSE and the
CRLBs both increase with the shape parameter.

Figure 8 shows the NMSE and hybrid CRLB as a function
of the number of measurements for the unquantized and
{1, 2, 3} bits quantized cases. We do not include the Bayesian
CRLB in this figure to avoid clutter. The shape parameter
is set to 0.55 and the SNR to 30 dB. We observe that the
gap between the NMSE and CRLB for the 1-bit quantization
is higher compared to the {2, 3} bits and the unquantized
cases. This shows that having only sign measurements leads
to severe performance loss due to the large quantization noise,
which results in higher NMSE. We also see that the gap



13

Figure 5. Quantized VB iterative channel estimation and soft symbol decoding with data prior adaptation.
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Figure 6. Magnitude decay profile of the sorted magnitudes of i.i.d. samples
drawn from a complex normal distribution parameterized by a Gamma
distributed precision matrix.
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Figure 7. NMSE (dB) vs. the shape parameter of the Gamma hyperprior of
the precision matrix, with M = 250, N = 512, T = 20, SNR = 40 dB.

between the unquantized case and the 3-bits quantization is
very small, which empirically shows that a 3-bit quantizer
provides a good trade-off between the performance and sys-
tem complexity. We thus set the ADC resolution to 3 bits in
all the further simulations, unless specified otherwise.

B. QVB Channel Estimation and Soft Symbol Decoding

In this subsection, we evaluate the NMSE and coded BER
performance of the iterative VB channel estimation and soft
symbol decoding algorithm. We also study the impact of the
various system parameters on the support-aware Bayesian
CRLB derived in Section II. The data bits are generated
i.i.d. from a uniform distribution. Each UE’s data bits are
encoded with an LDPC channel code from 3GPP 5G NR
specifications [37]. We use the parity check matrix from
LDPC base graph 0 with a lifting size Zc set to 8 and
set index 0, which results in 176 message bits and 544
coded bits per block. The coded bits are interleaved by a
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Figure 8. NMSE (dB) as a function of the number of quantized measure-
ments. N = 512, T = 20, shape = 0.55, SNR = 30 dB.

random interleaver which is known to both the UE and the
BS, mapped to 4-QAM constellation of unit energy, OFDM
modulated, and transmitted over frequency-selective wireless
channels.4 We assume that the LSFCs between the kth UE
and the BS antennas are the same due to the close spacing
between the antennas compared to the BS-UE distance. The
UEs adopt path loss inversion based transmit power control
that compensates for the LSFCs, and therefore we set them to
1 in all our simulations.5 Each tap of the frequency-selective
channels is i.i.d. circularly symmetric complex normal dis-
tributed with mean 0 and variance 1. We include the details
of the system parameters used for simulations in the captions
of each simulation plot. We define the SNR as 1/σ2

w. We use
the Frobenius norm of the difference between the channel
estimates (and estimates of the unquantized received data
symbols) in consecutive iterations as the stopping condition
for the VB channel estimation (and soft symbol decoding)
procedures. We set the maximum number of iterations for
VB channel estimation and data detection algorithms to 25,
and the total number of iterations in Algorithm 4 to four.

Fig. 9 compares the CRLB derived for a quantized system
with the analytical CRLB for an unquantized system (labeled
UQ, from [29].) We see that, as the ADC resolution increases,
the gap between the quantized and unquantized Bayesian
CRLBs decreases, and the bounds meet beyond an ADC
resolution of 4 bits. In fact, if the ADC resolution is infinite,

4With higher order constellations, the performance is similar, with an
expected shift in the SNR required to achieve a given coded BER.

