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Abstract

In wideband wireless communication systems, the relative motion of the transmitter, re-

ceiver, or scatterers in the medium causes the Doppler effect, which stretches or compresses

the transmitted waveforms, resulting in inter-symbol interference and a consequent severe

performance degradation. To counter this, specialized transmitter and receiver architec-

tures are needed for energy- and spectrally-efficient communications in channels charac-

terized by path-dependent delays and time-scales. In this thesis, we develop and evaluate

improved receiver side signal processing algorithms for two existing modulation schemes

used in wideband Underwater Acoustic (UWA) communications. We also propose new

modulation schemes suited for wideband delay and scale spread UWA channels.

In the first part of the thesis, for the well known Orthogonal Frequency Division Mul-

tiplexing (OFDM) waveform, we develop a two-stage iterative algorithm at the receiver

that alternates between sparse channel estimation and data detection. Specifically, we

consider the sequence of observations from partial interval demodulators (PIDs) using

a partial-length Fast Fourier Transform (FFT). We show that the PID outputs help in

tracking the channel by providing additional measurements to estimate the Inter-Carrier

Interference (ICI) due to the Doppler spread. We also derive the Cramér-Rao lower bound

on the mean squared error in channel estimation, and empirically show that the two-stage

algorithm meets the bound at high SNR.

Next, we develop a new Bayesian-inspired data detection algorithm in the context of

sweep spread carrier (S2C) communication – a practically successful waveform used in

some commercial underwater acoustic modems. The existing schemes for data detection

– based on the gradient heterodyne receiver – are only effective when the path delay and

i
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Doppler spread are moderate. Based on the principle of variational Bayes’ inference, we

present a new variational soft symbol decoding (VSSD) algorithm. In harsh UWA channels

where the existing S2C receivers completely fail, or must compromise on the data rate to

maintain the bit error rate (BER) performance, the VSSD algorithm successfully recovers

the data symbols, even at low signal-to-noise ratios (SNRs).

We then turn to developing a new modulation scheme for the wideband doubly spread

channel, namely, Orthogonal Delay Scale Space (ODSS), from first principles. The scheme

pre-processes the information symbols using a 2D ODSS transform, which performs a dis-

crete Fourier transform on the frequency axis and inverse Mellin transform on the Mellin

variable axis, to obtain the transformed symbols in the delay-scale domain. These trans-

formed symbols are mounted onto ODSS modulation waveforms to generate the signal to

be transmitted. The pre-processing step spreads the symbols in the delay-scale domain,

which in turn improves the bit error rate compared to Orthogonal Time Frequency Space

(OTFS) and OFDM in wideband time-varying channels. More importantly, since the

ODSS modulation renders the channel matrix near-diagonal, it performs well even under

low-complexity subcarrier-by-subcarrier equalization in the delay-scale domain followed

by symbol recovery in the Mellin-Fourier domain.

Finally, we develop a novel Variable Bandwidth Multicarrier (VBMC) waveform com-

prising of multiple subcarriers that are constructed from chirp pulses. The chirps occupy

progressively increasing, frequency-dependent bandwidth from the lower to upper fre-

quency edge of the communication band. Due to this, the subcarriers maintain their near

mutual orthogonality even after passing through a delay and scale spread channel. We

compare the performance of VBMC with existing waveforms using a generic framework

for modeling delay-scale spread channels that we develop for the first time in this thesis.

Overall, this thesis develops advanced receiver processing techniques and novel modu-

lation schemes that greatly outperform the state-of-the-art in wideband delay-scale spread

channels, while matching their performance in more benign channels.
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Chapter 1

Introduction

Acoustic waves are the de facto carriers of the wireless communication signals undersea.

Electromagnetic waves do not travel far in sea waters due to heavy attenuation caused

by sea water’s high electrical conductivity and dielectric constant. Therefore, light and

radio waves do not present even a slightest possibility of use as carriers for conveying

information across useful distances. Sound waves, on the other hand, can travel far in

seas. Sound travels even up to thousands of kilometers in deep seas under certain pro-

pitious channel conditions: systems such as the Sound Fixing And Ranging (SOFAR)

favor a long range propagation. Yet, compared to the terrestrial wireless radio channels,

underwater acoustic communication channel is much harsher due to a variety of factors:

limited available acoustic bandwidth, drastic transmission loss and attenuation due to

absorption that increases with frequency, high levels of ambient sea-noise, reverberation,

and temporal variations happening on different time scales. The significantly lower speed

of sound wave propagation in water (about 1500 m/s) puts the latency of deep space radio

wave communication between the earth and moon at par with acoustic communication

across a much smaller distance of about 5.5 km in deep sea. Underwater acoustic commu-

nication, therefore, inherits the demerits of both terrestrial and deep space wireless radio

channels. Also, the underwater acoustic communication system’s receiver noise is domi-

nated by the ambient noise whose spectral level is much higher than an RF receiver noise.

Furthermore, sea noise is not white over the receiver band. The operating frequency of

1
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acoustic communications and the usable bandwidth are also much smaller than its RF

counterpart. Therefore, the data rates and quality of service (QoS) of underwater acous-

tic communications are inferior compared to their radio wave counterpart in terrestrial

wireless communications.

The acoustic propagation loss, also known as the transmission loss, is an intricate func-

tion of the wave frequency, medium conditions and the source-receiver geometry. Sound

propagation is predominantly influenced by the variation of sound speed with water depth

(sound-speed profile) which causes the sound rays to refract downward or upward often

leading to formation of “shadow zones” where sound signals do not reach at all. Under

certain channel conditions, sound waves get severely attenuated due to their interaction

with sea surfaces (both top and bottom) limiting the distances across which they can

effectively serve as carriers in a single hop from a source to receiver. Shallow water envi-

ronments such as fjords present an even tougher channel for acoustic communications due

to dense multipath propagation and heavy losses encountered by the sound wave during

every boundary interaction. Also, most underwater acoustic channels cannot be modeled

as a wide-sense stationary uncorrelated scattering (WSSUS) process. Underwater chan-

nels exhibit both long and short term temporal variations – this variability of transmission

properties can be on the scale of several months (seasonal variation), several days and

hours (such as due to tides and factors depending on time of the day), minutes (due to

internal waves), a few seconds (due to surface waves) as well as milliseconds (such as due

to reflections, scattering).

A major contributor of time variation in acoustic channel is the relative motion be-

tween the transmitter and receiver. The low speed of sound (c = 1500 m/s) causes the

relative Doppler factor, v/c, in an underwater channel to be far greater than in radio

frequency channels, where v is the speed of a communication receiver relative to the

transmitter. A low speed underwater target moving at v = 5 km/h speed has a Doppler

factor which is 3×108

1500
× 5

1000
= 1000 times that of an aircraft traveling at v = 1000

km/h and communicating over a radio frequency (RF) channel. As acoustic signals are

transmitted at far lower frequency bands compared to RF, the signaling bandwidth is
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often a significant fraction of the center frequency. These aspects make the underwa-

ter channel characteristically wideband for moderate and high data rate communications.

The precise effect of the Doppler, due to source-receiver relative motion, is to time-scale

the transmitted waveform. Unlike in narrowband channels, the effect of Doppler cannot

be approximated by a frequency-shift in wideband channels. In multi-carrier commu-

nications, the time-scaling leads to a non-uniform shift in frequency of the subcarriers

across the communication band. Inter-carrier interference (ICI) is pronounced in the

commonly used communication frameworks such as the Orthogonal Frequency Division

Multiplex (OFDM) and Orthogonal Time-Frequency Space (OTFS) modulation schemes

when communicating over such wideband doubly selective underwater acoustic channels.

Significant delay and time-scale spread distortions due to multiple propagation paths

render the underwater acoustic channel doubly-selective, making it highly varying in both

time and frequency. This necessitates the need for developing bespoke signal processing

and modulation schemes for wideband underwater acoustic communications, which is the

overarching goal of this thesis. In the next section, we present the delay-scale channel

model that applies to wideband underwater acoustic communications.

1.1 Wideband delay-scale spread channel model

A transmitted signal undergoes three changes when passing through a delay-scale prop-

agation channel: (a) amplitude change due to path loss and fading, (b) delay, τ , corre-

sponding to the length of the path traversed, and (c) time-scaling by a factor, α = c−v
c+v

,

due to Doppler effect, where v is the velocity of a scatterer and c is the speed of the

wave in the propagation medium. Multiple propagation paths can result in a continuum

of delay and scale parameters, i.e., τ ∈ [τl, τh] and α ∈ [αl, αh]. Such a doubly-spread

propagation channel is characterized by the wideband spreading function, h(τ, α), that

corresponds to the amplitude gain of the time-scaled and delayed copy of the transmitted

signal reaching the receiver along a reflected path. The received signal is a superposition

of the amplitude-scaled, time-scaled, and delayed versions of the transmitted signal, s(t),
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given by [25]

rs(t) =

∫∫
h(τ, α)

√
αs (α(t− τ)) dτdα, (1.1)

where we have omitted the limits of integration for notational brevity.

The underwater channel can be often represented by a discrete multipath structure

with Np paths where each path, p (p = 1, 2, . . . , Np), is associated with a gain (hp ∈ C),

delay (0 ≤ τp ∈ R) and Doppler scale (0 < αp ∈ R). The channel response due to

a collection of discrete set of reflectors associated with the multipath parameter triples

(hp, τp, αp), p = 1, 2, . . . , Np, is given by

h(τ, α) =

Np∑
p=1

hpδ(τ − τp)δ(α− αp). (1.2)

The signal after propagating through the discrete delay-scale channel is obtained by sub-

stituting h(τ, α), from (1.2), into (1.1) to get

rs(t) =

Np∑
p=1

hp
√
αps (αp(t− τp)) . (1.3)

The transmitted waveform s(t) is usually an up-converted (modulated) version of a

baseband waveform sB(t): the spectrum, S(f), of s(t) is the frequency shifted version of

the spectrum of the baseband signal, SB(f), of sB(t), i.e., S(f) = SB(f − fc), where the

fc is the carrier frequency (band center frequency). The baseband version, rs,B(t), of the

received waveform rs(t) is obtained by down-conversion1. Proceeding from equation (1.3),

we can show that the spectrum, Rs,B(f), of rs,B(t) is related to the spectrum of sB(t) as

Rs,B(f) =

Np∑
p=1

hp
√
αpSB

(
f

αp
+ fc

(
1

αp
− 1

))
e−j2π(f+fc)τp (1.4)

Consider a multicarrier communication setup using N pulsed sinusoidal subcarriers,

each of duration T > τmax, at frequencies fk = k∆f, k = 0, 1, . . . , N −1, where ∆f = 1/T

1The baseband received signal is given by: rs,B(t) =
∑Np
p=1 hp

√
αpsB (αp(t− τp)) ej2πfc((αp−1)t−τp).
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is the subcarrier spacing and τmax , τh − τl is the channel delay spread. The noiseless

received symbol at a subcarrier frequency fm is given by

Rs,B(fm) =
N−1∑
n=0

Hm,nsn, (1.5)

where the inter-symbol mixing factor, Hm,n is given by

Hm,n =
T

2

Np∑
p=1

hp
√
αpsinc

(
n− m

αp
− fcT

(
1

αp
− 1

))
e−j2π(fm+fc)τp . (1.6)

In the absence of Doppler (αp = 1, p = 1, 2, . . . , Np), we observe that

Hm,n =

(
T

2

Np∑
p=1

hpe
−j2π(fm+fc)τp

)
δ[m− n], (1.7)

where δ[m − n] is the discrete Kronecker delta function. Since Hm,n = 0 for m 6= n, we

have

Rs,B(fm) = Hm,msm, (1.8)

which signifies no inter-carrier interference (ICI) in the absence of Doppler. In other

words, time-scaling due to Doppler results in nonzero ICI.

The high delay spread of the underwater acoustic channels, ranging from tens to

hundreds of milliseconds, results in a low coherence bandwidth (∝ 1
τmax

). Communication

at even moderate data rates would require a signaling bandwidth which far exceeds the

coherence bandwidth of the underwater channel, making it highly frequency selective. The

bandwidth of an underwater acoustic communication system also has to be a significant

fraction of the operating frequency to support data transfer at moderate rates across a

few kilometers. For example, a signaling bandwidth in excess of B = 10 kHz is needed to

send 1000 symbols across a channel of delay spread, τmax = 100 ms, at a rate of 10, 000

symbols per second, using a multicarrier modulation scheme with each symbol occupying

a bandwidth of at least W = 1
τmax

= 10 Hz. In practice, the optimum frequency band

for communication across a distance of about Rmax = 8 km in deep ocean, turns out to
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be around fc = 10 kHz. The signaling bandwidth, in this case, is 100% of the center

frequency, rendering the underwater acoustic communication system truly wideband.

To appreciate the effect of time-scaling in wideband communications, as opposed to

frequency shifting in narrowband communications, consider an underwater vehicle moving

at a speed of v = 1.5 m/s (3 knots). The Doppler time-scale factor for this case is

α = 1 ± v/c = 1 ± 10−3. In a multicarrier communication, the time-scale will cause a

subcarrier at fl = 5 kHz (fh = 15 kHz) to shift by an amount δfl ≈ ±5 Hz (δfh ≈ ±15

Hz). The subcarrier at the upper band edge thus experiences a three-fold Doppler shift

in frequency compared to the subcarrier at the lower band edge. Such non-uniform shift

in frequency of the subcarriers across the frequency band is a characteristic feature of the

time-scaling phenomenon in wideband multicarrier underwater acoustic communications.

This is in contrast with RF communications, say, from an aircraft traveling at v = 278 m/s

(1000 km/h) in the band 400-420 MHz. The Doppler scale factor, in this scenario, is

α = 1±v/c = 1± 278
3×108

< 1±10−6. The subcarriers experience a frequency shift of about

410 ± 10 Hz, showing only about ±2.5% variation in Doppler shift across the frequency

band. The RF communication can be essentially regarded as narrowband (B/fc < 0.05)

for a signal frame of duration, T � 25 ms, and hence the Doppler may be modeled by a

frequency shift in this scenario. The wideband acoustic communication, therefore, exhibit

a Doppler factor which about 1000-fold larger than the narrowband RF communication.

The contributions of this thesis are a result of the research efforts to improve the

performance of underwater acoustic communications which is particularly affected by the

three canonical properties of the underwater acoustic propagation channel – its wideband

nature, delay spread, and Doppler-scale spread. The wideband channel model in (1.1)

is, therefore, central to the development of communication algorithms developed in this

work. In the next section, we present a summary of these contributions.

1.2 Summary of contributions and techniques

In this section, we briefly describe the main contributions of this thesis. They are as

follows:
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1. Exploiting channel sparsity, viz., a small number of delay and Doppler parameters,

while estimating the channel, we develop an iterative algorithm to improve the data

symbol detection performance in a cyclic prefix orthogonal frequency division modu-

lation (CP-OFDM) system. The proposed receiver side algorithm involves iterating

between channel estimation and data detection taking into account the effect of

multiple path-dependent time-scaling on the received signal. Unlike the traditional

CP-OFDM systems based on the full interval demodulation (FID) receiver, we pro-

pose to combine the observations from partial interval demodulators (PID) which

we show is effective in tackling the time-variations caused by the Doppler spread.

Theoretically, we show that the PID outputs track the time-varying channel better

by providing additional measurements to estimate the inter-carrier interference due

to Doppler spread compared to FID. The Cramer–Rao lower bound on the mean

squared error in channel estimation is derived, and it is shown empirically that the

proposed two-stage algorithm meets the bound at high signal-to-noise ratio. The

performance of the algorithm is validated through benchmark channel models, a

ray tracing theory based acoustic channel simulator, and on real-world measured

channel data available in the public domain.

2. We develop an improved data detection algorithm in the context of a practically

successful modulation scheme in the underwater environment, namely, the sweep

spread carrier (S2C) communication. S2C modulation finds use in some commercial

modems and relies on the use of high bandwidth chirp waveforms commonly used

in sonar systems. The existing schemes for data detection – based on the gradient

heterodyne receiver – are only effective when the path delay and Doppler spread

are moderate. Based on the principle of variational Bayes’ inference, we propose a

new variational soft symbol decoding (VSSD) algorithm for a general linear channel

model. In benign underwater channels with moderate delay and Doppler spreads,

the VSSD algorithm is shown to be equivalent to the existing receivers for S2C

communications. The VSSD algorithm outperforms the minimum mean squared

error (MMSE) data detection in both uncoded and coded communications when
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applied to the benchmark i.i.d. Gaussian multiple-input multiple-output (MIMO)

channel. Even with channel estimation errors, the VSSD algorithm is shown to

retain its performance advantage over the MMSE receiver. The performance of

the algorithm is validated in both simulated and measured underwater acoustic

channels. In UWA channels where the existing S2C receivers completely fail, or

must compromise on the data rate to maintain the bit error rate (BER) performance,

the proposed VSSD algorithm recovers the data symbols at a signal-to-noise ratio

(SNR) which is significantly lower than the MMSE decoder.

3. Thirdly, we develop a new modulation scheme for the wideband doubly spread chan-

nel — Orthogonal Delay Scale Space (ODSS) — which is similar to the recently

proposed Orthogonal Time Frequency Space (OTFS). While OTFS is designed for

narrowband channels characterised by delay and Doppler-frequency spread, ODSS

is developed for the wideband delay and Doppler scale spread channels such as

the underwater acoustic channels and the ultra wideband (UWB) channels. Unlike

the narrowband channels, for which time contractions or dilations due to Doppler

effect can be approximated by frequency-shifts, the Doppler effect in wideband chan-

nels result in frequency-dependent non-uniform shift of signal frequencies across the

band. We derive the ODSS transmission and reception schemes from first princi-

ples. In the process, we introduce the notion of ω-convolution in the delay-scale

space that parallels the twisted convolution used in the time-frequency space. The

pre-processing 2D transformation from the Fourier-Mellin domain to the delay-scale

space in ODSS, which plays the role of inverse simplectic Fourier transform (ISFFT)

in OTFS, improves the bit error rate performance compared to OTFS and Orthog-

onal Frequency Division Multiplexing (OFDM) in wideband time-varying channels.

Furthermore, since the channel matrix is rendered near-diagonal, ODSS retains the

advantage of OFDM in terms of its low-complexity receiver structure.

4. We propose a waveform, which we call the Variable Bandwidth Multicarrier (VBMC)

waveform, comprising multiple subcarriers that are constructed from chirp pulses

used in radars and sonars, and resemble the whistles of bottlenose dolphins and the
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songs of beluga whales who use them for both near and long range communications

underwater. We design the subcarrier chirps of VBMC to occupy progressively in-

creasing, frequency-dependent bandwidth from the lower to upper frequency edge of

the communication band. The variable bandwidth design of the VBMC subcarriers

is key to handling the multiple and time-scaling distortions caused by multipath

Doppler on wideband waveforms. Due to this, the subcarriers of the VBMC wave-

form maintain their near mutual orthogonality even after passing through a delay

and scale spread channel, resulting in low inter-carrier interference, and thereby

facilitating a low complexity subcarrier-by-subcarrier decoding at the receiver. We

relate VBMC with other similar waveforms in the literature. In particular, we

observe that VBMC is a candidate modulation waveform that satisfies the ODSS

design criteria for time-scale spread channels. Numerical simulation of the bit er-

ror rate over delay-scale channels shows that the VBMC waveform outperforms the

widely used Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM)

and the recently developed Orthogonal Time-Frequency Space (OTFS) waveforms.

5. We develop a generic framework for comparing the communication performance of

different waveforms over a delay-scale spread channel. We use the well known con-

tinuous time Shannon basis for representing the transmitted signal, which allows us

to accurately generate delayed and scaled versions of bandlimited signals as they

pass through the channel. We introduce and describe the construction of a mod-

ulation dictionary whose columns are the subcarriers of a multicarrier waveform.

The framework we develop here allows us to systematically model the delay-scale

channel as a linear transformation that can be used to design and evaluate various

waveforms for communications on a level playing field. Using this framework, we

analyze the performance of a variety of waveforms – those developed in this the-

sis, the ones widely used in practice, and a few emerging waveforms found in the

literature – over a delay-scale spread channel.
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1.3 Organization of the thesis

We dedicate a chapter each to the three contributions listed in Section 1.2.

Chapter 2 presents the receiver side iterative symbol detection and sparse channel

estimation for PID based CP-OFDM communications. After describing the theory, and

analyzing the working of the proposed algorithm, extensive numerical evaluation of the

communication performance based on both simulated and measured real world underwater

acoustic channels is presented.

Chapter 3 presents the new VSSD receiver for the S2C communications. A mathemat-

ical model for S2C communications over delay and scale spread channels is first developed,

and the limitations of the state-of-the-art gradient heterodyne based S2C receivers are

elicited. The VSSD algorithm for data detection is presented, and its convergence prop-

erty to a local optimum is then analyzed. Numerical results are presented showing the

efficacy of the newly proposed variational Bayesian inference based data symbol decoder

in the S2C communications framework.

Chapter 4 develops a new modulation scheme, ODSS, that is well suited for delay

and scale spread wideband channels. We develop the transmitter and receiver side signal

processing for the ODSS communication scheme and derive the conditions that need to be

satisfied while designing the waveform for ODSS. We throughly evaluate the performance

of ODSS and numerically illustrate its merits relative to existing waveforms.

In Chapter 5, we propose another new waveform, VBMC, that results in a low com-

plexity single-tap equalizer based receiver. This chapter also develops a generic framework

for comparing the communication performance of different waveforms over a delay-scale

spread channel. We present the results of numerical simulations to show the performance

advantage of VBMC over the widely used CP-OFDM and the recent OTFS schemes as

well as other waveforms found in the literature.

We conclude with a discussion of possible directions of future work in Chapter 6.



Chapter 2

Iterative Sparse Channel Estimation

and Data Detection

In this chapter, we present an iterative scheme for sparse-channel recovery and data detec-

tion in cyclic-prefix orthogonal frequency division multiplex (CP-OFDM) communication

over doubly-spread underwater acoustic channels. We consider the sequence of obser-

vations from partial interval demodulators (PIDs), and cast them into an observation

model amenable for sparse channel recovery. We propose a two-stage iterative algorithm

for channel estimation and data detection. In the first stage, we recover the channel from

pilot only observations and estimate the unknown data symbols from the post-combined

PID outputs. In the second stage, we use the data symbols estimated in the first stage

to reconstruct the dictionary matrix corresponding to a full interval demodulator, re-

estimate the channel using the entire observations including the data subcarriers, and

use it to detect the unknown data symbols from the PID outputs. We also propose a

computationally attractive algorithm for sparse signal recovery, based on the minimum

variance principle, that may be of independent interest. Theoretically, we show that the

PID outputs help in tracking the time-varying channel better by providing additional

measurements to estimate the ICI due to Doppler spread compared to full interval de-

modulation. Also, we derive the Cramér-Rao lower bound on the mean squared error in

channel estimation, and empirically show that the proposed two-stage algorithm meets

11
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the bound at high SNR. Numerical studies on simulated channels and publicly available

experimental channel data in Watermark show that the proposed algorithm consider-

ably improves data detection performance, in terms of bit error rate, over that from a

traditional full length demodulator output, in highly Doppler distorted scenarios.

2.1 Introduction

Orthogonal frequency division multiplexing (OFDM) achieves high data rates, even in

doubly-distorted channels with large delay spreads, due to its better resilience to inter

symbol interference (ISI). However, the orthogonality between subcarriers is lost due to

frequency offsets and the Doppler distortion introduced by the channel, leading to inter

carrier interference (ICI). The Doppler distortion is particularly severe in multipath chan-

nels prevalent in underwater acoustic (UWA) communications, because different paths can

potentially have different Doppler shifts, leading to Doppler spread [72]. This makes the

problem of channel estimation and data detection particularly challenging. On the other

hand, the UWA channel is known to be sparse in the lag-Doppler domain, because there

are typically only a few significant multipath components in the channel. Therefore, it

is pertinent to develop techniques that exploit the underlying structure in the channel to

jointly estimate the channel and data symbols in the presence of severe ICI, which is the

goal of this chapter.

Sparsity based channel recovery techniques are well known to produce significantly

improved channel estimates, and hence lead to better symbol detection on data subcarriers

[14, 36, 53, 73]. UWA channels typically have large delay and Doppler spreads but have

only a few dominant paths [53]. This has been used in [14] to characterize the channel

impulse response by using a path-based model, thereby facilitating channel estimation

using sparse signal recovery techniques.

In [34], an equalization scheme was proposed where an iterative receiver progressively

increases the so-called ICI span parameter to improve the channel estimate in severe ICI

conditions. Both [14] and [34] require additional pilots to estimate the channel in high

Doppler spread environments. An alternative approach to ICI mitigation using several
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partial interval demodulators (PID), instead of a full interval demodulator (FID), was

proposed in [106]. The authors also develop a recursive algorithm to compute the weights

for combining the output of PIDs so as to make the post-combined channel matrix close

to diagonal. While [106] used non-overlapping rectangular windows over time for PID and

applied coherent detection, [7] extended the decomposition to other forms of windowing

and applied differentially coherent data detection. The authors propose a stochastic

gradient algorithm to estimate the combiner weights. However, the inherent sparsity of

the channel is not exploited in [106] and [7].

In this chapter, we consider a cyclic-prefix OFDM (CP-OFDM) system [11, 106]. We

propose a two-stage iterative approach for channel estimation and data detection. We

exploit channel sparsity to estimate the path-dependent delay, Doppler and amplitude

parameters of the channel from pilot-only observations of the PID outputs. An approxi-

mate dictionary, initially constructed using only the pilot symbols, is used to initiate the

channel recovery. We refine the dictionary using estimates of the data symbols and iterate

between channel estimation and data detection. The data symbols detected at the end

of the first stage are then used to initialize a second stage that makes use of the entire

observation vector, consisting of both pilot and data subcarriers, at the output of the

FID. The second stage iteratively bootstraps the channel estimation using the detected

data symbols to construct the dictionary matrix for the FID output, thereby reducing the

channel estimation error, and ultimately leading to better data detection performance.

Our specific contributions are as follows:

1. We reformulate problem of estimating the doubly-spread channel from the PID

outputs in a manner that is amenable to sparsity-based channel estimation.

2. We propose a two-stage iterative framework that recovers the channel and detects

the data symbols. For sparse channel recovery, we present an improved low complex-

ity algorithm based on the minimum variance principle, that may be of independent

interest. The algorithm refines the initial estimate produced by the Orthogonal

Matching Pursuit (OMP) algorithm, and is observed to converge within a single
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iteration. Its performance is better than OMP and is comparable to the computa-

tionally intensive Sparse Bayesian Learning (SBL) algorithm.

3. We analytically show that using the PID outputs increases the effective number of

measurements compared to using only the FID output. Further, in the context of `1

based sparse signal recovery, we show that our scheme minimizes a joint cost function

of the channel estimation and data detection error, and establish its convergence.

4. We derive a lower bound on the mean square error (MSE) in channel estimation,

and numerically show that the bound corresponding to the PID outputs is strictly

better than that corresponding to the FID outputs.

5. Through extensive numerical studies, using synthesized and measured channels, we

demonstrate that the BER of the proposed scheme is considerably lower than the

existing methods, in highly Doppler spread scenarios.

2.2 System Model

2.2.1 Transmitted and Received Signal

We consider a CP-OFDM system as in [106]. Let T denote the OFDM symbol duration

and Tg the guard interval (duration of the cyclic prefix). When using a carrier frequency

fc and K subcarriers, the kth subcarrier is at frequency

fk = fc + k/T, k = −K/2, . . . , K/2− 1. (2.1)

The transmitted symbol at the kth subcarrier is denoted by s[k]. The disjoint sets of data

subcarriers SD, pilot subcarriers SP , and null subcarriers1 SN partition the K available

1The null subcarriers are not crucial for the performance, but they are useful for estimating the ICI,
since the doubly-spread channel is no longer diagonal in the frequency domain. They can also be used
to estimate the noise variance.
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subcarriers. The transmitted signal is given by

x̃(t) =
1√
T

Re

{[ ∑
k∈SD∪SP

s[k]ej2π
k
T
t

]
ej2πfct

}
,

t ∈ [−Tg, T ]. (2.2)

At the receiver, the signal is resampled by a factor â corresponding to a coarse Doppler

estimate, leading to a baseband received signal z̃(t) given by [14,51,56,106,107]

z̃(t) =

Np∑
p=1

Apx̃ ((1 + bp) t− τp) + ñ

(
t

1 + â

)
. (2.3)

where Ap and τp are the amplitude and delay, respectively, of the pth path, Np is the

number of significant paths in the channel, and ñ(t) is the additive noise. The above

assumes that the path amplitudes are constant within the OFDM symbol duration T , and

that the time variation of the path delays due to Doppler rate ap can be approximated

as τp − apt, as in [14]. The resampled signal is equivalent to a received signal obtained

through a channel with Doppler rate bp =
(
ap−â
1+â

)
. Note that, in this work, the effect of

Doppler spread is modeled as a corresponding path dependent time compression/dilation.

We use the above z̃(t) to formulate the input-output model and the sparse channel

recovery model pertaining to the PID output as follows. We divide the OFDM symbol

interval [0, T ] into M consecutive partial intervals of duration T/M each. The output

z
(m)
k on the kth subcarrier, upon performing demodulation for the mth partial interval,

(m− 1) T
M
≤ t ≤ m T

M
,m = 1, 2, · · · ,M , is given by

z
(m)
k =

Np∑
p=1

Ap
∑

l∈SD∪SP

%
(p)
k,l [m]e−j2πflτps[l] + η

(m)
k , (2.4)

where η
(m)
k is the additive noise, and

%
(p)
k,l [m] = sinc

(
β

(p)
k,l T

M

)
ejπβ

(p)
k,l (2m−1) T

M , (2.5)
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β
(p)
k,l = (l − k)

1

T
+ bpfl. (2.6)

The above equations combine the models in [14] and [106]. The channel model in the

above is the same as in [14], which used only the FID outputs and did not consider PID.

On the other hand, [106] used the PID outputs but did not parameterize the channel in

the delay-Doppler plane as in [14].

2.2.2 Input-Output Data Model

By stacking the received symbols across all the subcarriers into z(m) ∈ CK , the data

symbols into s ∈ CK , and the noise into v(m) ∈ CK , we get the channel input-output

equation as:

z(m) = H(m)s + v(m), (2.7)

for m = 1, . . . ,M, where the channel matrix H(m) can be expressed as

H(m) =

Np∑
p=1

ApΛ
(m)
p Γp.

Here, Λ
(m)
p is a K × K matrix with (k, l)th entry [Λp]

(m)
k,l = %

(p)
k,l [m], and Γp is a K × K

diagonal matrix with (k, k)th entry [Γp]k,k = e−j2πfkτp .

The output from a FID is obtained by summing up all z(m),m = 1, 2, · · · ,M : z =∑M
m=1 z(m) = Hs + v, where H is the channel matrix corresponding to the FID output

given by H =
∑M

m=1 H(m), and v =
∑M

m=1 v(m).

If the additive noise in (2.3) is zero mean circularly symmetric white Gaussian dis-

tributed, then the noise in FID output is also zero mean Gaussian with covariance N0I,

where N0 is the variance of each component of v and I is the K×K identity matrix. The

noise in (2.7) is not white, but it is also zero mean Gaussian distributed with covariance

given by:

E
[
η

(m)
k η

(m)∗
l

]
=
N0

M
e−

j2π(k−l)(2m−1)
2M sinc

(
k − l
M

)
, (2.8)

and E
[
η

(m1)
k η

(m2)∗
l

]
= 0 for m1 6= m2.
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It is straightforward to see that when bp = 0, the channel matrix H, as seen by the FID,

is diagonal. When bp’s are nonzero and high, due to heavy Doppler spread, the channel

matrix is no longer diagonal and this results in the mixing of the symbols at the output

corresponding to each subcarrier. Within a partial interval, bpt can be approximated by

bptm, where tm , (2m− 1) T
2M

is the mid-point of the mth partial interval [106]. Then, we

can write the channel matrices as

H(m) = J(m)

Np∑
p=1

ApΓ
(m)
p , (2.9)

where Γ
(m)
p is a diagonal matrix whose (k, k)th entry is given by [Γp]

(m)
k,k = e−j2πfk(τp−bptm),

and J(m) is a matrix with (k, l)th element J
(m)
k,l = 1

M
e−

j2π(k−l)(2m−1)
2M sinc

(
k−l
M

)
, for k, l =

1, 2, . . . , K. Henceforth, we consider the data model for the PID outputs expressed by

(2.7), where the channel matrix is given by (2.9) and the noise vector is zero-mean with

a covariance matrix given by (2.8).

2.2.3 Sparse Channel Recovery Model

In the formulation above, the channel matrix H(m) is defined by Np triplets (Ap, bp, τp).

In this section, we cast the problem of estimating these Np triplets as a sparse channel

recovery problem, given the sequence of PID outputs z(m),m = 1, 2, . . . ,M . To this

end, we construct a dictionary consisting of the signals parameterized by a representative

selection of possible parameter values [14]. Since parameter values that are not part of the

solution will have the corresponding coefficient as zero and a large number of parameter

values are needed to construct an accurate dictionary, the vector of coefficients is sparse,

thus making sparse vector recovery algorithms applicable. The representative values of

(bp, τp) are chosen as

τp ∈
{
T

λK
,

2T

λK
, . . . ,

NτT

λK

}
, (2.10)

bp ∈ {−bmax,−bmax + ∆b, . . . , bmax} . (2.11)
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The time resolution for τp is chosen as a multiple, λ, of the sampling time T/K, with

Nτ candidate delays such that NτT
λK

is larger than the maximum delay spread of the

channel. For bp, we consider Nb = 2bmax/(∆b) + 1 candidate Doppler rates. Defining the

coefficient vector corresponding to all delays associated with Doppler scale bi as x
(i)
A =[

A
(i)
1 , . . . , A

(i)
Nτ

]T
, the stacked coefficient vector corresponding to all candidate delays and

Doppler rates is given by

x =

[(
x

(1)
A

)T
, . . . ,

(
x

(Nb)
A

)T]T
. (2.12)

Hence, (2.7) now takes the form:

z(m) = A(m)x + v(m), (2.13)

where A(m) = J(m)
[
Γ

(m)
1 s, . . . ,Γ

(m)
N s

]
, (2.14)

for m = 1, . . . ,M, with N = NτNb representing the total number of grid points used in

the delay-Doppler plane.

