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Introduction Motivation

Compressed Sensing

Sub-Nyquist sampling approach for
sparse signals

Sparse vector x 2 RN :

kxk0 = |supp(x)| = |S|  K ⌧ N

Recovery of a sparse vector from
underdetermined linear system

y = Ax 2 RM(M < N)

Plethora of algorithms

Assumption: Infinite precision

Figure: Underdetermined linear measurementa

aFigure Source:
http://informationtransfereconomics.blogspot.com/2017/10/
compressed-sensing-and-information.html
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Introduction Motivation

Analog-to-digital-converters

Dynamic Range (DR):

DR = 20 log
✓

ADC range
Step size

◆
= 20 log

✓
2�
�

◆
/ L

Finite dynamic range (precision): Number of bits L is finite

Quantization error dependent on resolution � and clipping rate
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Introduction Motivation

Self-reset ADCs

What if the measurement setup can record amplitude only upto ±�?

1

Loss of information due to clipping!

Wrap around the signal!

Self-reset ADC measurements:
zi = M�(yi) = mod (yi + �, 2�)� �

Similar transfer function (modulo-1 operation):

zi = mod (yi, 1)

1A. Bhandari, F. Krahmer, and R. Raskar, “Unlimited sampling of sparse signals,” in Proc. ICASSP, 2018
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Introduction Motivation

Why not scale the signal?

Scale signal down to ADC range
#

Quantize signal
#

Scale the values up by same amount

Signal resolution remains same

Quantization error / Maximum value of input signal

SR-ADCs can be used to reduce quantization error

Issues:

Information loss due to modulo operation

Key question: Is recovery of sparse vectors possible from modulo measurements?
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Introduction Motivation

Connection to Unlimited Sampling2

Unlimited sampling: Recovery of bandlimited signals from modulo samples

Theorem (Unlimited sampling of sparse signals)

Let g = sK ⇤  for a known low-pass filter  2 B⇡ and sK be the unknown K -sparse signal
to be recovered, and assume one has access to an a priori bound �g � k k1 ksKkTV .
Let

yn = M�(g(t))|t=nT , n = 0, . . . ,N � 1

be the modulo samples with sampling period T.
Then a sufficient condition for recovery of sK from the yn (up to additive multiples of 2�) is

T  1
2⇡e

and N � 2K + 1 + 7
�g

�

Low pass filtered measurements ! CS measurements

2A. Bhandari, F. Krahmer, and R. Raskar, “Unlimited sampling of sparse signals,” in Proc. ICASSP, 2018
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Introduction Modulo-CS

Modulo-CS

Modulo Compressed Sensing

z = [y]⇤ = [Ax]⇤ (1)

A 2 RM⇥N (M < N) is the measurement matrix

x 2 RN is an s-sparse vector (s ⌧ N)

[ . ]⇤ denotes the element-wise modulo-1 operation (fractional part).

Questions:
1 What are the conditions on A such that each s-sparse vector x results in an unique z?
2 What is the minimum M such that the conditions hold?
3 How to construct A?
4 How to solve the problem efficiently?
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Theory
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Theory Formulation

Modulo decomposition property

Key idea: Any real number y can be written as an integer part v 2 Z and a fractional part
z 2 [0, 1).

Simple extension to vectors

Modular decomposition property

Any vector y 2 RM can be decomposed as

y = z + v (2)

where z 2 [0, 1)M and v 2 ZM .

Remarks:

There is no one-to-one correspondence between all possible vectors y and z.

Does y = Ax with x 2 RN help in possibility of one-to-one correspondence?
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Theory Formulation

Sparse recovery problem

Proposition

For a given matrix A 2 RM⇥N and s-sparse x 2 RN, the following properties are equivalent.
1 The vector x is the unique s-sparse solution to Aw = y with z = y + v where z = [Ax]⇤

and v 2 ZM.
2 The vector x can be reconstructed as the unique solution of

argmin
w,v

kwk0

subject to Aw + v = [Ax]⇤ ; v 2 ZM. (P0)

Proof.

(1) ) (2): Let x be the unique s-sparse solution of Aw = y with z = y + v where z = [Ax]⇤

and v 2 ZM . Then a solution x
# of (P0) is s-sparse and satisfies Ax

# + v = z, so that
x = x

#.

