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Variational Bayesian Learning for Piecewise Sparse
Signal Recovery from Quantized Measurements

Sai Subramanyam Thoota and Chandra R. Murthy

Abstract—We develop variational Bayesian (VB) learning
procedures to infer the posterior distribution of piecewise joint-
sparse vectors from both unquantized and quantized compres-
sive multiple measurement vectors. We overcome the analytical
intractability in computing the exact posterior by imposing a
structure on the posterior distribution and choosing an appro-
priate piecewise sparsity promoting conjugate prior. This results
in an iterative VB algorithm that converges to a local optimum
or stationary point of the underlying optimization problem
from any initialization. We apply the piecewise sparse recovery
algorithm to a massive multiple-input-multiple-output (MIMO)
orthogonal frequency division multiplexing (OFDM) channel
estimation problem. We evaluate the normalized mean-squared
error (NMSE) and run-time performance of the piecewise
sparse recovery procedures for the unquantized and quantized
cases, and benchmark them against the state-of-the-art. We
empirically show that utilizing the inherent piecewise sparse
structure significantly reduces the computational complexity
without compromising on the performance.

Index Terms—Compressed sensing, MIMO, OFDM, quanti-
zation, posterior distribution, variational Bayes.

I. INTRODUCTION

Sparse signal recovery refers to the problem of recovering
high-dimensional vectors with mostly zeros as its compo-
nents, from a set of noisy underdetermined linear measure-
ments [1], [2]. Piecewise sparsity arises when each sub-
block of a sparse signal is itself sparse [3], [4], so that the
nonzero entries in a piecewise sparse vector are generally
“spread out”, and do not occur in clusters. This structure
is important in practical applications such as the massive
multiple-input-multiple-output (MIMO) orthogonal frequency
division multiplexing (OFDM) channel estimation in 5G
and beyond communication systems. Here, the concatenated
channel impulse responses of all the users is sparse in the lag
domain. Further, each user’s channel is individually sparse,
which results in a piecewise sparse structure. When the
training signals from the users are received using multiple
antennas at the base station (BS), the channels to different
antennas have a common support, which leads to the multiple
measurement vector (also called joint-sparse or row-sparse in
the literature) piecewise sparse recovery problem.

Several greedy and Bayesian algorithms exist in the litera-
ture to exploit the different sparsity structures in the signals,
such asblock sparsity, joint/row sparsity, intra-vector correla-
tion [5]–[14]. However, piecewise sparsity has received less
attention in the compressed sensing literature [3], [4]. Further,
quantized compressed sensing is another important research
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topic which also finds applications in wireless communica-
tions. In massive MIMO systems, low resolution quantization
(1 to 3 bits) results in large cost and power savings, especially
when there are tens or hundreds of antennas in the base
station [15]. Piecewise sparse signal recovery using noisy
and low resolution quantized compressive measurements that
can cater to such applications has not been considered in the
literature, making the problem both timely and important.

In this letter, we consider the estimation of a piecewise
joint-sparse X = [x1, . . . ,xT ] ∈ CN×T from noisy low-
dimensional quantized measurements Q = [q1, . . . ,qT ] ∈
CM×T , where M < N . The measurements are obtained as

Q = Qb (Y) = Qb (ΦX + W) , (1)

where Φ ∈ CM×N is a known measurement matrix, Y ∈
CM×T is the unquantized signal, and W ∈ CM×T is the
additive noise matrix whose entries are independent and
identically distributed (i.i.d.) as circularly symmetric complex
Gaussian random variables with mean 0 and variance σ2. The
estimand X is joint-sparse, i.e., the indices of the nonzero
entries of each column of X are the same. In addition, it has
a piecewise sparse structure. That is, if we divide X into K
sub-matrices X[1], . . . ,X[K], where

X =

X[1]
...

X[K]

 , X[k] =
[
x1[k] . . . xT [k]

]
∈ CL×T , (2)

for k = 1, . . . ,K, (here, N = LK) then each X[k] is itself
joint-sparse. Also, Qb(·) denotes an element-wise scalar b-bit
quantization operation of the real and imaginary components
of its argument. The quantizer is deterministic and known. In
our experiments, we use a uniform scalar quantizer, however,
the algorithm developed in the next section is applicable to
any deterministic quantization function.