Although the channel vector x is sparse, the construction of the dictionary matrix

A(m) requires knowledge of the transmitted symbol vector s, which is unknown at the

receiver. In the next section, we propose a two-stage iterative algorithm to recover the

channel vector x and the data vector s.

2.3 Channel Estimation and Data Detection

Our proposed two stage algorithm works as follows. In stage 1, we use PID measurements

from only the pilot subcarriers to estimate the channel, and subsequently use the estimated

channel to detect the unknown data symbols. In stage 2, we use the FID outputs on both

the data and pilot subcarriers, with the data symbols initialized using the outcome of

stage 1, to further reduce the channel estimation error and improve the data detection

performance. Figure 2.1 shows a block diagram for the proposed approach.
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Figure 2.1: Block diagram of the receiver processing chain and the dual stage algorithm

for iterative channel estimation and data detection.

2.3.1 Stage 1

We start by constructing a vector ŝ ∈ CK by placing the known pilot symbol at the pilot

subcarrier locations and zeros at the null subcarrier locations. Further, we initialize the

unknown data symbols at subcarrier locations SD to zero.2 By defining z
(m)
SP
∈ C|SP | to be

a sub-vector of z(m) ∈ CK that collects the symbols corresponding to the pilot subcarrier

locations SP , from (2.13) we have,

z
(m)
SP

= Â
(m)
SP

x + e
(m)
SP
, (2.15)

where

Â
(m)
SP

= ISPJ(m)
[
Γ

(m)
1 ŝ, . . . ,Γ

(m)
N ŝ

]
∈ C|SP |×N , (2.16)

2We find in our simulation studies that a random initialization of the data symbols also works equally
well.
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ISP ∈ R|SP |×K is the submatrix of the K×K identity matrix consisting of its rows indexed

by SP , and e
(m)
SP

, ∆A
(m)
SP

x + v
(m)
SP

is the effective noise that includes the dictionary

estimation error given by:

∆A
(m)
SP

= ISPJ(m)
[
Γ

(m)
1 (s− ŝ), . . . ,Γ

(m)
N (s− ŝ)

]
. (2.17)

The error s− ŝ affects z
(m)
SP

in as much as there is ICI captured by the matrix J(m). Note

that, the presence of null subcarriers around each pilot subcarrier mitigates the ICI.

To recover the sparse channel vector x in (2.15), we propose an improved algorithm

that bootstraps from the channel estimate produced by OMP and refines this estimate.

We call our proposed algorithm the Minimum Variance Recovery (MVR) algorithm, and

provide its details in Section 2.3.3.

Once the sparse channel vector x is recovered, the channel matrix Ĥ(m) for each PID

output is constructed using (2.9). The estimates Ĥ(m),m = 1, 2, . . . ,M, are then weighted

and combined so as to make the post-combined channel matrix close to diagonal, as

follows:

Ĥk,: =
M∑
m=1

w
(m)∗
k Ĥ

(m)
k,: , (2.18)

where the weights wk =
[
w

(1)
k , · · · , w(M)

k

]T
∈ CM are chosen for each subcarrier k to

minimize the interference from other subcarriers as wk = R̂−1
zk

ĥk,k/‖R̂−1
zk

ĥk,k‖2
, with ĥk,l ,[

Ĥ
(1)
k,l , · · · , Ĥ

(M)
k,l

]T
and R̂zk ,

∑K
l=1 ĥk,lĥ

H
k,l+

N0

M
IM [106]. The post-combined observation

z̃k is obtained by weighting and adding the kth entry, z
(m)
k , of z(m):

z̃k =
M∑
m=1

w
(m)∗
k z

(m)
k . (2.19)

Figure 2.2 contrasts an instance of the channel matrix obtained by simply summing up

the PID outputs with that obtained by their weighted combination. The latter is clearly

closer to diagonal than the former, which simplifies the subsequent data detection step,

described next.

Since the weights in (2.18) are normalized to have unit 2-norm, it follows from (2.8)
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Figure 2.2: Left: Channel matrix seen at FID output. Right: Post-combined channel

matrix at (combined) PID output. (k, l) are (row, column) indices of the channel matrix.

Only indices from 80-120 are shown for clarity. Bright yellow indicates high magnitude

while dark black indicates low magnitude. These matrices are obtained for the CP-OFDM

system I in Table 2.3, Section 2.5, and residual Doppler spread in [−bmax, bmax], where

bmax = 5× 10−4.

and (2.19) that the variance of the noise at the post-combiner output is E {|η̃k|2} = N0.

A minimum mean square error (MMSE) receiver is applied for data demodulation, as

follows:

ŝ = dec

[(
ĤHĤ +N0I

)−1

ĤH z̃

]
(2.20)

where z̃ ∈ CK is obtained by stacking z̃k, k = 1, . . . , K, and dec(·) is the hard-thresholding

operation to the signal constellation. We find in our simulation studies that zeroing out

all but diagonal entries of the post-combined channel matrix, Ĥ, has negligible effect

on data detection accuracy. On the positive side, this approximation significantly re-

duces the computational complexity involved in the matrix inversion in (2.20). Using this

approximation, the unknown data symbols are estimated as follows:

ŝk ≈ dec

[
Ĥ∗k,k

|Ĥk,k|2 +N0

z̃k

]
, k ∈ SD, (2.21)
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where Ĥk,k is the kth diagonal entry of Ĥ. Using ŝ, we reconstruct the dictionary matrix

Â
(m)
SP

, for m = 1, 2, · · · ,M , and iterate through channel estimation and data symbol

detection.

In stage 1, the channel vector is recovered using only the pilot subcarriers in the output

of the PID, and the data symbols are detected from the post-combined demodulator

output. The detection of data symbols helps in accurately estimating the ICI, which in

turn helps in reducing ‖∆A
(m)
SP

x‖2 in (2.17), leading to better channel estimates. However,

the observations on the data subcarriers are not used for channel estimation in stage 1.

In stage 2, we make use of the measurements from both data and pilot subcarriers for

channel estimation.

2.3.2 Stage 2

We start by constructing the dictionary matrix corresponding to the FID as:

A =
M∑
m=1

A(m), (2.22)

using the data symbols ŝ estimated at the end of stage 1. Then we proceed to re-estimate

the channel vector from:

z =
M∑
m=1

z(m) = Ax + v, (2.23)

as in stage 1, but now using the full set of observations including data subcarriers at the

output of the FID. From the estimated channel vector, we construct the post-combined

channel matrix Ĥ, and the corresponding post-combined measurement z̃, using (2.18) and

(2.19) respectively, and apply the MMSE receiver in (2.21) for data demodulation using

the PID outputs, as in stage 1. Further, we iterate between channel estimation and data

detection until convergence or till a fixed number of iterations (Niter) have elapsed.
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Algorithm 1: Minimum Variance Recovery

1: Threshold: γ = σ
√

m
n

2: Initial support: S = {i ∈ [1, 2 . . . n] : |x̂0,i| > γ}

3: Initial solution: x̂S = A†:,Sz, x̂Sc = 0

4: Cardinality: k = |S|

5: Measurement covariance: R =
∑

i∈S |x̂i|2aiaHi + δI

6: Weight vector: wi = R−1ai
aHi R−1ai

7: Minimum variance signal: x̃ = WHz

8: S = Set of indices of the largest k entries of |x̃|

9: Update solution: x̂S = A†:,Sz, x̂Sc = 0

10: Output: x̂

2.3.3 Minimum Variance Recovery (MVR) Algorithm

The proposed MVR algorithm, given in Algorithm 1, is inspired by the minimum variance

spectrum estimation principle [43] and works by refining the channel estimate produced

by OMP. We construct an estimate of the measurement covariance matrix from a thresh-

olded3 version of the sparse channel estimate provided by OMP, and use it to compute an

adaptive minimum variance weight vector. We use the weight vector to re-estimate each

entry of the channel vector, and update the solution to contain the indices of the k largest

entries of the minimum variance solution, where k is the cardinality of the thresholded

version of the initial channel estimate. This form of support update helps to minimize

the leakage of interference from other nonzero coefficients while identifying the location

of a nonzero coefficient in the sparse channel vector. Finally, a refined solution vector is

constructed using the updated support. We note that, in the context of synthetic aperture

radar imaging, an algorithm similar in flavor called the iterative adaptive algorithm has

been proposed in [99].

In Figure 2.3, we show the phase transition curves of OMP, SBL and MVR on the

3The thresholding operation sets the coefficients whose magnitude is smaller than the threshold to
zero. Empirically, we find that performance is insensitive to the value of the threshold, so its choice is
not critical.
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Figure 2.3: OMP, SBL & MVR phase transition curves at SNR = 30 dB.

m/n-k/n plane. At all operating points below the curve, the signal to reconstruction error

ratio (SRR) exceeds 15 dB for at least 90% of the 1000 trial runs, where m is the number

of measurements, k is the number of nonzero entries in the sparse vector and n = 50 is

the ambient dimension of the sparse vector. The m× k measurement matrices are drawn

independent and identically distributed (i.i.d.) from a standard Gaussian distribution

with i.i.d. entries. The sparse vector is generated with k nonzeros at uniformly random

locations and with i.i.d. entries, uniformly distributed on [−2,−1] ∪ [1, 2]. The additive

noise is zero mean Gaussian with a standard deviation chosen to achieve a signal to noise

ratio (SNR) of 30 dB. The phase transition curves of SBL and MVR nearly coincide, and

are superior to OMP. However, SBL is a computationally demanding algorithm and it

takes a large number of iterations to converge. For the MVR algorithm, while steps from

lines 5 to 9 in Algorithm 1 can be iterated multiple times, we find, in our simulations, that

the channel estimation error reduces significantly in just one pass of the algorithm. Thus,

MVR offers a computationally attractive alternative to SBL with comparable performance

for our application. Empirically, we have observed a similar relative performance behavior

at other SNRs also.
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Table 2.1: Split-up of Computational Complexity.

Computation Stage 1 Stage 2

Dictionary Matrix O(M |SP |KN) O(K2N)

OMP (per iteration) O(M |SP |N) O(KN)

SBL (per iteration) O(M2|SP |2N) O(K2N)

MVR O(M2|SP |2N) O(K2N)

Channel Matrix O(K2N̂p) O(K2N̂p)

Combining Weights O (KM3) O(KM3)

Post-Combined Channel Matrix O(K2M) O(K2M)

Data Demodulation O(K) O(K)

Table 2.2: Overall Computational Complexity.

Total Complexity (Stage 1 + Stage 2)

OMP O
(

(K2(N̂p +M) +KM3)(Niter,I +Niter,II) + (K + N̂p)NM |SP |Niter,I

)
SBL O

(
(K2(N̂p +M) +KM3)(Niter,I +Niter,II) + (K + κM |SP |N)NM |SP |Niter,I

)
MVR O

(
(K2(N̂p +M) +KM3)(Niter,I +Niter,II) + (K +M |SP |N)NM |SP |Niter,I

)
2.3.4 Computational Complexity

Table 2.1 shows the computational complexity, based on floating point operation (FLOP)

count for matrix-vector operations [37, 93], per iteration, of stage 1 and stage 2. Note

that the near-diagonal nature of the post-combined channel matrix was utilized to reduce

the computational complexity of data demodulation in stage 1. We iterate OMP for N̂p

times, where N̂p is an integer exceeding the number of paths, SBL for a fixed number of

times, κ, and MVR just once. The overall computational complexity when using OMP,

SBL and MVR is given in Table 2.2, where Niter,I and Niter,II are used to denote the

number of stage 1 and stage 2 iterations, respectively.

In the proposed algorithm, the construction of dictionary matrices in (2.14) consumes

most of the CPU time, especially for large K and N . Also, the dictionary matrix must

be recomputed in every iteration during stage 1 and stage 2 since the data symbols get
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updated after the data detection step. We perform a recursive update of the dictionary

matrix during the νth iteration according to

A(m)(ν) = A(m)(ν − 1) + ∆A(m)(ν), (2.24)

where ∆A(m)(ν) = J(m)
[
Γ

(m)
1 ∆s(ν), . . . ,Γ

(m)
N ∆s(ν)

]
and ∆s(ν) = s(ν)−s(ν−1) is the change

in the data symbols between iterations. As the iteration progresses, ∆s(ν) will contain

many zero elements and the corresponding columns of ∆A(m)(ν) will be all zero vectors.

Thus, only the columns of A(m)(ν) corresponding to the nonzero entries in ∆s(ν) need to

be computed, making the dictionary update fast.

2.4 Analysis

Recall that the PID outputs are obtained from the same OFDM receiver output as the FID

outputs. Yet, using the PID outputs in stage 1 leads to better data detection performance.

First, we analyze this behavior and show that using the PID leads to a larger number of

effective measurements compared to the FID, which explains its better performance.

2.4.1 Effective Number of Measurements

We compare the number of linearly independent rows in the measurement matrices cor-

responding to the PID and the FID outputs for pilot only measurements in the stage 1.

It is easy to see that:

rank

(
M∑
m=1

A
(m)
SP

)
≤ rank

(
ÃSP

)
≤ min (M |SP |, N), (2.25)

where ÃSP is the augmented matrix obtained by vertically stacking A
(m)
SP
,m = 1, 2, · · · ,M .

Therefore, there are at least as many linearly independent pilot only measurements at the

output of the PID, whose sensing matrix is ÃSP , as the FID, whose sensing matrix is
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ASP ,
∑M

m=1 A
(m)
SP

. We proceed to show that it is possible to obtain strictly more lin-

early independent measurements from the PIDs than from the FID.

In the first iteration of stage 1, we set all the entries of ŝ, except pilot locations, to

zero. If all the pilot symbols are equal to, say, s0, then, the dictionary matrix constructed

in the first iteration of stage 1 is given by:

A
(m)
SP

= s0ISPJ(m)ITSP ISPΓ(m), (2.26)

where,

Γ(m) ,
[
Γ

(m)
1 1K . . .Γ

(m)
NτNb

1K

]
, (2.27)

1K ∈ RK is a column vector of K ones and ISP is as defined after (2.16). The matrix

Γ(m) can be decomposed as:

Γ(m) = Γ
(m)
b ⊗ Γτ , (2.28)

Γ
(m)
b = ej2πfb

T tm ∈ CK×Nb , (2.29)

Γτ = e−j2πfτ
T ∈ CK×Nτ , (2.30)

where ⊗ denotes the Khatri-Rao product,4 eB finds elementwise exponentiation of a ma-

trix B, and

f = [f1, . . . , fK ]T ∈ RK , (2.31)

τ =

[
T

λK
,

2T

λK
, . . . ,

NτT

λK

]T
∈ RNτ , (2.32)

b = [−bmax,−bmax + ∆b, . . . , bmax]T ∈ RNb . (2.33)

It readily follows from (2.28) and the definition of the Khatri-Rao product that,

ISPΓ(m) = ISPΓ
(m)
b ⊗ ISPΓτ . (2.34)

4The Khatri-Rao product is formed by taking the row-wise Kronecker products of Γ
(m)
b ∈ CK×Nb and

Γτ ∈ CK×Nτ .
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Let Γ̃SP ∈ CM |SP |×NτNb and Γ̃b,SP ∈ CM |SP |×Nb denote the augmented matrices obtained

by vertically stacking ISPΓ(m),m = 1, . . . ,M, and ISPΓ
(m)
b ,m = 1, . . . ,M, respectively.

Similarly, let Γ̃τ,SP ∈ CM |SP |×Nτ be the augmented matrix obtained by vertically stacking

ISPΓτ M -times. We then have:

Γ̃SP = Γ̃b,SP ⊗ Γ̃τ,SP . (2.35)

We now state two properties of the Khatri-Rao product that are useful in the sequel.

We denote k-rank(B) to be the row Kruskal-rank5 of a matrix B.

Lemma 2.4.1. The rank (k-rank) of the Khatri-Rao product of two matrices, both having

at least one of the columns with all its entries nonzero, is never less than the rank (k-rank)

of the two matrices, i.e., if B ∈ Cr×p and C ∈ Cr×q are two matrices such that for some

n ∈ {1, 2, . . . , p} and n′ ∈ {1, 2, . . . , q}, we have [B]m,n 6= 0 and [C]m,n′ 6= 0 for every

m ∈ {1, 2, . . . , r}, then:

rank (B⊗C) ≥ max (rank (B) , rank (C)), (2.36)

k-rank (B⊗C) ≥ max (k-rank (B) , k-rank (C)). (2.37)

Proof. The Khatri-Rao product B ⊗ C ∈ Cr×pq houses a submatrix (and another sub-

matrix) whose rows are scaled versions of the rows of B ∈ Cr×p (respectively C ∈ Cr×q)

and hence its rank, and the k-rank, must be at least that of B ∈ Cr×p (C ∈ Cr×q). The

results follow.

Lemma 2.4.2. If B ∈ Cr×p and C ∈ Cr×q then

k-rank (B⊗C) ≥ min (k-rank (B) + k-rank (C)− 1, r). (2.38)

Proof. Let R denote a set of rk = k-rank (B⊗C) + 1 indices of the rows of B ⊗ C

that are linearly dependent. It follows from the definition of k-rank that there exists a

5The row Kruskal-rank (k-rank) of a matrix is r if every subset of its r rows is linearly independent
and at least one subset of r + 1 rows is linearly dependent.
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vector d ∈ Crk with all entries nonzero such that dT (BR ⊗CR) = 0, where BR = IRB

and CR = IRC. Therefore, we have BT
RDCR = 0 ∈ Cp×q where D = diag (d). D

is non-singular since all entries of d are nonzero and hence, by the Sylvester inequality,

0 = rank
(
BT
RDCR

)
≥ rank (BR) + rank (CR) − rk =⇒ rk ≥ rank (BR) + rank (CR).

The rows of BR and CR are dependent by construction, and hence appending more rows

to these matrices cannot increase their k-rank: rank (BR) ≥ k-rank (BR) ≥ k-rank (B)

and rank (CR) ≥ k-rank (CR) ≥ k-rank (C). Thus, we find rk = k-rank (B⊗C) + 1 ≥

k-rank (B) + k-rank (C), from which the result follows.

All entries of the matrices ISPΓ
(m)
b and ISPΓτ , in (2.35), have unit magnitude and

therefore satisfy the conditions in Lemma 2.4.1. Also, it is straightforward to see that

rank
(
Γ̃τ,SP

)
= rank (ISPΓτ ) , (2.39)

k-rank
(
Γ̃τ,SP

)
= 1, (2.40)

and therefore it follows from Lemma 2.4.1 that

rank
(
Γ̃SP

)
≥ max

(
rank

(
Γ̃b,SP

)
, rank (ISPΓτ )

)
,

(2.41)

k-rank
(
Γ̃SP

)
≥ k-rank

(
Γ̃b,SP

)
. (2.42)

We are now ready to state a sufficient condition that results in strictly larger number

of independent measurements from the PID output than the FID. We say that a collection

of subspaces S = {Si ∈ V : i = 1, 2, · · · , n} of a vector space V forms a virtually disjoint

partition if V is a direct sum of its subspaces Si, i = 1, 2, · · · , n, i.e., if ⊕ni=1Si = V and

∩ni=1Si = {0}, where the operator ⊕ denotes the subspace sum [31].

Theorem 2.4.3. If the number of grids Nb used for representing the Doppler parameter,

and the augmented matrix Γ̃b,SP generated by the representative Doppler values forming
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the grid, satisfy:

Nb +Nτ ≥M |SP |+ 1, (2.43)

k-rank
(
Γ̃b,SP

)
= min (Nb,M |SP |), (2.44)

and the pilot locations in SP are chosen such that

rank
(
ISPJ(m)ITSP

)
= |SP |,m = 1, . . . ,M, (2.45)

then:

|SP | = rank

(
M∑
m=1

A
(m)
SP

)
< rank

(
ÃSP

)
= M |SP |. (2.46)

Proof. From (2.43) and (2.44), we get

M |SP | ≥ rank
(
Γ̃SP

)
≥ k-rank

(
Γ̃SP

)
≥ min (Nb +Nτ − 1,M |SP |)

= M |SP |, (2.47)

where the last inequality follows from Lemma 2.4.2, and hence

rank
(
Γ̃SP

)
= M |SP |. (2.48)

Therefore, the row spaces of ISPΓ(m),m = 1, . . . ,M, form a virtually disjoint partition

of the M |SP |-dimensional row space of Γ̃SP . Due to equation (2.26) and the condition

in (2.45), the row space of A
(m)
SP

is equal to that of ISPΓ(m) for m = 1, . . . ,M . Hence,

the row spaces of A
(m)
SP
,m = 1, . . . ,M, also form a virtually disjoint partition of the

M |SP |-dimensional row space of Γ̃SP . The result in (2.46) follows.
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Discussion

The result in Theorem 2.4.3 indicates that the pilot only measurements from the PID

outputs can potentially lead to better channel estimates compared to that from the FID.

The conditions (2.43) and (2.44) are not necessary; we find in our simulation studies that

far fewer number of grid points Nb in the Doppler parameter leads to (2.46) being satisfied.

To illustrate this point, Figures 2.4 and 2.5 show the distribution of singular values of the

stacked up dictionary matrix ÃSP corresponding to the PID output for pilot subcarriers

when the Doppler spreads are bmax = 5 × 10−4 and bmax = 10−3, respectively, and when

pilot carriers are chosen as in the numerical case study in Section 2.5. Also shown in

this figure is a plot of the singular values of the dictionary matrix ASP corresponding to

FID observation of pilot subcarriers. It is clear that the numerical rank of the stacked up

dictionaries of the PID is greater than that of the FID, especially, when the dictionaries

are designed for high Doppler spread. Therefore, using the sequence of observations from

PIDs, which is tantamount to oversampling the OFDM receiver output, helps estimate

the channel better.

We have shown that the sparse channel estimation from the PID output provides a

good initial estimate of the channel matrix. Next, we justify that the proposed two stage

algorithm that iterates between the sparse channel estimation and data detection steps

in each stage can only improve the channel estimation and data detection accuracy with

every iteration.

2.4.2 Convergence

Recall that our channel estimation is based on the sparse vector recovery framework

expressed by (2.15) and (2.23) for stage 1 and stage 2, respectively. We recapitulate the

channel estimation framework in the following form:

z = A(s)x + v, (2.49)
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Figure 2.4: Singular values of the dictionary matrices corresponding to PID and FID

outputs. Doppler spread bmax = 0.5× 10−3.

where A(s) indicates the dependence of dictionary matrix on the data symbols s. Simi-

larly, the data detection problem in the stage 1 and stage 2 is given by

z = H(x)s + v, (2.50)

where the dependence of the channel matrix on the vector x is indicated via H(x). Note

that A(s)x = H(x)s.

Ideally, for estimating the sparse channel, we would like to minimize ‖x‖0 subject

to ‖z −H(x)s‖2 ≤ η. This problem is NP-hard, and, therefore, we consider its convex

relaxation:

C(x, s) = ‖x‖1 + λ‖z−H(x)s‖2
2, (2.51)

over x, s ∈ C.

Let x(ν) denote the sparse channel vector estimated in the νth iteration. For a given
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Figure 2.5: Singular values of the dictionary matrices corresponding to PID and FID

outputs. Doppler spread bmax = 10−3.

x(ν), choosing

s(ν+1) = arg mins∈C‖z−H(x(ν))s‖2, (2.52)

ensures that C(x(ν), s(ν+1)) ≤ C(x(ν), s(ν)). For a given s(ν+1), choosing

x(ν+1) = arg minx∈CC(x, s(ν+1)), (2.53)

ensures that C(x(ν+1), s(ν+1)) ≤ C(x(ν), s(ν)). Therefore, the cost C(x, s) reduces with

every iteration and is bounded below by 0. Hence, the iterations in stage 1 and stage 2

converge to a local minimum of the `1 regularized joint cost function. We can show that, by

associating a Laplacian prior to the channel vector x, the solution (x, s) which minimizes

C(x, s) is also a solution to joint channel estimation and maximum a posteriori probability

(MAP) data detection problem. Note that the above recipe of iterating between channel

estimation and data detection is unlike joint receivers that provide a low complexity
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approximation to MAP detection [100], [59].

2.4.3 Lower Bound on the MSE

We obtain a lower bound on the MSE in the estimate of the channel matrix (see remark

below) for the two classes of unbiased estimators: one that makes use of the observations

at the output of the PID, and the other that uses only the observations from the FID.

We have the following theorem.

Theorem 2.4.4. For the PID measurement model in (2.13), the MSE in the channel

matrix H, which is a function of the channel vector x, can be lower bounded as

E{‖H− Ĥ‖2
F} ≥ tr

(
F−1
S,S

∂h

∂xS

H ∂h

∂xS

)
, (2.54)

S is the support of the channel vector x, FS,S ∈ C|S|×|S| is the submatrix of the Fisher

Information Matrix (FIM) F ∈ CN×N , corresponding to the rows and columns indexed by

S, for the observation model in (2.13), given by

F =
M∑
m=1

A(m)HC†mA(m), (2.55)

Cm is the covariance of the noise at the output of the PID, whose entries are given by

(2.8), h(x) , vec (H) ∈ CK2×1, the columns of the matrix ∂h
∂x
∈ CK2×N are given by

∂h(x)

∂xk
=

vec
(∑M

m=1 J(m)Γ
(m)
k

)
, k ∈ S,

0K2 , otherwise,

(2.56)

and ∂h
∂xS

is the submatrix of ∂h
∂x

consisting of only the columns indexed by S.

Proof. First, we note that the channel matrix H can be related to the entries of the channel

vector x, defined in (2.12), by making use of (2.9). This allows us to express the channel

matrix H as a function of the channel vector x. The MSE of any unbiased estimator of

H that makes use of the output from the PID, given by (2.13), cannot be better than
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the Cramér Rao bound (CRB) [96] of the subclass of unbiased estimators which know the

true dictionary matrices A(m),m = 1, 2, . . . ,M , i.e., where a genie provides the estimator

with the knowledge of the data symbols. The CRB, given the true dictionary matrices in

(2.13), is the same as the MSE of an oracle estimator that knows the support S of the

channel vector x [10]. The result follows.

Theorem 2.4.5. A lower bound on the MSE of the unbiased estimators of the channel

matrix H, that uses the observations from the FID measurement model in (2.23), is given

by

E{‖H− Ĥ‖2
F} ≥ tr

(
G−1
S,S

∂h

∂xS

H ∂h

∂xS

)
, (2.57)

where S is the support of the channel vector x, G ∈ CN×N is the FIM for the FID

observation model in (2.23), given by:

G =
1

N0

AHA, (2.58)

h(x) , vec (H) ∈ CK2×1, and the columns of the matrix ∂h
∂x
∈ CK2×N are given as in

Theorem 2.4.4.

Proof. Similar to Theorem 2.4.4.

Remarks

1. It is tempting to consider the MSE in the estimate of the sparse channel vector

x, in (2.12), defined on the delay-Doppler grid. While the MSE in the channel

vector x relates to the MSE in the channel matrix H, we assert that the latter is

more meaningful for our problem. This is because, a small mismatch in support

estimation (i.e., when the recovered support returns indices near the true support)

can lead to a large MSE in the sparse vector x, but need not translate to a large

MSE in the channel. However, the data detection performance primarily depends

on the fidelity in the estimation of H, and not as much on x. Hence, we consider

the MSE in the channel matrix H as the performance metric in this work.
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2. Theorems 2.4.4 and 2.4.5 allow us to compare the bounds on the MSE of unbiased

estimators that use the PID outputs and those that use the FID outputs. Numerical

evaluation shows that the bound on the MSE for the estimators that make use of

PID outputs is indeed better. Also, our proposed two-stage data detection and

channel estimation algorithm, that makes use of the PID outputs in stage 1 and the

FID outputs in stage 2, approaches the lower bound at high SNR. See Section 2.5

for details.

2.5 Numerical Simulations

We simulate the performance of the proposed algorithm for the CP-OFDM system whose

parameters are listed in Table 2.3. The specifications of the system matches with the

settings used in the SPACE’08 experiment and is widely used for simulation studies in

several past works, for example, [14, 34], and [106]. Pilot symbols are spaced uniformly.

Half the null carriers are placed at the band edges and the remaining are inserted between

the data as specified in [14,34].

We consider two simulation models for the underwater acoustic communication chan-

nel. In model I, adopted from [14, 34], we generate sparse channels with a few discrete

paths whose inter-arrival times are exponentially distributed with a mean of 1 ms. The

path amplitudes are Rayleigh distributed with the average power decreasing exponentially

with delay, where the difference between the beginning and the end of the guard time is

20 dB. The residual Doppler rate for each path is uniformly distributed in [−bmax, bmax],

where channels with bmax = 5× 10−4 and 1× 10−3 are considered to be severely Doppler

distorted in the underwater communication literature [110]. In model II, we simulate

the time-varying stochastic channel response according to the model proposed in [72].

Model II incorporates the effect of frequency dependent attenuation, the surface/bottom

scattering and other random fluctuations in the medium and source-receiver position.

The authors report a good match of their theoretical model with the experimental data

collected from four different deployment sites of varying degrees of mobility. We use

model II to demonstrate the relatively strong performance of the proposed algorithm to
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Table 2.3: CP-OFDM parameters used in the simulation.

Carrier frequency (fc) 13 kHz

Bandwidth (B) 9.77kHz

No. of subcarriers (K) 1024

No. of pilots (|SP |) 256

No. of nulls (|SN |) 96

Symbol duration (T ) 104.86 ms

Subcarrier spacing (∆f) 9.54 Hz

Guard interval (Tg) 24.6 ms

mismatches in the model assumptions.

We finally show the performance of our proposed algorithm on the measured time

varying channel impulse response data available in Watermark [97]. We consider two

channel measurements corresponding to a low Doppler spread channel and a high Doppler

spread channel. These measured responses in Watermark include the effect of system

hardware and the real world acoustic propagation as well.

We define the signal to noise ratio (SNR) as SNR =
E{‖Hs‖22}
E{‖v‖22}

, and the normalized MSE

in channel estimation as NMSE =
E{‖H−Ĥ‖2F }
E{‖H‖2F }

, where H ∈ CK×K and Ĥ ∈ CK×K are the

true and the estimated channels, respectively.

2.5.1 Simulations using Model I

We first consider coded 16-QAM transmissions, and channels generated according to

model I with Np = 15 discrete paths and bmax = 10−3. The turbo code uses two rate-1/2

convolutional encoders with feedback and an interleaver of length 232 bits [69]. The bit

error rate (BER) and normalized MSE are averaged over 1000 independent instantia-

tions. For constructing the dictionary matrix, grids are formed using Nb = 15 points for

the Doppler rate and Nτ = 480 points for the delay resolution corresponding to an over-

sampling factor of λ = 2 over the guard interval. The PID and FID dictionary matrices
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are, therefore, of size 1024× 7200.

For the sparse channel recovery, we experiment with OMP [23] and MVR. For OMP, we

set the number of nonzero entries to be recovered to N̂p = 25. The number of propagation

paths need not be known precisely; as long as N̂p > Np, simulation studies show good

channel recovery. The MVR algorithm is iterated only once. We compare our proposed

dual stage algorithm that uses PID outputs in stage 1 against the algorithms in [14,34], the

least squares based channel estimation and data detection, and genie-aided data detection

which uses the channel state information. For simulating the algorithm in [34], we use

the ICI-aware receiver with an ICI depth parameter of D = 6.

In Figure 2.6, we show the normalized MSE in the channel matrix estimate for the

different algorithms. For the proposed dual-stage algorithm, we iterate for Niter = 3

through both stage 1 and stage 2. We use M = 4 PIDs in our simulations.6 For the value

of M used here, from equation (2.8), the noise at the output of the PID is uncorrelated

among the pilot-only observations. The MVR algorithm leads to a lower MSE in the

channel matrix estimate compared to OMP. The normalized MSE performance of the

algorithms in [14, 34], that use the FID output for pilot-only measurements, is shown

in Figure 2.6. The algorithm in [34] is similar to [14] but iterates to improve the data

symbol detection; we use Niter = 6 in the simulations of the iterative algorithm in [14].

Also included in Figure 2.6 are the normalized MSE performances of two least square

channel estimation algorithms labeled LS CDD (FID) and LS CDD (PID, Optm. Wt.) in

the plot. LS CDD (FID) estimates the channel using pilot measurements at FID output.

LS CDD (PID, Optm. Wt.) estimates the channel using pilot measurements at optimally

combined PID output. Only the combiner weights, for LS CDD (PID, Optm. Wt.), are

computed using the true channel matrix (genie aided). Note that the performance of [106],

in which combiner weights are estimated through an adaptive algorithm, cannot be better

than LS CDD (PID, Optm. Wt.). Stage 1 recovers the channel better than the existing

FID and PID based algorithms and hence provides a good estimate of unknown data

6Increasing M will in general improve the performance due to additional measurements being made
available, but will also increase the computational complexity. Also, increasing M beyond a certain point
will not yield significantly more effective measurements.
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Figure 2.6: MSE in the channel matrix estimate of various sparse signal recovery algo-

rithms. Doppler spread bmax = 10−3.

symbols to initialize stage 2. The MSE in the channel matrix further reduces at the end

of stage 2, especially at high SNR, which leads to better symbol detection performance.

Figure 2.7 shows the reduction in MSE for the iterative algorithms compared above, as

the number of iterations is increased to Niter = 10 at an SNR of 16 dB. It is seen that the

proposed dual stage algorithm, at the end of stage 2, has settled in about 3 iterations.

Figure 2.8 compares the bit error rate (BER) versus SNR curves of the proposed

dual stage algorithm with the least squares based channel estimation and coherent data

detection algorithms LS CDD (FID) and LS CDD (PID, Optm. Wt.), the sparse channel

recovery based algorithms reported in [14, 34] and the genie-aided data detection as a

baseline. Note that LS CDD (FID) and LS CDD (PID, Optm. Wt.) perform coherent

data detection at the FID and optimally combined PID outputs, respectively. The dual

stage iterative algorithm proposed in this chapter clearly outperforms the existing sparse
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Figure 2.7: MSE versus number of iterations Niter for various sparse channel recovery

algorithms at SNR = 16 dB. Doppler spread bmax = 10−3.

channel recovery based algorithms and the least squares channel estimation based data

detection algorithms, at all SNRs. Also, compared to the OMP based sparse channel

recovery algorithm, the BER curve of the MVR based sparse channel recovery is closer

to that of the genie aided data detection at the end of the stage 2.