The implication (2) ) (1) is direct.
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Theory Identifiability

Identifiability from modulo measurements

x1

x2

x3

...

z1

z2

z3

z4

...
Set of all s-sparse vectors

Modulo measurements

When does this not hold?

Let z1 = z2 ) Ax1 + v1 = Ax2 + v2

A (x1 � x2) = v2 � v1 , v 2 ZM

(Chandra R. Murthy, ECE, IISc) Shannon Day talk 16 / 40 Apr 30, 2021

Theory Identifiability

Necessary and sufficient conditions

Lemma (Necessary and sufficient condition)

Any vector x satisfying kxk0  s is a unique solution to the optimization problem (P0)
m

“Any 2s columns of matrix A are linearly independent of all v 2 ZM \ {0}”.

Comparison to Compressed sensing:

Corollary (Other necessary conditions)

The following two conditions are necessary for recovering any vector x satisfying kxk0  s
as a unique solution of the optimization problem (P0):

1 M � 2s + 1 (Compared to M � 2s in CS)
2 Any 2s columns of matrix A are linearly independent.

(Chandra R. Murthy, ECE, IISc) Shannon Day talk 17 / 40 Apr 30, 2021



Theory Identifiability

Necessary and sufficient conditions

Lemma (Necessary and sufficient condition)

Any vector x satisfying kxk0  s is a unique solution to the optimization problem (P0)
m

“Any 2s columns of matrix A are linearly independent of all v 2 ZM \ {0}”.

Comparison to Compressed sensing:

Corollary (Other necessary conditions)

The following two conditions are necessary for recovering any vector x satisfying kxk0  s
as a unique solution of the optimization problem (P0):

1 M � 2s + 1 (Compared to M � 2s in CS)
2 Any 2s columns of matrix A are linearly independent.

(Chandra R. Murthy, ECE, IISc) Shannon Day talk 17 / 40 Apr 30, 2021

Theory Sufficiency

Outline

1 Introduction

2 Theory

Identifiability

Sufficiency

3 Algorithms

4 Modulo-ADC for Compressed Sensing

5 Summary

(Chandra R. Murthy, ECE, IISc) Shannon Day talk 18 / 40 Apr 30, 2021



Theory Sufficiency

Sufficiency: Is there such a matrix?

Theorem (Construction of A)

For any N � 2s + 1, there exists a measurement matrix A 2 RM⇥N with M = 2s + 1 rows
such that every s-sparse vector x 2 RN can be reconstructed from its modulo measurement
vector z = [Ax]⇤ as a solution of P0-optimization problem.

M = 2s + 1 will suffice.

Proof idea:

For A 2 R(2s+1)⇥N , u 2 ZM , and (|S|  2s), construct B(u, S) =
⇥
u AS

⇤

Condition not satisfied ) det (B(u, S)) = 0

Consider [|S|2s [u2ZM {A| det (B(u, S)) = 0} ) Lebesgue measure 0

Choose A outside the Lebesgue measure 0 set
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Theory Sufficiency

Measurement matrix examples

Example 1: Gaussian random matrices

Claim: Will work!
It is outside the Lebesgue measure 0 set

Any continuous distribution based random matrices

Example 2: Integer matrices

Claim: Will not work3

Proposition

For any integer vector a 2 ZK and x 2 RK, it holds that

[aT
x
⇤]⇤ = [aT

x]⇤

3E. Romanov and O. Ordentlich, ”Blind unwrapping of modulo reduced Gaussian vectors: Recovering MSBs from
LSBs”, 2019.
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Algorithms Literature

Related works

Phase unwrapping:
4

Comparison to phase retrieval problem

Limited to Gaussian measurement matrix

First stage: Initial estimate of bin index

Second stage: Alternating minimization framework

Application considered: Modulo Camera

Generalized Approximate Message Passing (GAMP):
5

Assume Bernoulli-Gaussian distribution for x

GAMP algorithm

4V. Shah and C. Hegde, ”Sparse signal recovery from modulo observations”, EURASIP Journal on Advances in
Signal Processing, 2021.