5The LFSCs can be estimated at the UEs, for example, using the synchro-
nization signals that are periodically transmitted by the BS.
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uses the soft-detection procedure from [38].
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our CRLB matches with the analytical expression derived
for an unquantized system. Therefore, our derived Bayesian
CRLB captures the effect of low resolution ADCs well, and
can serve as a benchmark to evaluate the NMSE performance
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Figure 13. CRLB (dB) as a function of τp for Nr = 32, K = 8, L = 64,
Lsp = 16, Nc = 256, 3-bits quantization.
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of any estimator in a quantized setup.
Fig. 10 shows the NMSE performance of the quantized

VB algorithm and the Bayesian CRLB when Nr = 40,
K = 10, Lsp = 8, and 3 bits quantization. We observe
that when τp = 1 and τp = 4 OFDM symbols, the NMSE
of VB overlaps with the Bayesian CRLB beyond 4 dB and
−4 dB SNR, respectively. At low SNRs and τp = 1, the
gap between the Bayesian CRLB and the NMSE of VB
is slightly more than that at high SNRs, which can be
attributed to the fact that there can be support recovery errors
in VB due to high noise. In our wireless communication
application, we typically operate at medium to high SNRs,
where the Bayesian CRLB and VB almost overlap. Therefore,
the BCRLB serves as a good benchmark to characterize the
NMSE performance of a Bayesian-inspired channel estimator.

Fig. 11 compares the coded BER performance of the VB
algorithm with that of an unquantized joint channel estimation
and data detection algorithm based on BiGAMP [21], and
MMSE channel estimator and soft-detector [38]. For the
quantized MMSE receiver, we compute the DFT after the
quantization, and perform the equalization. We set the number
of outer iterations of the iterative channel estimator and soft
symbol decoder to 8. An advantage of the VB algorithm is
that it can recover the channel with only one pilot OFDM
symbol. However, for fair comparison, we set τp = 8
because the conventional OFDM receiver cannot estimate the
channel in an underdetermined setting. We see that, at a
BER of 10−4, the quantized VB algorithm (labelled “QVB
τp = 8, EstCSIR”) outperforms conventional OFDM receiver
with unquantized observations and channels estimated using
τp = 8 pilot OFDM symbols by around 13 dB. In fact, it even
outperforms the conventional OFDM receiver with unquan-
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Figure 15. Coded BER as a function of τd for Nr = 64, K = 16, L = 64,
Lsp = 8, SNR = 0 dB, 3-bits quantization.

tized observations and perfect CSIR by 2.5 dB. Moreover, the
VB algorithm with only 3 bits quantization performs better
than an unquantized GAMP by around 1 dB. This shows the
importance of directly inferring the posterior distributions of
the data symbols. We also see that the VB algorithm with
data prior adaptation performs better than the VB algorithm
without any adaptation in this scenario by more than 0.5 dB.
Finally, the VB algorithm with 4-bits quantization (labelled
“QVB-4 τp = 4 EstCSIR PriorAdapt”) is only marginally
better than the VB with 3 bits quantization. Therefore, a 3 bits
quantizer is sufficient to achieve good performance in a low-
resolution ADC based MIMO-OFDM system.

Fig. 12 compares the coded BER of the VB algorithm for
the ADC resolution set to {1, 2, 3} bits with square root raised
cosine transmit and receive pulse shaping filters. The roll-off
factors for the transmit and receive filters are set to 0.3. The
system bandwidth is set to 2 GHz, so the sampling period
Ts is 0.5 ns. We set the cyclic prefix length to the maximum
delay spread of L = 32 symbols. The number of nonzero
taps Lsp is set to 8, with the corresponding delays generated
uniformly at random between 0 and (L− 2)Ts. The channel
gains of the nonzero taps are i.i.d. complex normal with
zero mean and unit variance. For comparison, we include the
quantized VB algorithm with ideal pulse shaping filters (la-
beled “QVB-3-bits-NoPS”) and the BiGAMP algorithm [21]
with unquantized pilot and data received signals (labeled
“UQGAMP”). Although the pulse shaping filters introduce
inter-symbol interference and noise correlation, it only results
in a marginal performance loss of around 0.5− 0.7 dB in the
VB algorithm with 3 bits quantization. This shows that the VB
algorithm is robust to non-idealities. Moreover, VB algorithm
with only 2 bits quantization outperforms UQGAMP.