Figure 2.9 shows the CRBs corresponding to the PID and the FID output, computed

using (2.54) and (2.57), respectively. The CRB on the MSE of estimators that use only

the FID output is higher than those that makes use of the output from the PID. More-

over, among the two sparse channel recovery algorithms, MVR based channel estimation

achieves the CRB corresponding to PID observation at an SNR of about 30 dB, at the

end of stage 2.

Figure 2.10 shows the BER performance when the Doppler scale is varied. While

all the schemes perform nearly identical at zero Doppler spread, the performance gap of

between the proposed scheme and other schemes widens as the Doppler scale increases,
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Figure 2.8: BER of various sparse channel recovery based algorithms and the genie-aided

perfect CSI lower bound. Doppler spread bmax = 10−3.

highlighting the significance of PID based channel estimation in high Doppler spread

scenarios.

Next, we examine the effect of pilot density on the BER performance [12, 13]. Fig-

ure 2.11 depicts the BER performance as the number of pilots used is varied while keeping

the SNR constant at 12 dB and bmax = 10−3. We consider a pilot arrangement of sub-

arrays of pilots, where each sub-array consists of 32 pilots at a regular spacing of 4. Also,

the sub-arrays are spaced uniformly. For example, when |SP | = 96, we form 3 sub-arrays

each comprising of 32 pilots, and the spacing between the first elements of two consecutive

sub-arrays is 128 subcarriers. We see that the gap between the proposed and existing al-

gorithms increases dramatically with pilot density, implying that the proposed algorithm

can achieve a given performance at a significantly lower pilot density.
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Figure 2.9: Comparison of the MSE in the channel matrix estimation of various sparse

channel recovery based algorithms with the lower bound on the MSE for the FID and the

PID observation models. Doppler spread bmax = 10−3.

2.5.2 Simulations using Model II

Now we examine the performance when the channel is simulated according to the model

proposed in [72]. The time varying frequency response of the channel is modeled as

H̃(f, t) = H̄0(f)

Np∑
p=1

hpγ̃p(f, t)e
−j2πfτp , (2.59)

where H̄0(f) is the nominal frequency response of the direct path between the source and

receiver that results in a frequency dependent propagation loss, hp is the nominal channel

coefficient of the pth path that arrives at a nominal delay of τp, and the stochastic term

γ̃p(f, t) = γp(f, t)e
2πap(t)ft is composed of the small-scale fading γp(f, t) and the Doppler

scale factor ap(t) corresponding to the pth propagation path. The small-scale fading

γp(f, t) of the pth path, arises from scattering at the rough sea surface and bottom that
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Figure 2.10: BER comparison of various channel estimation and data detection algorithms

for different Doppler spreads and at SNR = 12 dB.

leads to a bunch of micro-paths whose amplitudes and delays are randomly distributed

around that of the nominal ray path. The Doppler scale factor ap(t) is a composite effect

of the vehicular motion, surface wave perturbations, and relative source-receiver drifts.

The received signal for this channel is given by

ỹ(t) =

∫ T

0

c̃(τ, t)x̃(t− τ)dτ + ñ(t), (2.60)

where c̃(τ, t) = F−1
f {H̃(f, t)} is the time-varying channel impulse response and F−1

f is the

inverse Fourier transform.

Note that the frequency dependence of the stochastic term γ̃p(f, t) distinguishes the

channel model in (2.59) from the channel model implicit in (2.3). The model in (2.3)

is widely used in the underwater communication literature for designing algorithms and

benchmarking performance. In this work, additionally, we test the robustness of our
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Figure 2.11: BER performance of system II with number of pilots used. SNR = 12 dB,

Doppler spread bmax = 10−3.

proposed algorithm by evaluating its performance under the received signal given by

(2.60) instead of (2.3).

Figure 2.12 shows a sample realization of the effective channel impulse response

c̃r(τ, t) = c̃(τ, t
1+â

) after resampling at the receiver. The channel is generated using

the acoustic channel simulator code available in [87]. Table 2.4 shows the environmental

parameters and source-receiver geometry used in this simulation. The transmitter and

receiver are in a shallow water environment overlying a soft bottom. Small-scale surface

variations, and relative drifts between the source and receiver, cause the channel taps to

randomly fluctuate about their slowly varying mean. Specifically, the Doppler scales for

this channel vary between [−8.75 × 10−4, 10.0 × 10−4]. Figure 2.13 shows the Doppler

spectrum of the simulated channel averaged across the channel taps. A sample plot of

an instantaneous channel response across frequency, obtained at subcarrier spacing, is

shown in Figure 2.14. Significant variations are noticed between adjacent subcarriers for
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a typical instance.

The channel parameters (path delays, Doppler scales, and amplitudes) vary smoothly

between the successive OFDM symbols, for the acoustic channel simulator. For such

channels, pilots need to be inserted only in the first OFDM block where the stage 1 runs

in the pilot assisted mode followed by stage 2 that uses both pilot and data subcarrier

measurements.7 In the subsequent blocks, where no pilots are available, the algorithm

switches to a decision directed mode where the pilots are now replaced with tentative

estimates of data symbols. The tentative symbol estimates are formed using channel

parameters found at the end of stage 2 in the previous block. An iteration of stage 1 and

stage 2 tracks the channel and updates the symbols for the current block. More generally,

the schemes in [35,101] exploit the channel coherence between the OFDM blocks to reduce

the pilot overhead. They can be applied to improve the initial symbol estimates at the

beginning of a new block in our algorithmic framework also. However, here we implement

the simple approach just described.

Figure 2.15 shows the BER of the different algorithms for this channel. Pilots are

employed only in the first OFDM block. While there are only about five significant ray

paths in the channel impulse response, each ray path is in turn a bundle of several micro-

paths. Therefore, we set the OMP based sparse channel estimator to recover a higher

number of paths. We set the number of nonzero entries to be recovered to N̂p = 46 and

use the same dictionary as before with bmax = 10−3. The proposed algorithm maintains a

strong relative performance even in this difficult environment.

2.5.3 Performance on Watermark Data

Watermark is a recently proposed benchmark for comparing the performance of phys-

ical layer algorithms for underwater acoustic communications [70, 97, 98]. Watermark

comes packaged with real world records of time-varying channel impulse response measure-

ments for different environments and source-receiver geometries. The measured responses

7A pilot overhead of 30%, as in [14] and [34], is required for the previous channel model because the
channel parameters were drawn independently in successive OFDM symbols.
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Figure 2.12: Acoustic channel impulse response based on model in [72].

include the acoustic propagation effects and the system hardware effects such as clock fre-

quency offset. The replay facility allows for transmitting any communication waveform in

the frequency band of measured responses. These features make Watermark a realistic

and reproducible performance assessment tool.

We show the performance on two datasets, NOF1 and NCS1, corresponding to a

low Doppler spread and high Doppler spread channel in the Norwegian shallow water and

continental shelf, respectively (Table 2.1, [97]). The frequency band of both datasets is 10-

18 kHz. Figure 2.16 shows an instantaneous channel response across frequency, obtained

at subcarrier spacing, typical of the NOF1 and NCS1 channels. The Doppler spectrum of

NOF1 has a sharp peak around zero frequency, with sidelobes less than −20 dB relative

to the peak. On the other hand, the Doppler spectrum of NCS1 is significantly spread

out within [−15, 15] Hz (see Figure 3 in [98]). Doppler frequency spread of δf = ±15 Hz

in NCS1 corresponds to a Doppler scale of bmax ≈ |δf |
fc

= 1.1× 10−3, where fc = 14 kHz is

the band center frequency. While NOF1 is considered to be a benign channel, the NCS1
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Figure 2.13: Doppler spectrum of the simulated acoustic channel.

channel is more challenging due to its smaller coherence time.

The CP-OFDM system parameters used in this study are as follows. Center frequency

and bandwidth are 14 kHz and 8 kHz, respectively, to match the frequency band of

measured channel responses in NOF1 and NCS1. A guard interval of 32 ms is used,

considering the power delay profiles for NOF1 and NCS1, beyond which the channel

response is attenuated significantly. The symbol interval for the 1024 subcarrier system is

128 ms and the subcarrier spacing is 7.8125 Hz. As with the acoustic channel simulation

model, pilots are used only in the first OFDM block for training and the algorithm switches

to a decision directed mode thereafter. Symbols are drawn from the QPSK constellation

to enable a performance comparison with the algorithm in [7].

Figure 2.17 shows the BER performance on NOF1 channel. The algorithm DCDD (PID)

performs differentially coherent data detection, as in [7], after combining the PID outputs.

The combining weights are computed using channel estimate obtained through sparse

channel recovery. The algorithms in [14], [34] and the proposed algorithm perform almost
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Figure 2.14: Instantaneous frequency response of the simulated channel.

equally well on this low Doppler spread channel. Figure 2.18 shows the BER performance

on NCS1 channel. In this high Doppler spread channel, the proposed algorithm clearly

outperforms the other algorithms.

2.6 Conclusions

In this chapter, we considered sparse channel estimation and data detection in a time-

varying underwater acoustic channel for a CP-OFDM system. We used the measurements

from the PID to track the time-variations within the OFDM symbol duration. We pro-

posed a two-stage algorithm, where, in stage 1, we use the pilot-only measurements to

estimate the channel and also detect the unknown data symbols. The MSE in the chan-

nel matrix estimation is reduced by iterating between the channel estimation and data

detection for a fixed number of times. Thereafter, in stage 2, we use all the observations

including data subcarriers to enhance the performance. We proposed a sparse channel

recovery algorithm based on the minimum variance principle that bootstraps from the
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Figure 2.15: BER of various channel estimation and data detection algorithms on simu-

lated acoustic channel.

initial estimate provided by the OMP and refines this estimate.

We showed that using the output from the PID in the stage 1 indeed provides a good

initial estimate of the channel matrix in a high Doppler spread scenario and is therefore key

to the improved data detection performance of the proposed algorithm. We showed that

the PID provides a larger number of effective measurements than the FID, and, hence, a

lower MSE in the channel matrix estimate is achievable when using measurements from the

PID. Our simulation results confirmed that the proposed two-stage algorithm significantly

reduces the BER in time-varying channels. For sparse signal recovery, we considered the

OMP and MVR algorithm. MVR provided better estimates of the channel than OMP.

MVR exhibits a performance similar to SBL in just one pass through the algorithm, while

the latter takes several iterations to converge. Results for the experimental channel data

in Watermark reaffirm the strong performance of the proposed scheme in harsh channel

conditions. In this work, we considered a grid based recovery of the Doppler and delay
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Figure 2.16: Instantaneous frequency response typical of the Watermark channels

NOF1 and NCS1.

parameters; future work can consider gridless compressed sensing recovery methods and

their performance. Extending the proposed approach to the case where the receiver is

equipped with an array of hydrophones is also an interesting direction for future work.
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Figure 2.17: BER comparison of various channel estimation and data detection algorithms

in the low Doppler spread Watermark channel NOF1.
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Table 2.4: Underwater Channel Simulation Parameters.

Ocean depth (m) 100

Transmitter depth (m) 90

Receiver depth (m) 50

Channel distance (m) 1000

Spreading factor 1.7

Sound speed in water, cw (m/s) 1500

Sound speed in bottom, cb (m/s) 1200

Surface variance, σ2
s (m2) 1.125

Bottom variance, σ2
b (m2) 0.5

3 dB width of the PSD of intra-path delays, Bδ,p (Hz) 0.05

Number of intra-paths, Sp 20

Mean of intra-path amplitudes, µp 0.3

Variance of intra-path amplitudes, νp 10−4

Transmitter drifting speed, vtd (m/s) 0.3

Transmitter drifting angle, θtd (rad) U(0, 2π)

Receiver drifting speed, vrd (m/s) 0.1

Receiver drifting angle, θrd (rad) U(0, 2π)

Transmitter vehicular speed, vtv (m/s) N (0, 1)

Transmitter vehicular angle, θtv (rad) U(0, 2π)

Receiver vehicular speed, vrv (m/s) -3

Receiver vehicular angle, θrv (rad) U(0, 2π)

Surface variation amplitude, Aw (m) 0.9

Surface variation frequency, fw (mHz) 0.6
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Figure 2.18: BER comparison of various channel estimation and data detection algorithms

in the high Doppler spread (bmax ≈ 10−3) Watermark channel NCS1.



Chapter 3

Variational Data Detection in Sweep

Spread Carrier Communications

Sweep spread carrier (S2C) based underwater acoustic (UWA) communications is a prac-

tically attractive but less explored modulation scheme in the published literature. In this

chapter, we present a rigorous treatment of the S2C communication receiver design and

propose a data detection scheme that can handle challenging UWA channels. State-of-

the-art S2C receivers based on the gradient heterodyne processing are only effective when

the path delay and Doppler spread are moderate. We develop a new variational soft sym-

bol decoding (VSSD) algorithm based on the principle of variational Bayes’ inference for

a general linear channel model. In channels with moderate delay and Doppler spreads,

we show that the VSSD algorithm is equivalent to the existing gradient heterodyne re-

ceivers for S2C communications. We apply the VSSD algorithm to the i.i.d. Gaussian

multiple-input multiple-output channel and show, through numerical simulations, that it

far outperforms the minimum mean squared error (MMSE) data detection. We illustrate

the dramatic improvement in the performance of the VSSD based S2C receiver in two

different models of simulated UWA channels and two contrasting measured UWA envi-

ronments publicly available in the Watermark channel dataset. The proposed VSSD

algorithm recovers data symbols at a signal-to-noise ratio (SNR) which is at least 10 dB (8

dB) lower than the MMSE decoder for uncoded (rate 2/3 LDPC coded) communications

54
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over UWA channels where the existing receivers either fail completely or must compromise

on the data rate to maintain the bit error rate (BER) performance.

3.1 Introduction

Undersea exploration and monitoring presents vast opportunities and challenges alike –

but a major hurdle to such missions arises from the difficulties in communicating un-

derwater over long distances. Severe attenuation in the marine medium limits the range

of electromagnetic, optical and magnetic induction based communications to just a few

meters, leaving acoustic communications as the de facto means for wireless data transfer

across tens of kilometers [17,54,55]. All the same, underwater acoustic (UWA) channels

are by far the most difficult media for communication. They present a serious bottleneck

in marine data networks due to limited data rate and large power demand. In particu-

lar, the data rates are limited by large delay spreads and path-dependent Doppler shifts.

Multipath propagation of sound results in a delay spread in the order of tens of millisec-

onds [90] and time variations cause path-dependent Doppler shifts that are non-uniform

over the bandwidth of the acoustic signal. Also, the communication nodes in an underwa-

ter sensor network are usually battery operated, and are therefore highly constrained on

the amount of transmission power. High performance receivers, that recover data symbols

at a low signal-to-noise ratio, are highly desirable in these applications.

Sweep spread carrier (S2C) communications [44] is inspired by the chirp, whistle and

song type signaling used by dolphins and whales to communicate over long distances [1].

It uses linear frequency modulated (LFM) waveforms as carriers of digital data. The S2C

transmission waveform, modulated by unimodular signal constellations such as quadra-

ture phase shift keying (QPSK), has an ideal peak-to-average power ratio (PAPR). The

technique is therefore battery friendly and implemented in a wide range of full-duplex

commercial acoustic modems that are used in underwater sensor networks comprising au-

tonomous underwater vehicles (AUVs), autonomous surface vehicles (ASVs), and moored

underwater sensor nodes [2,18,79,85]. Secure, reliable and covert communications, with a

low probability of intercept, is rendered possible due to use of high bandwidth coded chirp
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carriers whose exact pattern is known only to the transmitter and designated receiver.

The details of the S2C transmitter and receiver side processing, performance analysis, and

experimental results can be found in [45–49]. Despite its practical merits, success with

real world deployment, and commercialization, relatively few published works such as [60]

have explored and developed S2C communication further. In this chapter, we present a

rigorous treatment of the S2C design principles, and propose an improved S2C receiver

that can handle challenging UWA channels.

The S2C receiver in [44] extracts only the copy of a symbol arriving along the direct

path. As a consequence, the part of the transmitted symbol energy arriving along paths

other than the direct path is ignored. In [60], the authors use a maximum ratio combiner

(MRC), which improves the performance of an S2C receiver by leveraging multipath

diversity. The receiver in [60] performs well only when: (a) the ratio of the maximum delay

spread to minimum differential delay among path arrivals is below a certain value, and (b)

the Doppler spread is small. If either condition is violated, the intersymbol interference

(ISI) cancellation becomes imperfect and MRC becomes suboptimal and ineffective.

The authors in [44] and [60] did not consider the effect of Doppler. Doppler due to

relative motion between the source and receiver manifests as dilation/compression of the

transmitted waveform. The effect of Doppler in underwater acoustic communications

cannot be modeled as a frequency shift unless the waveform has a small time-bandwidth

product. For large time-bandwidth product waveforms, typical of S2C communications,

even for small relative speeds (comparable to c/2γ, where c is the speed of sound in

water and γ is the time-bandwidth product of the transmitted signal), the underwater

channel is best modeled as a wideband delay-scale channel [25, 38, 39]. In this chapter,

we consider an S2C communication system similar to [44] and [60] but for the more

general underwater channel model that includes the time-scaling effect of Doppler on the

transmitted waveform.

Previous studies on UWA communications have considered the MMSE equalizer for

(hard) data symbol detection or joint channel estimation and data detection in orthog-

onal frequency division multiplex (OFDM) and code division multiple access (CDMA)
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based communications [14,34,88,102,110]. However, in coded communications, it is more

important to estimate the soft symbols rather than perform hard symbol decision [26].

The variational Bayes’ (VB) inference is a promising approach to obtain soft symbol esti-

mates because, by design, it directly infers the posterior distributions of the transmitted

data symbols. However, to the best of our knowledge, other than our initial work in the

area [5, 94, 95], VB based soft symbol estimation has not been explored in the literature.

In this chapter, we present a new mathematical framework for S2C communications.

Based on this, we develop a new decoder that uses the principle of variational Bayes’

inference to determine the soft symbol estimates in harsh UWA channel environments.

Our specific contributions are:

1. We present a mathematical framework for S2C data detection in doubly-spread

UWA channels.

2. We show that the S2C receivers in [44] and [60] closely approximate the minimum

mean squared error (MMSE) decoder for the AWGN channel and moderately delay

spread UWA channels with well resolved path delays.

3. Previous works considered benign channels, but in practice the channel is rarely

benign. We theoretically analyze the limitations of the existing S2C receivers in

highly spread UWA channels and elicit the need to consider better receivers such as

the MMSE receiver designed for the system model in this chapter.

4. In coded communications, it is required to obtain good soft-symbol estimates, which

the previous S2C receivers do not consider. Using the VB inference approach, we

derive a new iterative log-likelihood ratio (LLR) based soft symbol decoding receiver.

5. We show that the fixed point iterations for LLR based soft symbol decoding con-

verge to a local optimum in the general case, and to a global optimum for orthogonal

channel matrices whose important special cases are the AWGN and Rayleigh chan-

nels. Specifically, in AWGN and Rayleigh channels, we show that the proposed

variational soft symbol decoder (VSSD) is a maximum-likelihood (ML) decoder and

converges in a single iteration.
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6. Through extensive numerical studies, we demonstrate the strong performance of the

VSSD in harsh simulated channels where existing S2C receivers fail completely. For

the Watermark channel dataset, we develop a suitable baseband measurement

model for the S2C system and present the superior performance of the proposed

decoder in two contrasting real world channels.

3.2 System Model

Consider an S2C system as in [44] and [60]. At the transmitter side, the carrier waveform is

a succession of linear frequency modulated chirp pulses, each swept from a lower frequency

limit fL to an upper frequency limit fH over a sweep duration Tsw, given by:

c(t) = ejφ(t), 0 ≤ t ≤ Tc, (3.1)

where

φ(t) , 2π
(
fLtr(t) +mct

2
r(t)
)

(3.2)

is the time varying phase of the carrier waveform, with tr(t) = t −
⌊

t
Tsw

⌋
Tsw being the

periodic ramp function having period Tsw, 2mc = fH−fL
Tsw

is the chirp rate, Tc = NcTsw is

the total carrier duration, and Nc is the number of chirp pulses comprising the carrier

waveform.

The message signal containing pilot and data symbols is:

s(t) =
N−1∑
k=0

skg(t− kT ), (3.3)

where sk, k = 0, . . . , N − 1, are a sequence of symbols drawn from a constant-modulus

constellation such as quadrature phase shift keying (QPSK), T is the symbol duration,

N = Tc
T

is the number of symbols in the data packet and g(t) is a pulse shaping function,

for example, a root-raised-cosine pulse with roll-off factor α. We denote the symbol

bandwidth by B, which is given by B ≈ 1+α
T

. For a symbol interval T (< Tsw), we can
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mount up to M = bTsw/T c symbols within a chirp pulse. Note that there are N = MNc

symbols in a data packet. For simplicity, we assume that Tsw/T is an integer.

The modulated transmit signal is given by

x(t) = Re [s(t)c(t)] , (3.4)

which is prefixed with a preamble pulse and appended with a post-amble pulse to form

a transmission frame. The preamble and post-amble are used for timing and synchro-

nization, and for estimating the channel. A guard interval of Tg is used after (before)

the preamble (post-amble) pulse to facilitate channel estimation. Using Nc > 1 helps in

amortizing the overhead due to the guard interval over the total carrier duration of Tc.

The time-varying impulse response of the UWA channel is modeled as [51]:

h(t, τ) =

NP−1∑
p=0

hp(t)δ (τ − τp(t)) , (3.5)

where hp(t) and τp(t) are the time-varying amplitude and delay, respectively, of the pth

path, and NP is the number of significant paths in the channel. The delay-scale model

in (3.5) capture the effects of multipath propagation (i.e., reflection, scattering, and re-

fraction) and the time variation of the propagation delays due to source-receiver motion,

scattering by fluctuating ocean surfaces, and internal gravity waves such as interfacial

waves and solitons within the fluid medium. As in [14, 34, 88, 110], we assume that the

path amplitudes are constant within a data packet, that is, hp(t) = hp, and that the time

variation of the path delays due to Doppler rate ap can be approximated as

τp(t) = τp − apt. (3.6)

After coarse Doppler scale compensation and synchronization, the received signal is

given by

y(t) =

NP−1∑
p=0

yp(t) + w(t), (3.7)
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where w(t) is the additive white Gaussian noise (AWGN), yp(t) = hpRe{s(t̃− τp(t̃))c(t̃−

τp(t̃))} is the Doppler compensated and timing adjusted version of the S2C signal reaching

via the pth path, t̃ = t+τ̂
1+â

is the rescaled and shifted time-axis, â is the coarse Doppler

scale estimated using the preamble and post-amble as in [51], and τ̂ is the starting time

instance of the first (data) chirp pulse estimated from the preamble/post-amble as in [44]

but after resampling. Using (3.6), we can write,

yp(t) = hp

N−1∑
k=0

(sk,Re cosφp(t)− sk,Im sinφp(t)) gp,k(t), (3.8)

where gp,k(t) , g
(
1 + bpt− τ̃p − kT

)
, with bp = ap−â

1+â
and τ̃p = τp − (1 + bp)τ̂ being the

residual Doppler scale and delay of the pth path after compensation, respectively, sk,Re

(sk,Im) is the real (imaginary) part of the symbol sk, and φp(t) = φ(1 + bpt − τ̃p) is the

time-scaled and delayed version of the carrier phase in (3.2).

Upon sampling at a rate Fs (= 1/Ts, where Ts is the sampling period), we may re-

express the received signal in (3.7) in a vector form relevant to data detection, as:

y = Hs + w, (3.9)

where

H = [C0h,−S0h, . . . ,CN−1h,−SN−1h] ∈ RNL×2N ,

h = [h0, h1, . . . , hNP−1]T ∈ RNP×1,

s = [s0,Re, s0,Im, . . . , sN−1,Re, sN−1,Im]T ∈ R2N×1,

w ∼ N
(
0, σ2I2N

)
,

L = bFsT c is the number of samples in the symbol duration, Ck ∈ RNL×NP and Sk ∈

RNL×NP are matrices whose entries are given by Ck(l, p) = cosφp(lTs) gp,k (lTs) and

Sk(l, p) = sinφp(lTs) gp,k (lTs), respectively, for 0 ≤ k ≤ N − 1, 0 ≤ l ≤ NL − 1

and 0 ≤ p ≤ NP − 1, and I2N denotes the 2N × 2N identity matrix. Since g(t) =

0, t /∈ [0, T ], entries of Ck(:, p) ∈ RNL×1 and Sk(:, p) ∈ RNL×1 are zeros except for
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l ∈
{⌈

τ̃p+kT

1+bpTs

⌉
, . . . ,

⌊
τ̃p+k+1T

1+bpTs

⌋}
.

We now address the problem of data detection for the S2C communication model.

First, we examine the two existing S2C receivers in the literature – the gradient heterodyne

(GradH) receiver, pioneered in [44], and the path-based gradient heterodyne (pGradH)

receiver proposed in [60].

3.3 Existing S2C Receivers: GradH and pGradH

We show that the GradH and pGradH based S2C receivers are minimum mean square

error (MMSE) symbol detectors for the AWGN channel and a delay spread channel with

well resolved path delays, respectively. We then introduce the reduced data measurement

model, at the output of the GradH and pGradH preprocessors, that will be used in this

work.

3.3.1 Optimality of GradH Receiver

Consider the received signal for the AWGN channel (NP = 1, τ̃0 = 0, b0 = 0, h0 = 1),

given by

y(t)=
N−1∑
k=0

(sk,Re cosφ(t)−sk,Im sinφ(t))g (t− kT ) + w(t).

Upon sampling, the received signal is as in (3.7) with the channel matrix taking the

block-diagonal form H = Q = diag{Q0,Q1, . . . ,QN−1} ∈ RNL×2N , where,

Qk = diag (g)


cosφ(k)[0] sinφ(k)[0]

cosφ(k)[1] sinφ(k)[1]
...

...

cosφ(k)[L− 1] sinφ(k)[L− 1]

 ∈ RL×2,

g =
[
g(0), g(Ts), . . . , g

(
L− 1Ts

)]T ∈ RL, and φ(k)[l] = φ
(

(k̃ − 1)T + lTs

)
, k̃ = k −

b k
M
cM , l = 0, . . . , L − 1, k = 0, 1, . . . , N − 1. In this case, there is no inter-symbol
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interference (ISI), and the measurement corresponding to the kth symbol is given by

yk = Qksk + wk, (3.10)

where, for k = 0, . . . , N − 1,

yk = [ y[(k − 1)L], y[(k − 1)L+ 1], . . . , y[kL− 1] ]T ,

sk =
[
sk,Re, sk,Im

]T
∈
{[
±1/
√

2,±1/
√

2
]T}

,

wk =
[
wk[0], . . . , wk[L− 1]

]T
∼ N

(
0, σ2IL

)
.

For equiprobable symbols sk, the MAP solution to (3.10) is the same as the ML

estimator, and is given by

ŝ
(ML)
k = arg min

sk∈
{
[±1/

√
2,±1/

√
2]
T
}‖yk −Qksk‖2, (3.11)

and the MMSE solution to (3.10) is given by

ŝ
(MMSE)
k = S

[(
QT
kQk + σ2I2

)−1
QT
k yk

]
, (3.12)

where S [·] is the slicing operation that quantizes each entry of its argument vector to the

nearest symbol in the QPSK constellation.

Suppose the symbol time T (and hence L) is sufficiently large and the pulse shaping

function, g(t), is smooth, so that the following holds for all 0 ≤ k ≤ N − 1:

L−1∑
l=0

g2(lTs) cos2
(
φ(k)[l]

)
≈

L−1∑
l=0

g2(lTs) sin2
(
φ(k)[l]

)
≈ β,

and
1

β

L−1∑
l=0

g2(lTs) cos
(
φ(k)[l]

)
sin
(
φ(k)[l]

)
≈ 0,

where β , 1
2

∑L−1
l=0 g

2(lTs). Then, we have QT
kQk ≈ βI2. To observe the goodness of this
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approximation, consider the S2C system in Table I, L = 50 raw samples per symbol, and

a root-raised cosine pulse shaping function g(t) with a roll-off α = 0.25 and truncated to

the symbol span. The diagonal entries of QT
kQk differ by at most 0.09 dB, since

max
k

1

β

∣∣∣∣∣
L−1∑
l=0

g2(lTs) cos
(
2φ(k)[l]

)∣∣∣∣∣ < 0.02,

and the off-diagonal entries are at least −20 dB down compared to diagonal entires, since

max
k

1

β

∣∣∣∣∣
L−1∑
l=0

g2(lTs) cos
(
φ(k)[l]

)
sin
(
φ(k)[l]

)∣∣∣∣∣ < 0.01.

Under these conditions, the MMSE receiver in (3.12) simplifies to the symbol-by-symbol

decoder:

ŝ
(GradH)
k = S [zk] , (3.13)

where zk = QT
k yk. Note that Qk can be viewed as a lowpass filter, and there is a

decimation by a factor of L in going from yk to zk. From (3.10), we see that zk ≈ βsk+vk,

where vk = QT
kwk ∼ N (0, βσ2I2), is affected only by the kth symbol. Also, zk is a sub-

vector of z = QTy ∈ R2N×1, whose entries are precisely the sampled versions of the

lowpass filtered in-phase and quadrature outputs of gradient heterodyne operation, as

in [44], on the received signal. Therefore, the GradH receiver in [44] realizes a near

MMSE decoder for S2C communication over an AWGN channel.

While the GradH receiver in (3.13) is an MMSE symbol detector for the AWGN

channel, the receiver works reasonably well even for ISI channels with moderate delay

spreads, as elaborated in [44]. It is shown in [60] that the GradH receiver recovers the

symbol arriving along the direct path when

M
M− 1

δτmax ≤ Tsw ≤Mδτmin, (3.14)

where δτmin = min0≤i<j≤NP−1 |τi− τj| and δτmax = max0≤i,j≤NP−1 |τi− τj| are the smallest

and largest separation between any two path arrival times τi and τj, and M , fH−fL
B

is
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called the spreading factor.

3.3.2 Optimality of pGradH Receiver

The pGradH receiver in [60] combines the symbol arriving along paths other than the

direct path to leverage multipath diversity in addition to the gradient heterodyne and

lowpass filtering operation. Here, we show that pGradH is a near MMSE decoder when

the path delays are well resolved and condition (3.14) holds.

For a given channel H, the MMSE receiver is given by

ŝ(MMSE) = S
[(

HTH + σ2I2N

)−1
HTy

]
. (3.15)

When condition (3.14) holds, CT
i Cj ≈ κCINP

δi,j, where κC = Ci(:, p)
TCi(:, p) is nearly

the same for all 0 ≤ i ≤ N − 1 and 0 ≤ p ≤ NP − 1, and δi,j is the Kronecker delta

function. Similarly, STi Sj ≈ κSINP
δi,j, where κS = Si(:, p)

TSi(:, p), and CT
i Sj ≈ 0. Under

these approximations, the MMSE receiver in (3.15) simplifies to the pGradH receiver

in [60],

ŝ
(pGradH)
k = S

[
NP−1∑
p=0

hp
|hp|2

z
(p)
k

]
, (3.16)

where

z
(p)
k = Q

(p)T
k yk, (3.17)

Q
(p)
k = diag

(
g(p)
)


cosφ
(k)
p [0] sinφ

(k)
p [0]

cosφ
(k)
p [1] sinφ

(k)
p [1]

...
...

cosφ
(k)
p [L− 1] sinφ

(k)
p [L− 1]

 ,

g(p) ∈ RL has entries that are samples of the compressed/dilated and delayed pulse

shaping function, g
(p)
l = g

(
1 + bplTs − τ̃p

)
, φ

(k)
p [l] = φp

(
(k̃ − 1)T + lTs

)
, k̃ = k−b k

M
cM ,

l = 0, . . . , L − 1, p = 0, . . . , NP − 1, and k = 0, 1, . . . , N − 1. Stacking up z
(p)
k , k =



Chapter 3. Variational Data Detection in Sweep Spread Carrier Communications 65

0, 1, . . . , N − 1, into a vector, we get

z(p) = Q(p)Ty ∈ R2N×1, (3.18)

where Q(p) = diag{Q(p)
0 ,Q

(p)
1 , . . . ,Q

(p)
N−1} ∈ RNL×2N . The entries of z(p) are sampled

versions of the lowpass filtered in-phase and quadrature outputs of path-matched gradient

heterodyne operation, as in [60], on the received signal.

3.3.3 Reduced Data Measurement Model

We now present the data model for measurements, at symbol rate, at the output of the

GradH and pGradH preprocessors. Henceforth, we use this reduced data measurement

model instead of the raw signal samples at receiver front-end sampling rate, Fs, in (3.9).

The measurements at the output of GradH preprocessing, i.e., gradient heterodyne

operation and lowpass filtering, can be written in the form

z = Gs + v, (3.19)

where G = QTH ∈ R2N×2N is the channel matrix at the output of the GradH preprocessor

and lowpass filter, and v = QTw ∼ N (0, σ2QTQ). In the special case of an AWGN

channel (i.e., H = Q), with a large enough symbol duration T and smoothly varying

pulse shaping function g(t), the channel matrix G = QTQ ≈ βI2N is nearly diagonal and

v ∼ N (0, βσ2I2N), as shown in Sec. 3.3.1.

The measurement model at the output of pGradH preprocessing assumes the same

form as in (3.19), where z ∈ R2N is the output of the MRC processor given by z =∑NP−1
p=0

hp
|hp|2 z

(p), G =
∑NP−1

p=0
hp
|hp|2 G

(p) ∈ R2N×2N is the effective channel matrix at the

output of the MRC processor, G(p) = Q(p)TH ∈ R2N×2N is the channel matrix at the

output of the pth branch of the pGradH preprocessor, v =
∑NP−1

p=0
hp
|hp|2 v

(p) ∈ R2N and

v(p) = Q(p)Tw ∼ N (0, σ2Q(p)TQ(p)). For a moderately delay spread channel with well

resolved path delays and large symbol duration, Q(p)TQ(q) ≈ βδp,qI2N , 0 ≤ p, q ≤ NP − 1

due to (3.14). In this case, G(p) ≈ βhpI2N , v(p) ∼ N (0, βσ2I2N), and therefore G, the
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channel matrix at the output of the GradH and pGradH preprocessors, is nearly diagonal.

In the next section, we bring out the need to consider alternate S2C receiver processing

in large delay spread channels.