Our goal is to exploit the piecewise sparse structure to
estimate the high-dimensional signal X using the quantized
measurements Q and the measurement matrix Φ. The un-
quantized sparse signal recovery problem is a special case of
(1) where the observations Q and Y are the same.

II. QUANTIZED VARIATIONAL BAYESIAN LEARNING
ALGORITHM

In order to develop an algorithm to estimate X, we treat
it as a latent variable with an appropriately chosen piecewise
sparsity-promoting prior, and infer its posterior distribution
from the quantized observations. Exact computation of the
posterior distribution is computationally intractable due to the
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high dimensional integrals involved in obtaining the partition
function. Therefore, we adopt an alternative approximate
inference technique called variational Bayes (VB), where we
replace the exact posterior with another easily computable
probability distribution, to obtain an analytically and compu-
tationally tractable solution [16].

In [14], we developed a VB procedure to solve the sparse
signal recovery problem using quantized measurements. How-
ever, that work does not account for the piecewise sparse
structure of the signal, due to which, the resulting algorithm
was computationally expensive due to an N × N matrix
inversion operation in each iteration of the algorithm. Here,
we show how to adapt the VB algorithm to explicitly account
for the piecewise sparse structure, which leads to a significant
lowering of the computational complexity (the matrix to be
inverted is of size L × L, and L < N ), especially under
quantized measurements.

We now present our VB-based quantized piecewise sparse
signal recovery algorithm. Similar to the structure in (2),
we divide the measurement matrix into K submatrices as
Φ ,

[
Φ1 . . . ΦK

]
, Φk ∈ CM×L, k = 1, . . . ,K.

We impose a two-stage hierarchical complex Gaussian prior
on each column of X[k] with mean 0L and parameterized
by a Gamma distributed diagonal precision matrix P[k] ,
diag(α[k]) ∈ RL×L+ , α[k] =

[
α1[k] . . . αL[k]

]T
. Such a

two-stage prior is known to be sparsity-promoting. Specifi-
cally, the use of a hierarchical Gaussian prior and a common
Gamma hyperprior on the precision matrix for each column of
X results in a Student’s t distributed marginalized prior, which
promotes joint sparsity. The prior structure also reduces the
dimension of the sparse signal to be estimated in each iteration
of the algorithm, which helps in lowering the computational
complexity. Mathematically,

p(xt[k]|P[k]) =
det (P[k])

πL
exp

(
−xHt [k]P[k]xt[k]

)
, (3)

p(α[k]; a, r) =

L∏
`=1

ra

Γ(a)
αa−1` [k] exp (−rα`[k]) , (4)

where a and r are the shape and rate parameters, Γ(a) ,∫∞
0
ta−1 exp(−t) dt is the Gamma function evaluated at

a > 0, t = 1, . . . , T and k = 1, . . . ,K. Note that the hyper-
parameters do not depend on the column index of X, which
ties the sparsity patterns of the columns together. We define
P =

[
P[1] . . . P[K]

]
and α =

[
αT [1] . . . αT [K]

]T
.

We express the logarithm of the joint probability distribu-
tion of Q, Y, X, α as

ln p(Q,Y,X,α; Φ, σ2, a, r)

= ln p(Q |Y) + ln p(Y |X; Φ, σ2)

+

K∑
k=1

T∑
t=1

ln p(xt[k]|P[k]) +

K∑
k=1

ln p(α[k]; a, r), (5)

where the prior distributions are given by (3) and (4).
We set a and r to small values (say, 10−6) which makes
the hyperprior p(α[k]; a, r), ∀k non-informative. We im-
pose a factorized structure on the posterior distribution

p(Y,X,α |Q; Φ, σ2, a, r) of the latent variables as:

p(Y,X,α |Q; Φ, σ2, a, r)

≈ qY(Y)qα(α)

K∏
k=1

qX[k](X[k])

