Modulo Compressed Sensing

Chandra R. Murthy

Electrical Communication Engineering Indian Institute of Science

Joint work with Dheeraj Prasanna and Chandrasekhar Sriram

Apr 30, 2021

Agenda

・ロト・白ト・モン・ 日・

590

	Introduction
	Introduction
	(Chandra R. Murthy, ECE, IISc) Shannon Day talk 3/40 Apr 30, 2021
	Introduction Motivation
0	
U	utime
	I ntroduction
	• Motivation
	• Modulo-CS
2	2 Theory
	Algorithms
	Modulo-ADC for Compressed Sensing
	widente-ADC for Compressed Sensing
	Summary
	Sammay

Compressed Sensing

- Sub-Nyquist sampling approach for sparse signals
- Sparse vector $\mathbf{x} \in \mathbb{R}^N$:

$$\|\mathbf{x}\|_0 = |\operatorname{supp}(\mathbf{x})| = |\mathcal{S}| \le K \ll N$$

• Recovery of a sparse vector from underdetermined linear system

$$\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{R}^M (M < N)$$

- Plethora of algorithms
- Assumption: Infinite precision

Figure: Underdetermined linear measurement^a

^{*a*}Figure Source:

http://informationtransfereconomics.blogspot.com/2017/10/ compressed-sensing-and-information.html

			< □ > < 団 > < Ξ > < Ξ > < Ξ > < Ξ < つへ()	Ì
(Chandra R. Murthy, ECE, IISc)	Shannon Day talk	5/40	Apr 30, 2021	
	Introduction M	otivation		

Analog-to-digital-converters

Dynamic Range (DR):

$$DR = 20 \log \left(\frac{\text{ADC range}}{\text{Step size}}\right) = 20 \log \left(\frac{2\lambda}{\Delta}\right) \propto L$$

- Finite dynamic range (precision): Number of bits *L* is finite
- Quantization error dependent on resolution Δ and clipping rate

• • • • • • • • •

590

æ

≣≯

¹A. Bhandari, F. Krahmer, and R. Raskar, "Unlimited sampling of sparse signals," in Proc. ICASSP, 2018 📃 590 (Chandra R. Murthy, ECE, IISc) Shannon Day talk 7/40 Apr 30, 2021

Self-reset ADCs

What if the measurement setup can record amplitude only upto $\pm \lambda$?

Why not scale the signal?

Scale signal down to ADC range \downarrow Quantize signal \downarrow Scale the values up by same amount

Motivation

Introduction

- Signal resolution remains same
- Quantization error \propto Maximum value of input signal

SR-ADCs can be used to reduce quantization error

Issues:

- Information loss due to modulo operation
- Key question: Is recovery of sparse vectors possible from modulo measurements?

8/40

SQA

æ

Connection to Unlimited Sampling²

• Unlimited sampling: Recovery of bandlimited signals from modulo samples

Theorem (Unlimited sampling of sparse signals)

Let $g = s_K * \psi$ for a known low-pass filter $\psi \in \mathcal{B}_{\pi}$ and s_K be the unknown K -sparse signal to be recovered, and assume one has access to an a priori bound $\beta_g \geq \|\psi\|_{\infty} \|s_K\|_{TV}$. Let

 $y_n = \mathscr{M}_{\lambda}(g(t))|_{t=nT}, n = 0, \dots, N-1$

be the modulo samples with sampling period T. Then a sufficient condition for recovery of s_K from the y_n (up to additive multiples of 2λ) is

$$T \leq \frac{1}{2\pi e}$$
 and $N \geq 2K + 1 + 7\frac{\beta_g}{\lambda}$

Low pass filtered measurements \rightarrow CS measurements

Introduction Modulo-CS

Outline

Modulo-CS

Modulo Compressed Sensing

$$\mathbf{z} = [\mathbf{y}]^* = [\mathbf{A}\mathbf{x}]^*$$

Modulo-CS

(1)

- $\mathbf{A} \in \mathbb{R}^{M \times N}$ (M < N) is the measurement matrix
- $\mathbf{x} \in \mathbb{R}^N$ is an *s*-sparse vector ($s \ll N$)
- [.]^{*} denotes the element-wise modulo-1 operation (fractional part).