Fig. 13 shows the CRLB as a function of the pilot length
τp for various values of SNR. As τp increases, the CRLB
decreases, which is due to the increase in the number of
observations. The slope of the CRLB curves decreases as τp
increases, and asymptotically becomes zero, which follows
the law of diminishing returns. That is, if we vary only
τp by fixing all the other parameters, we do not see any
significant performance improvement beyond a point. This
is because, irrespective of the number of measurements, the
quantization noise floor limits the improvement obtainable by
increasing τp. Also, the value of the threshold decreases as
SNR increases, which shows that when the noise power is
low, we can potentially achieve better spectral efficiency with
fewer number of pilots.

Figures 14 and 15 show the NMSE (dB) and coded BER,
respectively, as a function of the data duration, τd, for the
iterative VB algorithm. We also plot the CRLB in Fig. 14.
The NMSE decreases with τd, as expected, due to the increase
in the number of virtual pilot symbols. In fact, the NMSE
goes below the CRLB beyond a particular τd in all the τp
configurations. For e.g., when τp is 12, the NMSE is around
−13 dB for τd = 8, whereas the CRLB of −13 dB is
achieved at τp set to 13. That is, the VB channel estimator can
attain an NMSE even lower than the CRLB computed using
a larger training overhead, since it uses the data symbols as
virtual pilots. On the other hand, when τp is 12 and τd is 5,
the VB algorithm achieves an NMSE of around −12.5 dB,
which is higher than the CRLB when τp is 17 by around
1.5 dB. Thus, the NMSE of the channel estimator is higher
than the CRLB computed using τp + τd as the pilot duration.
This is because the data symbols are also estimated using
the received symbols. Nonetheless, the iterative data-aided
channel estimation assists in reducing the training overhead
and increasing the spectral efficiency. Further, the slope of
the NMSE curves decreases with τd, which reiterates our
observation in Fig. 13 about the error floor due to the
quantization noise.

In Fig. 15, we see that, as τp increases, the coded BER
decreases due to better channel estimation performance. We
also include the coded BER performance for a quantized VB
soft symbol decoding algorithm with perfect CSIR, which
serves as a lower bound for the iterative quantized VB channel
estimator and soft symbol decoder. We see that, when τp is 12,
and τd is greater than 28, our iterative VB algorithm almost
meets the performance of the perfect CSIR case. Given the
coherence interval, such studies can guide system designers
to configure τp (and thus τd) and obtain the same BER
performance as with perfect CSIR, or to choose τp to attain
the right trade off between training overhead and data duration
and thereby achieve maximal spectral efficiency.

VIII. CONCLUSIONS

We derived the Bayesian, hybrid, and support-aware
CRLBs for an estimator of a compressible signal using quan-
tized lower dimensional measurements. Next, we developed
a pilot-based channel estimator and a soft symbol decoder
using a VB framework, which directly infers the posterior
distributions of the channel and data given the quantized
received signals. We utilized the posterior statistics of the
decoded data symbols to develop an iterative VB data-aided
channel estimator and soft symbol decoder. We marginally im-
proved the performance by proposing a variant of the iterative
algorithm that used the posterior bit LLRs from the channel
decoder for data prior adaptation. We benchmarked the NMSE
performance of the VB estimator with that of the derived
Bayesian CRLB, and numerically showed that it is efficient.
We also evaluated the NMSE and coded BER performances of
the iterative VB channel estimator and soft symbol decoder,
and compared with the state-of-the-art. Finally, we provided
interesting insights into the impact of various parameters
on the system performance. Future work could consider
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extending these ideas to millimeter-wave channels exploiting
spatial sparsity, or account for carrier frequency and timing
offsets across users by modeling them using latent variables
that are estimated using the VB framework, and so on.
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