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Recovery Algorithms for Pooled RT-qPCR based
Covid-19 Screening

Sameera Bharadwaja H. and Chandra R. Murthy

Abstract—We consider the problem of sparse signal recovery in
a non-adaptive pool-test setting using quantitative measurements
from a non-linear model. The quantitative measurements are ob-
tained using the reverse transcription (quantitative) polymerase
chain reaction (RT-qPCR) test, which is the standard test used
to detect Covid-19. Each quantitative measurement refers to the
cycle threshold, a proxy for the viral load in the test sample.
We propose two novel, robust recovery algorithms based on
alternating direction method of multipliers and block coordinate
descent to recover the individual sample cycle thresholds and
hence determine the sick individuals, given the pooled sample
cycle thresholds and the pooling matrix. We numerically evaluate
the normalized mean squared error, false positive rate, false
negative rate, and the maximum sparsity levels up to which error-
free recovery is possible. We also demonstrate the advantage of
using quantitative measurements (as opposed to binary outcomes)
in non-adaptive pool testing methods in terms of the testing rate
using publicly available data on Covid-19 testing. The simulation
results show the effectiveness of the proposed algorithms.

Index Terms—RT-qPCR, Covid-19, SARS-CoV-2, Group Test-
ing, Compressed Sensing, Sparse Signal Recovery.

I. INTRODUCTION

IN recent times, COrona (SARS-CoV-2) VIrus Disease
(Covid-19), which originated in late 2019 as a local in-

fection, has become a pandemic of unprecedented levels. The
disease has spread rapidly and globally from the place of
its origin. The mortality rate of Covid-19 is statistically low
(∼ 0.5−4%) [1]. However, due to the large caseload in small
geographical regions, it has destabilized the healthcare systems
in many countries. In a significant number of cases (guesses
vary widely ∼ 50−85%), the disease manifests itself with mild
or no symptoms [2]–[6]. However, such individuals (silent
spreaders) are still able to spread the disease [7], [8]. During
large public gatherings, the presence of such individuals can
and has in the past resulted in massive super-spreader events.
Thus, it is a major concern for opening up campuses, office
spaces, and other public amenities. Rapid testing, contact
tracing, and isolation of the infected has been the only known
effective way to control the spread of the disease [9].

In the past couple of years, various vaccines have been out
in the market. However, the virus has been mutating rapidly,
with each strain having a different combination of lethality and
transmissibility (R0) [10]. As a result, the world has witnessed
at least three waves of the pandemic to date, with varying
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severity levels. Therefore, systematic, cost-effective, reliable,
and repeatable testing protocols which can aid effective contact
tracing have not lost their importance [11]. Among the various
methods that have been developed to detect the Covid-19
virus in an individual [12], one of the most reliable testing
methods is the reverse transcription (quantitative) polymerase
chain reaction (RT-qPCR), which is described next.

A. RT-qPCR Process

The RT-qPCR process [12], [13] is a type of nucleic
acid amplification test. A biological (e.g., naso-oropharyngeal
swab) sample is collected from an individual and viral RNA
molecules, if any, are extracted via a pre-test preparation
process. The RNA molecules are converted to complementary
DNA (cDNA) molecules using the RT process. The PCR
process, which is a sequence of exponential amplification
cycles with heating and cooling phases, is conducted next.
Identical copies of the target DNA are obtained in each cycle,
roughly doubling the initial population. The rate at which
viral loads replicate is often called the PCR (amplification)
efficiency factor, denoted by q. A Taqman probe is added,
which contains fluorophores that emit light upon excitation.
The intensity of light emitted is proportional to the number
of viral DNA strands present in the sample at any given time.
The cycle at which the fluorescent light intensity exceeds a
preset threshold, denoted by τ , is called the cycle threshold
(CT) value and is the quantitative output of the RT-qPCR test.

The CT usually takes values between 15 − 35 for positive
Covid-19 tests [14]. It can also be noted that a higher initial
viral load implies that the preset threshold is crossed in the
earlier cycles in the PCR process, i.e., CT is low. Also, zero
viral loads in the sample are depicted by CT =∞, to say that
the preset threshold is not crossed in a finite time.

B. Motivation for the Proposed Work

The major non-renewable components of the RT-qPCR test
are the reagents like the Taqman probes, primers, and time-to-
test itself. The overall RT-qPCR test procedure typically takes
3 to 8 hours [15]. A standard PCR plate can accommodate
roughly 93 or 381 individual samples depending upon the plate
layout, after reserving space for positive and negative controls
(PC and NCs)1. Scaling horizontally by procuring more testing
kits is often not feasible due to the high procurement and the
operational costs involved. Therefore, vertically scaling, i.e.,

1PCR Plastics: https://www.thermofisher.com/in/en/home/life-
science/cloning/cloning-learning-center/invitrogen-school-of-molecular-
biology/pcr-education/pcr-qpcr-plastics/pcr-qpcr-plastics-considerations.html
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making the testing process more efficient in effective time-
taken per sample and resource usage is crucial in aiding large-
scale testing reliably and repetitively (e.g., daily).

Vertical scaling of the test process can be accomplished
by pool testing [16] (a.k.a. group testing). In recent decades,
group testing has converged to the area of compressed sensing
(CS), and is often called boolean compressed sensing [17]. We
briefly describe the idea here for the sake of completeness.

The idea of pool testing, first proposed by Dorfman [18] in
1943, is as follows. A subset of samples are mixed together
to form a pooled sample and tested at once. If the pooled
sample tests negative, all the participating samples are deemed
negative for the disease. A positive pooled test implies that
one or more participating individual samples are positive.
In this case, the items participating in the pooled test are
tested individually. Pool testing has a long history, and has
been applied in various settings, including in nucleic acid
amplification tests like PCR (see [19] and the references
therein) and also for Covid-19 detection [20].

Dorfman-style testing methods are called adaptive pool
testing [16]. In contrast, in non-adaptive pool testing, all the
required tests are performed in a single stage, followed by
an application of a suitable decoding algorithm [21]–[23] to
recover the individual sample status given the pooled test
outcomes and a pooling matrix. Each RT-PCR test takes
several hours to run, and at the same time, a standard RT-
PCR plate can accommodate either 93 or 381 samples de-
pending on the plate layout. An adaptive test, which is a
multi-stage procedure, would require 2x or more time than a
single-stage non-adaptive group test. Secondly, pooled sample
preparation before each stage of multi-stage adaptive testing
would expose the technician to bio-hazards for longer duration.
Lastly, using finite size, deterministic non-adaptive pooling
matrices is practical, especially with the advent of pooling
robots [24]. Therefore, non-adaptive pooling methods offer
time-advantage, are practitioner-friendly, and are safer for
infectious disease testing than the adaptive testing methods. A
binary pooling matrix specifies which individuals participate
in which test.