Introduction

Questions:

- **(**) What are the conditions on **A** such that each *s*-sparse vector \mathbf{x} results in an unique \mathbf{z} ?
- **2** What is the minimum *M* such that the conditions hold?
- **I How to construct A?**
- How to solve the problem efficiently?

			・ロト・西ト・ヨト・ヨト ヨー うへぐ
(Chandra R. Murthy, ECE, IISc)	Shannon Day talk	11/40	Apr 30, 2021
	Theory		

Theory

Modulo decomposition property

Key idea: Any real number *y* can be written as an integer part $v \in \mathbb{Z}$ and a fractional part $z \in [0, 1)$.

Simple extension to vectors	
Modular decomposition property	
Any vector $\mathbf{y} \in \mathbb{R}^M$ can be decomposed as	
$\mathbf{y} = \mathbf{z} + \mathbf{v}$	(2)
where $\mathbf{z} \in [0, 1)^M$ and $\mathbf{v} \in \mathbb{Z}^M$.	

Remarks:

- There is no one-to-one correspondence between all possible vectors **y** and **z**.
- Does $\mathbf{y} = \mathbf{A}\mathbf{x}$ with $\mathbf{x} \in \mathbb{R}^N$ help in possibility of one-to-one correspondence?

			・ロト・目・・ヨト・ヨト ヨー シへの
(Chandra R. Murthy, ECE, IISc)	Shannon Day talk	13/40	Apr 30, 2021
	Theory For	nulation	
Sparse recovery problem			

Proposition

For a given matrix $\mathbf{A} \in \mathbb{R}^{M \times N}$ and s-sparse $\mathbf{x} \in \mathbb{R}^N$, the following properties are equivalent.

- The vector \mathbf{x} is the unique s-sparse solution to $\mathbf{A}\mathbf{w} = \mathbf{y}$ with $\mathbf{z} = \mathbf{y} + \mathbf{v}$ where $\mathbf{z} = [\mathbf{A}\mathbf{x}]^*$ and $\mathbf{v} \in \mathbb{Z}^M$.
- 2 The vector **x** can be reconstructed as the unique solution of

$$\underset{\mathbf{w},\mathbf{v}}{\operatorname{arg\,min}} \|\mathbf{w}\|_{0}$$
subject to $\mathbf{A}\mathbf{w} + \mathbf{v} = [\mathbf{A}\mathbf{x}]^{*}$; $\mathbf{v} \in \mathbb{Z}^{M}$. (P₀)

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > · □

Sparse recovery problem

Proposition

For a given matrix $\mathbf{A} \in \mathbb{R}^{M \times N}$ and s-sparse $\mathbf{x} \in \mathbb{R}^N$, the following properties are equivalent.

- The vector \mathbf{x} is the unique s-sparse solution to $\mathbf{A}\mathbf{w} = \mathbf{y}$ with $\mathbf{z} = \mathbf{y} + \mathbf{v}$ where $\mathbf{z} = [\mathbf{A}\mathbf{x}]^*$ and $\mathbf{v} \in \mathbb{Z}^M$.
- 2 The vector **x** can be reconstructed as the unique solution of

$$\underset{\mathbf{w},\mathbf{v}}{\operatorname{arg\,min}} \|\mathbf{w}\|_{0}$$
subject to $\mathbf{A}\mathbf{w} + \mathbf{v} = [\mathbf{A}\mathbf{x}]^{*}$; $\mathbf{v} \in \mathbb{Z}^{M}$. (P₀)

Proof.