=

T∏
t=1

qyt(yt)

K∏
k=1

L∏
`=1

qα`
(α`[k])

T∏
t=1

K∏
k=1

qxt[k](xt[k]), (6)

where Y , [y1, . . . ,yT ]. The conditional probability distri-
butions of the observations and latent variables required to
compute the posterior distributions are given by

p(Q |Y) =

T∏
t=1

M∏
m=1

1

(
<(ymt) ∈

(
<(y(lo)

mt),<(y(hi)
mt)
))

× 1
(
=(ymt) ∈

(
=(y(lo)

mt),=(y(hi)
mt)
))

,
T∏
t=1

1

(
yt ∈

(
y(lo)
t ,y(hi)

t

))
,

p(Y |X; Φ, σ2) =

T∏
t=1

1

(πσ2)M
exp

(
− 1

σ2
‖yt −Φxt‖2

)
,

where ymt is the (m, t)th entry of Y, 1(·) is the indicator
function, y(lo)

mt and y(hi)
mt are the lower and upper quantization

thresholds corresponding to the (m, t)th entry of Q.
In the VB procedure, we compute the posterior distribution

of latent variables by finding the expectations of the logarithm
of the joint distribution (5) with respect to the posterior
distributions of all the other latent variables. We present the
posterior distribution qX[k](X[k]) in the following Lemma.

Lemma 1 (Computation of qX[k](X[k]), k = 1, . . . ,K):
The posterior distribution qxt[k](xt[k]) is complex Gaussian
with the covariance matrix and mean given by

ΣX[k] =

(
1

σ2
ΦH
k Φk + 〈P[k]〉

)−1
, (7)

〈X[k]〉 =
1

σ2
ΣX[k]Φ

H
k

(
〈Y〉 −

K∑
k′=1
k′ 6=k

Φk′ 〈X[k′]〉
)
. (8)

Here, 〈P[k]〉 = diag(〈α[k]〉), and 〈Y〉 and 〈α[k]〉 are the
posterior means of qY(Y) and qα[k](α[k]), respectively.

The posterior covariance matrix ΣX[k] of qX[k](X[k])
contains a L × L matrix inverse for each k. Therefore, the
computational complexity per iteration scales as O(KL3)
instead ofO(K3L3) for the algorithm in [14]. This results in a
significant reduction in the convergence time of the developed
piecewise sparse signal recovery procedure.

We present the quantized VB piecewise (QVB-PW) sparse
signal recovery procedure in Algorithm 1. Here, Y(lo) and
Y(hi) are the lower and upper quantization levels correspond-
ing to the observation Q, respectively, and 〈X〉 is the posterior
mean of qX(X). Also, f(·) and F (·) are the PDF and
CDF of a standard Gaussian random variable, respectively,
computed element-wise on the real and imaginary parts of
the argument. The division operation to compute 〈Y〉 is
performed element-wise. x`t[k] is the (`, t)th element of X[k],
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Algorithm 1 QVB-PW Sparse Signal Recovery

Input: Q, Φ, σ, K, L
Output: 〈X〉, 〈α[1]〉, . . . , 〈α[K]〉

1: Initialize 〈Y〉, 〈α[1]〉, . . . , 〈α[K]〉, a, r
2: repeat
3: for k = 1 to K do
4: 〈P[k]〉 = diag(〈α[k]〉)
5: Compute ΣX[k] using (7)
6: Compute 〈X[k]〉 using (8)
7: for ` = 1 to L do
8: Compute 〈α`[k]〉 = a+T

r+
∑T

t=1〈|x`t[k]|2〉
.

9: end for
10: end for
11: Compute 〈Y〉 = Φ 〈X〉

+
σ√
2

f
(

Y(lo)−Φ〈X〉
σ/
√
2

)
− f

(
Y(hi)−Φ〈X〉

σ/
√
2

)
F
(

Y(hi)−Φ〈X〉
σ/
√
2

)
− F

(
Y

(lo)
n −Φ〈X〉
σ/
√
2

) .
12: until stopping condition is met

and 〈|x`t[k]|2〉 = |〈x`t[k]〉|2+ΣX[k][`, `]. The details involved
in computing qY(Y), qα`[k](αk), and their posterior statistics
are presented in [14].