3.4 Limitations of GradH and pGradH Receivers

For both GradH and pGradH receivers, the condition in (3.14) is needed to ensure that

the ISI is negligible after gradient heterodyne operation and lowpass filtering. The con-

dition (3.14) places a lower limit on the minimum differential path delay, δτmin, of the

multipath arrivals to avoid ISI ensuing from the mixing of adjacent symbols at the GradH

and pGradH preprocessor outputs [60]. The condition (3.14) also places an upper limit

on the channel delay spread, δτmax, to avoid interference between the symbols on the cor-

responding frequency sweep slots of different chirp pulses. Together, these limits require

the symbol rate, R = 1/T , of the existing S2C receivers to satisfy

R ≤
(
fH − fL
1 + α

)
min{δτmin, Tsw − δτmax}

Tsw

. (3.20)

The upper limit on the achievable rate, in (3.20), is maximized when Tsw = δτmax + δτmin,

and the maximum rate achievable by the existing S2C receivers is given by

Rmax =

(
fH − fL
1 + α

)
δτmin

δτmax + δτmin

. (3.21)

Note that the rate limiting condition R ≤ Rmax to avoid ISI at the preprocessor output

of the existing S2C receivers, is equivalent to imposing a lower bound on the spreading

factor: M ≥ δτmax

δτmin
+ 1. When the system is operated at a symbol rate R = Rmax, the

spreading factor M = δτmax

δτmin
+ 1.

Existing S2C receivers entail ISI when operating at a symbol rate greater than Rmax.

Consider, for example, the S2C system in Table 3.1 operating in a UWA channel simulated

in Sec. 3.6.2.1. There are 20 QPSK symbols (i.e., 40 bits) in one chirp pulse (S2C block)

of duration Tsw = 10 ms. Figure 3.1 shows a transmitted S2C frame, where the symbols
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Figure 3.1: An S2C frame consisting of preamble, Nc chirp pulses (data blocks), and post-

amble. Although T ≥ 1√
2mc

avoids ISI among adjacent symbols, inter-block interference

(IBI) among the symbols mounted on the same frequency sweep slots (green slots) can

happen if Tsw is smaller than the channel delay spread.

si,j and si,j+1 can potentially interfere with the detection of si,j+2, j = 1, 2, 3. Figures 3.2

and 3.3 display the images of the raw channel matrix H, in (3.9), and the corresponding

effective channel G, in (3.19), respectively. Yellow pixels show the large magnitude entries

in the visual images of |H| and |G|. Large magnitude off-diagonal entries lead to ISI.

Compared to the raw channel matrix H, the effective channel G after gradient heterodyne

and lowpass filtering exhibit reduced ISI. This is shown by the relatively weaker (blue)

off-diagonal entries of |G|. The gradient heterodyne and lowpass filtering operation has

reduced the strength of the off-diagonal entries in G that contribute to ISI among symbols

within a chirp pulse (intra-block interference). But, strong residual inter-block interference

remains at the GradH/pGradH preprocessor output as shown by the large magnitude

(yellow) pixels around Gi,i−40, 40 < i ≤ 2N, in Figure 3.3. In turn, this adversely affects

the performance of the existing S2C receivers in a severely delay spread UWA channel.

In such channels, existing S2C receivers must compromise on the data rate in order to

restore the symbol recovery performance.

In the following section, we consider alternate receivers for S2C communications that

can handle channel delay spreads greater than the chirp pulse duration and work well for

symbol rates higher than the upper limit on the data rate, Rmax.
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Figure 3.2: Channel matrix image, |H| ∈ RNL×2N , before GradH processing. Pixel in-

tensities are in linear units and only the portion corresponding to first 128 bits is shown.

For the purpose of visualization, |H| is scaled such that the median of the entires of its

scaled version assumes a value of 1
6

on the color bar shown.

3.5 Variational Soft Symbol Decoder (VSSD)

We now develop a symbol detector based on the variational Bayes’ inference that approx-

imates the optimum MAP decoder and offers significantly improved performance over the

MMSE receiver. The development of the VSSD is the main contribution of this work.

The optimum (MAP) decoder outputs the symbol vector s ∈ P = {− 1√
2
,+ 1√

2
}2N

that maximizes the posterior p(s|G, z) = p(z|G, s)p(s)/p(z|G). Direct maximization

of the posterior requires a computationally intensive search over 22N lattice points in

P . Computing the posterior symbol probabilities, which in turn yield the soft sym-

bols to be input to the channel decoder, is also hard since the marginalization over s

in p(z|G) =
∑

s∈P p(s, z|G) is involved. We instead seek a good approximation to the
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Figure 3.3: Channel matrix image, |G| ∈ R2N×2N , after GradH processing. Pixel intensi-

ties are in linear units and only the portion corresponding to first 128 bits is shown. For

the purpose of visualization, |G| is scaled such that the median of the entires of its scaled

version assumes a value of 1
6

on the color bar shown.

posterior, qφ(s|G, z), called the variational decoder. Here, φ represents the model param-

eters whose values are estimated based on the variational inference principle, as explained

below.

To make the problem tractable, we assume that the approximate posterior is fully

factorizable:

qφ(s|G, z) =
N−1∏
k=0

qφ(sk,Re|G, z)qφ(sk,Im|G, z). (3.22)

Following Kingma et al. [50], the evidence lower bound (ELBO) on the log likelihood
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of the observation is given by

L(θ, φ, z) = Eqφ(s|G,z) log pθ(z|G, s)− Eqφ(s|G,z)

[
log

qφ(s|G, z)

pθ(s)

]
, (3.23)

where log pθ(z|G, s) is the likelihood function and pθ(s) is a prior on the symbol vector.

To bring qφ(s|G, z) close to p(s|G, z), we maximize the ELBO, L(θ, φ, z). The ELBO

consists of the likelihood term

Eqφ(s|G,z) log pθ(z|G, s) = −N log(2πσ2)− Eqφ(s|G,z)

[
‖z−Gs‖2

2σ2

]
, (3.24)

and the regularizing term,

Eqφ(s|G,z)

[
log

qφ(s|G, z)

pθ(s)

]
= KL(qφ||pθ). (3.25)

We assume a simple uniform prior pθ(s) = 1
22N

. Therefore, when maximizing ELBO,

the regularizing term acts to penalize the departure of the variational approximation qφ

from the uniform prior. On maximizing the ELBO, we get the following fixed point

equations (see appendix for details):

q = ϕ(α), (3.26)

where

αj =

√
2

σ2

(
zTG:,j −

2N−1∑
l=0

Gl,j

(∑
i

vl,i − vl,j

))
,

vl,j =
1√
2
Gl,j (2qj − 1) , (3.27)

ϕ(αj) =
1

1 + e−αj
,

for j = 1, . . . , 2N − 1.

Note that the fixed point iterations lead to soft symbol estimates in the form of the

probability vector q. We perform symbol detection by slicing the probability vector in
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uncoded communications. In coded communications, the soft symbols are converted to

LLRs and fed to the channel decoder.

The fixed point updates do not involve any matrix inversions and their computational

complexity, O(N2), is an order of magnitude smaller than the computational complexity,

O(N3), of the MMSE receiver.

Special Channels : It is insightful to specialize the fixed point iterations for some simple

channel models. Consider the case when the channel matrix is orthogonal, i.e.,

GT
:,iG:,j =‖ G:,i ‖2

2 δi,j.

Note that the AWGN channel and Rayleigh fading channel are examples of orthogonal

channels. In this case, the fixed point iterations in (3.26) reduce to the following one

point update:

q =
1

1 + e
−
(√

2
σ2

GT z
) . (3.28)

Therefore, deciding the hard symbols from the probability vector q is tantamount to

slicing the matched filtered observation: z̃ = GTz. Deciding sk = ± 1√
2

based on qk ≷ 0.5

is equivalent to that based on z̃k ≷ 0. In other words, VSSD is an ML decoder for

orthogonal channels.

Convergence: We show that every update of the fixed point iteration in (3.26) is along

the gradient of the ELBO (ascent direction), and therefore cannot decrease the ELBO.

To see this, consider the inner product of ϕ(α)− q and ∇L:

(ϕ(α)− q)T ∇L =
2N−1∑
j=0

(ϕ(αj)− qj)∇Lj. (3.29)

We show in the appendix (see equation (3.66)) that ∇Lj = αj− log qj + log(1− qj). Each

term in (3.29) is nonnegative since ϕ(αj)− qj ≷ 0⇔ αj − log qj + log(1− qj) ≷ 0. Thus,

the inner product is nonnegative and hence the update q → ϕ(α(q)) cannot decrease

ELBO. Further, for any channel matrix, the ELBO is upper bounded by the marginal log

likelihood, log pθ(z). Therefore, the fixed point iterations always converge to a stationary
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point of the ELBO.

Next, we characterize the stationary points of the ELBO and elicit sufficient conditions

that make these points a global maximum, local maximum or a saddle point.

Global Maximum: The entries of the Hessian matrix of L with respect to q, i.e.,

∇2
qL ∈ R2N×2N , are given by

∂2L
∂q2

j

= − 1

qj(1− qj)
< 0, (3.30)

∂2L
∂qi∂qj

=
∂2L
∂qj∂qi

= − 2

σ2

∑
l

Gl,iGl,j, i 6= j, (3.31)

where i, j ∈ {0, 1, . . . , 2N − 1}. For orthogonal channel matrices, the matrix G satisfies∑
lGl,iGl,j = 0, which makes the Hessian negative definite and therefore the stationary

point q? a global maximizer of the ELBO.

A larger class of channel matrices for which global convergence is guaranteed can be

found by requiring −∇2
qL to be diagonally dominant, i.e.,

ηj ,
2

σ2

∑
i 6=j

∣∣∣∣∣∑
l

Gl,iGl,j

∣∣∣∣∣ < 1

qj(1− qj)
,∀j, (3.32)

which implies:

q2
j − qj + 1/ηj > 0,∀j. (3.33)

Now, the condition in (3.33) holds for every 0 ≤ qj ≤ 1 if and only if 0 ≤ ηj < 4.

Note that −∇2
qL is symmetric and all its diagonal entries are positive. Since diagonal

dominance of −∇2
qL implies its positive definiteness (p.d.), −∇2

qL is p.d. for the class of

channel matrices G = {G ∈ R2N×2N :
∑

i 6=j |
∑

lGl,iGl,j| < 2σ2, ∀j} and therefore global

convergence is guaranteed whenever G ∈ G.

Local Maximum: If G ∈ G, the limit point q? is a global maximizer. Or else, if G /∈ G

and qj,? /∈ (κ
(1)
j , κ

(2)
j ) ⊂ [0, 1],∀j, where κ

(1,2)
j are the roots of the equation q2

j−qj+1/ηj = 0

(ηj > 4) given by

κ
(1,2)
j =

1±
√

1− 4/ηj
2

,∀j, (3.34)
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then the limit point q? is a local maximum.

Either Local Maximum or Saddle Point : If G /∈ G and qj,? ∈ (κ
(1)
j , κ

(2)
j ), for some j,

then the limit point q? is either a local maximum or a saddle point.

Consider, for example, a channel matrix with i.i.d. N (0, 1) entries. The length of the

interval (κ
(1)
j , κ

(2)
j ) is given by

lN,j = κ
(2)
j − κ

(1)
j =

√
1− 4/ηj. (3.35)

From the definition of ηj in (3.32), triangle inequality, and the i.i.d. property of the entries

of G, we have:

E[ηj] ≤
2

σ2

∑
i 6=j

∑
l

E [|Gl,i|]E [|Gl,j|] =
8N(2N − 1)

πσ2
, (3.36)

and therefore,

E[l2N,j] = 1− 4E[1/ηj] ≤ 1− 4/E[ηj] = 1− πσ2

2N(2N − 1)
, (3.37)

where we used the fact that E[1/ηj] ≤ 1/E[ηj] which follows from Jensen’s inequality and

the convexity of f(η) = 1/η, η > 0. Since P{ηj > 4} → 1, as N →∞, for i.i.d. Gaussian

channel matrices, the fixed point is in (κ
(1)
j , κ

(2)
j ) with high probability. Furthermore, since

for every δ > 0, P{l2N,j > 1− δ} → 1 as N →∞, we have lN,j
p→ 1.

Since, in this case, q? could be a saddle point, we perturb q? so as to move out of

the saddle region in an attempt to further increase the ELBO. If the ELBO is found to

increase for a few attempts of random perturbation, we continue the iterations from the

point yielding the highest ELBO.

Acceleration: Finally, we propose to accelerate the fixed point updates to achieve

faster convergence. Specifically, we choose γn at the nth iterate so that the update,

qn = qn−1 + γn [ϕ(αn−1)− qn−1] , (3.38)

results in maximal increase of ELBO. The optimum value of γn can be found through a
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1-D search over a bounded interval in R. Specifically, the optimum value of γn in (3.38),

that best increases ELBO, lies within [γmin, γmax] ∈ R, with

γmin = max{ max
ϕ(αj)>qj

−qj
ϕ(αj)−qj , max

ϕ(αj)<qj

1−qj
ϕ(αj)−qj},

γmax = min{ min
ϕ(αj)<qj

−qj
ϕ(αj)−qj , min

ϕ(αj)>qj

1−qj
ϕ(αj)−qj}.

3.6 Numerical Simulations

We demonstrate the performance of VSSD in three different settings: the benchmark i.i.d.

Gaussian multiple-input multiple-output (MIMO) channel, UWA channels simulated ac-

cording to two different models in the literature, and real-world measured UWA channels.

We define the signal to noise ratio (SNR) at the receiver as

SNR =
E{‖Gs‖2

2}
E{‖v‖2

2}
. (3.39)

3.6.1 IID Gaussian MIMO Channel

We generate the channel matrix G, with entries Gi,j
i.i.d.∼ N (0, 1). First, we evaluate the

BER of the VSSD receivers for N = 10, 100 symbols, for the uncoded QPSK signaling, and

with perfect channel knowledge. We terminate the VSSD iterations at the nth iteration

if ‖qn − qn−1‖2 < 10−3. Figure 3.4 shows the BER plots for different SNR values. For

N = 10 symbols, we show the BER of the ML decoder obtained by using the soft sphere

decoder (SSD) in [91, 92] and whose implementation is available in [63]. The VSSD

receiver, initialized with the soft symbol estimate of SSD, retains the SSD’s optimum

(ML) performance, as expected. When initialized with the MMSE estimate of the symbol

vector, VSSD outperforms the MMSE receiver by a margin of about 8-9 dB at a BER of

10−3 for N = 10. Note that, while SSD outperforms VSSD for N = 10, sphere decoding
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Figure 3.4: BER of VSSD, SSD and MMSE receivers for i.i.d. Gaussian channel matrix

(N = 10, 100) and AWGN channel.

is not practical at large values of N due to its high computational complexity.1 Moreover,

for N = 100, the performance of the VSSD receiver on the i.i.d. Gaussian MIMO channel

is close to that on an AWGN channel. On the AWGN channel, all receivers perform

equally well, as expected.

In Figure 3.5, we compare the BER of the receivers for N = 288 symbols, for uncoded

and coded QPSK communications, assuming perfect channel knowledge. For coded com-

munication, we use a rate 1/2 and rate 2/3 LDPC code from [33]. In uncoded commu-

nication, the VSSD receiver achieves a BER of 10−3 at about 10 dB lower SNR than the

MMSE receiver. In the rate 2/3 (1/2) coded communication, for a BER of 10−3, VSSD

outperforms MMSE receiver by an SNR margin of 8 dB (2 dB). For the same BER (10−3),

the VSSD receiver with a rate 2/3 code works at about 1 dB lower SNR than the MMSE

1 On a 2.4 GHz Intel Xeon(R) processor, SSD takes 4.5 s on average to decode N = 20 symbols at
SNR = 10 dB. For N = 30 symbols and at the same SNR, decoding does not finish within 5 minutes.
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Figure 3.5: BER of VSSD and MMSE receivers for i.i.d. Gaussian channel matrix.

receiver with a rate 1/2 code. Therefore, VSSD receiver offers 33% higher data rate than

the MMSE receiver, while achieving the same BER.

Next, we consider the effect of imperfect channel knowledge due to channel estimation

error on the BER. To do so, we perturb the entries of the i.i.d. Gaussian channel matrix

with i.i.d. Gaussian noise, i.e. Gi,j = Gi,j + εi,j, where εi,j ∼ N (0,∆), 1 ≤ i, j,≤ 2N .

Figure 3.6 shows the BER of VSSD and MMSE decoders for ∆ = 1/4, 1/5 and coded

communications using a rate 2/3 LDPC code. VSSD receiver retains its performance

advantage over MMSE even with channel estimation errors.

3.6.2 Simulated UWA Channels

We now consider the performance of VSSD based receiver for the S2C communication

system in Table 3.1 over a simulated UWA channel. Note that the symbol rate that is
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Figure 3.6: BER of VSSD and MMSE receivers, under channel estimation errors, for i.i.d.

Gaussian channel matrix. ∆ denotes the variance of the zero-mean additive Gaussian

noise by which the channel matrix entries are perturbed to simulate channel estimation

errors.

two times the upper limit, R∗ =
√

2mc = 1 kHz, on the existing S2C receivers.2 A total of

N = 288 QPSK symbols are mounted on a train of Nc = 15 chirp pulses. We investigate

the performance for two models of UWA channels.

3.6.2.1 Model I

The first UWA channel model we consider is as in [14,34] and used by numerous researchers

in the field. The channel is generated with NP = 16 discrete paths whose inter-arrival

times, δτ are exponentially distributed with a mean of 1 ms. The guard interval, Tg =

25 ms, is chosen to well exceed the expected delay spread, E [τmax] = NpE [δτ ] = 16 ms.

2Adjacent symbol interference, within a chirp pulse, is avoided in existing S2C receivers only if 2mcT ≥
B ≈ 1+α

T ⇒ R ≤
√

2mc
1+α ≤

√
2mc , R∗.
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Table 3.1: S2C parameters used in the simulation.

Carrier frequency (fc) 15 kHz

Bandwidth (W ) 10 kHz

Chirp rate (2mc) 1 MHz/s

Symbol duration (T ) 0.5 ms

Sweep duration (Tsw) 10 ms

Guard interval (Tg) 25 ms

The Doppler rates are uniformly distributed in [−bmax, bmax], where bmax = 5× 10−4. The

path amplitudes are Rayleigh distributed with the average power decreasing exponentially

with delay, where the difference between the beginning and the end of the guard time is

20 dB. Notice that neither of the narrowband approximation conditions [38] B/fc � 1

or bmax � 1/BT are met in this case. Therefore, it is pertinent to evaluate the symbol

recovery schemes based on the system model (3.9) for S2C communications over such a

wideband delay-scale channel.

Figure 3.7 shows the BER of the MRC [60], VSSD and MMSE based data detection

assuming perfect channel knowledge. The MRC receiver has completely failed due to

severe ISI at pGradH preprocessor output (see Figure 3.3). Again, from these plots, we

notice a strong performance of the VSSD based symbol detection in an S2C receiver. The

VSSD receiver attains a BER = 10−3 at about 18 dB lower SNR than MMSE in uncoded

communication. In coded communication, the SNR margin of VSSD over the MMSE

receiver is 8 dB (3 dB) for rate 2/3 (1/2) LDPC code.

Figure 3.8 shows the number of VSSD iterations (averaged over at least 1000 trials) for

different SNR. On an average, the number of iterations stay below 10 and the maximum

number of iterations never crossed 15.

3.6.2.2 Model II

We consider the UWA channel model proposed in [72]. The acoustic channel simulator

code, available at [87], is used for generating the time-varying channel. Table 3.2 lists
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Figure 3.7: BER of VSSD and MMSE receivers over a UWA channel simulated according

to the model in Berger et al. [14].

the parameters of the channel. A sample realization of the time-varying channel impulse

response is shown in Figure 3.9. Note that the requirement, Tg ≥ τmax, is clearly met.

Figure 3.10 shows an instance of the channel matrix (G) at the output of S2C prepro-

cessing during the UWA channel simulation run. The inter symbol interference for this

UWA channel is milder than the channel simulated according to the model in [14] (see

Figure 3.3). Figure 3.11 shows the BER plots of the VSSD and MMSE receivers with and

without channel errors. VSSD maintains a significantly better performance than MMSE

decoder, as before.
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Figure 3.8: Number of VSSD iterations averaged over 1000 trials for each SNR.

3.6.3 Watermark Channels

The underWater AcousTic channEl Replay benchMARK (Watermark) is a publicly

available realistic simulation tool that comes packaged with five measured UWA chan-

nels [70,98]. We use two of channel datasets, NOF1 and NCS1, that present two contrast-

ing environments in the Norwegian seas [97]. The NOF1 channel is a Fjord in a shallow

stretch of Oslofjorden, and the NCS1 channel is a continental shelf in the Norwegian

sea. The measured time-varying channel impulse responses include the effects of system

hardware impairments such as clock frequency offset, sampling jitter etc, apart from the

acoustic propagation effects.

Channel Matrix Computation: We first relate the complex baseband form of the mea-

sured channel impulse response data in Watermark, denoted by hB(t, τ), and the chan-

nel matrix, G, at the output of the gradient heterodyne and lowpass filtering operation.
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Table 3.2: Underwater Channel Simulation Parameters.

Ocean depth (m) 100

Transmitter depth (m) 90

Receiver depth (m) 50

Channel distance (m) 1000

Spreading factor 1.7

Sound speed in water, cw (m/s) 1500

Sound speed in bottom, cb (m/s) 1200

Surface variance, σ2
s (m2) 1.125

Bottom variance, σ2
b (m2) 0.5

3 dB width of the PSD of intra-path delays, Bδ,p (Hz) 0.05

Number of intra-paths, Sp 20

Mean of intra-path amplitudes, µp 0.3

Variance of intra-path amplitudes, νp 10−4

Transmitter drifting speed, vtd (m/s) 0.3

Transmitter drifting angle, θtd (rad) U(0, 2π)

Receiver drifting speed, vrd (m/s) 0.1

Receiver drifting angle, θrd (rad) U(0, 2π)

Transmitter vehicular speed, vtv (m/s) N (0, 1)

Transmitter vehicular angle, θtv (rad) U(0, 2π)

Receiver vehicular speed, vrv (m/s) -3

Receiver vehicular angle, θrv (rad) U(0, 2π)

Surface variation amplitude, Aw (m) 0.9

Surface variation frequency, fw (mHz) 0.6

Towards that end, we start with the baseband transmitted signal, given by

xB(t) = s(t)c(t)e−j2πfct. (3.40)
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Figure 3.9: Acoustic channel impulse response based on model in [72]. The first, second

and third arrivals from the left correspond to the direct, bottom-reflected, and surface-

reflected paths, respectively. The last arrival corresponds to a multiply reflected surface-

bottom arrival.

The received baseband signal is given by

yB(t) =

τmax(t)∫
τmin(t)

hB(t, t− τ)xB(τ)dτ + wB(t), (3.41)

where τmin(t) = max{0, t− Td}, τmax(t) = min{t, Tc}, Td denotes the maximum delay

spread of the propagation channel and wB(t) is the complex valued noise in the baseband.

Here, we made use of the fact that hB(t, τ) = 0 for τ < 0 (due to causality) and τ > Td,

and xB(τ) = 0 for τ > Tc, to arrive at the upper and lower limits of the integral in (3.41).

Using (3.3), (3.40) and (3.41), the in-phase and quadrature components of the received
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Figure 3.10: Channel matrix after GradH processing at an instance during the simulation

run of the UWA channel model in [72].

signal can be expressed in the form:

yB,Re(t) =
N−1∑
k=0

HRe
k,Re(t)sk,Re +H Im

k,Re(t)sk,Im + wB,Re(t), (3.42)

yB,Im(t) =
N−1∑
k=0

HRe
k,Im(t)sk,Re +H Im

k,Im(t)sk,Im + wB,Im(t), (3.43)

where,

HRe
k,Re(t) =

τ
(k)
max(t)∫
τ
(k)
min(t)

hB,Re(t, t− τ)g(τ − kT ) cosφB(τ)dτ

−
τ
(k)
max(t)∫
τ
(k)
min(t)

hB,Im(t, t− τ)g(τ − kT ) sinφB(τ)dτ, (3.44)
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Figure 3.11: BER of VSSD and MMSE receivers for S2C communications over UWA

channel simulated according to [72]. ∆ denotes the variance of the i.i.d. zero-mean

additive Gaussian noise by which the channel matrix entries are perturbed to simulate

channel estimation errors.

H Im
k,Re(t) = −

τ
(k)
max(t)∫
τ
(k)
min(t)

hB,Re(t, t− τ)g(τ − kT ) sinφB(τ)dτ

−
τ
(k)
max(t)∫
τ
(k)
min(t)

hB,Im(t, t− τ)g(τ − kT ) cosφB(τ)dτ, (3.45)

HRe
k,Im(t) =

τ
(k)
max(t)∫
τ
(k)
min(t)

hB,Re(t, t− τ)g(τ − kT ) sinφB(τ)dτ

+
τ
(k)
max(t)∫
τ
(k)
min(t)

hB,Im(t, t− τ)g(τ − kT ) cosφB(τ)dτ, (3.46)
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H Im
k,Im(t) =

τ
(k)
max(t)∫
τ
(k)
min(t)

hB,Re(t, t− τ)g(τ − kT ) cosφB(τ)dτ

−
τ
(k)
max(t)∫
τ
(k)
min(t)

hB,Im(t, t− τ)g(τ − kT ) sinφB(τ)dτ, (3.47)

φB(t) = 2π
(
fLtr(t) +mct

2
r(t)− fct

)
,

τ
(k)
min(t) = max{0, t− Td, kT},

τ (k)
max(t) = min{t, Tc, (k + 1)T},

wB,Re(t) and wB,Im(t) are the real valued additive noises in the in-phase and quadrature

channels. After sampling along t and τ axes, the received signal samples from (3.42)-

(3.43) can be stacked and expressed in the form of (3.9). Entries of the channel matrix,

H ∈ RNL×2N , are found from discretized versions of (3.44)-(3.47). At time t = nTs, the

in-phase and quadrature measurement samples are given by

yB[n] =
N−1∑
k=0

Hn,ksk + wB[n], (3.48)

where yB[n] = [yB,Re(nTs), yB,Im(nTs)]
T , Hn,k ∈ R2×2 is the block matrix,

Hn,k =

HRe
k,Re(nTs) H Im

k,Re(nTs)

HRe
k,Im(nTs) HRe

k,Im(nTs)

 ∈ R2×2, (3.49)

The channel matrix, GB, after gradient heterodyne and lowpass filtering is given by

GB = QT
BH ∈ R2N×2N , (3.50)
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Table 3.3: S2C parameters used in Sec. 3.6.3

Frequency band (fL − fH) 10 - 18 kHz

Chirp rate (2mc) 800 kHz/s

Symbol duration (T ) 0.5 ms

Sweep duration (Tsw) 10 ms

Guard interval (Tg) 25 ms

where QB = diag{QB,0,QB,1, . . . ,QB,N−1} ∈ R2NL×2N ,

QB,k = diag (g̃)


R
φ
(k)
B [0]

+ R
φ
(k)
B [0]−π

2

R
φ
(k)
B [1]

+ R
φ
(k)
B [1]−π

2
...

R
φ
(k)
B [L−1]

+ R
φ
(k)
B [L−1]−π

2

 ∈ R2L×2,

Rθ is the rotation matrix,

Rθ =

cos θ − sin θ

sin θ cos θ

 ∈ R2×2,

g̃ = [g[0], g[0], g[1], g[1], . . . , g[L− 1], g[L− 1]]T ∈ R2L×1 and φ
(k)
B [l] = φB

(
(k̃ − 1)T + lTs

)
,

k̃ = k − b k
M
cM , l = 0, . . . , L− 1.

Performance Evaluation: We now consider the performance of the proposed VSSD

receiver over the Watermark channels for the S2C system in Table 3.3. The channel

datasets NOF1 and NCS1 in Watermark have a delay (τ) coverage of Td = 128 ms

and Td = 32 ms respectively. Therefore, the measured impulse response of NOF1 (NCS1)

channel is available only at an interval of ∆t = 128 ms (∆t = 32 ms) along the t-axis. To

compute the entries of the channel matrix, H and hence G, we require the channel impulse

response at finer intervals corresponding to the baseband sampling frequency Fs = 16 kHz

used in Watermark. We linearly interpolate the samples of measured baseband channel
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Figure 3.12: Channel matrix after GradH processing at an instance in the Watermark

channel record NOF1.

impulse response to obtain the response at finer intervals.

For timing and synchronization, a chirp pulse of duration Tp = 20 ms in the frequency

band 10-18 kHz, called preamble, is prefixed to the transmission waveform. A guard

interval of Tg = 25 ms is inserted between the preamble and the start of modulated

waveform to avoid interference. Note that, although the delay spread of NOF1 channel is

Td = 128 ms, the channel power delay profile falls by more than 20 dB beyond Tg = 25 ms.

Matched filtering with the preamble waveform is used for detecting the start of the received

waveform.

Figure 3.12 shows the computed channel matrix, GB, for the first few bits in a received

packet at one of the instances in the Watermark channel record NOF1. Significant ISI

remains even after gradient hetrodyne and lowpass filtering, as indicated by the strong

off-diagonal entries in matrix GB.

Figure 3.13 shows the performance of VSSD and MMSE receivers on the Watermark

channel NOF1. NOF1 is a stable channel with coherence time spanning over several
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Figure 3.13: BER of VSSD and MMSE receivers for S2C communications over the NOF1

channel in Watermark. ∆ denotes the variance of the i.i.d. zero-mean additive Gaussian

noise by which the channel matrix entries are perturbed to simulate channel estimation

errors.

seconds. VSSD outperforms MMSE receiver by a margin comparable to that in simulated

UWA channels for both coded and uncoded communications in this real world channel

also.

Figure 3.14 shows the BER of the proposed receiver on the NCS1 channel. NCS1

is characterized by a larger Doppler spread and therefore its impulse response varies

significantly faster than NOF1. Both receivers require a higher SNR to achieve the same

BER in NOF1 than NCS1. However, the strong relative performance of the VSSD receiver

is maintained for both coded and uncoded communications even in this harsher UWA

channel. While both NOF1 and NCS1 channels exhibit a comparable power delay profile,

the coherence time of NCS1 is only about a tenth of a second that makes the channel
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Figure 3.14: BER of VSSD and MMSE receivers for S2C communications over the NCS1

channel in Watermark. ∆ denotes the variance of the i.i.d. zero-mean additive Gaussian

noise by which the channel matrix entries are perturbed to simulate channel estimation

errors.

prone to estimation errors. We see that, even in such challenging channel conditions as

NCS1, VSSD is relatively resilient to channel estimation errors.

3.7 Conclusions

In this work, we considered data symbol detection in an S2C receiver for doubly spread

UWA channels. We formulated the problem of data detection for S2C communications

over a wideband delay-scale channel and showed that the two existing S2C receivers are

near MMSE decoders in only certain benign UWA channels. In more severe channels,

where the existing receivers either completely fail or must compromise on the data rate,
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we developed a new soft symbol decoder based on variational Bayes’ inference. The

input to the new decoder is the reduced data measurements at the output of the gradient

heterodyne preprocessor of the existing S2C receivers.

Our proposed VSSD decoder estimates a probability vector (soft symbols) whose KL-

distance to the true posterior of the symbol vector is minimized by iterating through

a fixed point equation. In benign UWA channels, the VSSD decoder reduces to the

existing S2C receivers. We showed that the fixed point iterations converge to a stationary

point of the evidence lower bound in variational inference. We presented a few sufficient

conditions that help to characterize the stationary point as a global maximum, local

maximum or saddle point. Simulation results showed that VSSD significantly outperforms

the MMSE decoder and maintains a robust performance, even under channel estimation

errors, in challenging UWA channels. We applied the VSSD decoder on two contrasting

real world UWA channels in the publicly available Watermark datasets. The new

decoder outperforms the MMSE decoder in these channels as well, by a margin comparable

to that in simulated UWA channels.

The ideal PAPR and low probability of intercept properties of S2C communications

make it a promising candidate for terrestrial radio-frequency (RF) communications as

well. Also, the VSSD algorithm developed in this chapter is potentially applicable to

other prevalent and emerging wireless communication systems.

3.8 Appendix: Evidence Lower Bound

We derive the ELBO for soft symbol estimation. The first term in (3.23) is given by

Eqφ(s|G,z) log pθ(z|G, s) = −N log(2πσ2)− Eqφ(s|G,z)

[
‖z−Gs‖2

2σ2

]
. (3.51)

Expanding the last term in (3.51), we get

Eqφ(s|G,z)
[
‖z−Gs‖2

]
= ‖z‖2 − 2zTGEqφ(s|G,z) [s] + Eqφ(s|G,z)

[
‖Gs‖2

]
. (3.52)
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We define:

qk,Re , qφ

(
sk,Re =

1√
2

∣∣∣∣G, z

)
∈ [0, 1], (3.53)

qk,Im , qφ

(
sk,Im =

1√
2

∣∣∣∣G, z

)
∈ [0, 1]. (3.54)

Note that the approximate posterior is completely specified by the soft symbol vector

q ∈ R2N formed by stacking up qk = [qk∗,Re, qk∗,Im]T ∈ R2, k = 0, 1, . . . , N − 1. For our

problem, we let the parameter φ , q.