(1) \Rightarrow (2): Let **x** be the unique s-sparse solution of $\mathbf{A}\mathbf{w} = \mathbf{y}$ with $\mathbf{z} = \mathbf{y} + \mathbf{v}$ where $\mathbf{z} = [\mathbf{A}\mathbf{x}]^*$ and $\mathbf{v} \in \mathbb{Z}^M$. Then a solution $\mathbf{x}^{\#}$ of (P₀) is s-sparse and satisfies $\mathbf{A}\mathbf{x}^{\#} + \mathbf{v} = \mathbf{z}$, so that $\mathbf{x} = \mathbf{x}^{\#}$.

The implication $(2) \Rightarrow (1)$ is direct.

			・ロマ・雪マ・叫マ・山マ
(Chandra R. Murthy, ECE, IISc)	Shannon Day talk	14/40	Apr 30, 2021
	Theory	Identifiability	
Outline			

15/40

Theory	Identifiability

Identifiability from modulo measurements

When does this not hold?

Necessary and sufficient conditions

Lemma (Necessary and sufficient condition)

Any vector **x** satisfying $\|\mathbf{x}\|_0 \leq s$ is a unique solution to the optimization problem (P₀) \updownarrow "Any 2s columns of matrix **A** are linearly independent of all $\mathbf{v} \in \mathbb{Z}^M \setminus \{\mathbf{0}\}$ ".

▲□▶▲□▶▲≡▶▲≡▶ ≡ めんの

Necessary and sufficient conditions

Lemma (Necessary and sufficient condition)

Any vector **x** satisfying $\|\mathbf{x}\|_0 \leq s$ is a unique solution to the optimization problem (P₀)

⊅

"Any 2s columns of matrix **A** are linearly independent of all $\mathbf{v} \in \mathbb{Z}^M \setminus \{\mathbf{0}\}$ ".

Comparison to Compressed sensing:

Corollary (Other necessary conditions)

The following two conditions are necessary for recovering any vector \mathbf{x} satisfying $\|\mathbf{x}\|_0 \leq s$ as a unique solution of the optimization problem (P₀):

- $M \ge 2s + 1$ (Compared to $M \ge 2s$ in CS)
- 2 Any 2s columns of matrix **A** are linearly independent.

		1= (10	< □ > < @ > < E > < E)	E - 900
(Chandra R. Murthy, ECE, IISc)	Shannon Day talk	17/40		Apr 30, 2021
	Theory Suf	ficiency		
Outline				
1 Introduction				
2 Theory				
• Identifiability				
• Sufficiency				
(3) Algorithms				
4 Modulo-ADC for Compressed	Sensing			
5 Summary				

▲□▶▲□▶▲≡▶▲≡▶ ≡ めんの

Sufficiency: Is there such a matrix?

Theorem (Construction of **A**)

For any $N \ge 2s + 1$, there exists a measurement matrix $\mathbf{A} \in \mathbb{R}^{M \times N}$ with M = 2s + 1 rows such that every s-sparse vector $\mathbf{x} \in \mathcal{R}^N$ can be reconstructed from its modulo measurement vector $\mathbf{z} = [\mathbf{A}\mathbf{x}]^*$ as a solution of P_0 -optimization problem.

Sufficiency: Is there such a matrix?

Theorem (Construction of **A**)

For any $N \ge 2s + 1$, there exists a measurement matrix $\mathbf{A} \in \mathcal{R}^{M \times N}$ with M = 2s + 1 rows such that every s-sparse vector $\mathbf{x} \in \mathcal{R}^N$ can be reconstructed from its modulo measurement vector $\mathbf{z} = [\mathbf{A}\mathbf{x}]^*$ as a solution of P_0 -optimization problem.

M = 2s + 1 will suffice.