The VB algorithm proceeds iteratively by randomly ini-
tializing the posteriors and alternately computing each of the
posterior distributions until a suitable convergence condition
is satisfied. As VB falls into the category of minorization-
maximization algorithms, it is known to converge to a sta-
tionary point of the original optimization problem from any
initialization [17]. Once the algorithm converges, we use the
posterior mean from (8) as our final estimate of X.

III. APPLICATION TO MASSIVE MIMO-OFDM
CHANNEL ESTIMATION

We evaluate the unquantized and quantized VB piecewise
sparse signal recovery algorithms in the context of massive
MIMO-OFDM sparse channel estimation [18]. We consider
the uplink (UL) of a single cell massive MIMO-OFDM
system with Nr receive antennas at the BS and K single
transmit antenna user equipments (UEs), where Nr ≥ K.
Each UE transmits τp pilot OFDM symbols consisting of Nc
subcarriers each. The unquantized complex baseband received
signal at the nth

r receive antenna in the nth symbol interval
(0 ≤ n ≤ Nc − 1) within the tth pilot is

ynr
[t][n] =

K∑
k=1

L−1∑
`=0

hnr,k[`]sk[t][n− `] + wnr
[t][n], (9)

where t ∈ {1, . . . , τp}, hnr,k[`] is the complex channel gain of
the `th delay tap of the channel between the kth UE and the nth

r

receive antenna at the BS, distributed as CN (hnr,k[`]; 0, βk`),
where βk` is the large scale fading coefficient (LSFC), L
is the total number of delay taps of the frequency selective
channel, sk[t] = [sk[t][0], . . . , sk[t][Nc − 1]] is the pilot
symbol transmitted in the time domain by the kth UE in the tth

OFDM symbol, and wnr
[t][n] is the complex additive white
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Figure 1. NMSE (dB) as a function of SNR (dB) for K = 8, τp = 1.

Gaussian noise, with mean 0 and variance σ2. We define the
signal-to-noise-ratio (SNR) as 1/σ2.

We reformulate the received signal model above to utilize
the lag-domain sparsity for channel estimation. We denote the
channel sparsity, i.e., the maximum number of nonzero delay
taps in the channel, by Lsp, where Lsp � L. After vectorizing
and stacking the unquantized received pilot signal in (9) for
the τp OFDM symbols and Nr receive antennas, and utilizing
the diagonalization property of circulant matrices, we get

Y =

 y1[1] . . . yNr
[1]

...
. . .

...
y1[τp] . . . yNr

[τp]


=

 (1TK ⊗ FHNc
)S[1] (IK ⊗ FNc,L)

...
(1TK ⊗ FHNc

)S[τp] (IK ⊗ FNc,L)

H + W

, ΦH + W ∈ CτpNc×Nr , (10)

where ynr
[t] =

[
ynr [t][1] . . . ynr [t][Nc]

]T ∈ CNc×1,
H ∈ CKL×Nr is the piecewise joint-sparse signal containing
the lag-domain sparse channels of the users as its submatrices,
⊗ denotes the matrix Kronecker product operator, 1K is the
all-ones vector of size K × 1, FNc

∈ CNc×Nc is the discrete
Fourier transform (DFT) matrix, FNc,L ∈ CNc×L is the L
column truncated DFT matrix, and S[t] ∈ CKNc×KNc is a
diagonal matrix containing the pilot symbols of the K users
during the tth OFDM symbol.

We quantize the real and imaginary parts of each entry
of (10) using b-bit ADCs. We set the dynamic range of
the real and imaginary parts of the quantizer using the
expected received signal power, PR, as δ0 = −2.5

√
PR/2,

δB = 2.5
√
PR/2. The quantized received signal is

Q = Qb(Y) = Qb(ΦH + W) ∈ CτpNc×Nr . (11)

Now, we apply the quantized VB piecewise sparse recovery
Algorithm 1, to estimate H, given Q and Φ. Note that, the
number of measurements M = τpNc, the dimension of the
sparse vector N = KL, and the number of measurement
vectors T = Nr. Also, if τpNc < KL, (11) represents an
underdetermined system of equations.