The authors in [17] show that the estimation of the n length
individual status vector is feasible with an arbitrarily small
probability of error using m pooled tests as long as m ≥
O(k log n), where k denotes the number of sick individuals.
However, this is an asymptotic bound, i.e., it is valid as n→
∞, with k growing sub-linearly with n [17].

Recently, testing of pooled samples was shown to be fea-
sible for the detection of Covid-19 using RT-qPCR [25]. The
authors in [26] optimize pool size and test protocol for Covid-
19 detection via RT-qPCR tests and conclude that the limit
of detection is 1 − 3 RNA copies per µl. An algorithm for
classifying each individual as having {no, low, medium, high}
infection level was developed in [27]. However, in practice,
one may be interested in recovering the actual viral load of
the individuals, rather than coarse classification.

The performance of binary pool testing algorithms like
combinatorial orthogonal matching pursuit (COMP) and its
noisy version, Noisy-COMP (NCOMP) was studied in [28].
In the current work, we use COMP as a pre-processing step

to filter out negative tests with CT = ∞ and reduce the
problem dimension. The authors in [29] use the non-negative
least absolute deviation (NNLAD) algorithm for decoding
in a non-adaptive pool testing setup. The authors in [30]
and [31] consider improving test reliability and throughput via
possibly non-binary pooling matrices. Although these papers
use sparse recovery techniques to infer the individual viral
loads, the system model in these papers is formulated as
linear observations corrupted by additive noise, which does
not match with well-accepted RT-qPCR models [32].

In [33], a weighted least-squares (LS) approach is used to
solve the non-linear CS problem y = f(Ax), where A is the
test matrix, f(·) is the non-linearity due to the amplification
and interpolation operation relating the CT values, y, to the
sample viral loads, x. For lab-experiments, they model the
sensing matrix as A = P�W, where P is a boolean-valued
participation matrix and W is a positive real-valued sample
allocation matrix. The (i, j)th element of the allocation matrix
determines the fraction of the jth sample participating in the
ith test. We note that the sensing matrix is no longer binary-
valued; instead, it has either 0 or positive real entries.

The authors in [24] convert the observed pooled-sample CT
values into corresponding viral loads. Such conversion requires
the knowledge of the PCR efficiency factor (q = 0.95 is used).
The value of q depends on various factors like probe-primers
used, other PCR specifications (exact operating temperature of
the test process), etc. We show that the mismatch between the
true value of q and its value assumed by the decoding algo-
rithm can result in severe performance degradation. Therefore,
it is essential to develop algorithms that can jointly learn q and
estimate the individual CTs from the pooled CT values.

In addition to the binary and CS-based quantitative methods
for group testing, there are approaches which do not fall
strictly into either category, and therefore requires a separate
mention. For instance, the authors in [34] propose to use
tropical arithmetic and formulate an adaptive group testing
protocols based on a delay and match principle. The delay-
and-match principle uses a protocol where they add samples
into the pool during the testing process, i.e., say after, ∆
cycles, and use this information while decoding.

In the current work, we focus on estimating the viral loads
and determining healthy/sick status of individuals using the
pooled RT-qPCR outcomes and the deterministic, single-stage
pooling matrix. Our main contributions are as follows:

1) We propose two novel algorithms, namely, a gradient
descent (GD)-CT method and an iterative mirrored hard
thresholding (IMHT)-CT method, which can recover the
individual CT vector given the pooled CT vector and the
pooling matrix. The challenge lies in addressing the non-
linear nature of the mathematical model of the RT-qPCR
process. Due to this, the recovery problem departs from
the standard sparse signal recovery problem [35], [36].

2) In practice, the PCR efficiency factor, q, is unknown. To
address the issue of performance degradation due to the
mismatch between the efficiency factor assumed by the
algorithm and the true efficiency factor, we propose two
novel algorithms based on alternating direction method
of multipliers (ADMM) and block coordinate descent
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(BCD), which can jointly recover the individual sample
CT vector and estimate the unknown efficiency factor.
The sub-problem of estimating the CTs is performed
using GD-CT or IMHT-CT. The sub-problem involving
q is solved using the projected gradient descent (PGD)
method. The proposed recovery algorithms are robust to
noise and varying machine parameters.

3) The advantage of using quantitative measurements in
non-adaptive pool testing in terms of the testing rate
and hence the cost is presented using publicly available
data on the number of tests conducted. The results
illustrate that using quantitative measurements results in
significant cumulative cost savings.

4) We compile the best rates achievable for a given preva-
lence rate using deterministic testing matrices like Kirk-
man2 [37] and Euler3 [38] designs. The prevalence rate
estimate (e.g., the previous day’s value) can be used to
decide the optimum (testing) rate design for each day.

5) We empirically evaluate the performance of the proposed
algorithms and show that they outperform related al-
gorithms in the literature under practical settings (e.g.,
unknown machine-specific parameters, CT measurement
noise, etc.) in terms of the normalized mean-squared
error (NMSE) and the sparsity level up to which the
algorithms guarantee zero recovery errors.

One of the main takeaways from our work is that the use of
quantitative measurements in a non-adaptive pool test setting
results in significant cumulative cost savings. Also, the optimal
achievable testing rate vs. prevalence rate compiled using
various deterministic pooling matrix designs and recovery
algorithms in the non-linear RT-qPCR model is crucial for
reducing pooled testing ideas to practice. Finally, the proposed
algorithms recover the un-normalized CT values without the
knowledge of the machine-specific parameters. This makes the
output of our algorithms similar to that of individual testing.

Notation: The real number space is denoted by R. Sets
are denoted by calligraphic letters, e.g., X ; with |X | de-
noting its cardinality. Matrices and vectors are represented
using boldface upper and lowercase letters, respectively. The
symbol \ denotes the set difference operation. The `1 and
`2 norms of a vector, x, are denoted by ‖x‖1 and ‖x‖2,
respectively [39]. ‖x‖0 denotes the `0 norm of x, i.e., the
number of non-zero elements in x [40, Definition 2.1]. (·)T
and (·)H denote the transpose and conjugate transpose op-
erations, and ‖A‖F and |||A|||2 denote the Frobenius norm
and spectral norm of the matrix A [39]. For a scalar a ∈ R
and a vector x = [x1, x2, . . . , xn]T ∈ Rn×1, we define
ax , [ax1 , ax2 , . . . , axn ]T . A < 0 means that the matrix
A is positive semi-definite [39]. Finally, trace of the matrix
A ∈ Rn×n is the sum of its n diagonal elements.