Proof idea:

- For $\mathbf{A} \in \mathcal{R}^{(2s+1) \times N}$, $\mathbf{u} \in \mathbb{Z}^M$, and $(|\mathcal{S}| \leq 2s)$, construct $\mathbf{B}(\mathbf{u}, S) = \begin{bmatrix} \mathbf{u} & \mathbf{A}_S \end{bmatrix}$
- Condition not satisfied $\Rightarrow \det(\mathbf{B}(\mathbf{u}, S)) = 0$
- Consider $\bigcup_{|S| \le 2s} \bigcup_{\mathbf{u} \in \mathbb{Z}^M} {\mathbf{A} | \det (\mathbf{B}(\mathbf{u}, S)) = 0} \Rightarrow$ Lebesgue measure 0
- Choose A outside the Lebesgue measure 0 set

19/40

ロト 4 酉 ト 4 臣 ト 4 臣 - のへで

Example 1: Gaussian random matrices

Claim: Will work!

- It is outside the Lebesgue measure 0 set
- Any continuous distribution based random matrices

Example 2: Integer matrices

Claim: Will not work³

Proposition	
For any integer vector $\mathbf{a} \in \mathbb{Z}^{K}$ and $\mathbf{x} \in \mathbb{R}^{K}$, it holds that	1
$[\mathbf{a}^T \mathbf{x}^*]^* = [\mathbf{a}^T \mathbf{x}]^*$	J

³E. Romanov and O. Ordentlich, "Blind unwrapping of modulo reduced Gaussian vectors: Recovering MSBs from LSBs", 2019.

(Chandra R. Murthy, ECE, IISc)	Shannon Day talk	20/40	Apr 30, 2021
	Algorithms		

Algorithms

590

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ●

Related works

Phase unwrapping:⁴

- Comparison to phase retrieval problem
- Limited to Gaussian measurement matrix
- First stage: Initial estimate of bin index
- Second stage: Alternating minimization framework
- Application considered: Modulo Camera

Generalized Approximate Message Passing (GAMP):⁵

- Assume Bernoulli-Gaussian distribution for **x**
- GAMP algorithm

⁴ V. Shah and C. Hegde, "Sparse signal recovery from modulo observations", EURASIP Journal on Advances in Signal Processing, 2021.				
⁵ O. Musa, P. Jung and N. Goertz, "Ge signals", Proc. IEEE Global Conf. Signal	eneralized approxima l Inf. Process., pp. 33	te message passir 36-340, 2018.	ng for unlimited sampling of s	parse ≣ ∽९৫
(Chandra R. Murthy, ECE, IISc)	Shannon Day talk	22/40		Apr 30, 2021
	Algorithms	Convex relaxation		
Outline				
1 Introduction				
2 Theory				
3 Algorithms				
• Convex relaxation				
• MILP				
4 Modulo-ADC for Compressed Se	ensing			

5 Summary

590

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ●

Convex Relaxation

Optimization problem:

$$\underset{\mathbf{x},\mathbf{v}}{\operatorname{arg\,min}} \|\mathbf{x}\|_{0}$$

subject to $\mathbf{A}\mathbf{x} = \mathbf{z} + \mathbf{v}; \ \mathbf{v} \in \mathbb{Z}^{M}.$ (P₀)

• NP-hard problem

Convex relaxation:

Modulo $\ell 1$ recovery problem	
$rgmin_{\mathbf{x},\mathbf{y}} \ \mathbf{x}\ _1$	
subject to $\mathbf{A}\mathbf{x} = \mathbf{z} + \mathbf{v}; \ \mathbf{v} \in \mathbb{Z}^M$.	(P ₁)

Algorithms

Convex relaxation

• Combinatorial optimization problem

			・ロ・・「日・・ヨ・・ヨ・ ヨ・ つへで
(Chandra R. Murthy, ECE, IISc)	Shannon Day talk	24/40	Apr 30, 2021
	Algorithms	Convex relaxation	
IRSP			

Definition (Integer range space property (IRSP))

A matrix **A** is said to satisfy the integer range space property of order *s* if for all sets $S \subset [N]$ with $|S| \leq s$,

$$\|\mathbf{u}_{\mathcal{S}}\|_{1} < \|\mathbf{u}_{\mathcal{S}^{C}}\|_{1},$$

holds for every $\mathbf{u} \in {\mathbf{u} | \mathbf{A}\mathbf{u} = \mathbf{v} \in \mathbb{Z}^M}$.