The expectations in (3.52) can be evaluated as follows:

Eqφ(s|G,z) [sk,Re] =
1√
2

(2qk,Re − 1) , (3.55)

Eqφ(s|G,z) [sk,Im] =
1√
2

(2qk,Im − 1) , (3.56)

Eqφ(s|G,y)
[
‖Gs‖2

]
=

2N−1∑
l=0

Eqφ(s|G,z) [Gs]2l , (3.57)

Eqφ(s|G,z) [Gs]2l =
N−1∑
k=0

(
ηl,k + νl,k

∑
m6=k

νl,m

)
, (3.58)

where

ηl,k =
1

2
G2
l,k,Re +

1

2
G2
l,k,Im +Gl,k,ReGl,k,Im (2qk,Re − 1) (2qk,Im − 1) , (3.59)

νl,m =
1√
2
Gl,m,Re (2qm,Re − 1) +

1√
2
Gl,m,Im (2qm,Im − 1) . (3.60)

The ELBO regularizing term in (3.23) is

Eqφ(s|G,z)

[
log

qφ(s|G, z)

pθ(s)

]
= KL(qφ||pθ). (3.61)

We assume a uniform prior pθ(s) = 1
22N

. We have:

Eqφ(s|G,z)

[
log

qφ(s|G, z)

pθ(s)

]
= log 22N −

N−1∑
k=0

[H(qk,Re) +H(qk,Im)] , (3.62)
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where H is the binary entropy function given by

H(q) = −q log q − (1− q) log(1− q). (3.63)

On combining the likelihood and regularization terms, we find the overall ELBO to be

L(θ,q, z) = −N log(2πσ2)−‖z‖
2

2σ2
+

1√
2σ2

zTG(2q−1)− 1

2σ2

2N−1∑
l=0

N−1∑
k=0

(
ηl,k + νl,k

∑
m6=k

νl,m

)

− log 22N +
N−1∑
k=0

−qk,Re log qk,Re − (1− qk,Re) log(1− qk,Re)

+
N−1∑
k=0

−qk,Im log qk,Im − (1− qk,Im) log(1− qk,Im). (3.64)

Known Noise Variance: In this case, we take θ to be the empty set. The derivative

of the overall cost function with respect to qk∗,Re is given by

∂L
∂qk∗,Re

=

√
2

σ2
zTG:,k∗,Re −

1

2σ2

2N−1∑
l=0

(
∂ηl,k∗

∂qk∗,Re

+ 2
∂νl,k∗

∂qk∗,Re

∑
m 6=k∗

νl,m

)

− log qk,Re + log(1− qk,Re). (3.65)

We have
∂ηl,k
∂qk,Re

= 2Gl,k,ReGl,k,Im(2qk,Im − 1) and
∂νl,k
∂qk,Re

=
√

2Gl,k,Re. The above can be

simplified to
∂L

∂qk∗,Re

= αk∗,Re − log qk,Re + log(1− qk,Re), (3.66)

where

αk∗,Re =

√
2

σ2
zTG:,k∗,Re −

1

σ2

2N−1∑
l=0

Gl,k∗,ReGl,k∗,Im(2qk∗,Im − 1)−
√

2

σ2

2N−1∑
l=0

Gl,k∗,Re

∑
m 6=k∗

νl,m.

(3.67)

Setting ∂L
∂qk∗,Re

= 0, we get qk∗,Re = ϕ(αk∗,Re), where ϕ(x) = 1
1+e−x

. Similarly, setting
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∂L
∂qk∗,Im

= 0, we get qk∗,Im = ϕ(αk∗,Im) where

αk∗,Im =

√
2

σ2
zTG:,k∗,Im −

1

σ2

2N−1∑
l=0

Gl,k∗,ImGl,k∗,Re(2qk∗,Re − 1)−
√

2

σ2

2N−1∑
l=0

Gl,k∗,Im

∑
m 6=k∗

νl,m.

(3.68)

Stacking up qk = [qk∗,Re, qk∗,Im]T ∈ R2 into a vector, we get the following fixed point

equations:

q = ϕ(α), (3.69)

where the vector α ∈ R2N is formed by stacking αk = [αk∗,Re, αk∗,Im]T ∈ R2, k =

0, 1, . . . , N − 1.

Unknown Noise Variance: In this case, we take θ = {σ2}. Differentiating the ELBO

in (3.64) with respect to σ2, we get

∂L
∂σ2

= −N
σ2

+
‖z‖2

2σ4
− 1√

2σ4
zTG(2q− 1) +

1

2σ4

2N−1∑
l=0

N−1∑
k=0

(
ηl,k + νl,k

∑
m6=k

νl,m

)
. (3.70)

Setting ∂L
∂σ2 = 0 and solving for σ2, we find

σ̂2 =
‖z‖2

2N
− 1√

2N
zTG(2q− 1) +

1

2N

2N−1∑
l=0

N−1∑
k=0

(
ηl,k + νl,k

∑
m6=k

νl,m

)
. (3.71)

Unknown Channel and Noise Variance: In this case, we take θ = {σ2,G}. To differ-

entiate the ELBO with respect to G, we notice that the terms in (3.64) that depend on

G come from the left hand side of (3.52), i.e.,

LG = Eqφ(s|G,z)
[
(z−Gs)T (z−Gs)

]
. (3.72)

On differentiating LG with respect to Gi,j and setting to zero we get the following

system of equations:

Gs = z, (3.73)
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where s , Eqφ(s|G,z) [s]. The jth entry of s is given by sj = 1√
2

(2qj − 1), if a data symbol

is mounted at jth symbol location. At locations where the pilot symbols are mounted (to

facilitate channel estimation), we have sj = pj, where pj is a known pilot symbol mounted

at jth location. The channel matrix estimate can be refined using (3.73) once an initial

estimate of the soft symbol vector is obtained through the fixed point update in (3.69).

Note that G has 4N2 entries that need to be estimated from 2N equations in (3.73). One

way to accomplish this is to exploit channel sparsity as in [14]. To see that, we make use

of the relation G = QTH and rewrite (3.73) in the form:

Ah = z, (3.74)

where A =
∑N−1

i=0

(
s2iQ

TCi − s2i+1Q
TSi
)
∈ R2N×NP . Now, following the approach in [14],

equation (3.74) can be readily turned into a form suitable for estimating the channel

parameters {hp, τ̃p, bp : p = 0, 1, . . . , NP − 1}. The expression for the noise variance is the

same as in (3.71), and is evaluated during the iterations once the soft symbol vector and

the channel estimates are obtained using the fixed point update and (3.73), respectively.



Chapter 4

Orthogonal Delay Scale Space

Modulation

Orthogonal Time Frequency Space (OTFS) modulation is a recently proposed scheme for

time-varying narrowband channels in terrestrial radio-frequency communications. Un-

derwater acoustic (UWA) and ultra-wideband (UWB) communication systems, on the

other hand, confront wideband time-varying channels. Unlike narrowband channels,

for which time contractions or dilations due to Doppler effect can be approximated by

frequency-shifts, the Doppler effect in wideband channels results in frequency-dependent

non-uniform shift of signal frequencies across the band. In this paper, we develop an

OTFS-like modulation scheme – Orthogonal Delay Scale Space (ODSS) modulation – for

handling wideband time-varying channels. We derive the ODSS transmission and recep-

tion schemes from first principles. In the process, we introduce the notion of ω-convolution

in the delay-scale space that parallels the twisted convolution used in the time-frequency

space. The preprocessing 2D transformation from the Fourier-Mellin domain to the delay-

scale space in ODSS, which plays the role of inverse symplectic Fourier transform (ISFFT)

in OTFS, improves the bit error rate performance compared to OTFS and Orthogonal

Frequency Division Multiplexing (OFDM) in wideband time-varying channels. Further-

more, since the channel matrix is rendered near-diagonal, ODSS retains the advantage of

OFDM in terms of its low-complexity receiver structure.

95
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4.1 Introduction

Orthogonal frequency division multiplexing (OFDM) is a spectrally efficient scheme for

communication over frequency-selective channels. The scheme is particularly attractive

in practice because a low complexity receiver side processing based on a subcarrier-by-

subcarrier equalization recovers the data symbols in a delay spread channel. Receivers

based on subcarrier-by-subcarrier equalizer, however, fail in a time-varying channel, re-

sulting in severe degradation of communication performance. Orthogonal Time Frequency

Space (OTFS) modulation is a recently proposed technique for use in frequency-selective

and Doppler spread narrowband channels [27–30, 66, 77]. OFDM and OTFS techniques

do not perform well in doubly-spread wideband channels where the effect of Doppler is to

cause a time-scaling in the received waveform.

In high mobility narrowband channels, characterized by both delay spread (due to mul-

tipath) and Doppler spread (due to time variations and/or mobility), the OTFS scheme

achieves a near constant gain channel for each subcarrier. The scheme employs special

transformations at the transmitter to mount the information symbols on the carrier wave-

form, and corresponding inverse transformations to recover those symbols at the receiver.

In wideband channels where the Doppler manifests as a time-scaling of the received wave-

form, however, the channel is no longer flat-fading across the OTFS subcarriers. The

extent of detriment caused by a seemingly small time-scale factor, such as α = 1.001, in

wideband channels, if not handled well, is akin to the consequences narrated in [67]. Sim-

ply increasing the transmission power does not help in recovering the data from a waveform

affected by Doppler. In [67], the navigation experts had to alter the descent trajectory of

Huygens (transmitting probe) such that its descent to Titan (Saturn’s moon) is almost

perpendicular to the line joining Cassini (receiver). This contains the radial component

of probe’s velocity, thereby mitigating the stretching of the communication waveform due

to Doppler. Avoiding Doppler is not possible in all practical situations. Our goal in this

work is to develop a modulation scheme, suitable for wideband time-varying channels,

with a demodulation counterpart that can be implemented as a low complexity receiver.

Wideband and ultra-wideband channel models abound in the literature on wireless
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communications [8,21,25,42,58,61,64,65,78,82,105,108]. High mobility wireless channels

are of topical interest in broadband high speed radio-frequency communications [4,24,32,

103]. Wideband time-varying channel models are commonly used in underwater acoustic

communications also [19, 39, 40, 57, 72, 74, 80, 86, 90]. Several studies have considered the

problem of communicating data over wideband doubly-spread channels [3, 14, 20, 22, 34,

36, 51, 52, 62, 81, 89, 106]. Two approaches have been explored in the literature. One

approach is to estimate and compensate for the effect of Doppler in the received signal,

equalize the effect of delay spread, and decode the data symbols [41, 51, 52, 62]. Despite

such compensation, residual Doppler in the processed signal affects the communication

performance in a multipath environment, since different paths are associated with different

amounts of Doppler. The residual Doppler causes inter carrier interference (ICI) in multi-

carrier communication systems. The second approach uses computationally expensive

receivers that account for the ICI in data detection [14, 34, 36, 81, 106]. The recently

proposed OTFS scheme is specifically developed to handle doubly-spread narrowband

channels, and offer high performance, but at the cost of a more sophisticated message-

passing based receiver architecture. To the best of our knowledge, no such scheme has

been proposed in the literature for the case of wideband doubly-spread channels.

In this chapter, we systematically develop the processing blocks of a new modulation

scheme – Orthogonal Delay Scale Space (ODSS) modulation. Specifically, inspired by

the development of OTFS in [27, 28] for narrowband time-varying channels, we parallel

its development by identifying the transformations necessary to handle the time-scaling

effect of a wideband time-varying channel. Our contributions in this work are:

1. We derive the ODSS transmission and reception schemes from first principles. We

identify the modulation and demodulation operations that are required for han-

dling the time-scaling effect of wideband time-varying channels. In particular, we

introduce a preprocessing 2D transformation from the Fourier-Mellin domain to

the delay-scale space in ODSS. This transform plays the role of inverse symplectic

Fourier transform (ISFFT) in OTFS. In contrast to the constant spectral width of

the OFDM and OTFS subcarriers, the subcarriers of ODSS have a spectral width



Chapter 4. Orthogonal Delay Scale Space Modulation 98

that is proportional to the subcarrier frequency, which makes ODSS suitable for

time-scale spread channels.

2. We introduce the notions of ω-convolution and robust bi-orthogonality in the delay-

scale space. These parallel the notions of twisted convolution and robust bi-orthogonality,

respectively, in the time-frequency space in the OTFS scheme.

3. We analytically derive conditions on the parameter values of the ODSS scheme that

results in an ICI-free symbol reception at the receiver. As a consequence, the ODSS

receiver is a low complexity processor that uses a subcarrier-by-subcarrier equalizer

as in the case of OFDM over a time-invariant inter symbol interference channel.

4. We compare the performance of the ODSS scheme with OFDM and OTFS that

uses a low complexity receiver based on subcarrier-by-subcarrier equalization. The

ODSS receiver registers more than 100 fold reduction in the bit error rate (BER)

compared to the OFDM and OTFS receivers employing subcarrier-by-subcarrier

equalizers at an SNR of 24 dB.

Wideband doubly-spread (also known as multi-scale multi-lag) channels are found in

underwater acoustic (UWA) and ultra wideband (UWB) radio communications. Low

complexity subcarrier-by-subcarrier equalizers of standard OFDM and OTFS receivers

suffer from performance impairment whose severity increases with Doppler spread. The

ODSS scheme using subcarrier-by-subcarrier equalizer based receiver, developed in this

paper, is therefore promising in such channels, particularly in applications that require a

low complexity receiver.

We briefly describe the narrowband and wideband time-varying channel models in Sec-

tion 4.2. In Section 4.3, we review the OTFS scheme devised for narrowband time-varying

channels. We present the Mellin transformation and its properties in Section 4.4, which

forms a part of the preprocessing transformation in the ODSS scheme. In Section 4.5,

we develop the ODSS modulation and demodulation schemes and derive conditions on

its parameters to make its output ICI-free. Section 4.6 discusses practical aspects of

choosing transmit and receive filters that result in nearly ICI-free ODSS outputs. Finally,



Chapter 4. Orthogonal Delay Scale Space Modulation 99

through numerical simulations, we investigate the performance of ODSS in Section 4.7

and conclude in Section 4.8.

4.2 Doubly Spread Channel Models

A transmitted signal undergoes three changes when passing through a delay-scale prop-

agation channel: (a) amplitude change due to path loss and fading, (b) delay, τ , corre-

sponding to the length of the path traversed, and (c) time-scaling by a factor, α = c−v
c+v

,

due to Doppler effect, where v is the velocity of a scatterer and c is the speed of the

wave in the propagation medium. Multiple propagation paths can result in a continuum

of delay and scale parameters, i.e., τ ∈ [τl, τh] and α ∈ [αl, αh]. Such a doubly-spread

propagation channel is characterized by the wideband spreading function, h(τ, α), that

corresponds to the amplitude gain of the time-scaled and delayed copy of the transmitted

signal reaching the receiver along a reflected path. The received signal is a superposition

of the amplitude-scaled, time-scaled, and delayed versions of the transmitted signal, s(t),

given by [25]

rs(t) =

∫∫
h(τ, α)

√
αs (α(t− τ)) dτdα, (4.1)

where we have omitted the limits of integration, which we do throughout this paper,

for notational brevity. Note that the scaling by
√
α in the integrand above preserves

the energy of the time-scaled copy of the transmitted signal, since
∫
|
√
αs(αt)|2 dt =∫

|s(t)|2 dt.

The delay-scale channel representation used in (4.1) is called the wideband channel

model. Modeling the Doppler effect by approximating the time-scale by a frequency shift,

i.e., using ν ≈ (α− 1)fc, where fc is the center frequency of the signal band, leads to the

narrowband model. The narrowband approximation holds if two conditions are met [39]:

(A-1) Signal has a small fractional bandwidth: B/fc � 1, where B is the signal band-

width, and

(A-2) The receiver moves slowly relative to the transmitter, such that its position does
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not change significantly compared to the positional resolution of the signal: v �
c

2BT
, where T is the signal duration.1

Under the assumptions above, the signal reflected by a scatterer moving with velocity

v and arriving along a path of delay, τ ∈ [τl, τh], is given by sτ,ν = s(t−τ)ej2πν(t−τ), where

j =
√
−1, and ν = (α − 1)fc ≈ −2v

c
fc ∈ [νl, νh] is the frequency shift due to the Doppler

effect [84]. Making the change of variables α → ν : α = 1 + ν/fc in (4.1), noting that
√
αs (α(t− τ)) ≈ sτ,ν = s(t−τ)ej2πν(t−τ) under narrowband assumptions, and defining the

narrowband channel spreading function to be hτ,ν(τ, ν) , 1
fc
h(τ, α = 1+ν/fc), we get the

following expression for the received signal at the output of a narrowband channel [25,28]:

rs(t) =

∫∫
h(τ, ν)s (t− τ) ej2πν(t−τ)dτdν, (4.2)

where we drop the subscripts in h(τ, ν) for notational brevity.

Remark 1: Violation of either (A-1) or (A-2) would require one to model the channel

as wideband. For example, UWA communications over a frequency band of 10-20 kHz

has a fractional bandwidth of B/fc = 0.67 (B/fc > 0.25 is considered high [39]). The low

speed of sound in water also results in a high v/c ratio (10−3 − 10−1) that violates (A-2).

Similarly, large time-bandwidth product (105 − 106) UWB radio-frequency communica-

tions may violate (A-2) [39, 61]. For example, a radio-frequency UWB communication

with BT = 106, from a high-speed train traveling at v = 270 km/h, clearly violates (A-2).

Remark 2: The notion of wideband channel we use here is different from the definition

of a wideband system used in the communications literature. A wideband system is one for

which the signaling (messaging) bandwidth significantly exceeds the coherence bandwidth

(∝ 1
τh−τl

) of the channel. The notion of wideband channel we use here is related to the

frequency-dependent effect of the Doppler whereas the latter definition is related to the

channel delay-spread.

In the next section, we review the development of OTFS communication for the nar-

rowband channel model as prelude to the development of ODSS for wideband channels,

1In the case of OFDM, T is the duration of an OFDM symbol.
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which is the main contribution of this paper.

4.3 Review of OTFS Communication

OTFS converts a narrowband time-varying delay-spread wireless channel into a time-

independent channel represented by a complex gain [27–30]. OFDM communication, on

the other hand, converts a static (i.e., Doppler-free) multipath channel into a single tap

channel, thus completely eliminating inter symbol interference (ISI). It has been shown

that OTFS reduces to asymmetric OFDM (A-OFDM) in static multipath channels [77].

In narrowband time-varying delay-spread channels that arise in high mobility scenarios,

OTFS receivers using turbo, message passing or MMSE equalizers outperform OFDM

receivers using a sphere decoder or MMSE equalizer [28, 30, 77]. We briefly describe

the transmitter and receiver of an OTFS communication system and the propagation of

the OTFS signal over narrowband time-varying delay-spread channels in the following

subsections, primarily, to setup some notations in the paper.

4.3.1 OTFS Transmitter

OTFS transmitter, shown in Fig. 4.1, comprises the OTFS transform followed by the

Heisenberg transform. The data (information bits) to be communicated, after bit-to-

symbol mapping, are multiplexed onto a discrete 2D delay-Doppler domain grid of size

N×M . The OTFS transform maps the information symbols (e.g., QAM symbols), x[k, l],

in the discrete delay-Doppler space to the 2D sequence, X[n,m], in the time-frequency

domain by means of an inverse symplectic Fourier transform (ISFFT) as follows:

X[n,m] =
1

NM

M−1∑
l=0

N−1∑
k=0

x[k, l]ej2π(
nl
N
−mk
M ), (4.3)

where m ∈ {0, 1, . . . ,M − 1}, n ∈ {0, 1, . . . , N − 1}. The (N,M) periodized version of

the input (respectively, output) 2D sequence, xp[k, l] (resp. Xp[n,m]), of the ISFFT re-

side on the lattice (reciprocal lattice), Λ⊥ , {(k∆τ, l∆ν) : k, l ∈ Z} (respectively, Λ ,
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Figure 4.1: OTFS transmission scheme

{(mT, n∆f) : m,n ∈ Z}), where T and ∆f are the spacings on time and frequency axes,

and

∆τ =
1

N∆f
, ∆ν =

1

MT
, (4.4)

are the spacings on the delay and Doppler domain respectively. The Heisenberg transform

converts the 2D time-frequency data, X[n,m], to a 1D continuous time-series, s(t), given

by

s(t) =
M−1∑
m=0

N−1∑
n=0

X[n,m]ej2πn∆f(t−mT )gtx(t−mT ), (4.5)

where gtx(t) is the transmit pulse shaping function. We assume that the transmitted

signal, s(t), satisfies the narrowband assumption (A-1).

The Heisenberg transform can be viewed as a map parametrized by the 2D time-

frequency sequence, X[n,m], and producing s(t) when fed with gtx, i.e., s(t) = ΠX(gtx(t)):

s(t) =

∫
ν

∫
τ

X(τ, ν)ej2πν(t−τ)gtx(t− τ)dτdν, (4.6)
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Figure 4.2: Cascade of OTFS modulator and propagation channel

where

X(τ, ν) =
M−1∑
m=0

N−1∑
n=0

X[n,m]δ(τ −mT, ν − n∆f), (4.7)

with δ(·) denoting the Dirac delta function. The above interpretation of the Heisenberg

transform is helpful in relating the input and output of the OTFS system in the next

subsection.

4.3.2 OTFS Signal Propagation

The signal, at the OTFS receiver, after propagating through a narrowband channel is

given by r(t) = rs(t) + w(t), where rs(t) is the output of a narrowband channel as in

(4.2) and w(t) is the additive noise. As shown in [28], the received signal, rs(t), can be

expressed as

rs(t) = Πf (gtx(t)) =

∫
ν

∫
τ

f(τ, ν)ej2πν(t−τ)gtx(t− τ)dτdν, (4.8)
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where f is the twisted convolution of h and X, denoted by h~σ X, defined as follows:

f(τ, ν) =

∫
ν′

∫
τ ′
h(τ ′, ν ′)X(τ − τ ′, ν − ν ′)ej2πν′(τ−τ ′)dτ ′dν ′, (4.9)

which, due to (4.7), can be written as a finite sum:

f(τ, ν) =
N−1∑
n=0

M−1∑
m=0

h(τ −mT, ν − n∆f)X[n,m]ej2π(ν−n∆f)mT . (4.10)

The received signal is, therefore, a result of passing the transmit pulse shaping function

through an equivalent channel parameterized by the twisted convolution of the physical

channel and the data dependent 2D time-frequency signal. Fig. 4.2 depicts this interpre-

tation. The signal received by the OTFS receiver, including the additive noise w(t), is

given by

r(t) = rs(t) + w(t) = Πh~σX(gtx(t)) + w(t). (4.11)

4.3.3 OTFS Receiver

The receiver performs OTFS demodulation followed by equalization and symbol decod-

ing. OTFS demodulation is a two step process: discrete Wigner transform followed by

symplectic Fourier transform (SFFT). The discrete Wigner transform (inverse of the dis-

crete Heisenberg transform) is obtained by sampling the cross-ambiguity function between

the received signal, r(t), and a receive pulse shaping function, grx(t). The demodulated

time-frequency signal is given by

Ŷ [n,m] = Agrx,r(τ, ν)|τ=mT,ν=n∆f , (4.12)

where

Agrx,r(τ, ν) ,
∫
t

e−j2πν(t−τ)g∗rx(t− τ)r(t)dt = Agrx,rs(τ, ν) + Agrx,w(τ, ν). (4.13)
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It can be shown that

Agrx,rs(τ, ν) = f(τ, ν) ~σ Agrx,gtx(τ, ν) =
N−1∑
n=0

M−1∑
m=0

X[n,m]Hn,m(τ, ν), (4.14)

where

Hn,m(τ, ν) ,
∫
ν′′

∫
τ ′′
h(τ ′′, ν ′′)ej2πν

′′mTAgrx,gtx(τ − τ ′′ −mT, ν − ν ′′ − n∆f)

× ej2π(ν′′+n∆f)(τ−τ ′′−mT )dτ ′′dν ′′. (4.15)

At this point, it is assumed that

1. the channel response, h(τ, ν), has a finite support bounded by (τmax, νmax), and

2. bi-orthogonality of transmit and receive pulses holds in a robust manner [28], i.e.,

the cross-ambiguity function vanishes in a neighborhood around the non-zero lattice

points, (mT, n∆f): Agrx,gtx(τ, ν) = 0, for τ ∈ (mT − τmax,mT + τmax) and ν ∈

(n∆f − νmax, n∆f + νmax) except around the lattice point corresponding to m =

0, n = 0.

Due to the above assumptions, upon sampling at τ = m0T and ν = n0∆f , we find

Hn,m[n0,m0] = 0 whenever n 6= n0 or m 6= m0, so that (4.14) simplifies to

Agrx,rs [n0,m0] = Hn0,m0 [n0,m0]X[n0,m0], (4.16)

where2

Hn0,m0 [n0,m0] =

∫
ν

∫
τ

e−j2πντh(τ, ν)Agrx,gtx(τ, ν)ej2π(νm0T−n0∆fτ)dτdν. (4.17)

Note that we choose T ≥ 2τmax and ∆f ≥ 2νmax to avoid ISI and ICI, respectively, and

2Many papers on OTFS, either explicitly or implicitly, assume Agrx,gtx(τ, ν) = 1 in a neighborhood of
(τ = 0, ν = 0) contained in the support of h(τ, ν). It is unclear if there are practical transmit and receive
pulse shaping functions that satisfy this assumption, so we retain the term Agrx,gtx(τ, ν) in the integrand
in (4.17).
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hence ensure the validity of (4.16). This means that, for a given N and M (and hence

the number of symbols NM), the duration and bandwidth of the transmitted OTFS

signal, s(t), must be at least 2Mτmax and 2Nνmax, respectively. The spectral efficiency of

the OTFS scheme can, therefore, be at most 1
4τmaxνmax

symbols/s/Hz in a channel with a

delay spread τmax and Doppler spread νmax. These choices, according to (4.4), result in

∆τ ≤ 1
2Nνmax

and ∆ν ≤ 1
2Mτmax

in the delay-Doppler plane. Consider an OTFS transmit

signal of bandwidth, N∆f = 2Nνmax, which is the minimum required bandwidth to avoid

ICI. As the narrowband assumption requires the signal bandwidth to satisfy N∆f < κfc,

where κ� 1, we must choose N < κ fc
2νmax

. Clearly, barring implementation aspects, there

is no such upper limit on the choice of M .

The output of the discrete Wigner transform is, therefore, given by

Ŷ [n,m] = Hn,m[n,m]X[n,m] +W [n,m], (4.18)

whereW [n,m] = Agrx,w(τ, ν)|τ=mT,ν=n∆f is the additive noise in the discrete time-frequency

space. The OTFS demodulator output is obtained by taking SFFT of the discrete Wigner

transform output:

ŷ[k, l] =
M−1∑
m=0

N−1∑
n=0

Ŷ [n,m]e−j2π(
nl
N
−mk
M ), (4.19)

=
M−1∑
m=0

N−1∑
n=0

x[n,m]hv

(
k −m
MT

,
l − n
N∆f

)
+ w[k, l],

(4.20)

where hv(., .) is obtained by sampling
(
ν = k−m

MT
, τ = l−n

N∆f

)
the function

hv(ν, τ) =
N−1∑
n=0

M−1∑
m=0

Hn,m[n,m]ej2π(τn∆f−νmT )

=

∫∫
e−j2πν

′τ ′h(τ ′, ν ′)Agrx,gtx(τ ′, ν ′)v(ν − ν ′, τ − τ ′)dτ ′dν ′, (4.21)

where v(ν, τ) =
∑M−1

m=0

∑N−1
n=0 e

j2π(τn∆f−νmT ) is a periodic function on the τ −ν plane with
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Figure 4.3: OTFS Block Diagram

periods N∆τ and M∆ν in delay and Doppler, respectively.

Equation (4.20) depicts the input-output relation in an OTFS system that can be

written in the following vectorized form:

y = Hx + w, (4.22)

where y ∈ CNM×1 is the output of the OTFS demodulator whose (k + Nl)-th entry is

y[k, l], H ∈ CNM×NM is the effective channel matrix, x ∈ CNM×1 is the symbol vector

whose (k + Nl)-th entry is x[k, l] and w ∈ CNM×1 is the additive noise at the OTFS

demodulator output. Fig. 4.3 summarizes various stages at a block level from the input

to output of an OTFS system.

Equalization and symbol decoding is performed after OTFS demodulation to recover

the transmitted information bits. In OTFS modulation, developed for the narrowband

channel model in (4.2), the information symbols were mounted on the delay-Doppler

grids. Fourier and inverse Fourier transforms were made use of to move between τ and f

domains, and between t and ν domains, respectively. In the new ODSS modulation, to be

developed for the wideband channel model in (4.1), we shall make use of the Mellin and

inverse Mellin transforms to move between the scale (α) domain and Mellin (β) domain,

respectively. We next present the Mellin transform and its discrete counterpart before we

develop the ODSS modulation scheme for wideband delay-scale channels.

4.4 Mellin Transform and its Properties

The Mellin transform was developed in [15] as a solution to the problem of finding the

transform that enjoys a scale-invariance property, i.e., the Mellin transform of the signal
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√
ax(aα), a > 0, α > 0, is same as that of the original signal, x(α), except for a phase

shift. The Mellin transform of a signal x(α), α > 0, is defined by

Mx(β) ,
∫ ∞

0

1√
α
x(α)ej2πβ log(α)dα, (4.23)

where β ∈ R is the Mellin variable. The Mellin transform exists for signals, x(α), in the

Hilbert space L2
(
R+, dα√

α

)
which is the set of square integrable functions (L2-functions)

over R+, attached with a measure dα√
α

instead of dα. We may interpret Mellin transform

as the Fourier transform of the function
√
etx(et), t ∈ R [83].

We state a few important properties that make Mellin transform attractive for working

with time-scaling effect of Doppler in wideband channels [15,39].

1. The scale-invariance property of the Mellin transform follows from the definition in

(4.23): the Mellin transform of the scaled version
√
ax(aα), a > 0, of x(α) is given

by a−j2πβMx(β) which is the same as the Mellin transform of the original signal

except for a phase shift. Note that this scale-invariance property parallels the shift-

invariance property of the Fourier transform: the Fourier transform of x(t − τ) is

e−j2πfτX(f) where X(f) is the Fourier transform of x(t) [68].

2. The Mellin transform of the dilation-invariant product of two functions x1(α) and

x2(α), defined by (x1 ◦ x2)(α) =
√
αx1(α)x2(α), is given by the linear convolution

of the Mellin transforms of the two functions: Mx1◦x2(β) =Mx1(β) ~Mx2(β).

3. The geometrical Dirac comb, ∆A(α) =
∑∞

n=−∞A
n/2δ(α − An), in the scale-space,

R+, transforms to an arithmetical comb in the Mellin space,M∆A
(β) = 1

lnA

∑∞
n=−∞ δ(β−

n
lnA

).

4. Parseval’s theorem:
∫∞
−∞Mx1(β)M∗

x2
(β)dβ =

∫∞
0
x1(α)x∗2(α)dα.

5. The Mellin transform of the multiplicative convolution of two functions x1(α) and

x2(α), defined by (x1 ∨ x2)(α) =
∫∞

0

√
αx1(α′)x2( α

α′
)dα

′

α′
, is given by the product of

the Mellin transforms of the two functions: Mx1∨x2(β) =Mx1(β)Mx2(β).
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6. The inverse Mellin transform is given by

x(α) ,
1√
α

∫ ∞
−∞
Mx(β)e−j2πβ log(α)dβ, α > 0, (4.24)

which follows immediately upon noting the relation between the Mellin and Fourier

transforms.

We now consider the effect of discretization on Mellin transform relations [15,16]. First,

consider geometric sampling in the scale domain (α-domain) with ratio q. The Mellin

transform of the sampled version of x(α), i.e., xs(α) , (x ◦∆q) (α) =
∑∞

n=−∞ q
n/2x(qn)δ(α−

qn), is given by

Mxs(β) = Mx◦∆q(β)

(a)
= Mx(β) ~M∆q(β)

(b)
=

1

ln q

∞∑
n=−∞

Mx

(
β − n

ln q

)
(4.25)

, MP
x (β), (4.26)

where the step (a) follows from the fact that Mellin transform of a dilation-invariant

product in the scale domain corresponds to the convolution of Mellin transforms in the

Mellin domain, and step (b) follows upon an evaluation of the convolution in step (a).

Therefore, geometric sampling in the scale domain leads to periodization in the Mellin

domain. Aliasing due to scale domain geometric sampling is avoided if:

1. the Mellin spectrum is β-limited, i.e., Mx(β) is nonzero only in a finite interval

[β1, β2], and

2. the geometric sampling ratio, q, satisfies

1

ln q
≥ β2 − β1. (4.27)

Next, consider sampling the Mellin domain function, Mx(β). Sampling in the Mellin
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space results in

Ms(β) ,
1

lnQ

∞∑
n=−∞

Mx

(
n

lnQ

)
δ

(
β − n

lnQ

)
(4.28)

(c)
= Mx(β)M∆Q

(β)

(d)
= Mx∨∆Q

(β), (4.29)

where equality (c) follows from the formula for the Mellin transform of a geometric impulse

train in the scale domain, and (d) follows from the fact that multiplicative convolution

in scale domain corresponds to the product of the Mellin transforms. We see that the

sampled version of the Mellin transform of x(α), i.e., Ms(β), is the inverse Mellin transform

of the dilatocycled version of x(α) given by

xd(α) , (x ∨∆Q) (α) =
∞∑

n=−∞

Qn/2x(Qnα). (4.30)

Thus, sampling in the Mellin domain leads to dilatocycling in the scale domain. Aliasing

due to Mellin domain sampling is avoided if:

1. the signal in the scale domain has a finite support, [α1, α2], and

2. the dilatocycling ratio, Q, satisfies: Q ≥ α2

α1
.

In the absence of aliasing, xd(α) equals x(α) for α ∈ [α1, α2].

Finally, the discrete Mellin transformation is obtained by geometric sampling of the

finitely supported and dilatocycled signal xd(α), α ∈ [α1, α2], in the scale domain. The

sampled version of xd(α) is given by

xds(α) , (xd ◦∆q) (α) =
∞∑

n=−∞

qn/2xd(q
n)δ(α− qn). (4.31)
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It is clear from the discussions above that the Mellin transform of xds(α) is the peri-

odized version of Ms(β):

Mxds(β) = MP
s (β) ,

1

ln q

∞∑
n=−∞

Ms

(
β − n

ln q

)
, (4.32)

where we require 1
ln q
≥ β2−β1 to avoid aliasing. Substituting Ms(β) from (4.28) in (4.32)

and restricting Q = qN , where N is a positive integer, we get:

MP
s (β) =

1

ln q lnQ

∞∑
m=−∞

∞∑
n=−∞

Mx

(
m

N ln q

)
δ

(
β − nN +m

ln q

)
. (4.33)

Changing m→ k = m+ nN and using the definition of periodized version, we get

MP
s (β) =

1

lnQ

∞∑
k=−∞

MP
x

(
k

N ln q

)
δ

(
β − k

ln q

)
. (4.34)

It is now straightforward to show that the discrete Mellin transform relationship is

given by

MP
x

(
k

lnQ

)
=

J+N−1∑
n=J

qn/2xd(q
n)ej2πnk/N , (4.35)

where J is the integer part of lnα1/ ln q. The transform length N = lnQ
ln q

must satisfy the

condition

N ≥ (β2 − β1) ln

(
α2

α1

)
, (4.36)

to avoid aliasing and allow reconstruction of the scale and Mellin domain functions from

their samples.