II. SYSTEM MODEL

A system model inspired by the RT-qPCR mechanism [32]
is described in this section. Denote the maximum number
of cycles in the PCR process by cmax. The cycle number is

2See Appendix A for a note on Kirkman designs.
3See Appendix B for a note on Euler designs.

indexed by t and therefore, t ∈ {1, 2, . . . , cmax}. Also, denote
the efficiency of the PCR reaction by q, and let x0 denote
the initial viral load concentration (e.g., DNA molecules per
µl). For the sample to be considered positive, the viral load
concentration should cross a preset threshold τ in c ≤ cmax
PCR cycles. Using [32, Equation (7)], the relationship gov-
erning the growth of the viral load concentration up to the
cycle threshold can be written as:

bcc∏
t=1

(1 + qt)(1 + qbcc+1)c−bccx0 = τ.

Note that, c ∈ R although the cycles are indexed by
{1, 2, . . . , cmax}. This is because the PCR machine’s software
performs the interpolation implied by the above equation to
output a real-valued CT.

By calibrating the operating protocol, in practice, one can
ensure that the variation in qts across tests is negligible. Then,
the model can be simplified by letting qt = q for all t =
1, 2, . . . , cmax. Thus, (1) can be simplified as

(1 + q)cx0 = τ. (1)

Further, without loss of generality, we have taken the propor-
tionality constant to be unity [32, see Equation (4)], since one
can appropriately scale the threshold τ . The value of q depends
on various factors like probe-primer combination [41], dilution
of the test solution, whether annealing equilibrium [32] method
is used or not, etc. In most lab experiments, the value of q is
observed to lie in X , [0.5, 1.0) over various probe-primer
combinations [32], [41]. As mentioned in Sec. I-A, when the
viral load is zero, the threshold τ is not reached even after
cmax cycles. This is indicated by setting c = ∞. In practice,
depending on the PCR kit and sample preparation protocols,
manufacturer’s instructions etc., cmax = 40 to 50 PCR cycles
are conducted.

We now extend the model to pool testing based on RT-qPCR
and account for noise. Here, n individuals participate in m
pool tests, with m� n. The CT values observed from the m
pool tests are collected in a vector as c , [c1, c2, . . . , cm]T ,
where ci is the CT of the ith pool test. Similarly, the initial
viral loads contributed by the n individuals to the pool tests
can be written as x = [x1, x2, . . . , xn]T .4 In non-adaptive
pool testing, the pool tests are defined by the binary pooling
matrix A ∈ {0, 1}m×n, where the (i, j)th element of A
equals 1 if the jth individual participates in the ith test,
and equals 0 otherwise. We can now extend (1) to the pool
testing framework and write the model for the ith pool’s CT
measurement, denoted by ci, as

τ(1 + q)−ci = (1 + q)εiAT
i x , i = 1, 2, . . . ,m, (2)

where AT
i is the ith row of A and εi ∼ N (0, σ2

ε ) is the
CT measurement noise with unknown variance σ2

ε . In (2), the

4Note that, if the jth individual does not participate in the ith test, we
may set xj = 0 for that test. Also note that, in practice, the jth individual
may contribute different initial viral loads to the different tests it participates
in. However, in the detection regimes of interest, where reliable detection is
possible (e.g., where the positive individuals contribute about 100 or more
viral particles per µl to the test), these variations do not significantly affect
the resulting CT values.
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term AT
i x represents the effect of pooling. That is, the total

initial viral load in the ith pool test is the sum of all the
initial viral loads of the individual samples participating in
the ith test, determined by the locations of 1s in the row AT

i .
Also, note that the noise contribution appears as an exponent
to the overall process efficiency factor, (1 + q). This is due
to (1), where the CT depends on the initial viral load via
an exponential term. Therefore, any additive noise observed
during the measurement of the CT values shows a similar
exponential dependency with the initial viral load. A similar
model was used in [24, Equation (9)], where the authors
expressed system model in terms of the ratio of the initial viral
loads in the pooled samples and the viral load corresponding to
the minimum observed CT among all pools. In contrast, the
(intermediate) model in (2) relates the actual un-normalized
initial viral loads of the individual samples with the observed
pooled CT values. Further, as we shall see, our final model
relates the observed pooled CT values to the individual sample
CT values, which we want to estimate.

The goal is to solve the inverse problem of inferring the
vector of individual viral loads, x, from (2) given the pooling
matrix A and m pooled CTs, c1, c2, . . . , cm. We note that,
the system model as shown in (2) is under-determined since
m � n. When the prevalence rate is low, ‖x‖0 � n, sparse
signal recovery methods can potentially be used for solving
the inverse problem at hand. However, our measurement model
in (2) is nonlinear and the noise is multiplicative, unlike the
standard sparse signal recovery problem [35], [36]. Further,
the values of τ and q are unknown. The range of values over
which the viral loads typically vary is large, making the inverse
problem numerically hard to solve. Suppose x0 = 1 in (1)
(i.e., 1 viral particle per µl) results in c = 35 in the noiseless
case. Assuming an ideal PCR efficiency of q = 1, we obtain
log2 τ = 35. Thus, an observed c = 15 corresponds to a viral
load x0 = 220 ≈ 106. As a result, the range over which the
viral load can potentially vary is [1, 106]. In contrast, the range
over which the CT values vary is much smaller, i.e., [15, 35].

In order to solve the problem in a numerically sta-
ble manner, we transform the problem from viral-load-
space into CT-space. To keep the notations distinct be-
tween the pooled-sample CTs and the individual-sample CTs,
the individual-sample CTs are henceforth denoted by u =
[u1, u2, . . . , un]T ∈ Rn×1. From (1), the individual-sample
CTs are related to the viral loads as

x = τ(1 + q)−u, (3)

where (1+q)−u , [(1+q)−u1 , (1+q)−u2 , . . . , (1+q)−un ]T ∈
Rn×1. Hence, we get

ci = − 1

log(1 + q)
log
(
AT
i (1 + q)−u

)
+εi , i = 1, 2, . . . ,m.

(4)
In matrix-vector form, c1...

cm

 = − 1

log(1 + q)

log
(
AT

1 (1 + q)−u
)

...
log
(
AT
m(1 + q)−u

)
+

 ε1...
εm

 ,
or c = − 1

log(1 + q)
log
(
A(1 + q)−u

)
+ ε. (5)

The goal now is to solve the inverse problem of inferring u, the
vector of individual CTs, from (5), given the pooling matrix,
A, and the vector of pooled CTs, c. We note that while the
parameter τ does not appear in the CT-space formulation, q
is still unknown.

In summary, the following points:
• Usage of binary pooling matrix and the fact that there are

two kinds of pooled test outcomes: negative test outcomes
have CT =∞ while the positive test outcomes are non-
negative finite real values, and

• Multiplicative and non-Gaussian nature of the noise term,
(1 + q)ε as seen in (2) or additive nature of the noise but
with a non-linear model in the log space as seen in (5),

makes the problem different from standard models considered
in sparse signal recovery problems [35], [36]. To this end, we
propose a set of novel, robust recovery algorithms to estimate
the vector of individual CTs.