• If **v** is restricted to be equal to $\mathbf{0} \Rightarrow$ Null space property

Theorem (ℓ_1 recovery from modulo-CS)

Every s-sparse \mathbf{x} is the unique solution of (P_1) if and only if the matrix \mathbf{A} satisfies the IRSP of order s.

• Design of matrices that satisfy the above property is an open problem

25/40

590

Measurements restricted to 2k modulo periods

$$\underset{\mathbf{x}, \mathbf{v}}{\operatorname{arg\,min}} \|\mathbf{x}\|_{1}$$

subject to $\mathbf{A}\mathbf{x} = \mathbf{z} + \mathbf{v}, \|\mathbf{A}\mathbf{x}\|_{\infty} < k; \ \mathbf{v} \in \mathbb{Z}^{M}.$ (P_{1k})

Definition (*L*-restricted integer range space property (*L*-restricted IRSP))

A matrix **A** is said to satisfy the \mathcal{L} -restricted integer range space property of order *s* if for all sets $\mathcal{S} \subset [N]$ with $|\mathcal{S}| \leq s$,

 $\|\mathbf{u}_{\mathcal{S}}\|_{1} < \|\mathbf{u}_{\mathcal{S}^{C}}\|_{1},$

holds for every $\mathbf{u} \in \mathcal{L} \subseteq \{\mathbf{u} | \mathbf{A}\mathbf{u} = \mathbf{v} \in \mathbb{Z}^M\}.$

- If $\mathcal{L} = \{ \mathbf{u} | A\mathbf{u} = \mathbf{0} \} \Rightarrow$ Null space property
- If $\mathcal{L} = \{ \mathbf{u} | \mathbf{A}\mathbf{u} = \mathbf{v} \in \mathbb{Z}^M \} \Rightarrow$ Integer range space property

		・ロ・・西・・ヨ・・ヨ・ しょうくの
(Chandra R. Murthy, ECE, IISc)	Shannon Day talk 26/40	Apr 30, 2021
	Algorithms Convex relaxation	

ℓ_1 Recovery Performance

Define three sets:

•
$$\mathcal{L}_l = \{\mathbf{u} | \mathbf{A}\mathbf{u} = \mathbf{v} \in \mathbb{Z}^M, \|\mathbf{v}\|_{\infty} \leq l\}$$

- $\mathcal{K}_{l,\mathcal{S}} = \left\{ \mathbf{u} | \mathbf{A}\mathbf{u} = \mathbf{v} \in \mathbb{Z}^{M}, \| \mathbf{A}\mathbf{u}_{\mathcal{S}} \|_{\infty} < l, \| \mathbf{A}\mathbf{u}_{\mathcal{S}^{C}} \|_{\infty} < l \right\}$
- $\mathcal{K}_l = \bigcup_{\mathcal{S}:|\mathcal{S}| < s} (\mathcal{K}_{l,\mathcal{S}})$

Note: $\mathcal{K}_{l,S} \subset \mathcal{L}_{2l-1}$ and $\mathcal{K}_{l} \subseteq \mathcal{L}_{2l-1}$

Theorem

Given a matrix $\mathbf{A} \in \mathbb{R}^{M \times N}$, the guarantees for unique recovery of every s-sparse vector \mathbf{x} as a solution to (\mathbf{P}_{1k}) with the additional constraint $\|\mathbf{A}\mathbf{x}\|_{\infty} < k$ are:

- Necessary condition: A satisfies \mathcal{K}_k -restricted IRSP.
- Sufficient condition: A satisfies \mathcal{L}_{2k-1} -restricted IRSP.