5O. Musa, P. Jung and N. Goertz, ”Generalized approximate message passing for unlimited sampling of sparse
signals”, Proc. IEEE Global Conf. Signal Inf. Process., pp. 336-340, 2018.
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Algorithms Convex relaxation

Convex Relaxation

Optimization problem:

argmin
x,v

kxk0

subject to Ax = z + v; v 2 ZM. (P0)

NP-hard problem

Convex relaxation:

Modulo `1 recovery problem

argmin
x,v

kxk1

subject to Ax =z + v; v 2 ZM. (P1)

Combinatorial optimization problem
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Algorithms Convex relaxation

IRSP

Definition (Integer range space property (IRSP))

A matrix A is said to satisfy the integer range space property of order s if for all sets S ⇢ [N]
with |S|  s,

kuSk1 < kuSCk1,

holds for every u 2
�

u|Au = v 2 ZM .

If v is restricted to be equal to 0 ) Null space property

Theorem (`1 recovery from modulo-CS)

Every s-sparse x is the unique solution of (P1) if and only if the matrix A satisfies the IRSP of
order s.

Design of matrices that satisfy the above property is an open problem

(Chandra R. Murthy, ECE, IISc) Shannon Day talk 25 / 40 Apr 30, 2021



Algorithms Convex relaxation

Measurements restricted to 2k modulo periods

argmin
x,v

kxk1

subject to Ax =z + v, kAxk1 < k; v 2 ZM. (P1k)

Definition (L-restricted integer range space property (L-restricted IRSP))

A matrix A is said to satisfy the L-restricted integer range space property of order s if for all
sets S ⇢ [N] with |S|  s,

kuSk1 < kuSCk1,

holds for every u 2 L ✓
�

u|Au = v 2 ZM .

If L = {u|Au = 0} ) Null space property

If L =
�

u|Au = v 2 ZM ) Integer range space property
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Algorithms Convex relaxation

`1 Recovery Performance

Define three sets:

Ll =
�

u|Au = v 2 ZM, kvk1  l
 

Kl,S =
�

u|Au = v 2 ZM, kAuSk1 < l, kAuSCk1 < l
 

Kl =
S

S:|S|s(Kl,S)

Note: Kl,S ⇢ L2l�1 and Kl ✓ L2l�1

Theorem

Given a matrix A 2 RM⇥N, the guarantees for unique recovery of every s-sparse vector x as
a solution to (P1k) with the additional constraint kAxk1 < k are:

Necessary condition: A satisfies Kk-restricted IRSP.

Sufficient condition: A satisfies L2k�1-restricted IRSP.

Remarks:

Gap between both conditions: L2k�1 \ Kk-restricted IRSP

For (P1) problem (k ! 1): IRSP is both necessary and sufficient
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Algorithms MILP

Mixed integer linear program (MILP)

`1 norm:

kxk1 =
PN

i=1 |xi| =
P

i:xi�0 xi +
P

i:xi<0 (�xi)

First set: x
+ and second set: x

� with x = x
+ � x

�

Bound constraint:

kAxk1 < k ) vi 2 [�k, k � 1]

Modulo MILP

argmin
x+,x�,v

1
T �

x
+ + x

��

subject to
⇥
A �A �I

⇤
2

4
x
+

x
�

v

3

5 = z (PMILP)

v 2 [�k, k � 1]M ✓ ZM, x
+, x

� � 0

Matlab optimization toolbox: intlinprog function
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Algorithms MILP

Success recovery percentage

N = 50

� = M
N and ⇢ = s

N

Ai,j
i.i.d.⇠ N (0, 1/m)

Non-zero entries of
x

i.i.d⇠ Unif [�1, 1]

Key observation:
Transition for MILP
close to the theoretical
result

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Sparsity level ( )

0.2

0.4

0.6

0.8

1

M
e
a
su

rm
e
n
t 
ra

tio
 (

)

0

20

40

60

80

100

 MILP performance

Theoretical boundary

Figure: Phase transition for MILP
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Algorithms MILP

Phase transition curves

N = 50

Ai,j
i.i.d.⇠ N (0, 1/M)

Key observation: Good
performance for low
variance signals 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
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Figure: Phase transition with different distributions for 80% accuracy
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Modulo-ADC for Compressed Sensing