III. PROPOSED ALGORITHMS

A. Preliminaries: Binary Algorithms

In this subsection, we describe two well-known binary pool
testing algorithms: combinatorial orthogonal matching pursuit
(COMP) and definite defectives (DD) [21], [42] applied to
the CT system model after transforming the model to a binary
system. We note that there are a variety of binary pool testing
algorithms like combinatorial basis pursuit (CBP), smallest
satisfying set (SSS), sequential COMP (SCOMP), etc. in the
literature [21], [42]. We restrict our comparisons to COMP and
DD, because, in a noiseless setting, (1) COMP algorithm does
not make a type-2 error (false negative); (2) DD algorithm does
not make a type-1 error (false positive). Further, as mentioned
in Sec. I-B, COMP is used in the pre-processing stage of the
CT algorithms (see Secs. III-B and III-C).

1) Combinatorial Orthogonal Matching Pursuit (COMP):
The measured pool CT’s are converted to binary values using

bi =

{
1, ci 6=∞
0, ci =∞,

for i = 1, 2, . . . ,m. Let N , {1, 2, . . . , n} denote the index
set of samples. The samples appearing in only negative pool
tests (i.e., bi = 0) are declared as definite negatives, denoted
by the set DN . Then, the samples remaining in the setN\DN
are declared as positive samples.

In the sequel, we first pre-process the CT values using the
COMP algorithm to filter out the definite negatives. Then, in
the system model, we remove the rows of A corresponding
to the negative test outcomes, and the columns of A and
the entries of u corresponding to the definite negatives. This,
in turn, reduces the overall system dimension for further
processing. In fact, at low prevalence rates, the reduced system
can even be over-determined. The application of COMP also
removes the negative tests with CTs equal to ∞ and is
thus numerically better suited for optimization-based recovery
algorithms. Now, in order to avoid additional notation, we
reuse the notations defined earlier to define the model after the
COMP stage. For example, n and m will respectively denote
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the number of samples and number of tests remaining, after
the COMP stage.

2) Definite Defectives (DD): The DD algorithm comprises
two stages. In stage-1, similar to the COMP algorithm, the
definite negatives and hence the set of possible positives,
PP , N \DN is determined. In stage-2, the items from PP
which are sole participants in positive pool tests (i.e., bi = 1)
are declared as positive samples and the rest are declared as
negative samples.

B. The CT Algorithms: Known Efficiency Factor

In this subsection, we describe two algorithms which use
the pooled CTs as the input but assume that the efficiency
factor, q, is known.

1) Gradient Descent (GD) - CT Algorithm: From (5), the
inverse problem we wish to solve can be written as follows:

û = arg min
u

1

2
‖ε‖22 + κ̄

∥∥τ(1 + q)−u
∥∥

0
, (6)

where κ̄ is a regularization parameter. The first term in (6)
arises from a least-squares formulation, while the second term
uses (3) with the fact that the vector of viral loads, x, is sparse.
We further note that the `0 optimization problem in (6) is NP-
hard (see Appendix C). Define x̃ = (1 + q)−u such that,
‖x̃‖∞ ≤ κ̃. Compute the convex biconjugate of f(x̃) = ‖x̃‖0
to get f∗∗(x̃) = 1

κ̃‖x̃‖1 [43]. We then replace the `0 norm
term in (6) with its `1 relaxation term to get

û = arg min
u

1

2
‖ε‖22 + κ

∥∥(1 + q)−u
∥∥

1
, (7)

where κ , κ̄|τ |/κ̃ τ>0
= κ̄τ/κ̃ is the effective regularization

parameter for the optimization problem. We note that (7) is
still a hard problem to solve due to its non-linear and non-
convex nature. In the literature, the gradient descent (GD) is
one of the attractive and practical algorithms available to solve
a wide range of optimization problems [44]. It is especially
useful when the gradient of the objective function exists and
can be efficiently computed. The optimization problem in (7)
can be solved using the GD algorithm and is termed as the
GD-CT algorithm due to the usage of CT values.

In order to derive the GD-CT algorithm, we start by
computing the gradient of the objective function in (7) with
respect to u, denoted by g(u; A, c, q). Denoting the (i, j)th
element of A by Aij , the gradient is given by

g(u; A, c, q) =

m∑
i=1

(
log
(
AT
i (1 + q)−u

)
log(1 + q)

+ ci

)

× −1

AT
i (1 + q)−u


Ai1

(1+q)u1

...
Ain

(1+q)un

− κ (ln(1 + q)) (1 + q)−u. (8)

The GD-CT procedure is presented in Algorithm 1, where η
is the step size and K is the maximum number of iterations.

In Algorithm 1 and henceforth, we denote the vector u at
kth iteration of the algorithm and the jth entry of u by uk

Algorithm 1 Gradient Descent (GD) - CT
Input: c, A, K, κ, η and q
Output: û

1: Initialize u1.
2: for k ← 1 to K do
3: Compute g(uk; A, c, q) using (8) with u = uk.
4: Update

uk+1 = uk − ηg(uk; A, c, q). (9)

5: end for
6: Set the estimate of individual CTs, û = uK+1.

and uj , respectively. Then, the (j, j)th diagonal element of the
Hessian H(u) of the objective function is given by

Hjj(u) =

m∑
i=1

[
ciAij ln(1 + q)(1 + q)−uj

AT
i (1 + q)−u

−
ciA

2
ij ln(1 + q)(1 + q)−2uj

(AT
i (1 + q)−u)2

− Aij log(AT
i (1 + q)−u)

(1 + q)uj AT
i (1 + q)−u

+
A2
ij(1 + q)−2uj

(AT
i (1 + q)−u)2

−
A2
ij log(AT

i (1 + q)−u)(1 + q)−2uj

(AT
i (1 + q)−u)2

]
− κ ln2(1 + q)(1 + q)−uj , (10)

and the (j, j′)th element for j 6= j′ is given by

Hjj′(u) =

m∑
i=1

AijAij′(1 + q)−uj−uj′

(AT
i (1 + q)−u)2

×
[
ci +

1

log(1 + q)
− log(AT

i (1 + q)−u)

]
. (11)

Theorem 1. [45], [46] Given an open convex set, S, let the
objective function, f : S 7→ R be twice differentiable. Let η be
the step size of the GD-CT algorithm such that 0 < η < 1/L,
where∇uf is L-Lipschitz continuous, for L <∞. The GD-CT
update as given by (9), generates a sequence of iterates {uk}.
If the limk→∞ uk exists, then P (limk→∞ uk = u∗) = 1,
where u∗ is a local minimizer.

The objective function in (7) is twice differentiable (see (10)
and (11)) and is comprised of elementary operations. Hence,
it is analytic and satisfies the Łojasiewicz gradient inequality.5

Therefore, the limit of the iterates exists [45]. Further, showing
that the gradient is L-Lipschitz is equivalent to bounding the
spectral norm of the Hessian, |||H|||2 =

√
λmax(HHH) ≤ L <

∞, where λmax(HHH) is the largest eigenvalue of HHH [46].
Since HHH < 0, we have λmax(HHH) ≤ trace(HHH) =
‖H‖2F . Therefore, it suffices to show that the entries of the
Hessian are upper bounded by finite constants.