We evaluate the normalized mean-squared error (NMSE)
of the unquantized and quantized VB piecewise sparse re-
covery algorithms in Figures 1 and 2. We set Nr = 64,
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Nc = 256, L = 64, Lsp = 8 for the simulations. We
fix the large scale fading coefficients of all the users to 1
for convenience. We use the normalized squared `2 distance
between the estimates of two successive iterations of the
VB algorithm as the stopping condition, and set it to 10−6.
We also fix the maximum number of iterations of VB to
100. We compare the performance against the state-of-the-
art piecewise orthogonal matching pursuit (POMP) algorithm,
which recovers the sparse signal using unquantized com-
pressive measurements [3]. We also benchmark the runtime
performance against QVB algorithm in [14]. The NMSE
performance of QVB algorithm in [14] overlaps with that of
the QVB-PW procedure presented in this paper. Therefore,
we do not include it to avoid clutter. The run-time plot
empirically shows that the developed algorithm is not only
high-performing, but also is computationally less complex.

Fig. 1 shows the NMSE (dB) of VB and POMP algorithms
as a function of SNR (dB) for K = 8 and τp = 1. We observe
that the VB algorithm with the unquantized measurements
outperforms the POMP algorithm by around 2 dB at an NMSE
of around −7 dB. Moreover, the VB algorithm with only 2
and 3 bits quantization performs better than the POMP with
unquantized measurements when the SNR is below 6 dB and
10 dB, respectively. At high SNRs, both the VB and POMP
with unquantized measurements perform the same. At high
SNR, POMP recovers the support accurately, and its MSE is
Bayes’ optimal conditioned on correct support recovery. Thus,
empirically, we see that the VB algorithm with unquantized
measurements is also Bayes’ optimal at high SNRs.

Fig. 2 shows the NMSE (dB) of VB and POMP algorithms
as a function of the number of users for τp = 1 and 2,

and with 3 bits quantization. For the quantized case, we feed
Q to the POMP algorithm. As the number of measurements
increase (τp = 1 to τp = 2), the performance of both VB and
POMP algorithms become better. However, in a measurement
constrained regime (τp = 1 case), the VB algorithm with just
3 bits quantized measurements outperforms even the POMP
algorithm with unquantized measurements. Moreover, as K
increases (which translates to increase in the dimension of
the piecewise sparse vectors), the performance gap between
the VB and POMP algorithms increases. This shows that, not
only does the VB algorithm perform well, its performance
also scales better than the POMP algorithm.

Fig. 3 shows the runtime (in seconds) of QVB, QVB-PW,
and POMP algorithms as a function of the number of users for
τp = 1 and 2, and with 3 bits quantization. As the number
of measurements increase (τp = 1 to τp = 2), the runtime
of all the algorithms increase which is due to the increase
in the number of mathematical operations to recover X. The
runtime of QVB-PW is lower than that of QVB even though
both have the same NMSE performance. This illustrates that
QVB-PW is computationally less complex than QVB due to
the reduction in the size of the matrix inverse to be computed
in the QVB-PW algorithm. Moreover, QVB-PW with τp = 2
converges faster than QVB with τp = 1. This shows that,
when we utilize the inherent piecewise sparse structure, the
resulting algorithm is both fast and high-performing.

The piecewise VB sparse recovery algorithm has a matrix
inverse in each iteration whose complexity scales cubically
with the number of channel taps L. The POMP algorithm
also has a matrix inverse operation to recover one tap of
each user’s channel. However, its complexity increases pro-
gressively in each iteration. The maximum complexity of the
POMP algorithm scales cubically with the sparsity of each
user’s channel. Therefore, at high SNRs where the POMP
and VB perform equally well for the unquantized case, it is
better to choose POMP than piecewise VB. However, when
the measurements are quantized with large number of users
and at low to medium SNRs, it is sensible to choose VB for
its better NMSE performance than POMP.