Similarly, the discrete inverse Mellin transform is given by

xd(q
n) =

q−n/2

N

Ki+N−1∑
k=Ki

MP
x

(
k

lnQ

)
e−j2πkn/N , (4.37)

where Ki is the integer part of β1 lnQ.
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4.5 ODSS Communication For Wideband Channels

We now turn to developing the ODSS modulation. The goal of ODSS modulation is

to convert a wideband, time-varying, delay-scale spread channel into a time-independent

channel represented by a complex gain. To this end, we introduce the 2D ODSS transform

(and its inverse) which is a combination of discrete Fourier transform on one axis (the

delay axis) and inverse Mellin transform on the other (the scale axis.) The development of

ODSS parallels the development of OTFS in Section 4.3. In the process, we appropriately

modify the two key properties – twisted convolution property and robust biorthogonality

– that were used in the development of OTFS. We develop the transmitter and receiver of

an ODSS communication system and the propagation of the signal over wideband time-

varying channels in the following subsections, which is the main contribution of this work.

While we develop ODSS in a manner similar to the development of OTFS, we note that

the two modulation schemes are distinct and do not generalize or reduce to each other.

4.5.1 ODSS Transmitter

The information bits, after bit-to-symbol mapping, are multiplexed onto the discrete 2D

Mellin-Fourier domain of size, Mtot =
∑N−1

n=0 M(n), where M(n) = bqnc. The ODSS

transform maps the data symbols (e.g., QAM symbols), {x[k, l] : k = 0, 1, . . . , N − 1, l =

0, 1, . . . ,M(k)}, in the discrete Mellin-Fourier space to the 2D sequence, X[n,m], in the

scale-delay domain by taking an inverse discrete Mellin transform along the scale axis (see

(4.37)) and a discrete Fourier transform along the delay axis, as follows:

X[n,m] =
q−n/2

N

N−1∑
k=0

∑M(k)−1
l=0 x[k, l]ej2π(

ml
M(k)

−nk
N )

M(k)
, (4.38)

where m ∈ {0, 1, . . . ,M(n)− 1}, n ∈ {0, 1, . . . , N − 1}. The periodized version of the

input (respectively, output) 2D sequence, xp[k, l] (resp. Xp[n,m]), reside on the lattice

(reciprocal lattice), Λ⊥ = {(k∆β, l∆f) : k, l ∈ Z} (resp. Λ = {(m∆τ, qn) : m,n ∈ Z}),

where ∆β = 1
N ln q

, ∆f , ∆τ are the spacings on the Mellin, Fourier and delay axes,
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Figure 4.4: ODSS Modulator Representation

respectively; ∆τ = 1
W

, W , M∆f , and q is the geometric sampling ratio on the scale

axis. The sampling ratio, q, and discrete Mellin transform length, N , are chosen to satisfy

the conditions in (4.27) and (4.36). We may express (4.38) in the vectorized form:

X = TiMFx, (4.39)

where x ∈ CMtot×1 is the symbol vector obtained by stacking x[k, l] into a vector, X ∈

CMtot×1 is the vector obtained by stacking X[n,m], and TiMF ∈ CMtot×Mtot is the matrix

representing the 2D ODSS transform in (4.38).

The ODSS modulator converts the 2D time-frequency data, X[n,m], to a 1D contin-

uous time-series, s(t), given by

s(t) =
N−1∑
n=0

M(n)−1∑
m=0

X[n,m]qn/2gtx

(
qn
(
t− m

qnW

))
, (4.40)

where gtx(t) is the transmit pulse shaping function of duration T = 1/W . The ODSS

modulation can be viewed as a map parametrized by the 2D Mellin-Fourier sequence,

X[n,m], and producing s(t) when fed with gtx, i.e., s(t) = ΠX(gtx(t)):

s(t) =

∫∫
X(τ, α)

√
αgtx(α(t− τ))dτdα, (4.41)

where

X(τ, α) =
N−1∑
n=0

M(n)−1∑
m=0

X[n,m]δ(τ − m

qnW
,α− qn). (4.42)

The above interpretation of the ODSS transform, depicted in Fig. 4.4, is helpful in

relating the input and output of an ODSS communication system in the next subsection.
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Figure 4.5: Wideband Channel Representation

Figure 4.6: ω-convolution

4.5.2 ODSS Signal Propagation

The signal, at the ODSS receiver, after propagating through a wideband delay-scale chan-

nel is given by r(t) = rs(t)+w(t), where rs(t) is as in (4.1), and w(t) is the additive noise.

We may, equivalently, view the propagation channel as performing the map Πh(s) :

s(t)→ rs(t) as shown in Fig. 4.5. Next, we introduce the notion of ω-convolution to de-

scribe the equivalent of the cascade of the ODSS modulator and the propagation channel.

The cascade of two delay-scale channels, as shown in Fig. 4.6, is equivalent to a single

channel, i.e., Πh2(Πh1(s)) = Πh(s), where h(τ, α) = h2(τ, α) ~ω h1(τ, α) and the symbol

~ω denotes the ω-convolution defined by

h(τ, α) =

∫∫
h2(τ ′, α′)h1

(
α′(τ − τ ′), α

α′

)
dτ ′dα′. (4.43)

The derivation of the above is provided in the supplementary material in Sec. 4.9.1.

In light of the above result, we may write the signal after propagation through the

channel, rs(t), as

rs(t) = Πh~ωX(gtx) =

∫∫
f(τ, α)

√
αgtx(α(t− τ))dτdα
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where f(τ, α) is given by (see Sec. 4.9.2 in the supplementary material):

f(τ, α) =
∑
n

∑
m

X[n,m]h

(
τ − m

αW
,
α

qn

)
q−n.

The received signal is, therefore, a result of passing the transmit pulse shaping function

through an equivalent channel parameterized by the ω-convolution of the physical channel

and the data dependent 2D delay-scale signal. Fig. 4.7 depicts this interpretation. The

signal received by the ODSS receiver, including the additive noise w(t), is given by

r(t) = rs(t) + w(t) = Πh~ωX(gtx(t)) + w(t). (4.44)

4.5.3 ODSS Receiver

The ODSS receiver performs ODSS demodulation followed by equalization and symbol

decoding. ODSS demodulation is a two step process: extracting the transmitted scale-

delay signal followed by an inverse ODSS transform. We describe the two steps in the

following two subsections.

4.5.3.1 Scale-delay signal extraction

The scale-delay signal is extracted by sampling the cross-ambiguity function between the

received signal and the pulse shaping function at the receiver side. The demodulated

scale-delay signal is given by

Ŷ [n,m] = Agrx,r(τ, α)|τ= m
qnW

,α=qn , (4.45)

where

Agrx,r(τ, α) ,
∫
g∗rx (α(t− τ))

√
αr(t)dt

= Agrx,rs(τ, α) + Agrx,w(τ, α). (4.46)
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Figure 4.7: Received ODSS signal

It is shown in the supplementary material, Sec. 4.9.3, that

Agrx,rs(τ, α) =
∑
n

∑
m

X[n,m]Hn,m(τ, α), (4.47)

where

Hn,m(τ, α) =

∫∫
h(τ ′′, α′′)Agrx,gtx

(
α′′qn

(
τ − m

α′′qnW
− τ ′′

)
,
α

α′′qn

)
dτ ′′dα′′.

We assume that

1. the channel response has a finite support, i.e., h(τ, α) is non-zero only for −τmax ≤

τ ≤ τmax and 1
αmax

≤ α ≤ αmax, where αmax ≥ 1, and

2. robust bi-orthogonality holds between the transmit and receive pulses in the fol-

lowing manner. The cross-ambiguity function vanishes in the neighborhood of all

lattice points ( m
qnW

, qn) except (0, 1) corresponding to m = 0 and n = 0. That is,
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Agrx,gtx(τ, α) = 0 for τ ∈ ( m
qnW
− τmax,

m
qnW

+ τmax) and α ∈ (qn/αmax, q
nαmax) except

when m = 0 and n = 0.3

Then, on sampling at τ = m0

qn0W
and α = qn0 , we find that Hn,m[n0,m0] = 0 whenever

n 6= n0 or m 6= m0, and

Hn0,m0 [n0,m0] =

∫∫
h(τ ′, α′)Agrx,gtx

(
qn0

(
m0

qn0W
(α′ − 1)− α′τ ′

)
,

1

α′

)
dτ ′dα′. (4.48)

so that the noise free part of the extracted scale-delay signal is given by

Agrx,rs [n0,m0] = Hn0,m0 [n0,m0]X[n0,m0]. (4.49)

Consider, for example, a channel without delay and Doppler spread: h(τ, α) = h0δ(τ, α−

1). In this case, we find: Hn,m(τ, α) = Agrx,gtx

(
τ − m

qnW
, α
qn

)
. Upon sampling at τ = m0

qn0W

and α = qn0 , due to robust bi-orthogonality, Hn,m[n0,m0] = 0 whenever n 6= n0 or

m 6= m0, and

Hn0,m0 [n0,m0] = h0Agrx,gtx (0, 1) = h0,

so that, in this special case, the noise free part of the extracted scale-delay signal is given

by

Agrx,rs [n0,m0] = h0X[n0,m0]. (4.50)

Therefore, for an ideal channel without delay and Doppler spread, the ODSS scheme

produces a constant gain for all signal components in the extracted delay-scale domain.

In general, we find from (4.49) that the ODSS scheme leads to an ISI free, time-

independent, scalar complex channel gain for each delay-scale domain output at the re-

ceiver. The extracted delay-scale signal at the ODSS receiver is, therefore, given by

Ŷ [n,m] = Hn,m[n,m]X[n,m] +W [n,m], (4.51)

3Bi-orthogonality cannot be satisfied exactly; our choice of waveforms for ODSS implementation is
discussed in Section 4.6
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where W [n,m] = Agrx,w(τ, α)|τ= m
qnW

,α=qn is the additive noise in the discrete delay-scale

space.

To avoid ICI, and hence obtain (4.49), we need to

1. choose q such that:
qn
′

α′′qn
/∈
(
α−1

max, αmax

)
, (4.52)

∀α′′ ∈ (α−1
max, αmax), whenever n′ 6= n, and

2. choose q and W such that:

α′′qn
(
m′

W
− m

α′′qnW
− τ ′′

)
/∈ (−τmax, τmax) , (4.53)

∀τ ′′ ∈ (−τmax, τmax) and α′′ ∈ (α−1
max, αmax), whenever m′ 6= m.

We first choose the geometric sampling ratio, q, to meet the condition in (4.52). If n′ >

n, we want qn
′−n ≥ αmaxα

′′, which is satisfied if: ∀n′ > n, qn
′−n ≥ α2

max, i.e., if q ≥ α2
max.

Similarly, if n′ < n, we require qn
′−n ≤ α′′α−1

max which is met if: ∀n′ < n, qn
′−n ≤ α−2

max,

i.e., if q ≥ α2
max. Therefore, we may choose

q = α2
max. (4.54)

Clearly, since αmax ≥ 1, we have q ≥ 1. Aside, we also note that the choice of q in

(4.54) together with the robust bi-orthogonality property renders Agrx,gtx(τ, α) = 0, α /∈

(α−1
max, αmax).

Next, with q as in (4.54), we choose W to satisfy the condition in (4.53). The condition

in (4.53) is equivalent to

inf
(τ ′′,α′′)∈S

∣∣α′′α2n
maxm

′ −m− α′′α2n
maxτ

′′W
∣∣ ≥ Wτmax, (4.55)

whenever m′ 6= m, where S , {(τ ′′, α′′) : τ ′′ ∈ (−τmax, τmax) , α′′ ∈ (α−1
max, αmax)}. The

condition in (4.55) places an upper bound on W , as we shall soon see.

First, consider a channel without Doppler, i.e., αmax = 1, in which case the condition
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in (4.55) specializes to

inf
(τ ′′,1)∈S

|m′ −m− τ ′′W | ≥ Wτmax, (4.56)

whenever m′ 6= m. The condition in (4.56), for a Doppler-free channel, is satisfied if we

choose

W ≤ 1

2τmax

. (4.57)

This implies that the duration of the transmitted signal, s(t), must be larger than 2Mτmax

in a Doppler-free channel having a delay spread of 2τmax. The choices W = 1
2τmax

and

q = 1 for a Doppler-free channel, and the robust bi-orthogonality property, render the

cross ambiguity Agrx,gtx(τ, 1) = 0, τ /∈ (−τmax, τmax). Notice that, for a Doppler-free

channel, with the choice of q = 1 we must use N = 1 and the ODSS modulation scheme

defaults to asymmetric OFDM (A-OFDM), which is a scheme that converts delay-spread

channels into a single tap complex channel in the Fourier domain. This behavior is very

similar to the OTFS modulation scheme [77].

Finally, we discuss the choice of W in ODSS modulation for a doubly-spread delay-

scale channel that is both delay-spread and Doppler-distorted. Let m′ > m. Now, if the

condition in (4.55) is satisfied by m′ = m + 1, then it will be satisfied by every m′ > m.

The expression |α′′α2n
maxm

′ −m− α′′α2n
maxτ

′′W |, in (4.55), is minimized by α′′ = α−1
max and

τ ′′ = τmax, when W is such that Wτmax < 1, and hence α′′α2n
maxm

′−m−α′′α2n
maxτ

′′W > 0.

For these settings, with m′ = m + 1, we find that |α′′α2n
maxm

′ −m− α′′α2n
maxτ

′′W | ≥

Wτmax =⇒ α2n−1
max + (α2n−1

max − 1)m− α2n−1
max τmaxW ≥ Wτmax and hence

W ≤ α2n−1
max + (α2n−1

max − 1)m

(1 + α2n−1
max ) τmax

. (4.58)

Therefore, if

W ≤ 1

(1 + αmax) τmax

, Wm′>m, (4.59)

the condition in (4.55) is satisfied for m′ > m. A similar argument, for m′ < m, leads us
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to the following bound on W for satisfying the condition in (4.55):

W ≤ 1

(1 + α2N−3
max ) τmax

, Wm′<m. (4.60)

To satisfy both (4.59) and (4.60), for every m′ 6= m, we choose

W = min (Wm′>m,Wm′<m.) (4.61)

Equations (4.54) and (4.61) provide the choices of the parameters q and W , respec-

tively, for the ODSS modulation. For the Doppler-free channel (αmax = 1), we observe that

the choice of W reduces to W = 1
2τmax

, which agrees with (4.57). In a Doppler-distorted

channel, we see that the choice of W according to (4.61) entails a longer transmit signal

duration compared to a Doppler-free channel.

4.5.3.2 The ODSS input-output relation

The ODSS demodulator output is obtained by taking the discrete Mellin-Fourier transform

of the delay-scale signal in (4.51):

ŷ[k, l] =
N−1∑
n=0

M(n)−1∑
m=0

qn/2Ŷ [n,m]ej2π(
nk
N
− ml
M(n)),

=
N−1∑
n=0

M(n)−1∑
m=0

hw[l −m, k − n] x[n,m] + w[k, l], (4.62)

where hw[l, k] is obtained by sampling the frequency
(
f = lW

M

)
and Mellin variable

(
β = k

N ln q

)
arguments of the function

hw(f, β) =
N−1∑
n=0

M(n)−1∑
m=0

Hn,m[n,m]ej2π(βn ln q−m
W
f)
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=

∫∫
h(τ ′, α′)

M−1∑
m=0

N−1∑
n=0

ej2π(βn ln q−f m
W )Agrx,gtx

(
qn
(m
W

(α′ − 1)− α′τ ′
)
,

1

α′

)
dτ ′dα′.

(4.63)

An Example: Consider the channel response due to a collection of discrete reflectors

associated with path delays and Doppler scales (τi, αi), i = 1, 2, . . . , P :

h(τ, α) =
P∑
i=1

hiδ(τ − τi)δ(α− αi). (4.64)

For the above channel response model, we find that Hn,m[n,m] in (4.48) evaluates to

Hn,m[n,m] =
P∑
i=1

hiAgrx,gtx

(
qn
(m
W

(αi − 1)− αiτi
)
,

1

αi

)
, (4.65)

and hence

hw[l, k] =
P∑
i=1

hi

N−1∑
n′=0

M(n′)−1∑
m′=0

e
j2π
(
n′k
N
− m′l
M(n′)

)
Agrx,gtx

(
qn
′
(
m′ (αi − 1)

W
− αiτi

)
,

1

αi

)
.

(4.66)

The input-output relation in an ODSS system, given by (4.62), can be depicted in the

following vectorized form:

y = Hx + w, (4.67)

where y ∈ CMtot×1 is the output of the ODSS demodulator obtained by stacking y[k, l]

into a vector, H ∈ CMtot×Mtot is the effective channel matrix, x ∈ CMtot×1 is the symbol

vector obtained by stacking x[k, l] into a vector, and w ∈ CMtot×1 is the additive noise at

the ODSS demodulator output.

4.5.3.3 Data Decoding

Using (4.67), we can use either an MMSE decoder or a message passing based decoder

to recover the transmitted data symbols. This involves equalizing a channel matrix of

size Mtot ×Mtot which is not close to diagonal. As a consequence, it is computationally
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expensive to perform channel equalization in the Mellin-Fourier domain signal represented

by (4.67).

Motivated by the above, we now present an alternative, simple, decoder that uses a

subcarrier-by-subcarrier MMSE equalizer in the delay-scale domain instead of the Mellin-

Fourier domain. We first express (4.51) in a matrix-vector form as follows:

Ŷ = DX + W, (4.68)

where Ŷ ∈ CMtot×1 is a vector obtained by stacking the outputs Y [n,m], D ∈ CMtot×Mtot is

a diagonal matrix formed by stacking Hn,m[n,m] along its diagonal, X ∈ CMtot×1 contains

the data symbols obtained by stacking X[n,m], and W ∈ CMtot×1 is the additive noise.

Data decoding proceeds after an MMSE equalizer on Ŷ:

Ẑ = DH
(
DDH + σ2

W I
)−1

Ŷ, (4.69)

where σ2
W is the noise variance in the delay-scale domain.

The data symbol vector is then obtained as follows:

x̂ = S
(
T −1

iMFẐ
)
, (4.70)

where the operator S(.) slices each entry in the input vector to the nearest symbol in the

transmitted constellation.

Remarks: If the robust bi-orthogonality condition is not satisfied exactly, as in the

case of OTFS, expression (4.47) will not reduce to (4.49) and hence the measurement

model (4.51) in the delay-scale domain will not ensue. In that case, D will not be exactly

diagonal. The matrix D will be nearly diagonal if the robust bi-orthogonality is approx-

imately satisfied (see Fig. 4.16 in the supplementary material, Sec. 4.9.7), so that it is

reasonable to consider a diagonal approximation to D for equalization purposes. Such

an approximation cannot be made in the Mellin-Fourier domain because, even if D is

near-diagonal, H is not close to diagonal (see Fig. 4.17 in the supplementary material,
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Sec. 4.9.7).

4.5.3.4 Computational Complexity

The ODSS transmitter implements transformation from Mellin-Fourier domain to the

delay-scale domain at the transmitter followed by the modulator that generates the

waveform to transmit. The Mtot × Mtot transform matrix is a fixed precoder matrix

that can be precomputed and stored in the memory. The computational complexity of

the transmitter is, therefore, O(M2
tot). The ODSS receiver performs matched filtering,

subcarrier-by-subcarrier equalization and inverse Mellin-Fourier transformation. Assum-

ing that matched filtering is performed in the receiver front-end and that the inverse

transform matrix is precomputed, the computational complexity of the receiver is also

O(M2
tot), excluding channel estimation overheads. For the same symbol rate, OFDM and

OTFS have a lower complexity of O(Mtot logMtot) due to efficient computations based

on the Fast Fourier Transform (FFT) algorithm. The relation between Mellin and the

Wavelet/Fourier transforms can be exploited to speed up the transform computations

in ODSS also [83]. Development of a computationally efficient architecture for ODSS is

beyond the scope of this thesis.

4.6 Transmit and Receive Filters

The transmit and receive filters (pulse shaping functions), gtx(t) and grx(t), are required to

be bi-orthogonal in a robust manner, as described in sections 4.3 and 4.5, for both OTFS

and ODSS modulations. However, this is not possible (see Sec. 4.9.4 and Sec. 4.9.5 of the

supplementary material): we cannot find transmit and receive filters that exactly satisfy

robust bi-orthogonality. Consequently, in most implementations of OTFS, pulse shaping

functions such as rectangular, raised cosine and Dolph-Chebyshev windows are employed

both at the transmitter and receiver [75]. We adopt a similar approach in ODSS and

show its effectiveness through numerical simulations; in particular, our choice of ODSS
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subcarriers results in the channel matrix D represented in (4.68) becoming nearly diagonal

in the delay-scale domain.

In this work, to form the transmit pulse-shaping filter, we employ a basic chirplet

generated by linearly sweeping frequency from f1 = 1√
q

to f2 =
√
q in T seconds:

g0(t) = ej2π(f1t+
1
2
κt2), 0 ≤ t ≤ T, (4.71)

where κ = f2−f1
T

is the chirp sweep rate. The basic chirplet duration T is also the ODSS

symbol duration.

To reduce the spectral sidelobes, we apply a PHYDYAS filter based window [9] to

obtain the transmit pulse-shaping filter gtx(t) = gw(t)g0(t), where gw(t) is the window

function given by

gw(t) = 1 + 2
K−1∑
k=1

(−1)kA[k] cos

(
2πkt

KT

)
, (4.72)

with A[k], k = 1, 2, . . . , K − 1, being the PHYDYAS reference filter coefficients. In sim-

ulations, we use an overlap factor of K = 3, for which the PHYDYAS filter coefficient

values are: A[1] = 0.91143783 and A[2] = 0.41143783 [9].

From the above linearly modulated pulse, or chirplet, the ODSS subcarrier waveforms

are generated by q-adic compression and shifting (see (4.40)):

sm,n(t) = qn/2gtx

(
qn
(
t− m

qnW

))
, (4.73)

where m = 0, 1, . . . ,M(n) − 1, M(n) = bqnc, and n = 0, 1, . . . , N − 1. We will see

that these subcarriers, when used over a delay-scale spread channel, result in a sparse

and nearly diagonal channel matrix in the delay-scale domain, enabling the use of low

complexity receivers in that domain.
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4.7 Numerical Results

In this section, we investigate the bit error rate (BER) performance of the ODSS modula-

tion scheme. To that end, we first design the subcarriers of ODSS modulation respecting

the criteria developed in Sec. 4.5 to avoid ICI. Although robust bi-orthogonality cannot

be satisfied in an exact manner (the same as in the case of OTFS) due to the reasons

mentioned in Sec. 4.6, we use transmit and receive pulses that lead to a low complexity

receiver. In subsection 4.7.1, we discuss these aspects. In the subsection 4.7.2, we present

BER performance results for the ODSS modulation scheme designed in subsection 4.7.1.

4.7.1 ODSS Waveform

Recall our discussions in Sec. 4.5.3 leading to the choice of geometric sampling ratio, q,

and the transmit filter bandwidth, W (q), for avoiding ICI in ODSS modulation. From

the discussion preceding (4.54), we choose q such that
√
q > αmax ≥ 1.

Let B denote the system bandwidth and N be the number of q-adic scales (compres-

sions) on the scale axis. The bandwidth occupied by the transmit pulse shaping filter

and all its time-compressed copies is
∑N−1

n=0 q
nW (q). Clearly, for the transmit signals to

fit within the system bandwidth, we need:

N−1∑
n=0

qnW (q) < B. (4.74)

The maximum allowable transmit filter bandwidth is given by (see (4.61))

Wmax(q,N) ,


1

(1+αmax)τmax
, N = 1,

1

(1+α2N−3
max )τmax

, otherwise.
(4.75)

Considering (4.74), the upper limit (in (4.75)) on the transmit filter bandwidth is

satisfied if:

W (q) <
B∑N−1
n=0 q

n
=
B(q − 1)

qN − 1
< Wmax(q,N). (4.76)
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We choose the number of q-adic scales, to be the smallest integer N , say, N(q), that

satisfies (4.76). We choose the transmit filter bandwidth, W (q), to be

W (q) =
B(q − 1)

qN(q) − 1
. (4.77)

Then, the number of symbols that can be mounted is Mtot(q) =
∑N(q)−1

n=0 bqnc.

Let the duration of the ODSS symbol block be T (q) = γ
W (q)

, where γ > 1 a factor that

accounts for the increase in length of the filter above the minimum duration of 1
W (q)

. Note

that the choice of N = N(q) results in the smallest ODSS symbol duration that can be

used. Then, the spectral efficiency of the ODSS modulation scheme (in symbols/s/Hz) is

given by

η(q) =
Mtot(q)

BT (q)
=
Mtot(q)W (q)

γB
=
Mtot(q)(q − 1)

γ(qN(q) − 1)
. (4.78)

In Sec. 4.9.6 of the supplementary material, through a numerical example, we demon-

strate that ODSS can operate with a spectral efficiency close to one symbol per second

per Hertz.

Consider the ODSS subcarrier waveforms, constructed as discussed in Sec. 4.6, on

a dyadic (q = 2) tiling in the delay-scale space for a symbol block duration of T =

1.9 seconds and time-scale indices n = 0, 1, . . . , 6. Fig. 4.8 shows the ODSS subcarrier

spectra. From these figures, we notice that the subcarrier bandwidth doubles for every

scale increment and so does the number of time-compressed and shifted subcarriers at

each scale. The ODSS waveforms, thus constructed, are nearly orthogonal (see Sec. 4.9.6

of the supplementary material for more details).

4.7.2 BER Performance

We turn to investigate the communication performance of the ODSS scheme. We simulate

the transmitter and receiver of three schemes – OFDM, OTFS and ODSS – operating in

a doubly-spread (i.e., time scale and delay spread) channel. We evaluate the bit error

rate (BER) performance as the signal to noise ratio (SNR) at the receiver is varied.
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Figure 4.8: ODSS subcarrier spectra. Note that the seven subcarriers, for n = 0, 1, . . . , 6,

span a frequency band of 0− 1280 Hz.

For fair comparison, we evaluate all three schemes with a low-complexity subcarrier-by-

subcarrier MMSE equalizer at the receiver. In the case of OFDM, channel equalization

is performed in the frequency domain where the symbols are mounted. Subcarrier-by-

subcarrier MMSE channel equalizer is implemented in the time-frequency (resp. delay-

Doppler) domain outputs for OTFS (resp. ODSS). The evaluation of the performance

with more computationally expensive message passing based equalizers is relegated to

future work.

We define the SNR as the ratio of the signal and noise powers at the receiver front-end.

The transmitted ODSS signal waveform, given in (4.40), can be expressed as

s = GX, (4.79)

where the columns of the matrix G are the basis waveforms (compressed and shifted

versions of chirplets), X = TiMFx, x being the vectorized version of the symbols on the

2D-Mellin-Fourier domain grid. The signal at the receiver, after the transmitted ODSS
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waveform propagates through a doubly-spread channel in (4.64), is given by: rs(t) =∑P
p=1 hps (αp(t− τp)).

To compute the SNR at the receiver side, we ignore the effect of time scale (0.999 <

αp < 1.001) since we need only the power of the signal component in the receiver waveform.

The received signal power is given by

Ps = E(|rs(t)|2) = E(
P∑
i=1

P∑
j=1

h∗ihjs
∗(t− τi)s(t− τj)). (4.80)

Next, assuming that the channel coefficients {hp ∼ CN (0, 1) : p = 1, 2, . . . , P} are

mutually independent and independent of the transmitted signal, we find

Ps =
P∑
i=1

E(|hi|2)E|s(t− τi)|2 = PE|s(t)|2, (4.81)

where we made use of the fact that power of the signal is not affected by delay. Therefore,

making use of (4.79), we have

Ps = E{XHGHGX} =
1

FsT
Tr{GE

[
XXH

]
GH}, (4.82)

where Fs is the sampling rate. Since the ODSS transform preserves energy, E
[
XXH

]
=

E
[
xxH

]
= I and therefore

Ps =
1

FsT
Tr{GGH}. (4.83)

We compare the three schemes when they operate at the same spectral efficiency.

For BER performance evaluation, we consider acoustic communications in the frequency

band, [fc − B/2, fc + B/2], where fc = 12.8 kHz and B = 1.28 kHz. Both OFDM and

OTFS use NFFT = 2560 point FFT and they mount every twentieth subcarrier with a

binary phase shift keying (BPSK) symbol. The receivers first down-convert the received

signal to the frequency band from DC to 1280 Hz. Then, they use a waveform sampling

rate of Fs = 1280 Hz and a PHYDYAS filter (with an overlap factor K = 3) for pulse

shaping. The spectral width of the subcarriers has increased by three-fold, from W = 0.5
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Figure 4.9: BER performance of OFDM, OTFS and ODSS schemes using one-tap MMSE

channel equalizers in a wideband delay-scale spread channel with τmax = 10 ms, αmax =

1.001 and P = 20 paths.

Hz to W = 1.5 Hz, due to pulse shaping by PHYDYAS filter. The utilized subcarriers

of the OFDM are spaced well apart, by ∆F = 10 Hz, with significant guard band and

without overlap (see Sec. 4.9.7, Fig. 4.18 in the supplementary material).

Figure 4.9 shows the performance of the three modulation schemes as a function of

the SNR, in a doubly-spread channel with a delay spread of τmax = 10 ms, maximum

Doppler scale αmax = 1.001 and number of paths P = 20. The path amplitudes are

Rayleigh distributed, hp
i.i.d.∼ CN (0, 1) : p = 1, 2, . . . , P . The path delays, τp, and time-

scales, αp, are drawn uniformly from (0, τmax) and (1/αmax, αmax), respectively. Notice that

the delays, τp, and time-scales, αp, are drawn from continuous distributions and do not

necessarily lie on the sampling grid. We oversample the transmitted signal by a factor of 8,

round-off the channel delay taps to this higher-rate sampled time grid, perform resampling

by a rational approximation of the resampling rates αp (to within an error of ε = 10−5),
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obtain the received signal after propagating through the delay-scale channel, and finally

downsample to obtain the received signal at the original sampling rate. All the receivers

use a low-complexity subcarrier-by-subcarrier MMSE equalizer based symbol decoder. We

notice the superior performance of the proposed ODSS scheme, while OFDM performs

the worst. This is mainly due to the larger ICI among the high frequency subcarriers of

OFDM and OTFS when compared to ODSS (see Sec. 4.9.8). In a time-scale channel, the

frequency shift is non-uniform and increases with frequency. The ODSS subcarriers have

a bandwidth that also increases with frequency, and are therefore relatively unaffected by

the Doppler due to time scaling. Fig. 4.9 also shows the performance of ODSS with both

the rectangular and PHYDYAS pulse shaping filter. We see that the PHYDYAS filter

reduces ICI and thereby eliminates the error floor within the range of SNR considered.

Figure 4.10 shows the performance of the three schemes at an SNR of 18 dB in a

doubly-spread channel with a delay spread of τmax = 10 ms and maximum Doppler scale

αmax = 1.001, as the number of paths P is varied. The performance advantage of the

ODSS scheme increases with the number of paths. In a doubly-spread wideband channel,

ODSS whose performance is not limited by a BER floor, unlike the other two schemes,

benefits due to diversity gain as the number of paths increases.

Finally, we vary the maximum Doppler scale spread, αmax, from αmax = 1.0 (zero

Doppler channel) to αmax = 1.001 keeping all other parameters fixed (τmax = 10 ms,

P = 20 and SNR = 20 dB.). Figure 4.11 shows the BER performance of the three

schemes. The ODSS modulation, designed to handle a maximum Doppler scale spread

of αmax = 1.001, has a nearly constant BER for 1.0 ≤ αmax ≤ 1.001. OFDM and OTFS

schemes suffer due to ICI from Doppler distortion, for αmax > 1, that gets severe as the

Doppler spread increases.

4.8 Conclusions

We developed a new low complexity modulation scheme for a delay and Doppler time-scale

spread wideband channel, which we called Orthogonal Delay Scale Space (ODSS) modu-

lation. We examined the performance of OFDM, OTFS and ODSS modulation schemes
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Figure 4.10: BER performance of OFDM, OTFS and ODSS using one-tap MMSE channel

equalizer as the number of paths, P , is varied in a doubly-spread wideband channel with

τmax = 10 ms, αmax = 1.001 and at SNR= 18 dB.

through numerical simulations when the receiver employs a low complexity channel equal-

izer. In doubly distorted wideband channels, the ODSS receiver using a subcarrier-by-

subcarrier equalizer showed a clear performance advantage over the OFDM and OTFS

receivers. Also, as the number of multipaths increased, ODSS showed even better per-

formance, taking advantage of the increased multipath diversity, whereas the other two

schemes suffered due to their inability to handle ICI.

The ODSS scheme was developed by systematically identifying the transmitter and

receiver side modulation and demodulation functions suited for wideband time-varying

channels. In the process, we introduced the 2D ODSS transform composed of the inverse

Fourier and Mellin transforms from the Fourier-Mellin domain (symbol space) to the

delay-scale domain (waveform space). We recognized the ω-convolution property that

helped in developing the input-output model for the ODSS scheme. We showed that the
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Figure 4.11: BER performance of OFDM, OTFS and ODSS as the Doppler scale spread

parameter, αmax, is varied in a wideband channel with P = 20, τmax = 10 ms and at

SNR= 20 dB.

proposed scheme can operate with a spectral efficiency close to one symbol per second per

Hertz. With our choice of filtered wideband chirplet, as the basic ODSS waveform, we

obtained a channel matrix which was nearly diagonal thus allowing the use of a subcarrier-

by-subcarrier equalizer in the delay-scale domain.