Recall that the COMP pre-processing removes the tests with
pooled CT values ci =∞. Thus, at least one positive sample
with uj < ∞ appears in each test, and the pooled CT is
bounded as ci ≤ cmax. This also ensures that AT

i (1+q)−u 6= 0
in the denominator of (10) or (11). Let S = (mu,Mu)
such that, 0 < mu < uj < Mu. The positive lower bound
assumption is valid since at least one PCR cycle is conducted.

5See Appendix D for the formal definition and a note.
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Let x̃ = (1+q)−u, such that the entries, x̃j , of x̃ are bounded
between mx < x̃j < Mx <∞ for the positive individuals and
x̃j = 0 for the negative individuals, where mx and Mx are
constants depending only on Mu and mu, respectively. Lastly,
note that log(mx

∥∥AT
i

∥∥
1
) < log(AT

i x̃) < log(Mx

∥∥AT
i

∥∥
1
).

Since 1 ≤
∥∥AT

i

∥∥
1
≤ n, we can relax the bound fur-

ther as log(mx) < log(AT
i x̃) < log(nMx). Define γ ,

max(| log(mx)|, | log(nMx)|) and note that | log(AT
i x̃)| < γ.

Then, the entries of the Hessian can be bounded as

Hjj′ ≤

{
CH [1 + γ(n+ 1) + ncmax ln(1 + q)] , j = j′

CH

[
γ + cmax + 1

ln(1+q)

]
, j 6= j′,

with CH , m(Mx/mx)2. Since ‖H‖2F contains n diagonal
and n(n−1) off-diagonal entries of H, the trace(HHH), and
hence the |||H(u)|||2 is finitely upper bounded, satisfying the
last of the sufficient conditions for almost sure convergence
of Algorithm 1 to a local minimizer using Theorem 1.

Remark: Instead of using a constant step-size η, we can
use adaptive step-sizes. Algorithm 1 can be modified to allow
step-size adaptation as follows: Replace step 4 by

ηk = AdaptStep(ηk−1)

uk+1 = uk − ηkg(uk; A, c, q),

where AdaptStep(·) implements the recipe to adapt the step
size [47], [48]. In this case, the L-Lipschitz requirement on
the gradient in Theorem 1 can be relaxed.

2) Iterative Mirrored Hard Thresholding (IMHT) - CT Al-
gorithm: Motivated by the literature in non-linear compressed
sensing [49], the system model in (5) can be seen as a non-
linear transformation relating the pooled CTs vector, c with
the individual CTs vector, u, given by c = Φ(u) + ε, where

Φ(u) , −
log(A( 1

(1+q)u ))
log(1+q) is a multi-variable vector-valued

non-linear function. A first-order Taylor series approximation
of Φ(u) about a fixed point u∗ can be written as Φ(u) u
Φ(u∗) + J(u∗)(u− u∗) and is valid when ‖u− u∗‖ ≤ δ for
a sufficiently small δ > 0. In the Taylor series expansion, J(u)
is the m × n Jacobian matrix of Φ(u) computed at u = u∗.
The (i, j)th element of J(u) is

Jij(u) =
∂(Φi(u))

∂uj
=

Aij
(1 + q)uj

(
1

AT
i (1 + q)−u

)
, (12)

where Φi(u) is the ith element of Φ(u).
We introduce the following additional notations before

describing the algorithm. Let s denote the number of finite
entries in the vector, u or equivalently, the sparsity of the
viral-load vector, x. Let Πuth,s(u) denote the mirrored hard-
thresholding operation, i.e., the operation that sets the n − s
largest values of u to uth. With η denoting the step size and
K denoting the maximum number of iterations, the IMHT-CT
algorithm is described in Algorithm 2.

Although the Algorithm 2 takes the value of s as an input,
we note that an overestimated value of s does not affect the
simulation performance.

C. The CT Algorithms: Unknown Efficiency Factor

In practice, as stated in Sec. I-B, the efficiency factor,
q, of the RT-PCR process may not be precisely known.

Algorithm 2 Iterative Mirrored Hard Thresholding (IMHT) -
CT
Input: c, A, s, K, η and q
Output: û

1: Initialize u1.
2: for k ← 1 to K do
3: Compute the entries of J(uk) using (12) for each i ∈
{1, 2, . . . ,m} and j ∈ {1, 2, . . . , n} with u = uk.

4: Update

uk+1 = Πuth,s(uk − ηJ(uk) (c− Φ(uk))). (13)

5: end for
6: Set the estimate of individual CTs, û = uK+1.

In this subsection, we propose two algorithms whose basic
constituents are Algorithm 1 (GD-CT) or Algorithm 2 (IMHT-
CT), and are capable of jointly estimating q and u.

1) Block Co-ordinate Descent (BCD) - CT Algorithm:
When q is unknown, we modify the overall optimization
problem from (7) as

û, q̂ = arg min
u,q

1

2
‖ε‖22 + κ

∥∥(1 + q)−u
∥∥

1
s.t. q ∈ X , (14)

where X is the convex box constraint set used to restrict
the values that q can take. Since q is a scalar, the box
constraint is an interval on the real line. The block co-ordinate
descent (BCD) algorithm is well suited for problems where
the co-ordinates or variables of optimization show block-
commonality [50]. From (8), it is clear that the multiplicative
factor is common across the entries of the gradient. There-
fore, the maximum advantage is obtained in terms of the
processing efficiency when the block-components are defined
as α = [u; q], where α denotes the overall parameter vector.
The vector u is considered as one block, and the scalar q
is considered as the another block. The BCD algorithm for
estimating the values of u and q in a cyclic fashion is called
as the BCD-CT algorithm. Denoting the maximum number
of iterations by M , the BCD-CT algorithm is described in
Algorithm 3.

In Algorithm 3 (BCD-CT), the solution to (15) in each
iteration can be obtained using either Algorithm 1 (GD-CT)
or Algorithm 2 (IMHT-CT). When the information on whether
GD-CT or IMHT-CT algorithms is used is important, we use
either BCD-CT-G or BCD-CT-I, respectively.