IV. CONCLUSIONS

We presented VB based algorithms for recovering piece-
wise joint-sparse signals using unquantized and quantized
compressive measurements. We imposed a factorized struc-
ture on the posterior distributions of the latent variables,
which resulted in an iterative, computationally and analyt-
ically tractable solution. We benchmarked the NMSE and
runtimes of the piecewise sparse VB algorithms with the state-
of-the-art POMP and VB algorithms for piecewise sparse
recovery, in the context of MIMO-OFDM channel estimation.
We showed that the VB algorithms outperform the POMP
algorithm in measurement constrained regimes as well as
at low and medium SNRs. We also numerically showed
that utilizing the inherent piecewise sparse structure assisted
in reducing the computational complexity of the developed
algorithm. We also empirically showed that it is Bayes’
optimal in the MSE sense.



5

REFERENCES

[1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[2] E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Commun. Pure Appl. Math.,
vol. 59, no. 8, pp. 1207–1223, 2006.

[3] K. Li, C. R. Rojas, T. Yang, H. Hjalmarsson, K. H. Johansson, and
S. Cong, “Piecewise sparse signal recovery via piecewise orthogonal
matching pursuit,” in Proc. ICASSP, 2016, pp. 4608–4612.

[4] J. Zhong and C. Li, “Piecewise sparse recovery via piecewise greedy
method,” J. Math. Res. with Appl., vol. 6, pp. 643–658, 2018.

[5] M. E. Tipping, “Sparse Bayesian learning and the relevance vector
machine,” J. Mach. Learn. Res., vol. 1, pp. 211–244, 2001.

[6] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis
selection,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153–2164,
Aug. 2004.

[7] J. Tropp, A. Gilbert, and M. Strauss, “Simultaneous sparse approxima-
tion via greedy pursuit,” in Proc. ICASSP, vol. 5, 2005, pp. v/721–v/724
Vol. 5.

[8] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory,
vol. 53, no. 12, pp. 4655–4666, Dec. 2007.

[9] Z. Zhang and B. D. Rao, “Sparse signal recovery with temporally
correlated source vectors using sparse Bayesian learning,” IEEE J. Sel.
Topics Signal Process., vol. 5, no. 5, pp. 912–926, Sep. 2011.

[10] J. Fang, Y. Shen, H. Li, and P. Wang, “Pattern-coupled sparse Bayesian

learning for recovery of block-sparse signals,” IEEE Trans. Signal
Process., vol. 63, no. 2, pp. 360–372, Jan. 2015.

[11] D. Prasanna and C. R. Murthy, “mmWave channel estimation via
compressive covariance estimation: Role of sparsity and intra-vector
correlation,” IEEE Trans. Signal Process., vol. 69, pp. 2356–2370,
2021.

[12] Y. Ding, S.-E. Chiu, and B. D. Rao, “Sparse recovery with quantized
multiple measurement vectors,” in 2017 51st Asilomar Conference on
Signals, Systems, and Computers. IEEE, 2017, pp. 845–849.

[13] ——, “Bayesian channel estimation algorithms for massive MIMO sys-
tems with hybrid analog-digital processing and low-resolution ADCs,”
IEEE J. Sel. Topics Signal Process., vol. 12, no. 3, pp. 499–513, Jun.
2018.

[14] S. S. Thoota and C. R. Murthy, “Massive MIMO-OFDM systems with
low resolution ADCs: Cramér-Rao bound, sparse channel estimation,
and soft symbol decoding,” IEEE Trans. Signal Process., 2022, Early
Access.

[15] B. Murmann, ADC Performance Survey 1997–2018. [Online].
Available: http://web.stanford.edu/∼murmann/adcsurvey.html

[16] C. M. Bishop, Pattern Recognition and Machine Learning. Springer
New York, 2006.

[17] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The
American Statistician, vol. 58, no. 1, 2004.

[18] A. Maltsev et al., “Channel models for 60 GHz WLAN systems,” IEEE,
Piscataway, New Jersey, Tech. Rep. 802.11-09/0334r8, 2010.