While this work introduced the ODSS modulation scheme, there are several directions

that can be explored. These include developing better-performing message-passing based

receivers, analyzing the peak-to-average power ratio and energy efficiency, extension to

multiple antennas at the transceivers, analyzing the diversity-multiplexing gain trade-offs,

developing channel estimation schemes, analyzing performance under imperfect channel

state information, designing good transmit and receive pulse shaping functions, and so

on.
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4.9 Supplementary Material

4.9.1 Proof of (4.43)

We show that a cascade of two delay-scale channels, as shown in Figure 4.6, is equivalent

to a single channel, i.e., Πh2(Πh1(s)) = Πh(s), where h(τ, α) = h2(τ, α) ~ω h1(τ, α) and

the symbol ~ω denotes the ω-convolution defined by

h(τ, α) =

∫∫
h2(τ ′, α′)h1

(
α′(τ − τ ′), α

α′

)
dτ ′dα′. (4.84)

To show this, we substitute

v(t) =

∫∫
h1(τ ′′, α′′)

√
α′′u (α′′(t− τ ′′)) dτ ′′dα′′,

into the relation

r(t) =

∫∫
h2(τ ′, α′)

√
α′v (α′(t− τ ′), ) dτ ′dα′,

and make the change of variables, τ ′′ → α′(τ − τ ′) and α′′ → α/α′, to obtain

r(t) =

∫∫ ∫∫
h2(τ ′, α′)h1

(
α′(τ − τ ′), α

α′

)
dτ ′dα′

√
αu(α(t− τ))dτdα

=

∫ ∫
h(τ, α)

√
αu(α(t− τ))dτdα,

where h(τ, α) is given by (4.84).

4.9.2 Derivation of (4.44)

Using (4.42) and the definition of ω-convolution in (4.43), we can express f(τ, α) = h(τ, α) ~ω X(τ, α)

as

f(τ, α) =

∫∫
h(τ ′, α′)

∑
n

∑
m

X[n,m]δ

(
α′(τ − τ ′)− m

qnW
,
α

α′
− qn

)
dτ ′dα′

=
∑
n

∑
m

X[n,m]

∫∫
h(τ ′, α′)δ

(
α′(τ − τ ′)− m

qnW
,
α− qnα′

α′

)
dτ ′dα′
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(e)
=

∑
n

∑
m

X[n,m]h

(
τ − m

αW
,
α

qn

)
q−n,

(4.85)

where the last equality (e) follows from the following properties of the Dirac delta function:

1. Generalized scaling property:

δ(g(x)) =
∑

{x0:g(x0)=0}

δ(x− x0)∣∣∣det ∂(g1,...,gn)
∂(x1,...,xn)

∣∣∣
x=x0

,

where g : Rn → Rn is a bi-Lipschitz function and
∣∣∣det ∂(g1,...,gn)

∂(x1,...,xn)

∣∣∣ 6= 0 for x ∈

{x0 : g(x0) = 0}.

2. Sifting property:

∫
f(x)δ(x− x0)dx = f(x0).

4.9.3 Derivation of (4.47)

Agrx,rs(τ, α) =

∫
g∗rx (α(t− τ))

√
αrs(t)dt

=

∫
g∗rx (α(t− τ))

√
α

∫∫
f(τ ′, α′)

√
α′gtx (α′(t− τ ′)) dτ ′dα′dt

=

∫∫
f(τ ′, α′)

∫
g∗rx (α(t− τ))

√
αα′gtx (α′(t− τ ′)) dtdτ ′dα′

=

∫∫
f(τ ′, α′)

∫
g∗rx

( α
α′

(t′ − α′ (τ − τ ′))
)√ α

α′
gtx(t′)dt′dτ ′dα′

=

∫∫
f(τ ′, α′)Agrx,gtx

(
α′(τ − τ ′), α

α′

)
dτ ′dα′

= f(τ, α) ~ω Agrx,gtx(τ, α). (4.86)

It is now straightforward to see that

Agrx,rs(τ, α) = f(τ, α) ~ω Agrx,gtx(τ, α)
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(e)
=

∫∫ ∑
n

∑
m

X[n,m]h

(
τ ′ − m

α′W
,
α′

qn

)
q−nAgrx,gtx

(
α′(τ − τ ′), α

α′

)
dτ ′dα′

(f)
=

∑
n

∑
m

X[n,m]Hn,m(τ, α), (4.87)

where we used (4.44) at step (e), and the following definition at step (f):

Hn,m(τ, α) ,
∫∫

h

(
τ ′ − m

α′W
,
α′

qn

)
q−nAgrx,gtx

(
α′(τ − τ ′), α

α′

)
dτ ′dα′. (4.88)

By a transformation of variables, τ ′′ = τ ′ − m
α′W

and α′′ = α′

qn
, and using the fact that

the determinant of the Jacobian of this transformation is qn, we can rewrite the double

integral in (4.88) as

Hn,m(τ, α) =

∫∫
h(τ ′′, α′′)Agrx,gtx

(
α′′qn

(
τ − m

α′′qnW
− τ ′′

)
,
α

α′′qn

)
dτ ′′dα′′. (4.89)

4.9.4 Pulse Shaping Functions for OTFS

The narrowband cross-ambiguity function, apropos of OTFS modulation, between the

transmit and receive pulse shaping functions is defined by (see (4.13))

Agrx,gtx(τ, ν) ,
∫
t

e−j2πν(t−τ)g∗rx(t− τ)gtx(t)dt. (4.90)

It is clear from (4.90) that, for a given τ , the functions Ψ(ν) = Agrx,gtx(τ, ν)e−j2πντ

and ψ(t) = g∗rx(t− τ)gtx(t) are Fourier pairs, and therefore

g∗rx(t− τ)gtx(t) =

∫
ν

Agrx,gtx(τ, ν)ej2πν(t−τ)dν. (4.91)

Consider, for example, a narrowband cross-ambiguity function, Agrx,gtx(τ, ν), which is

non-zero only on S = Iτ × Iν , where Iτ = (−τmax, τmax) and Iν = (−νmax, νmax), and
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Agrx,gtx(τ, ν) = 1, ∀(τ, ν) ∈ S. In this case, we see from (4.91) that

g∗rx(t− τ)gtx(t) =

2νmax sinc (2νmax(t− τ)) , τ ∈ Iτ

0, otherwise.

(4.92)

This is clearly impossible: to have g∗rx(t − τ)gtx(t) and its Fourier transform (t →

ν) Agrx,gtx(τ, ν) to be both finitely supported. Hence, we cannot design transmit and

receive filters that exactly satisfy robust bi-orthogonality. Also, more generally, even if

Agrx,gtx(τ, ν) is not identically unity ∀(τ, ν) ∈ S, due to Heisenberg’s uncertainty principle,

it is still impossible to find transmit and receive filters that are robustly bi-orthogonal [75].

4.9.5 Pulse Shaping Functions for ODSS

In ODSS, the wideband cross-ambiguity function between the transmit and receive pulse

shaping functions is defined by (see (4.46))

Agrx,gtx(τ, α) ,
∫
g∗rx (α(t− τ))

√
αgtx(t)dt. (4.93)

Let Gtx(f) and Grx(f) denote the Fourier transforms of the transmit and receive pulse

shaping functions, gtx(t) and grx(t), respectively. Then, by Parseval’s theorem, we can

express the integral in (4.93) as

Agrx,gtx(τ, α) =
1√
α

∫
G∗rx

(
f

α

)
Gtx(f)ej2πfτdf. (4.94)

It is clear from (4.94) that, for a given α, the functions ψ(τ) = Agrx,gtx(τ, α) and

Ψ(f) = 1√
α
G∗rx

(
f
α

)
Gtx(f) are Fourier pairs, and therefore

1√
α
G∗rx

(
f

α

)
Gtx(f) =

∫
Agrx,gtx(τ, α)e−j2πfτdτ. (4.95)
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Setting f = α in (4.95), we obtain

1√
α
G∗rx(1)Gtx(α) =

∫
Agrx,gtx(τ, α)e−j2πατdτ, (4.96)

from where, by replacing α with f , we can determine Gtx(f) up to a scale factor 1/G∗rx(1),

provided G∗rx(1) 6= 0. On the other hand, setting f = 1 and replacing α with 1/α in (4.95),

leads to
√
αG∗rx(α)Gtx(1) =

∫
Agrx,gtx(τ, 1/α)e−j2πτdτ, (4.97)

from where, by replacing α with f , we can find Grx(f) up to a scale factor 1/G∗tx(1),

provided G∗tx(1) 6= 0. We determine the transmit and receive pulse shaping functions in

the time domain by Fourier inversion of Gtx(f) and Grx(f), respectively.

Consider, for example, a wideband cross-ambiguity function, Agrx,gtx(τ, α), which is

non-zero only for S = {(τ, α) : τ ∈ (−τmax, τmax) , α ∈ (1/αmax, αmax)}, where αmax ≥ 1,

and Agrx,gtx(τ, α) = ej2πf0τ/
√
α, for (τ, α) ∈ S, where f0 = α−1

max+αmax

2
. In this case, we find

that the Fourier transform of the transmit pulse shaping function is given by

Gtx(f) =


2τmax

G∗rx(1)
sinc ((f − f0)τmax) , f ∈

(
1

αmax
, αmax

)
,

0, otherwise,

(4.98)

and the receive pulse shaping function in the Fourier domain is given by

G∗rx(f) =


2τmax

Gtx(1)
sinc ((f0 − 1)τmax) , f ∈

(
1

αmax
, αmax

)
,

0, otherwise.

(4.99)

We immediately recognize the impossibility of designing finite duration transmit-

ter and receiver pulse shaping filters for ODSS modulation that satisfy the robust bi-

orthogonality condition exactly. While the receiver pulse shaping filter, given by (4.99),

is exactly rectangular (in frequency domain), the transmitter pulse shaping filter, given

by (4.98), is nearly rectangular (in frequency domain) since for typical values of channel

delay spread, τmax, and Doppler scale, αmax, αmax − 1/αmax � 1
τmax

holds. Therefore, the
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pulse shaping filters in the time domain cannot be finite duration waveforms. Conversely,

finite duration pulse shaping filters cannot have spectra, as in (4.98) and (4.99), and hence

do not satisfy the robust bi-orthogonality condition exactly. We are thus left to choose

filters that are nearly bi-orthogonal in a robust manner.

4.9.6 ODSS: Spectral Efficiency and Orthogonality

Consider the choice of ODSS modulator parameters for an underwater communication

system of bandwidth B = 10 kHz operated in a channel with a Doppler spread of αmax =

1.001 [109]. In Fig. 4.12, we plot the transmit filter bandwidth, in (4.77), and the

maximum allowed bandwidth, given by (4.75), for different channel delay spreads as the

sampling ratio q is varied. The spectral efficiency of the ODSS modulation with these

parameters and γ = 2 is plotted as a function of q in Fig. 4.13.

Fig. 4.14 shows the ODSS subcarrier waveforms, constructed as discussed in Sec. 4.6,

on a dyadic (q = 2) tiling in the delay-scale space for a symbol block duration of T = 1.9

seconds and time-scale indices n = 0, 1, . . . , 6.

The pairwise correlations of the ODSS subcarrier waveforms are shown as an image in

Fig. 4.15: the intensity of (m,n)th cell denotes the magnitude of the correlation between

the mth and nth subcarrier waveforms. We see that the correlation matrix is nearly

diagonal as the normalized cross-correlation between any two distinct ODSS subcarrier

waveforms is less than −74 dB.
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Figure 4.12: Plots of the transmit filter bandwidth, W in (4.77), and maximum allowed

bandwidth, Wmax in (4.75), as the sampling ratio, q, is varied for various channel delay

spreads. Small values of the transmit filter bandwidth, and hence a long symbol duration,

needs to be used in channels with large delay spread.

4.9.7 ODSS Channel Matrix

Figures 4.16 and 4.17 show the ODSS channel matrix in the delay-scale and Mellin-

Fourier domains, respectively, for one of the simulated channel instances. The ODSS

channel matrix in the delay-scale domain is nearly diagonal and, therefore, a single-tap

channel equalizer can be implemented in this domain.
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Figure 4.13: Plots of the spectral efficiency, η (in symbols/s/Hz), of the ICI-free ODSS

scheme as the sampling ratio, q, is varied. The spectral efficiency of the ODSS is quite

close to unity for q > 1.2.

4.9.8 Effect of Time-scaling: ODSS versus OFDM

To illustrate the effect of Doppler on OFDM and ODSS, we mount a symbol only on one

of the subcarriers, say, the nsub = 64. We then observe the processed subcarrier outputs,

for 100 channel realizations, in the neighborhood of nsub. In Figs. 4.19 and 4.20, we plot

the OFDM and ODSS receiver outputs, respectively. Spurious pickup by subcarriers 63

and 65 in OFDM is due to Doppler. In contrast, the ICI due to time-scaling effect of the

channel is negligible in ODSS, thus illustrating its suitability for such channels.
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Figure 4.14: ODSS subcarriers, for n = 0, 1, . . . , 6, on a dyadic (q = 2) tiling over an

ODSS symbol duration of T = 1.9 seconds. Note that a total of N7 = 127 subcarriers are

tiled in the symbol duration.
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Figure 4.15: ODSS subcarrier waveform correlation matrix, for n = 0, 1, . . . , 6. The

normalized correlation (in dB) values are color coded and displayed. The peak intensity

corresponds to 0 dB (yellow). The cross-correlation between any two distinct ODSS

subcarrier waveforms is less than −74 dB.
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Figure 4.16: ODSS channel matrix (normalized magnitude, in dB) is nearly diagonal

in the delay-scale domain with the maximum ICI level not exceeding −25 dB. Channel

equalization can be implemented by multiplying each delay-scale domain measurement

with a respective complex number.
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Figure 4.17: ODSS channel matrix (normalized magnitude, in dB) in the Mellin-Fourier

domain. Channel equalizer complexity in the Mellin-Fourier domain is high due to the

non-sparse nature of the associated channel matrix.
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Figure 4.18: Spectrum of the pulse shaped OFDM subcarriers in the frequency band

615-665 Hz. The subcarriers are spaced at ∆F = 10 Hz. The 3-dB spectral width of the

subcarriers, after pulse shaping by PHYDYAS filter, is W = 1.5 Hz.
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Figure 4.19: OFDM receiver processed subcarrier outputs. Only the 64th subcarrier is

transmitted with a BPSK symbol across a channel with αmax = 1.001. A Doppler shift of

δfc = (αmax−1)fc = 12.8 Hz (> ∆F ) is experienced by the 64th subcarrier (corresponding

to fc = 12.8 kHz). Spurious pickups due to ICI can be observed on the 63rd and 65th

subcarriers.
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Figure 4.20: ODSS receiver processed subcarrier outputs in a delay-scale spread channel.

Only the 64th subcarrier is transmitted with a BPSK symbol across a channel with

αmax = 1.001. Unlike OFDM, ICI is avoided in ODSS.
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Figure 4.21: OTFS channel matrix (normalized magnitude, in dB) in the time-frequency

domain for a simulated delay-scale channel realization. The channel matrix is non-

diagonal with a severe ICI in excess of 0 dB relative to some diagonal entries.



Chapter 5

Variable Bandwidth Multicarrier

Communications

In this chapter, we develop a new waveform for communicating over a delay and time-

scale spread wideband channel. This waveform, named Variable Bandwidth Multicarrier

(VBMC) waveform, comprises multiple subcarriers that are constructed from chirp pulses

used in radars and sonars, and is a multicarrier analogue of the sweep spread carrier

waveform that time multiplexes the digital symbols onto a single chirp pulse. We design

the subcarrier chirps to occupy progressively increasing, frequency-dependent bandwidth

from the lower to upper frequency edge of the communication band. Due to this, the

subcarriers of the VBMC waveform maintain their near mutual orthogonality even after

passing through a delay and scale spread channel, resulting in low inter-carrier interfer-

ence, and thereby facilitating low complexity subcarrier-by-subcarrier decoding at the

receiver. Numerical simulation of the bit error rate over delay-scale channels shows that

the VBMC waveform outperforms the widely used Cyclic Prefix Orthogonal Frequency Di-

vision Multiplexing (CP-OFDM) and the recently developed Orthogonal Time-Frequency

Space (OTFS) waveforms.

149
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5.1 Introduction

Orthogonal frequency division multiplex (OFDM) communications employs multiple com-

plex sinusoids as the carriers of digital information. The OFDM waveform, attached with

a cyclic prefix (CP-OFDM) or zero padded (ZP-OFDM), eliminates the inter-carrier in-

terference (ICI) in delay-spread multipath channels due to the orthogonality of its sub-

carriers. In channels that are also Doppler spread, the OFDM subcarriers lose their

orthogonality due to multiple path-dependent Doppler shifts (time-scales) in a narrow-

band (wideband) channel. In such doubly-spread narrowband and wideband channels,

OFDM receivers must employ sophisticated equalizers at the receiver side to tackle the

resulting ICI.

Most radio frequency (RF) wireless communication channels are narrowband (or un-

derspread): the effect of Doppler can be well approximated by a uniform shift of signal

frequencies.1 Orthogonal Time-Frequency Space (OTFS) waveform is a recently proposed

modulation scheme for the delay and Doppler spread narrowband channels [27–30,51]. In

the channels commonly encountered in underwater acoustic (UWA) or ultra-wideband

(UWB) RF communications, the effect of Doppler due to the motion of source, receiver,

or scatterer, is to time-compress or dilate a wideband waveform [25]. Time-scaling on

wideband signals manifests in a non-uniform shift of signal frequencies across the fre-

quency band and is, therefore, unlike the effect of Doppler in a narrowband channel.

The subcarriers of OFDM and OTFS are uniformly spaced in the frequency domain: in

a wideband time-scale channel, they undergo frequency-dependent shifts which increase

with frequency. Severe ICI ensues in such cases, leading to poor performance of low

complexity single-tap equalizers.

In this chapter, we propose a new waveform, variable bandwidth multicarrier (VBMC)

waveform, that performs well in multipath channels with path-dependent time-scales while

using a simple, single-tap equalizer and subcarrier-by-subcarrier symbol decoding. VBMC

is comprised of several subcarriers constructed by linearly sweeping the frequency in time

1Note that a narrowband channel is different from the conventional narrowband waveform (waveform
bandwidth < channel coherence bandwidth.)
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across the band allotted to each subcarrier. We choose a variable and frequency-dependent

subcarrier bandwidth that increases with frequency and a subcarrier duration that reduces

with frequency. These aspects distinguish our VBMC from the traditional OFDM that

uses multiple frequency continuous wave (CW) sinusoidal pulses of constant bandwidth

and duration. These are also the features that make VBMC suitable for communication

over delay-scale spread channels.

The delay and time-scale spread channel model has been used in several works [39,51,

61]. In this work, we use the well known continuous time Shannon basis for representing

the transmitted signal, which allows us to accurately generate delayed and scaled versions

of bandlimited signals as they pass through the channel. We introduce and describe the

construction of a modulation dictionary whose columns are the subcarriers of a multi-

carrier waveform. The framework we develop here allows us to systematically model the

delay-scale channel as a linear transformation that can be used to design and evaluate var-

ious waveforms for communications on a level playing field. Finally, we present numerical

studies using our delay-scale channel modeling framework, comparing the performance of

VBMC with OFDM and OTFS.

5.2 Received Signal Model

In this section, we develop and present our delay-scale spread channel model. Consider

a signal s(t) transmitted over a medium that presents P scattering paths. The received

signal, prior to noise being added, is a superposition of the signals due to each scatterer:

rs(t) =
P∑
p=1

rs(t;hp, τp, αp) =
P∑
p=1

hp
√
αps (αp(t− τp)) ,

where the tuple (hp, τp, αp) contains the gain, delay and time-scale parameters associated

with the pth scattering path.

We let αmax ≥ 1 and τmax ≥ 0 denote the maximum scale and delay spread of the

wideband channel, respectively, so that αp ∈ [α−1
max, αmax] and τp ∈ [0, τmax]. The above

channel is known as a delay-scale spread channel due to multiple scatterers with possibly
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different triples (hp, τp, αp).

The transmitted signal is of the form s(t) = sBB(t)ej2πfct, where fc is the center fre-

quency and sBB(t) is the complex baseband signal, band-limited to−B/2 ≤ f ≤ B/2. The

Shannon-Nyquist sampling theorem admits the representation of such a signal in terms of

its complex-valued discrete-time samples sBB[m] = sBB (m/Fs), obtained at a rate Fs ≥ B,

as a linear combination of the Shannon basis vectors in B∞ = {sinc (B(t−m/Fs)) , t ∈

R,m ∈ Z} [71]:

sBB(t) =
∞∑

m=−∞

sBB[m]sinc (B(t−m/Fs)) , (5.1)

where sinc(x) , sinπx
πx

, x 6= 0 and sinc(x) , 1, x = 0.

In practice, we must use a waveform of finite duration, say, T , that is at best only

approximately bandlimited. In this work, we consider a sampling rate Fs > B such that

the finite duration baseband signal, sBB(t), has a negligible fraction of its total energy

outside −Fs
2
≤ f ≤ Fs

2
. Let M = bFsT c > BT be the number of samples of s(t) over

its finite time duration, 0 ≤ t ≤ T . The orthogonal projection of s(t) onto the finite

dimensional space spanned by the basis vectors in BM = {sinc (B(t−m/Fs)) , 0 ≤ t ≤

T,m = 0, 1, . . . ,M − 1} is given by

Ps(t) ,
M−1∑
m=0

sBB[m]sinc (Bt−mB/Fs) ej2πfct, (5.2)

0 ≤ t ≤ T . We assume that ε = ‖s(t) − Ps(t)‖2 is negligible and henceforth consider

s(t) ≈ Ps(t).2

If the receiver is synchronized to the first arriving path, i.e., τ1 = 0, using the repre-

sentation of s(t) in (5.2), the delay-scale spread channel output (before adding noise) can

be written as

rs(t) =
P∑
p=1

hp
√
αp

M−1∑
m=0

sBB[m]sinc (αpB(t− τp)− nB/Fs) ej2πfcαp(t−τp), (5.3)

2The accuracy of the approximation can be improved by use of a large enough sampling rate and/or
good pulse shaping transmit filters.
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where 0 ≤ t ≤ T + τmax due to the delay spread in the channel. The value of the residual

time-scale spread, for example, in harsh UWA channels, is αmax = 1.001 after coarse

resampling [14, 51]. The waveform in a UWA communication system operating over a

frequency band from fL = 10 kHz to fH = 20 kHz will then experience a worst case

bandwidth expansion of δf = αmaxfH − 1
αmax

fL = 30 Hz due to time-scale spread. While

a sampling rate of Bmax = 10.03 kHz is enough, we use a higher sampling rate to maintain

good accuracy of approximation in (5.2), considering the finite duration of the waveform.

Similarly, in UWA channels, a delay spread of tens of milliseconds is typical [90].

After complex demodulation using the center frequency, the received signal in the

baseband is rBB,s(t) = rs(t)e
−j2πfct. Using rs(t) in (5.3), the samples of the received signal

in the baseband, rBB,s[m
′] = rBB,s(m

′/Fs), can be expressed as

rBB,s[m
′] =

M−1∑
m=0

sBB[m]
P∑
p=1

hp
√
αpe

−j2πfcαpτp

× ej2πfc(αp−1)m′/Fssinc (B(αpm
′ −m)/Fs − αpτpB) , (5.4)

for m′ = 0, 1, . . . ,M ′ − 1, where M ′ = bFsT + Fsτmaxc is the number of signal samples at

the delay-scale channel output.

We may write (5.4) in the matrix-vector notation, including the additive receiver noise,

as follows:

r = Hs + w, (5.5)

where w ∈ CM ′ is the vector containing the receiver noise samples w[m],

s = [sBB[0], sBB[1], . . . , sBB[M − 1]]T ∈ CM , (5.6)

r = [rBB[0], rBB[1], . . . , rBB[M ′ − 1]]
T ∈ CM ′ , (5.7)

rm′ = rBB[m′] = rBB,s[m
′]+w[m′], and H ∈ CM ′×M is the delay-scale propagation channel
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matrix whose (m′,m)th entry is given by

Hm′,m =
P∑
p=1

hp
√
αpe

−j2πfcαpτpej2πfc(αp−1)m′/Fssinc (B(αpm
′ −m)/Fs − αpτpB) . (5.8)

We make a few quick observations. For P = 1, h1 = h ∼ CN (0, 1), τ1 = 0, α1 = 1,

w[m′] ∼ CN (0, σ2), and if sm = sBB[m],m = 0, 1, 2, . . . ,M − 1 are M transmit symbols

from a constellation, the received signal rm = h sm +w[m],m = 0, 1, 2, . . . ,M − 1 follows

the familiar Rayleigh fading model with a single path corrupted by AWGN. Also, with P

paths, αp = 1 (no Doppler), and with path delays τp = np/Fs that are integer multiples

of the sampling interval, we can diagonalize the channel using the CP-OFDM waveform,

where, the first L samples of the baseband waveform are used for the cyclic prefix and

the remaining Ns = M − L samples are used for information encoding (corresponding to

a cyclic prefix of duration TCP = L/Fs and an OFDM symbol duration of Tsymb = Ns/Fs,

respectively.) If the bandwidth and hence the sampling rate are high, a delay-spread

channel with path delays that are non-integer multiples of the sampling interval is still

approximately diagonalized by the CP-OFDM waveform. Finally, when αp 6= 1, the

channel is time-varying and CP-OFDM witnesses ICI at the output of DFT processing.

5.3 Modulation Dictionary and Waveforms

In this section, we present the notion of modulation waveform dictionary, and describe

its construction for the different waveforms compared in this chapter. Expressing the

system model in terms of a modulation dictionary allows us to systematically analyze any

communication waveform.

Consider a stream of information bits bq, q = 1, 2, . . . , N log2Q, that get mapped to N

(≤ Ns = M −L) complex symbols, xn ∈ C, n = 1, 2, . . . , N , from a Q-QAM constellation.

Let x ∈ CN denote the complex symbol vector whose nth entry is xn. Let G ∈ CM×N

represent a modulation waveform dictionary whose columns are the subcarriers of the

information symbols xn ∈ C, n = 1, 2, . . . , N . The samples of the baseband waveform are
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given by

s = Gx. (5.9)

We now present the construction of G for the OFDM, OTFS and the proposed VBMC

waveforms.

5.3.1 OFDM and OTFS Waveforms

The modulation waveform dictionary for CP-OFDM communications is constructed from

the N -point inverse DFT matrix. For a CP of length L > Fsτmax, the modulation dic-

tionary G ∈ CM×N , with M = Ns + L, is obtained by appending the last L rows of

the Ns ×Ns inverse DFT matrix on its top and retaining only N (≤ Ns) columns corre-

sponding to the subcarriers of OFDM mounted with symbols. In the case of OTFS, the

N information symbols mounted along the delay axis is first Fourier transformed to the

frequency axis before mounting them on the OFDM subcarriers. A subsequent inverse

DFT operation undoes the DFT operation of the inverse symplectic Fourier transform.

Therefore, the modulation dictionary of OTFS is obtained by prefixing the rows of an

Ns × Ns identity matrix with its last L rows and retaining only the N (≤ Ns) columns

corresponding to the subcarriers mounted with symbols. Thus, we observe that, in the

setting considered in this chapter, OTFS reduces to a single carrier (SC) communica-

tion scheme that simply time-multiplexes the symbols on a single carrier corresponding

to the band center frequency. Note that this is not the case when multiple symbols are

transmitted per frame, since OTFS uses a single CP for the entire frame.

5.3.2 Variable Bandwidth Multicarrier Waveform

Recall that time scaling results in a non-uniform shift of the signal frequencies. Specifi-

cally, if the time-scale factor is α, a spectral component at f shifts by δf = (α−1)f . This

means that subcarriers of the OFDM and OTFS waveform, that are uniformly spaced on

the frequency axis, shift by different amounts under time-scaling distortions. As a result,

ICI ensues whose magnitude increases with subcarrier frequency, rendering a receiver
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using low complexity single tap equalizer and symbol-by-symbol decoding ineffectual in

these schemes. This key observation motivates us to consider a frequency dependent band-

width for the subcarriers in a multicarrier communication scheme for wideband delay-scale

channels.

We now describe the construction of the VBMC subcarriers. The communication band

from fL to fH is divided into N frequency cells of varying widths, and a VBMC subcarrier

is associated with each cell. The VBMC subcarriers are linear frequency modulated (LFM)

chirp pulses that sweep a bandwidth depending on the subcarrier frequency cell. Let ∆f

be the width of the first subcarrier’s frequency cell. We choose ∆f = β/Tsymb where Tsymb

is the VBMC symbol duration and β is a factor to accommodate bandwidth expansion

due to pulse shaping. Consider the frequencies fn, n = 0, 1, 2, . . . , N , with f0 = fL and

fn+1 = fn (1 + ∆f/fL) = fL (1 + ∆f/fL)n . (5.10)

The number of VBMC subcarriers N , for a given ∆f and frequency band fL to fH , is

found from:

N =

⌊
log (fH/fL)

log (1 + ∆f/fL)

⌋
. (5.11)

An nth VBMC subcarrier, located in the frequency cell [fn−1, fn], n = 1, 2, . . . , N , is

an LFM pulse cn(t) of duration

Tn =

(
α−1

maxf1 − αmaxf0

α−1
maxfn − αmaxfn−1

)
T, (5.12)

and chirp rate

kn =
α−1

maxfn − αmaxfn−1

Tn
, (5.13)

given by

cn(t) =
1√
Tn
ej2π(fc,nt+

1
2
knt2),−Tn/2 ≤ t ≤ Tn/2, (5.14)

where

fc,n =
αmaxfn−1 + α−1

maxfn
2

, (5.15)
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Figure 5.1: Effect of worst-case time compression and dilation on the nth VBMC subcar-

rier spectrum.

is the subcarrier center frequency. Note that the duration, chirp rate, and frequency sweep

of the chirp subcarriers all vary with the subcarrier frequency.

The VBMC subcarriers designed above (with β > 1) to communicate N symbols over

a channel with maximum delay and scale spreads of τmax and αmax, respectively, have

a higher per symbol bandwidth, resulting in greater time-bandwidth product than the

subcarriers of OFDM. This helps VMBC achieve a better symbol detection performance.

The modulation dictionary, G ∈ CM×N , for VBMC is constructed as follows. As in

OFDM/OTFS, we choose L ≥ Fsτmax and set M = Ns + L, where Ns = FsTsymb. The

rows of G contain the samples of the VBMC subcarrier waveforms. Let Mn = bFsTnc

and mn = bM−Mn

2
c. The nth column of G contains the Mn samples of the nth VBMC

subcarrier, for n = 0, 1, . . . , N − 1:

Gm,n =

cn
(
m−mn
Fs
− Tn

2

)
, mn ≤ m ≤ mn +Mn − 1

0, otherwise

(5.16)

We now briefly discuss VBMC in relation with other similar waveforms in the litera-

ture.

1. The patented sweep spread carrier (S2C) waveform used in UWA communications,

and implemented in a commercial modem, uses chirp pulse as a single carrier [44,45].

In S2C, symbols are time-multiplexed on a complex chirp carrier that sweeps the
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entire communication band, every symbol occupying a duration of Tsymb = T/N

and bandwidth of ∆f = βN/T . VBMC is a multicarrier waveform with chirp

subcarriers, with the nth symbol occupying a bandwidth ∆fn = α−1
maxfn−αmaxfn−1

and duration Tn = β/∆fn.

2. VBMC has a structure resembling Orthogonal Delay Scale Space (ODSS) waveform

in that their subcarriers have a varying bandwidth and duration (See Chapter 4

and [6].) In fact, ODSS using basic chirplet c0(t) and a scaling ratio of q = 1 +

∆f/fL without the precoding ODSS transform (i.e., inverse discrete Mellin-Fourier

transform) reduces to VBMC. It is interesting to note that the condition q = 1 +

∆f/fL = fn/fn−1 > α2
max must be met to design the VBMC subcarriers (since we

need ∆fn > 0), which is the same as the condition for the ODSS waveform design to

contain the ICI. To see how this condition helps in containing the ICI, consider the

worst-case compression or dilation of the nth VBMC subcarrier waveform by the

maximum time-scale factor, αmax. A compression (dilation) of the waveform results

in dilation (compression) of its spectrum, as depicted in Figure 5.1. The condition,

q = fn/fn−1 > α2
max, prevents the nth subcarrier spectrum from having a significant

overlap with the adjacent subcarrier spectra even when it undergoes compression or

dilation by the largest time-scale factor in a delay-scale spread channel.

3. A waveform with a similar time-frequency tiling structure was proposed in [104].

We highlight a few distinguishing features of VBMC compared to the Multi-Layer

Block Transmission (MLBT) waveform in [104]:

(a) In [104], the choice of compressive time-scale factor for the transmission wave-

form is only to ensure non-overlapping frequency bands for the inter-layer

MLBT subcarriers. In our development of VBMC (and ODSS), we relate the

choice of waveform time-scale, q, to the maximum channel scale spread, αmax,

i.e., we require: q > α2
max to contain ICI.

(b) We use chirp based subcarrier pulses, in lieu of the Shannon wavelets in [104],



Chapter 5. Variable Bandwidth Multicarrier Communications 159

that can potentially be designed for a larger duration and hence high time-

bandwidth product leading to a better symbol detection performance.

(c) The use of chirp pulses and incorporation of the maximum channel scale spread

into our waveform design results in a nearly orthogonal subcarrier waveforms

even after the distortion caused by delay-scale channel. Consequently, VBMC

receiver performs quite well (see Section 5.5) with the least complexity single-

tap equalizers. In [104], equalization of Nl banded channel matrices (not purely

diagonal) of size (K ′ + 1) ×K ′ is needed, where K ′ is the number of number

of layers, Nl is the number of symbols mounted in each layer, and N = KNl is

the total number of symbols in MLBT.3

(d) Modeling errors due discretization of scale and lag parameters is avoided in our

system model development which also provides a general framework (through

the notion of a waveform dictionary) for comparing different waveforms. A

detailed discussion of the modeling error due to scale and lag discretization is

found in the Appendix, in Section 5.8.

(e) Channel parameters, τmax and αmax, used for performance studies in [104] are

not typical of UWA environments and communication systems. The channel

delay spread, τmax, is usually in tens of milliseconds. Also, the typical value

of maximum channel time-scale spread is αmax ∼ 1.001 after a coarse Doppler

compensation of the received waveform.

In the next section, we present the end-to-end system model and the symbol decoding

from the received front-end signal.

3If we consider only one symbol per layer (Nl = 1), as in this work, then K ′ = N .
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Figure 5.2: System model based on the waveform dictionary, G.

5.4 Symbol Decoding

The receiver front-end signal samples are the noise corrupted output of the composite

channel HG whose input is the transmitted symbol vector. Using (5.9) in (5.5), we have

r = HGx + w ∈ CM ′ . (5.17)

Figure 5.2 depicts the system model whose input is the transmitted data symbols and

the output is the receiver front-end signal samples given by (5.17).