The projected gradient descent (PGD) algorithm is used to
solve sub-problem (16) involving the parameter q in each of
the BCD iterations. Let L denote the maximum number of
iterations in the PGD algorithm, ΠX (w) denote the projection
of the point w ∈ R into the set X ⊆ R, β be the step size and
g(q = qk,l; u = uk) denote the gradient of objective function
in (16) with respect to q evaluated at q = qk,l and u = uk. It
is easy to show that g(q; u) can be computed using

g(q; u) =

m∑
i=1

(
log
(
AT
i (1 + q)−u

)
log(1 + q)

+ ci

)
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Algorithm 3 Block Co-Ordinate Descent (BCD) - CT
Input: c, A, M , K, L, κ, η and β
Output: û, q̂

1: Initialize u1 and q1.
2: for k ← 1 to M do
3: Update

uk+1 = arg min
u

1

2

∥∥∥∥ log (A(1 + qk)−u)

log(1 + qk)
+ c

∥∥∥∥2

2

+ κ
∥∥(1 + qk)−u

∥∥
1

(15)

qk+1 = arg min
q∈X

1

2

∥∥∥∥ log (A(1 + q)−uk+1)

log(1 + q)
+ c

∥∥∥∥2

2

+ κ
∥∥(1 + q)−uk+1

∥∥
1

(16)

4: end for
5: Set the estimate of individual CTs, û = uM+1 and set the

estimate of q, q̂ = qM+1.

×

− 1

log(1 + q)AT
i (1 + q)−u

n∑
j=1

Aijuj
(1 + q)uj+1

−
log
(
AT
i (1 + q)−u

)
(1 + q)(log(1 + q))2

]
−

n∑
j=1

κuj
(1 + q)uj+1

. (17)

The PGD algorithm is described in Algorithm 4. The second
derivative, H(q), of the cost function in (14) w.r.t. q is

H(q) =

m∑
i=1

 1

log(1 + q) AT
i (1 + q)−u

n∑
j=1

Aijuj
(1 + q)uj+1

+
log(AT

i (1 + q)−u)

(1 + q)(log(1 + q))2

]2

+

(
ci +

log(AT
i (1 + q)−u)

log(1 + q)

)
×

[∑n
j=1 Aijuj(uj + 1)(1 + q)−(uj+2)

log(1 + q) AT
i (1 + q)−u

+

(
log(AT

i (1 + q)−u)
)2

(log(1 + q) + 2)

(1 + q)2(log(1 + q))3

+

(∑n
j=1 Aijuj(1 + q)−(uj+1)

)
(log(1 + q) + 1)

(1 + q)(log(1 + q))2
(
AT
i (1 + q)−u

)
−

(∑n
j=1 Aijuj(1 + q)−(uj+1)

)2

log(1 + q)
(
AT
i (1 + q)−u

)2
+

n∑
j=1

κuj(uj + 1)

(1 + q)(uj+2)
.

(18)

Let q ∈ X , [mq,Mq), mq < Mq <∞. In a positive test
where amplification occurs in each PCR cycle, mq > 0. When
uj <∞, H(q) is upper bounded as

H(q) ≤ L′1 , m

[
nMu

log(1 +mq)(1 +Mq)−Mu(1 +mq)mu+1

+
γ′

(1 +mq)(log(1 +mq))2

]2

+m

(
cmax +

γ′

log(1 +mq)

)
×

[
n(Mu+1)2(1+mq)

−(mu+2)

log(1 +mq)(1 +Mq)−Mu
+

(γ′)
2
(log(1+Mq)+2)

(1 +mq)2(log(1 +mq))3

Algorithm 4 Projected Gradient Descent (PGD)
Input: c, A, uk, qk, L and β
Output: qk+1

1: Initialize qk,1 = qk.
2: for l← 1 to L do
3: Compute g(qk,l; uk) using (17).
4: Update

qk,l+1 = ΠX (qk,l − βg(qk,l; uk)) . (21)

5: end for
6: Set qk+1 = qk,L+1.

+
nMu(1 +mq)

−(mu+1)(log(1 +Mq) + 1)

(1 +mq)(log(1 +mq))2(1 +Mq)−Mu

]
+
nκMu(Mu + 1)

(1 +mq)(mu+2)
, (19)

where γ′ , max
(
| log(1 +Mq)

−Mu |, | log(n(1 +mq)
−mu)|

)
and when uj =∞, as

H(q) ≤ L′2 , m

[
γ′

(1 +mq)(log(1 +mq))2

]2

+m

(
cmax +

γ′

log(1 +mq)

)[
(γ′)

2
(log(1 +Mq) + 2)

(1 +mq)2(log(1 +mq))3

]
.

(20)

In summary, H(q) ≤ L′ , max(L′1, L
′
2) < ∞. Let the step

size, β, be chosen such that 0 < β < 1/L′. Using Theorem 1
for the sequence of scalar iterates {qk}, in the context of
gradient descent update step in (21), we can conclude that
the iterates converge to a local minimizer, q∗.

2) Alternating Direction Method of Multipliers (ADMM)
- CT Algorithm: The alternating direction method of multi-
plier (ADMM) procedure is another well-known parallel or
distributed optimization framework [51]. The essence of the
ADMM recipe lies in using the advantages of the dual for-
mulations and the augmented Lagrangian [51]. A modification
to (14) on these lines yields the required ADMM optimization
problem, given by

û, ŵ, q̂ = arg min
u,w,q

1

2
‖ε‖22 + κ

∥∥(1 + q)−w
∥∥

1

+
ρ

2
‖u−w + µ‖22 s.t. q ∈ X , (22)

where ρ is the penalty parameter, µ denotes the dual variable
and w is the auxiliary variable. The dual variable is the result
of the re-parameterization which converts the standard ADMM
problem into its scaled dual form [51]. The advantage of the
dual formulation, along with the auxiliary variable, is that it
allows for the main optimization problem to be decomposed
into multiple, simpler sub-problems which are computationally
efficient to solve. For example, from (22), at least 3 sub-
problems involving u, w and q can be observed. However,
dual methods may have slow convergence rates. A penalty
term, ρ2 ‖u−w + µ‖22, is added to convert the primal problem
into a strongly convex objective to overcome this issue. Lastly,
from (22), we note that µ→ 0 and ŵ = û on convergence.
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Algorithm 5 Alternating Direction Method of Multipliers
(ADMM) - CT
Input: c, A, N , K, L, κ, η and β
Output: û, q̂

1: Initialize u1, w1, µ1 and q1.
2: for k ← 1 to N do
3: Update

uk+1 = arg min
u

1

2

∥∥∥∥ log (A(1 + qk)−u)

log(1 + qk)
+ c

∥∥∥∥2

2

+
ρ

2
||u−wk + µk||22

qk+1 = arg min
q∈X

1

2

∥∥∥∥ log (A(1 + q)−uk+1)

log(1 + q)
+ c

∥∥∥∥2

2

+ κ
∥∥(1 + q)−wk

∥∥
1

wk+1 = arg min
w

κ
∥∥(1 + qk)−w

∥∥
1
+
ρ

2
‖uk −w + µk‖22

(23)
µk+1 = µk + (uk+1 −wk+1).

4: end for
5: Set the estimate of individual CTs, û = uN+1 and set the

estimate of q, q̂ = qN+1.

Let N denote the maximum number of iterations. The
ADMM algorithm for estimating u and q given c and A,
called ADMM-CT algorithm is described in Algorithm 5.