Remarks:

- Gap between both conditions: $\mathcal{L}_{2k-1} \setminus \mathcal{K}_k$ -restricted IRSP
- For (P₁) problem $(k \to \infty)$: IRSP is both necessary and sufficient

27/40

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ●

SQ (P

Algorithms MILP
Outline
1 Introduction
2 Theory
3 Algorithms
• Convex relaxation
• MILP
Modulo-ADC for Compressed Sensing
5 Summary
としょう かん かん む きょう きょう きょう
(Chandra R. Murthy, ECE, IISc) Shannon Day talk 28/40 Apr 30, 2021
Algorithms MILP

Mixed integer linear program (MILP)

 $\ell 1$ norm:

- $\|\mathbf{x}\|_1 = \sum_{i=1}^N |x_i| = \sum_{i:x_i \ge 0} x_i + \sum_{i:x_i < 0} (-x_i)$
- First set: \mathbf{x}^+ and second set: \mathbf{x}^- with $\mathbf{x} = \mathbf{x}^+ \mathbf{x}^-$

Bound constraint:

• $\|\mathbf{A}\mathbf{x}\|_{\infty} < k \Rightarrow v_i \in [-k, k-1]$

Modulo MILP

$$\underset{\mathbf{x}^{+},\mathbf{x}^{-},\mathbf{v}}{\operatorname{arg\,min}} \mathbf{1}^{T} \left(\mathbf{x}^{+} + \mathbf{x}^{-} \right)$$

subject to $\begin{bmatrix} \mathbf{A} & -\mathbf{A} & -\mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{+} \\ \mathbf{x}^{-} \\ \mathbf{v} \end{bmatrix} = \mathbf{z}$ (P_{MILP})
 $\mathbf{v} \in \begin{bmatrix} -k, k-1 \end{bmatrix}^{M} \subseteq \mathbb{Z}^{M}, \quad \mathbf{x}^{+}, \mathbf{x}^{-} \ge 0$

• Matlab optimization toolbox: intlinprog function

・ロ・・ 白・ ・ 同・ ・ 同・

590

₹

Success recovery percentage

- *N* = 50
- $\delta = \frac{M}{N}$ and $\rho = \frac{s}{N}$
- $\mathbf{A}_{i,j} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1/m)$
- Non-zero entries of $\mathbf{x} \sim Unif[-1, 1]$

Key observation: Transition for MILP close to the theoretical result

		▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ
(Chandra R. Murthy, ECE, IISc)	Shannon Day talk 30/40	Apr 30, 2021
	Algorithms MILP	

Phase transition curves

- N = 50
- $\mathbf{A}_{i,j} \overset{i.i.d.}{\sim} \mathcal{N}(0, 1/M)$

Key observation: Good performance for low variance signals

Figure: Phase transition with different distributions for 80% accuracy

590

・ロ・・ 白 ・ ・ 回 ・ ・ 回 ・

Modulo-ADC for Compressed Sensing

Quantized measurements

 $w_i = Q_{\lambda,L}(f_\lambda(y_i)); \quad i = 1, 2, \dots, M$

• $Q_{\lambda,L}$: Uniform mid-rise quantizer in $[-\lambda, \lambda]$ using L bits.

•
$$y_i = [\mathbf{A}\mathbf{x}]_i$$

 f_{λ} function:

- Scaled measurements: $f_{\lambda}(y_i) = \frac{1}{\alpha} y_i \in [-\lambda, \lambda]$ where $\alpha = \left\lceil \frac{1}{\lambda} \max_i |y_i| \right\rceil$
- Clipped measurements: $f_{\lambda}(y_i) = \begin{cases} \lambda & \text{if } y_i \ge \lambda \\ -\lambda & \text{if } y_i \le -\lambda \\ y_i & \text{otherwise} \end{cases}$
- Modulo measurements: $f_{\lambda}(y_i) = \mathscr{M}_{\lambda}(y_i)$ (Termed Modulo-ADC)