The transmitted data symbols can be decoded from the received signal samples. The

minimum mean square error (MMSE) estimate of the symbol vector x is given by:

z = WMMSEr = WMMSEHGx + u ∈ CN , (5.18)

where WMMSE ,
(
GHHHHG + σ2IN

)−1
GHHH is the MMSE weight matrix and u =

WMMSEw is the noise at the MMSE equalizer output. Symbol decoding then proceeds

by slicing the entries of z to the closest symbol in the Q-QAM constellation. Figure 5.3

shows the symbol decoding steps described above.

If the modulation dictionary G is such that the matrix D = GHHHHG is diagonal,

we may do a subcarrier-by-subcarrier equalization and decoding from the received symbol
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Figure 5.3: MMSE receiver and symbol detection.

vector. The MMSE equalizer output can be expressed in terms of D as follows:

z =
(
D + σ2IN

)−1
Dx + u. (5.19)

Even if D is only close to diagonal, a subcarrier-by-subcarrier symbol equalization and

decoding using the best diagonal approximation of D performs quite well in practice.

Based on the entries of D, we define the signal to interference plus noise ratio (SINR) for

the nth symbol to be:

SINRn =
|Dn,n|2∑

n′ 6=n |Dn,n′ |2 + σ2
v,n

, (5.20)

where σ2
v,n = σ2Dn,n is the noise power contained in the nth symbol measurement, i.e.,

at the output of the maximum ratio combiner (MRC) (pre-multiplication by H) followed

by matched filtering (MF) (pre-multiplication by G). Subcarrier by subcarrier decoding

performs well when the symbol SINR values are high.

A full complexity MMSE equalizer involves the inversion of an N × N matrix with

a computational complexity of O (N3). For a one-tap MMSE equalizer, using the best

diagonal approximation of D, the computational complexity is only O (N).
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5.5 Numerical Simulations

In this section, we present computer simulation results of UWA communications using

OFDM, OTFS and VBMC waveforms over fL = 10 kHz to fH = 20 kHz band.4 A

symbol duration of Tsymb = 20 ms is considered for waveform design in all schemes with

a pulse shaping factor of β = 2. A sampling rate of Fs = 21 kHz, which is more than

twice the communication bandwidth, is used in all systems to minimize the representation

errors. With these settings, we have ∆f = β/Tsymb = 100 Hz and N = 70 (computed

using (5.11)). The parameter L = dFsτmaxe is chosen based on the channel delay spread.

Throughout, we use the VBMC waveform designed for αmax = 1.001 regardless of the

actual value of channel scale spread. OFDM and OTFS employ an NFFT = FsTsymb = 420

point DFT of which only NFFT/2 = 210 subcarriers are within the transmission frequency

band due to oversampling. Of these NFFT/2 = 210 subcarriers, every third subcarrier is

mounted with an information symbol to maintain the same data rate across all waveforms;

the rest are null subcarriers. We draw i.i.d. data symbols from a BPSK constellation in

this study.

As in [6], we define SNR as the ratio of the received front-end signal power to noise

power. We evaluate the bit error rate (BER) performance of CP-OFDM, CP-OTFS

and VBMC waveforms of identical duration, T = Tsymb + τmax, as the SNR is var-

ied from −9 dB to 21 dB. We simulate a delay-scale channel whose hp
i.i.d.∼ CN (0, 1),

τp
i.i.d.∼ U(0, τmax) and αp

i.i.d.∼ U(α−1
max, αmax), for p = 1, 2, . . . , P . For this channel model

and for the waveform types considered here, it can be shown that the received signal power

PRx, r , E{xHGHHHHGx} ≈ PPTx, s where PTx, s , E{sHGHGs} is the transmitted

signal power (see Appendix, Section 5.7). The average BER is computed in this work

using Ntrial = 5000 Monte Carlo trials where, in each trial, the symbols and the channel

parameters are drawn from their respective distributions. We may speed up the simula-

tions using semi-closed form expressions derived in the Appendix, Section 5.9, where we

4UWA channels are one of the harshest communication media with large delay and Doppler spreads.
Also, a fractional bandwidth of fc

B = 0.67 > 0.25 and relatively high v/c (v = scatterer velocity, c =
sound speed) ratios in the range 10−3–10−1 renders channel as wideband.



Chapter 5. Variable Bandwidth Multicarrier Communications 163

-5 0 5 10 15 20

SNR (dB)

10 -4

10 -3

10 -2

10 -1

B
E

R

VBMC (MMSE-FC-EQ)
VBMC (MMSE 1-tap EQ)
OFDM (MMSE-FC-EQ)
OFDM (MMSE 1-tap EQ)
OTFS (MMSE-FC-EQ)
OTFS (MMSE 1-tap EQ)
ODSS (MMSE-FC-EQ)
ODSS (MMSE 1-tap-EQ)

Figure 5.4: BER performance plots for P = 20, τmax = 10 ms, αmax = 1.001.

only need to draw random instances of the channel in each trial.

Figure 5.4 shows the BER performance of the three schemes in a delay-scale channel

with P = 20 paths, τmax = 10 ms, and αmax = 1.001. Note that the channel spread,

defined by ηmax , τmax∆fmax = τmax (αmax − 1) fH , where ∆fmax = (αmax − 1) fH is the

maximum Doppler frequency spread, is ηmax = 0.2 < 0.25, making it an underspread

channel [25, 39]. The total waveform duration is T = 30 ms leading to a spectral effi-

ciency of 0.23 bits/s/Hz, which is reasonable for long-range UWA communication. We

show the performance of both full complexity MMSE channel equalizer (MMSE-FC-EQ),

as in (5.18), and the computationally simpler one-tap MMSE equalizer (MMSE-1-tap-

EQ) obtained by replacing all non-diagonal entries of D with zero. VBMC using the

MMSE receiver with a full complexity equalizer outperforms all other schemes. While all

waveforms with a one-tap equalizer exhibit a BER floor beyond a certain SNR, VBMC

using the one-tap MMSE equalizer has the lowest BER floor which is at least a third

(fifth) of OFDM (OTFS) waveform at SNR = 15 dB. Figure 5.4 also shows the BER

performance of the ODSS modulation implemented as an overlay on VBMC. The ODSS
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Figure 5.5: BER performance plots for P = 20, τmax = 20 ms, αmax = 1.002.

chirplets are constructed using q = 1+∆f/fL = 1.01. The data symbol vector, containing

N = 70 BPSK symbols in the Mellin-Fourier domain, is subject to the ODSS transform

before mounting on the ODSS chirplets. Both FC and 1-tap ODSS receivers outperform

the VBMC receivers. The FC ODSS receiver achieves BER = 10−3 at an SNR which is

at least ∆SNR = 3 dB better than VBMC. The BER of the 1-tap ODSS receiver floors

below BER = 10−5 (not shown). We attribute the improvement in ODSS performance

over VBMC to its better effective diversity [76]; a thorough analysis is beyond the scope

of this thesis.

Figure 5.5 compares the BER of the three schemes in an overspread delay-scale channel

with P = 20 paths, τmax = 20 ms, and αmax = 1.002. In this case, the maximum Doppler

frequency spread is quite high: ηmax = 0.8 > 0.25, making the channel overspread. The

waveform duration is now T = 40 ms resulting in a reduced spectral efficiency of 0.175

bits/s/Hz. As the channel becomes more spread, VBMC performs even better compared

to the other schemes.Among the receivers using a one-tap equalizer, the BER of VBMC

is less than a third (twentieth) of OFDM (OTFS) at SNR = 15 dB. Compared to the
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Figure 5.6: SINR plots for VBMC, OFDM and OTFS in a delay-scale spread channel

with P = 20, τmax = 20 ms and SNR = 6 dB.

underspread channel considered in Figure 5.4, the VBMC receiver’s performance has

improved: using the full complexity (one-tap) equalizer, it achieves BER = 10−3 at an

SNR which is lower by about ∆SNR = 3 dB (∆SNR = 10 dB). Figure 5.5 also shows the

performance of the ODSS waveform using full complexity and one-tap MMSE equalizers

in the overspread channel. With worsening channel conditions (from being underspread

to overspread), ODSS receivers perform even better and also maintain their relative edge

over the VBMC waveform.

To elucidate where the performance improvement comes from, we compute the mini-

mum, mean and maximum of the symbol SINR values given by (5.20), for SNR = 6 dB,

in a channel with P = 20 paths and τmax = 20 ms. Figure 5.6 shows these for the three

schemes as a function of the Doppler scale spread. The SINR values vary the most in

OFDM and the least in OTFS scheme. The SINR plots of the VBMC waveform designed
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Figure 5.7: OFDM composite channel matrix: 20 log10 |D|.

for αmax = 1.001 has the highest mean SINR compared to the mean SINR for other wave-

forms over a wide range of maximum scale spread. This results in the lower BER floor of

VBMC using a one-tap MMSE equalizer.

10 20 30 40 50 60 70

subcarrier index (n)

10

20

30

40

50

60

70

s
u
b
c
a
rr

ie
r 

in
d
e
x
 (

m
)

-40

-35

-30

-25

-20

-15

-10

-5

0

Figure 5.8: OTFS composite channel matrix: 20 log10 |D|.
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Figure 5.9: VBMC composite channel matrix: 20 log10 |D|.

Figures 5.7, 5.8, and 5.9 show a random realization of the entries of the composite

channel matrix (D = GHHHHG) during the simulation runs for OFDM, OTFS and

VBMC, respectively, in a delay scale channel with P = 20 paths, τmax = 10 ms, and

αmax = 1.001. The diagonal entries are normalized to 0 dB and magnitudes (in dB) are

color-coded with the highest magnitude represented by bright yellow and the lowest by

dark blue color. The composite channel matrix, D, of VBMC is nearly diagonal compared

to OFDM and OTFS that exhibit significant off-diagonal entries. Also, we notice a

relatively smaller variation in the magnitude of the diagonal entries of the VBMC channel

matrix. To quantify the variation among the diagonal entries of the channel matrices of

these waveforms more thoroughly, we examine their Jain’s fairness index defined as follows:

JD =
|
∑

nDn,n|2

N
∑

n |Dn,n|2
. (5.21)

Figure 5.10 shows the plot of Jain’s index of the diagonal entries of D for the three wave-

forms in a delay scale channel with P = 20 paths. The plot corroborates our observation

about the diagonal entries of the VBMC channel matrix which has the highest fairness

index of all and hence least variation among the diagonal entries. In particular, we note
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Figure 5.10: Jain’s fairness index of the diagonal entries of OFDM, OTFS and VBMC

composite channel matrix, D.

that the fairness index of VBMC improves when the channel is more spread.

5.6 Conclusions

In this work, we introduced the Variable Bandwidth Multicarrier (VBMC) waveform for

digital communications over delay and scale spread wideband channels. Based on the

well known representation theorem of bandlimited signals in terms of their discrete time

samples, we presented an end-to-end system model that allows an accurate comparison

of different modulation waveforms in a delay and scale spread channel. We briefly related

our proposed waveform with other two similar waveforms in the literature. Finally, we

investigated the BER performance through numerical simulations and showed that VBMC

has a lower BER floor than the OFDM and OTFS receivers when using a one-tap equalizer.
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We empirically showed that the VBMC waveform has the highest mean SINR in the

received symbol vector among the three schemes, even in highly spread channel conditions,

which explains its superior performance. In this work, we used perfect channel state

information at the receiver (CSIR). Future work can consider channel estimation and

equalization, evaluating the peak-to-average power ratio, diversity order, channel capacity,

and developing computationally efficient architectures for modulation and demodulation

for the VBMC waveform.
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5.7 Appendix A: Transmitted and Received Signal

Power

Transmitted power of the waveform, s = Gx, is given by:

PTx,s = E{xHGHGx}

= E{tr
(
xHGHGx

)
}

= E{tr
(
GHGxxH

)
}

= tr
(
GHG

)
E{xxH}

= σ2
s tr
(
GHG

)
(5.22)

where we assume that symbols are i.i.d. with an average per symbol power, σ2
s , so that

we have: E{xxH} = σ2
s I.

The signal component of the received waveform is given by

rs = GRx, (5.23)

where GR = HG is the composite channel matrix whose nth column can be expressed as

GR,n =
P∑
p=1

hp
√
αpGn (τp, αp) , (5.24)

where Gn (τp, αp)CM ′×1 is a column vector whose entries are the samples of the time-

scaled and delayed version (by αp and τp, respectively) of the nth subcarrier of the

transmitted multicarrier waveform. For example, for the VBMC waveform, the sam-

ples of cn(αp(t − τp)),− Tn
2αp

+ τp ≤ t ≤ Tn
2αp

+ τp, taken at t = l/Fs, l = L1, . . . , L2, where

L1 =
⌈(
− Tn

2αp
+ τp

)
Fs

⌉
and L2 =

⌊(
Tn
2αp

+ τp

)
Fs

⌋
, occupy the entries Gm,n (τp, αp) ,m =

mn + dτpFse , . . . ,mn + dτpFse+ L2 − L1.

Assuming hp
i.i.d.∼ CN{0, 1}, τp

i.i.d.∼ U{0, τmax}, and αp
i.i.d.∼ U{α−1

max, αmax}, as in the
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simulation studies, we have

E{GH
RGR} =

P∑
p=1

E{|hp|2}E{αpGH
p Gp}

=
P∑
p=1

E{αpGH
p Gp} ≈ PE{GHG}

since αp ≈ 1, and delayed-and-scaled versions of the subcarrier waveforms approximately

maintain their original power and cross-correlations. Therefore, the received waveform

power is given by

PRx,s = σ2
s tr
(
E{GH

RGR}
)

= σ2
sM tr

(
GHG

)
= PPTx,s. (5.25)

5.8 Appendix B: Multi-Layer Block Transmission

In [104], authors propose a multi-layer block transmission (MLBT) waveform of the form:

s(t) =
K′−1∑
k′=0

Nl−1∑
n=0

ak
′/2sk′,np

(
ak
′
t− nTsymb

)
ej2πfc,0a

k′ t, (5.26)

where the pulse, p(t), is a Shannon wavelet given by:

p(t) =
1√
Tsymb

sinc

(
t

Tsymb

)
, (5.27)

K ′ denoting the number of layers, fc,0 the carrier frequency of the first layer (k′ = 0),

Nl the number of symbols mounted per layer, and a being the base scale used by the

transmitter. The layer k′ is associated with a center frequency of fc,k′ = ak
′
fc,0 and a

bandwidth of Wk′ = ak
′

Tsymb
. We immediately recognize that the MLBT employs a variable

bandwidth design for its subcarriers. We, however, note the following distinctions in the

design of VBMC subcarriers.

• The Shannon wavelet used in [104] has a bandwidth W0 = 1
Tsymb

which is fixed by
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the symbol duration. In contrast, the VBMC chirp pulse duration can be chosen to

be larger than 1/W0 and can therefore have higher time-bandwidth product.

• We limit, by design, the bandwidth of the VBMC chirp subcarriers to protect them

from potential bandwidth expansion due to waveform compression by a factor of up

to αmax.

The system model used in [104] is based on the approximation of the received signal

in a continuous delay-scale channel given by

rs(t) =

∫∫
h(τ, α)

√
αs (α(t− τ)) dτdα, (5.28)

by the following discrete scale-lag signal representation:

rSL
s (t) =

R∑
r=0

K′−1∑
k′=0

ej2πfca
k′+rt

L(k′+r)∑
l=0

h
k′

r,la
r/2sk′

(
art− lTsymb

ak′

)
, (5.29)

where R = dlogαmax/ log ae is the number of discrete scales, L(r) = darτmax/Tsymbe is the

number of discrete lags, sk′(t) =
∑Nl

n=0 sk′,npk′(t− nTsymb/a
k′) and pk′(t) = ak

′/2p(ak
′
t).

The receiver measurements for symbol decoding are obtained after baseband conver-

sion and matched filtering of rSL(t) with pk(t − mTsymb/a
k), k = 0, 1, . . . , K ′ + R,m =

0, 1, 2, . . . , Nl, and neglecting the cross-talk term. Note that, as mentioned in [104], cross-

talk depends on the pulse properties; and the Shannon wavelet was shown to be a choice

that resulted in negligible cross-talk. Authors also show numerically, by loading a single

information symbol on p(t), and hence working with one layer K ′ = 1, that the normal-

ized mean squared-error between rSL
s (t) and rs(t) is small for the discrete channel path

model given by:

h(τ, α) =

Np∑
p=1

hpδ(τ − τp)δ(α− αp). (5.30)

For the discrete channel path model in (5.30), the received signal in (5.28) reduces to the
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form given by (5.1). The NMSE is defined as follows [104]

NMSEMSML =

∑R
r=0

∑L(r)
l=0

∣∣∣∫ pr (t− lTsymb

ar

) (
rs(t)− rSL

s (t)
)
e−j2πfca

rtdt
∣∣∣2∑R

r=0

∑L(r)
l=0

∣∣∣∫ pr (t− lTsymb

ar

)
rs(t)e−j2πfca

rtdt
∣∣∣2 . (5.31)

Figure 5.11 shows the plot of NMSEMSML as αmax is varied for the same parameter

settings as used in the numerical results section of [104]. A sampling rate of Fs = 128 kHz

is used for approximating the integral in (5.31) by a summation, and Ntrials = 100 channel

realizations are used for averaging NMSEMSML. The plot closely matches the NMSE result

for the Shannon wavelet in [104].
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Figure 5.11: NMSE as in [104] for a single information symbol and K ′ = 1.

Note that the NMSE metric above captures only the difference in the projections of

rSL
s (t) and rs(t) for the scales, r = 0, 1, . . . , R, and lags, l = 0, 1, . . . , L(r). To evaluate the
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error due to approximation in a multi-layer setup (K ′ > 1) and multiple symbols (Nl > 1),

we denote ySL ∈ C(K′+R)Nl×1 and y0 ∈ C(K′+R)Nl×1 as the vector of measurements obtained

after baseband conversion and matched filtering with pk(t−mTsymb/a
k), k = 0, 1, . . . , K ′+

R,m = 0, 1, 2, . . . , Nl, from rSL(t) and rs(t), respectively. Similarly, we denote ymodel ∈

C(K′+R)Nl×1 as the vector of measurements obtained after baseband conversion, matched

filtering from rSL(t) and ignoring the cross-talk as in [104]. We define the NMSE due to

scale and lag parameter discretization for investigating it in the case of multiple layers

(K ′ > 1) and/or symbols (Nl > 1) as follows:

NMSESL(K ′) ,
‖ ySL − y0 ‖2

‖ y0 ‖2
(5.32)

=

∑K′+R−1
k=0

∑Nl−1
m=0

∣∣∣∫ pk (t−mTsymb

ak

) (
rs(t)− rSL

s (t)
)
e−j2πfca

ktdt
∣∣∣2∑K′+R−1

k=0

∑Nl−1
m=0

∣∣∣∫ pk (t−mTsymb

ak

)
rs(t)e−j2πfca

ktdt
∣∣∣2 .

Observe that NMSESL(K ′) is different from NMSEMSML even for K ′ = 1. NMSESL(K ′)

represents the modeling error in the symbol measurements due to scale and lag param-

eter discretization – the inner summation runs across all symbol measurements, m =

0, 1, . . . , Nl − 1, in each layer for evaluating NMSESL(K ′) while it runs over all lags,

l = 0, 1, . . . , L(r), due to delay spread for evaluating NMSEMSML. We may define the

normalized cross-talk level and the NMSE in the final symbol measurements due to both

modeling error and cross-talk as follows:

NMSEcross-talk(K ′) ,
‖ ymodel − ySL ‖2

‖ ySL ‖2
. (5.33)

NMSEmodel(K
′) ,

‖ ymodel − y0 ‖2

‖ y0 ‖2
. (5.34)

We evaluate the NMSE at different stages (as defined above) for K ′ = 1, 2, 3, and

Nl = 1 for the same parameter settings as in [104]. We observe that as the number of
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layers increase beyond K ′ = 1, while the cross-talk is indeed small for Shannon wavelet,

the NMSE in the measurement model, NMSEmodel(K
′), increases. When the cross-talk is

negligible, the plots of NMSESL(K ′) and NMSEmodel(K
′) nearly coincide as expected (for

K ′ = 2, 3). The NMSEmodel(K
′) in the symbol measurements is, therefore, predominantly

due to the approximation error in the received signal model arising from scale and lag

discretization.
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Figure 5.12: NMSE at different stages for K ′ = 1, 2, 3.

5.9 Appendix C: Bit Error Rate Performance

In this section, we investigate the bit error rate of the MMSE receiver for the generic

system model, presented in this chapter, which applies to a large class of waveforms that
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are expressible in the form given by (5.9): s = Gx, where G is the waveform dictionary

and x is the symbol vector.

The MMSE equalizer output, given by (5.19), is reproduced below for convenience:

z =
(
D + σ2IN

)−1
Dx + u, (5.35)

where u = (D + σ2I)
−1

GH
Rw is the symbol noise.

The symbol error vector is given by

e = z− x = Ex + u, (5.36)

where E ,
(

(D + σ2I)
−1

D− I
)

.

The covariance, Cu, of the symbol noise vector, u, is given by

Cu = E{uuH} =
(
D + σ2I

)−1
GH
RE{wwH}GR

(
D + σ2I

)−1

= σ2
(
D + σ2I

)−1
GH
RGR

(
D + σ2I

)−1

= σ2
(
D + σ2I

)−1
D
(
D + σ2I

)−1
(5.37)

Consider the singular value decomposition (SVD) of D = GH
RGR = GHHHHG:

D = UΣUH , (5.38)

where Σ = diag{σ2
n : n = 1, 2, . . . , N}.

Replacing D with its SVD in (5.37), we get

Cu = σ2U
(
Σ + σ2I

)−1
Σ
(
Σ + σ2I

)−1
UH . (5.39)

For a given channel matrix H, and hence D and GR, the symbol noise vector,

u ∼ CN (0,Cu). Therefore, the variance of the mth symbol noise vector entry, um ∼
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CN
(
0, σ2

um

)
, is given by

σ2
um = Var{um} = Cu[m,m] = σ2

N∑
n=1

|Umn|2
σ2
n

(σ2
n + σ2)2 . (5.40)

In the next subsection, we derive a high SNR approximation for the symbol error

probability.

5.9.1 Symbol Error Probability, P∞e : A High SNR Approxima-

tion

Consider i.i.d. BPSK symbols, {±1}, placed in x with P(xm = ±1) = 1
2
. Since for BPSK

symbols, x is a real vector, the slicing and comparison

Re (zm)
−1

≶
+1

0, (5.41)

is a detector for the mth symbol xm. The test statistic for symbol detection, in this case,

therefore follows from (5.36)

Re{z} = x + E(r)x + ur, (5.42)

where E(r) = Re{E} = Re{(D + σ2IN)
−1

D} − I and ur = Re{u}. Let us denote zr ,

Re{z} and er = Re{e} = E(r)x + ur. Using these notation in (5.42), we have

zr = x + er. (5.43)

We may write u = Wmmsew, where Wmmse = (D + σ2I)
−1

GH
R is the MMSE equalizer

matrix. Therefore, we have

ur = Wmmse,rwr −Wmmse,iwi, (5.44)

where Wmmse,r = Re{Wmmse}, Wmmse,i = Im{Wmmse}, wr = Re{w}. and wi = Im{w}.
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The covariance of ur is given by

C(r)
u = E{uruHr } =

σ2

2

(
Wmmse,rW

H
mmse,r + Wmmse,iW

H
mmse,i

)
. (5.45)

Given H, the probability that the mth symbol is decoded incorrectly is given by

Pe|H(xm) =
1

2
P (Re{em} > 1|xm = −1,H) +

1

2
P (Re{em} < −1|xm = 1,H) . (5.46)

Let ∆xm denote the mth entry of Ex so that

em = ∆xm + um = ∆xm + σumũm, (5.47)

where ũm ∼ CN (0, 1).

For high enough SNR, ∆xm ≈ 0. Therefore, at high SNR:

P (Re{em} > 1|xm = −1,H) ≈ P

(
Re{ũm} >

1

σ
(r)
um(H)

∣∣∣H) = Q

(
1

σ
(r)
um(H)

)
, (5.48)

where σ
(r)
um(H) =

√
C

(r)
u [m,m] and we show the dependence of σ

(r)
um on H via C

(r)
u .

Also, as ∆xm ≈ 0, we have

P (Re{em} > 1|xm = −1,H) ≈ P (Re{em} < −1|xm = 1,H) . (5.49)

Using (5.49) in (5.46), we find

P∞e|H(xm) = Q

(
1

σ
(r)
um(H)

)
. (5.50)

The symbol error probability (SEP) for the mth BPSK symbol is thus given by:

P∞e (xm) = EH{Pe|H(xm)} = EH

{
Q

(
1

σ
(r)
um(H)

)}
. (5.51)



Chapter 5. Variable Bandwidth Multicarrier Communications 179

A closed form expression for P∞e (xm) in (5.51) appears to be difficult since it in-

volves integrating over the joint PDF of the entries of H. We may instead evaluate

P∞e (xm) through Monte Carlo simulations by drawing the triples, hp
i.i.d.∼ CN (0, 1),

τp
i.i.d.∼ U(0, τmax) and αp

i.i.d.∼ U(α−1
max, αmax), for p = 1, 2, . . . , P , in a fairly large number

of trials and averaging {P∞e|Hi
(xm) : i = 1, 2, . . . , Ntrials} to obtain P̂∞e (xm). An estimate

of the average BER, for high SNR regime, is then given by

P̂∞e =
1

M

M∑
m=1

P̂∞e (xm). (5.52)

The symbol error rate approximation can also be found for QPSK symbols as follows.

Consider i.i.d. QPSK symbols, {± 1√
2
± j 1√

2
}, placed in x with P(xm = ± 1√

2
± j 1√

2
) = 1

4
.

The real and imaginary parts of the mth QPSK symbol, xm, is found from the following

slicing and comparison detection operation on the real and imaginary parts, respectively,

of the mth entry of z:

Re (xm) : Re (zm)
− 1√

2

≶
+ 1√

2

0, (5.53)

Im (xm) : Im (zm)
− 1√

2

≶
+ 1√

2

0. (5.54)

The BER for the mth QPSK symbol follows by recognizing that the SNR of the real

and imaginary parts of the mth QPSK symbol measurements are both SNR
(r)
m = 1

2σ
2(r)
um (H)

since σ
(r)
um(H) = σ

(i)
um(H), which in turn is a consequence of C

(i)
u , E{uiuHi } = C

(r)
u ,

where ui = Wmmse,rwi + Wmmse,iwr. As a result, for the mth QPSK symbol, a high SNR

approximation for the BER is

P∞e (xm) = EH{Pe|H(xm)} = EH

{
Q

(
1

√
2σ

(r)
um(H)

)}
. (5.55)
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5.9.2 Symbol Error Probability, P
(u)
e : An Upper Bound

Let ∆x∗m be the maximum value that Re (∆xm) takes when xm = −1. Then

∆x∗m =
∑
n6=m

|Re (Emn) | − Re (Emm) . (5.56)

We, therefore, find:

P (Re{em} > 1|xm = −1,H) ≤ P

(
Re{ũm} >

(1−∆x∗m)

σ
(r)
um

∣∣∣H)

=⇒ P (Re{em} > 1|xm = −1,H) ≤ Q

(
(1−∆x∗m(H))

σ
(r)
um(H)

)

An upper bound on BER for the BPSK symbols is thus given by

P (u)
e ≤ 1

M

M∑
m=1

EH

{
Q

(
(1−∆x∗m(H))

σ
(r)
um(H)

)}
. (5.57)

An upper bound on the BER of QPSK symbols can be arrived by following an approach

similar to that leading to (5.55). We can show that

P (u)
e ≤ 1

M

M∑
m=1

EH

{
Q

(
(1−∆x∗m(H))
√

2σ
(r)
um(H)

)}
. (5.58)

5.9.3 Symbol Error Probability, P
(a)
e : An Approximation

An approximate expression for Pe|H(xm), valid for all SNR, is obtained by considering

(approximating) E(r)x to be a Gaussian random vector with zero mean and covariance

C
(r)
e = E{E(r)xxHE(r)H} = E(r)E{xxH}E(r)H = E(r)E(r)H . Since x is independent of w

and hence u = Wmmsew, er = E(r)x + ur is also Gaussian with zero mean and covariance

C
(r)
e = E(r)E(r)H +C

(r)
u . An approximate expression for the mth BPSK SEP then follows:

P (a)
e =

1

M

M∑
m=1

EH

{
Q

(
1

σ
(r)
em(H)

)}
, (5.59)
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where σ
(r)
em(H) =

√
C

(r)
e [m,m]. Similarly, when using QPSK symbols, an approximate

BER is given by

P (a)
e =

1

M

M∑
m=1

EH

{
Q

(
1

√
2σ

(r)
em(H)

)}
, (5.60)

5.9.4 Symbol Error Probability, Pe: An Accurate Evaluation

The inaccuracy in P
(a)
e is not only due to non-Gaussian distribution of Erx but also due

to the fact that er = Erx + ur is not independent of x. In this subsection, we present

a better estimate for SEP using the knowledge of x. Note that this is not restrictive in

practical estimation of SEP much as we do make use of the true symbol vector x in most

numerical simulations and computation of bit errors for investigating the communication

performance. An advantage of the estimation approach we present here is that far fewer

Monte Carlo trials suffice to yield an accurate average symbol error rate.

We first evaluate:

P
(
zr,m > 0

∣∣∣xm = −1,H
)

= P
(

Re{em} > 1
∣∣∣xm = −1,H

)
= P

(
E(r)T
m x + ur,m > 1

∣∣∣xm = −1,H
)

= P
(
E(r)
m,mxm + E

(r)T
m,�m

x�m + ur,m > 1
∣∣∣xm = −1,H

)
= P

(
ur,m > 1 + E(r)

m,m − E
(r)T
m,�m

x�m

∣∣∣H)
= P

(
ũr,m >

1 + E
(r)
m,m − E

(r)T
m,�m

x�m

σ
(r)
um

∣∣∣H)

= Q

(
1 + E

(r)
m,m(H)− E

(r)T
m,�m

(H)x�m

σ
(r)
um(H)

)
, (5.61)

where ũr,m ∼ N (0, 1), E
(r)T
m,�m

denotes the mth row of E(r) but for its mth entry knocked

out. Similarly, x�m is the symbol vector with mth entry knocked out.

The average BER for BPSK symbols is, therefore, given by

Pe =
1

M

M∑
m=1

EH

{
Q

(
1 + E

(r)
m,m(H)− E

(r)T
m,�m

(H)x�m

σ
(r)
um(H)

)}
. (5.62)
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Figure 5.13: Bit error probabilities.

Similarly, the average BER for QPSK symbols can be shown to be:

Pe =
1

M

M∑
m=1

EH

{
Q

(
1 + E

(r)
m,m(H)−

√
2E

(r)T
m,�m

(H)x
(r)

�m
+
√

2E
(i)T
m (H)x(i)

√
2σ

(r)
um(H)

)}
. (5.63)

Figure 5.13 shows the BER expressions in (5.52), (5.57), (5.59), and (5.62) evaluated

and plotted for N = 80 BPSK/QPSK symbols, Ntrials = 10000 simulation runs. Also

plotted is the SEP obtained by direct numerical simulations and empirical bit error rate

computation.We notice that upper bound is too loose and the high SNR approximation is

approaching the true SEP as SNR increases. The SEP obtained through direct numerical

simulations nearly coincides with the computed Pe (semi-analytical – accurate) plot.
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Conclusions

6.1 Summary

We developed algorithms suitable for underwater acoustic communications in an ocean

medium that can be aptly characterized as wideband (due to high ratio of carrier waveform

bandwidth to center frequency), highly time-varying (due to high Doppler), and highly

frequency-selective (due to strong multipath propagation). Large delay spread due to

long propagation times and high time-scale spread due to path dependent Doppler effect

on a wideband transmitted signal require specialized algorithms to achieve a good com-

munication performance. To that end, we first developed a sparsity exploiting iterative

channel estimation and data detection scheme in a CP-OFDM communications system.

Partial interval demodulation measurements were used to tackle the time-variation bet-

ter which was shown to result in a larger number of effective measurements compared

to the traditional full-interval demodulation. We developed a new variational Bayesian

algorithm employing soft data symbol detection in the context of sweep spread carrier

communication, which employs a chirp waveform. We then developed a new modulation

scheme (ODSS) particularly suited for delay-scale spread wideband channels. We also

presented a new multicarrier chirp based waveform (VBMC) whose subcarriers maintain

their near orthogonality even after passing through a delay-scale channel. Finally, we

developed a general framework based on the Shannon sampling basis to model a delay

183
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and scale spread channel and introduced the notion of a waveform dictionary that can be

used for evaluating a variety of multicarrier waveforms.

6.2 Directions for further work

We outline some interesting directions to explore in future work, in the order of increasing

problem complexity, in the context of the work presented in this thesis.

1. Channel Estimation Schemes for ODSS and VBMC

Our focus in the current work was to develop and demonstrate the promise of new

waveforms suitable for data communications over a delay and scale spread wideband

channel. We evaluated the performance of these waveforms using uncoded communica-

tions with perfect channel state information at the receiver (CSIR). New and practical

channel estimation schemes that employ a low pilot overhead would be a useful direc-

tion for future work. Development of iterative data detection and channel estimation

schemes for these waveforms together with coded communications would be of immense

practical value.

2. Block Transmission Schemes for ODSS and VBMC

In this thesis, we considered only one symbol per block transmitted for the newly

proposed waveforms. Extending ODSS and VBMC to block transmissions where each

block contains multiple symbols is essential for their use in real-world communications

systems. Estimating and tracking the time-varying channel across symbols in the block

is a natural requirement to address in practical receivers.

3. Optimum Waveforms for Delay-Scale spread Wideband Channel

In this work, we developed a generic system model for communications over a delay

and scale spread channel involving the notion of a waveform dictionary. An interesting

direction to explore is the search for an optimum waveform dictionary for a delay-scale

spread channel with suitable statistical properties.
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4. Variational Soft Symbol Decoding in Coded Modulation Communication Systems

We considered VSSD for uncoded communication systems in this work. Developing a

variational soft symbol decoding framework for different waveforms using coded sym-

bols would be an interesting future direction for research.

5. Theoretical Performance Analysis

Analysis of the bit error rate performance of the proposed variational Bayesian soft

symbol detection algorithm is another interesting but open problem. A rigorous anal-

ysis of the performance of iterative data detection and channel estimation scheme is

also a possible direction of work requiring nontrivial effort.
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