In Algorithm 5, we note that the sub-problem in (23) is
convex in w. Hence, it can be solved using any convex
optimization package (e.g., CVX [52]). As stated earlier, the
sub-problem involving optimization over u can be solved
using GD (Algorithm 1) with a term ρ(u−w + µ) added to
the gradient in (8). Similarly, the sub-problem of estimating
qk+1 can be solved using Algorithm 4.

We illustrate the advantage of the ADMM-CT algorithm
over the BCD-CT algorithm (with GD algorithm for opti-
mizing u) in terms of the quality of the final solution in
Fig. 1. For the current discussion, the quality of the final
solution is measured as the gap between the estimates of
the individual CTs for the positive and negative samples.
As mentioned in Sec. I-A, the individual CTs for a positive
sample is finite and is between 15 − 35. However, for a
negative sample, the individual CT is ∞. Therefore, from
the perspective of the recovery algorithms, a larger margin
between the estimate of the individual CTs for positive and
negative samples is desirable. In addition, a larger margin
translates to the robustness of the algorithm to the choice of the
decision thresholds. From Fig. 1, we see that there is a well-
defined and more prominent margin between the individual CT
estimates of the positive and negative samples obtained using
the ADMM-CT algorithm compared to the estimates obtained
from the BCD-CT algorithm.

D. Convergence to Local Minima

In the optimization problems described above, due to the
presence of log and exponential-to-q terms, the objective
function is non-convex in u. To overcome the problem of

Fig. 1. Comparison of ADMM-CT and BCD-CT algorithms in terms of the
distribution of the estimated individual CTs.
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Fig. 2. Comparison of ADMM-CT algorithm with and without Gaussian
randomization to overcome local optima.

convergence to the local minima, the BCD-CT and ADMM-
CT algorithms are run multiple times with Gaussian random-
ization (GR) i.e., the algorithm is run with different initial
conditions and the estimates with the lowest objective function
value are chosen as the final estimates of q and u [53].
The term Gaussian in GR refers to the fact that the initial
samples are drawn from a Gaussian distribution with certain
mean and variance. However, our simulations show that the
performance of our recovery algorithms is insensitive to the
specific distribution used for randomization (see Section IV for
more details). The false positive rate (FPR) and false negative
rate (FNR) performance improvement obtained from GR in
the ADMM-CT algorithm is shown in Fig. 2.

We note that the complexity of the algorithms is not a major
concern, as the RT-qPCR test itself takes several hours to run.
All of the recovery algorithms presented here run in a few
seconds on a computer, and therefore their relative complexity
is not important for this application.

IV. RESULTS AND OBSERVATIONS

For generating the simulation data, we use q = 0.95 and
the Kirkman matrix with m = 45 rows and n = 105 columns
as the pooling matrix, unless stated otherwise.6 We choose
m = 45 because a standard PCR plate can accommodate
a maximum of 93 test samples at a time (See Sec. I-B).

6We obtain Kirkman matrix of size 45×105 by selecting first 105 columns
from the full sized 45×285 Kirkman matrix. Other options which can be used
are to select columns uniformly randomly without replacement; or select/drop
a column if it does not increase/decrease the mutual coherence, etc.
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Therefore, using m = 45, one can perform two pooled tests in
parallel with a 93-capacity plate, making it practically useful
in terms of reducing wastage due to empty wells. The indices
of nonzero viral loads in x ∈ N105×1 are picked uniformly
at random and stored in an index set NZI with cardinality
|NZI| = dnsx/100e, where sx (%) is the prevalence rate.
The viral load in a negative sample is zero. The positive
entries of the initial viral-load vector, [x]j , are drawn from
the Poisson(λj) distribution where λj ∼ Unif(100, 106), for
j ∈ NZI. Finally, using the relationship in (2), the pooled CT
vector, c ∈ R45×1

+ is generated. In the distribution of the hyper-
parameter λj , the lower and upper limits are the average least
and highest viral load (or equivalently, cDNA/ RNA particles)
in a positive sample.

We use CT = 45 as the decision threshold, i.e., samples
with estimated CT > 45 are declared as negative. This
parameter can be easily varied based on the actual number
of PCR cycles conducted in the RT-qPCR machine. The
maximum number of iterations are set as K = L = 500 and
M = N = 150. The efficiency factor is assumed to belong to
the set X = [0.5, 1.0) in Algorithm 4 and the CT threshold
value is set as uth = 100 in Algorithm 2. Also, in Algorithm 2,
the true value of s is assumed to be known in our simulations.
In practice, s can be estimated using the prevalence rate
curve (e.g., see Fig. 3 in Sec. IV-A). In the initialization step
of the algorithms, the starting points u1 and w1 are drawn
i.i.d. from a Laplace distribution with mean 75 and shape
parameter 10 and q1 ∼ Unif(X ). Based on the simulations,
we note that the distribution function and the associated
parameters used do not affect the results much. For example,
choosing Normal(50, 10), Laplace(50, 10), Unif(10, 100) etc.
give similar results. Finally, the ADMM-CT penalty parameter,
ρ = 0.01, the regularization parameter, κ = 10−3, and the step
sizes η and β of 0.01 each are chosen via cross-validation. We
have noticed in our simulations that the value of κ can be set
very close to 0 without significantly changing the performance.
This is because, as mentioned in Sec. III-A1, after the COMP
stage, the problem is often over-determined. Therefore, the
relative importance of the sparsity promoting term is low. Also,
since the viral loads are non-negative, the `1 regularization is
not necessary to ensure a unique solution to (7) [54], [55].

A. Advantage of Pool Testing: An Empirical Evaluation Using
Covid-19 Data

We start by showing the advantage of using pool testing
from the publicly available history of Covid-19 test numbers.
Although we focus on non-adaptive pool testing with quantita-
tive measurements in this work, in this experiment, we include
one adaptive pool testing and two non-adaptive settings: a
binary model and our quantitative model. We consider data
from six Indian states: Karnataka, Kerala, Tamil Nadu, Maha-
rashtra, Delhi, and Uttar Pradesh. The data used are primarily
sourced by the Indian Council of Medical Research (ICMR),
New Delhi, India,7 and aggregated by a third-party website:
https://www.covid19india.org/. As stated in Sec. I, the symp-
tomatic percentage is set equal to 20%. The number of primary

7ICMR: https://www.icmr.gov.in/

contacts per symptomatic individual are considered to be 4.
These estimates can be further refined using population density
information, data collected from contact tracing applications,
etc. Further, the primary contacts of the symptomatic individu-
als are assumed to be more likely (by a factor of 4) to have the
disease. In our analysis, following the standard protocols and
triage processes, pool-testing is applied only on asymptomatic
individuals and non-primary contacts; symptomatic individuals
and primary contacts are tested individually. Dorfman adaptive
testing with optimum pool size requires 2