33/40

ロ ト 《 母 ト 《 臣 ト 《 臣) の Q ()

Recovery techniques

• Scaled measurements:

$$\underset{\mathbf{x}^{+},\mathbf{x}^{-}}{\operatorname{arg\,min}} \mathbf{1}^{T} \left(\mathbf{x}^{+} + \mathbf{x}^{-} \right)$$

subject to $\begin{bmatrix} \mathbf{A} & -\mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{+} \\ \mathbf{x}^{-} \end{bmatrix} = \mathbf{z}, \quad \mathbf{x}^{+}, \mathbf{x}^{-} \ge 0$ (P_{LP})

- Clipped measurements: 2 approaches presented⁶
 - Rejection: Discard saturated measurements and run PLP
 - **Consistency constraints:** Rejection approach with additional constraint for the saturated measurements

$$\begin{bmatrix} \Phi^{S^+} \\ -\Phi^{S^-} \end{bmatrix} \mathbf{x} \ge \lambda \mathbf{1}$$

• Modulo measurements: MILP algorithm

⁶ Laska et. al., Democracy in action	n: Quantization, saturation	, and compressiv	ve sensing, Applied and Computational
Harmonic Analysis, 2011		-	・ロト・日本・日本・日本・日本・日本
(Chandra R. Murthy, ECE, IISc)	Shannon Day talk	34/40	Apr 30, 2021

Modulo-ADC for Compressed Sensing

Analysis setup

Default Parameters:

- N = 50, s = 4, M = 30
- $\lambda = 0.5, L = 6$ bits

Signal generation:

- $\mathbf{A}_{i,j} \overset{i.i.d.}{\sim} \mathcal{N}(0, 1/M)$
- Support of **x**: *s* index drawn uniformly.
- Nonzero entries of **x**: $\mathcal{N}(0, 1)$

Metrics:

- Instantaneous NMSE (for each Monte Carlo (MC) simulation): $\frac{||\mathbf{x} \mathbf{x}_{out}||^2}{||\mathbf{x}||^2}$
- Successful recovery: If Instantaneous NMSE < 0.1 for unquantized case
- Probability of error: <u>Number of MC sims with unsuccessful recovery</u> Total number of MC sims
- Average success NMSE calculated as average of Instantaneous NMSE for the MC sims with successful recovery

35/40

▲□▶▲□▶▲≡▶▲≡▶ ≡ めんの

Varying quantization levels

Observations:

- NMSE floor for MILP and Rejection LP
- MILP has lower probability of error when compared to Rejection LP

ſ

Modulo-ADC for Compressed Sensing

Varying ADC range- Probability of error

Observations:

- Probability of error decreases with range due to lesser folding
- Note: Average success NMSE increases with λ for all algorithms and all values of M

590

æ

ㅁ ▶ 《圖 ▶ 《 둘 ▶ 《 불 ▶

Varying ADC range- NMSE

Observations:

- NMSE increases with increase in range when sufficient resolution is present
- Increase in NMSE is 6-7dB for increase in range from 0.2 to 0.8

(Chandra R. Murthy, ECE, IISc)	Shannon Day talk	38/40	Apr 30, 2021
	Summary		

Summary

590

・ロ・・ 白・ ・ ほ・ ・ ほ・

Summary

Key takeaways:

- Modulo-CS is identifiable
- Penalty for modulo operation is a single measurement
- Gaussian random matrices are candidate measurement matrices
- MILP algorithm can be used for modulo recovery
- Modulo-ADCs can lead to lower quantization errors under certain constraints

Future work:

- Extension to noisy case
- Alternative algorithms: e.g. SBL based algorithms
- Modulo-ADCs: Characterize tradeoff between number of folds and quantization levels

Contact: cmurthy@iisc.ac.in