Modulo-ADC for Compressed Sensing
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Modulo-ADC for Compressed Sensing

Quantization

Quantized measurements

wi = Q�,L (f� (yi)) ; i = 1, 2, . . . ,M

Q�,L: Uniform mid-rise quantizer in [��,�] using L bits.

yi = [Ax]i

f� function:

Scaled measurements: f�(yi) = 1
↵ yi 2 [��,�] where ↵ =

⌃ 1
�maxi|yi|

⌥

Clipped measurements: f�(yi) =

8
<

:

� if yi � �
�� if yi  ��
yi otherwise

Modulo measurements: f�(yi) = M�(yi) (Termed Modulo-ADC)
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Modulo-ADC for Compressed Sensing

Recovery techniques

Scaled measurements:

argmin
x+,x�

1
T �

x
+ + x

��

subject to
⇥
A �A

⇤ x
+

x
�

�
= z, x

+, x
� � 0 (PLP)

Clipped measurements: 2 approaches presented6

Rejection: Discard saturated measurements and run PLP

Consistency constraints: Rejection approach with additional constraint for the saturated
measurements "

�S+

��S�

#
x � �1

Modulo measurements: MILP algorithm

6Laska et. al., Democracy in action: Quantization, saturation, and compressive sensing, Applied and Computational
Harmonic Analysis, 2011
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Modulo-ADC for Compressed Sensing

Analysis setup

Default Parameters:

N = 50, s = 4, M = 30

� = 0.5, L = 6 bits

Signal generation:

Ai,j
i.i.d.⇠ N (0, 1/M)

Support of x: s index drawn uniformly.

Nonzero entries of x: N (0, 1)

Metrics:

Instantaneous NMSE (for each Monte Carlo (MC) simulation): ||x�xout||2
||x||2

Successful recovery: If Instantaneous NMSE < 0.1 for unquantized case

Probability of error: Number of MC sims with unsuccessful recovery
Total number of MC sims

Average success NMSE calculated as average of Instantaneous NMSE for the MC sims
with successful recovery
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Modulo-ADC for Compressed Sensing

Varying quantization levels

1 2 3 4 5 6 7 8 9 10

Number of quantization bits (L)

-60

-50

-40

-30

-20

-10

0

10
N

M
S

E
 (

in
 d

B
)

Rejection LP (Avg NMSE)

MILP (Avg NMSE)

LP (Both) P
e
 = 0

Rejection LP (Avg success NMSE) P
e
 = 0.12

MILP (Avg success NMSE) P
e
 = 0.01

Observations:

NMSE floor for MILP and Rejection LP

MILP has lower probability of error when compared to Rejection LP
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Modulo-ADC for Compressed Sensing

Varying ADC range- Probability of error

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Range parameter of ADC ( )

10-2

10-1
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e
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r 
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e
)

Rejection LP (M = 15)

MILP (M = 15)

LP (M = 15)

Rejection LP (M = 25)

MILP (M = 25)

Rejection LP (M=35)

MILP (M=35)

LP (M=35)

LP (M = 25)

Observations:

Probability of error decreases with range due to lesser folding

Note: Average success NMSE increases with � for all algorithms and all values of M
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Modulo-ADC for Compressed Sensing

Varying ADC range- NMSE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Range parameter of ADC ( )
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NMSE performance for different quantization levels

3 bits

4 bits

5 bits

6 bits

7 bits

8 bits

9 bits

10 bits

Observations:

NMSE increases with increase in range when sufficient resolution is present

Increase in NMSE is 6-7dB for increase in range from 0.2 to 0.8
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Summary
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Summary

Summary

Key takeaways:

Modulo-CS is identifiable

Penalty for modulo operation is a single measurement

Gaussian random matrices are candidate measurement matrices

MILP algorithm can be used for modulo recovery

Modulo-ADCs can lead to lower quantization errors under certain constraints

Future work:

Extension to noisy case

Alternative algorithms: e.g. SBL based algorithms

Modulo-ADCs: Characterize tradeoff between number of folds and quantization levels

Contact: cmurthy@iisc.ac.in

(Chandra R. Murthy, ECE, IISc) Shannon Day talk 40 / 40 Apr 30, 2021