√
(n′k′) tests, where

n′ represents the number of non-symptomatic and non-primary
contacts tested, and k′ denotes the number of positive cases
who are non-symptomatic and non-primary contacts [42]. In
addition, we compute the counting bound, which is a lower
bound on the number of tests under a binary testing model,
as CB = k′ log2(n

′

k′ ) [42]. From [42], the DD algorithm with
near-constant column weight pooling matrix design requires
roughly CB

0.45 tests for identifying all the sick individuals.
Finally, the total number of tests required by the non-

adaptive pool-testing method using deterministic matrix de-
signs like Kirkman and Euler with quantitative measure-
ments is computed empirically, as follows. A set of pool-
ing matrix designs are compiled in M = {Euler −
(15 × 25), . . . ,Kirkman − (45 × 285), . . . ,Kirkman − (93 ×
1240),Euler − (361 × 6859), . . .}. We consider 26 Kirkman
and 26 Euler-based design matrices. Thus, the cardinality of
the set is |M| = 52. The set is further extended as follows:
Denote the testing rate of a pooling matrix of size R× C as
ξ = R/C where, C denotes the number of individuals tested,
and R denotes the number of tests. Smaller column-truncated
matrices are constructed by dropping the last few columns [24]
to obtain matrices with rates [ξround : 0.1 : 0.9] where ξround is
the value obtained by rounding up 10ξ to the next integer and
then dividing by 10. That is, if ξ = 0.33, ξround = 0.4. In this
way, we obtain a total of 474 deterministic test matrices.

For each pooling matrix in the set M, a 1000 Monte Carlo
run experiment determines the maximum prevalence rate post
which our ADMM-CT recovery algorithm makes either a false
positive (FP) or a false negative (FN) error. This maximum
prevalence rate is denoted by ke for the given pooling matrix
and is added into a look-up table. The non-symptomatic and
non-primary contact prevalence rate is computed using the
parameters described above. The best rate matrix design is
the matrix with the lowest rate whose ke exceeds the given
prevalence rate. The rate thus obtained multiplied by n′ gives
the number of tests needed if non-adaptive pool-testing with
our recovery algorithms and the optimum test matrix from the
set M is used.

We then add the individual tests conducted on symptomatic
and on primary contacts to obtain the total number of tests
required by each of the three methods: Dorfman with optimal
pool size (Optimized Dorfman), DD with the near-constant
column weight design (Achievable, DD) and our approach
(the ADMM-CT algorithm). The comparison of the cumulative
number of tests from April 2020 till July 2021 is shown in
Fig. 3 for all the 6 Indian states, along with the prevalence
rate trend over the same duration.

From Fig. 3, the cumulative number of tests required by us-

https://www.covid19india.org/
https://www.icmr.gov.in/
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Fig. 3. The prevalence rate trend and the comparison of the cumulative number of tests required by Optimized Dorfman, Achievable, DD and ADMM-CT
algorithms for 6 Indian states along with actual cumulative tests conducted from April 2020 till July 2021.

ing non-adaptive pool testing with quantitative measurements
and the ADMM-CT algorithm for recovery (blue curve in
Fig. 3) is lower than that obtained by using non-adaptive pool
testing with binary measurements (black curve), and this is
further better than the adaptive testing numbers (green curve).
Finally, pool testing methods have significant advantage com-
pared to individual testing (red curve) when the prevalence
rates are low (also see Fig. 5 and the associated discussion.)
The total number of tests saved translates to (resource) cost
and time saving. For instance, using the numbers for the state
of Karnataka, the cumulative number of tests saved over the
past 1.5 years, if a pool testing method (e.g., the ADMM-CT
approach) is used compared to the individual testing is ∼ 21.6
million tests. Using the nominal cost per RT-qPCR test as
≈ 14 USD, we obtain a cost-saving of ∼ 302.46 million USD.
Therefore, pool testing methods have a significant advantage
as compared to individual testing. Further, our ADMM-CT ap-
proach requires ∼ 1.55 million, and ∼ 0.93 million fewer tests
than the optimized Dorfman and the achievable tests required
by DD approaches, respectively. Under the above-mentioned
RT-qPCR cost estimate, the cost savings obtained by using the
ADMM-CT approach instead of optimized Dorfman and the
tests required by DD are ∼ 21.78 million and ∼ 13.05 million
USD, respectively. Thus, our approach is better in terms of the
cost savings among the other pool testing methods considered.

B. A Practical Pool Test Protocol

Based on the previous discussion about the benefits of non-
adaptive group testing with quantitative measurements, in this
sub-section, we address the following aspects:

1) We demonstrate that using the local prevalence rates to
design the tests is useful in practice, by using the actual
testing numbers and positivity rates from 6 different
states of India during different stages of the pandemic.

The advantage of the using local prevalence rates was
also discussed in [56].

2) We empirically characterize the testing rates achievable
using deterministic pooling matrices for different preva-
lence rates. That is, we provide insight into the question
of which deterministic pooling matrix should be chosen
to guarantee a near-zero errors at each prevalence rate.

3) We collect empirical results on the prevalence rates
at which adaptive, non-adaptive binary measurements-
based, and non-adaptive quantitative measurements-
based group testing perform the best, in terms of the
testing rates achieved.

The authors in [56] give a lower bound on the number of
tests required given the heterogeneity profile (i.e., prevalence
rate, risk profile, contact maps etc.) of the local population. In
particular, they focus on the two-stage group testing algorithms
like Bernoulli sampling, Dorfman, constant tests per sample,
the doubly constant algorithm etc., with random pooling matri-
ces. Our work complements this approach, since we focus on
single-stage group testing with deterministic pooling matrices.

To this end, first, we empirically show that using the local
(e.g., state-wise) prevalence rate to select the pooling matrix
is advantageous over using the global prevalence rate using
actual testing data. The total number of tests conducted across
the 6 states are aggregated to obtain the total number of indi-
vidual tests conducted and the total number of tests required
if our algorithm is used. Also, using the raw aggregated data
from these 6 states, a global prevalence rate is computed.
Finally, the number of tests required by our method using
the global prevalence rate information is also computed. The
comparison of the cumulative number of tests required under
individual testing and when the local/global prevalence rates
are used is shown, along with the global prevalence rate from
April 2020 till July 2021 in Fig. 4.
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time from April 2020 till July 2021.

It can be observed from Fig. 4 that there is a clear advantage
of using local prevalence rate information. Usage of the local
prevalence rate to design the pool test saves ∼ 11.44 million
tests and hence, a cost-saving of ∼ 160.21 million USD,
compared to the global prevalence rate based design.

Next, we illustrate how choosing the test matrix based on
the prevalence rate helps. Fig. 5 shows the testing rate achieved
by selecting the best member of the Euler and Kirkman family
of matrices at each prevalence rate. The figure also shows the
testing rate achieved by the Dorfman method with the optimum
pool size for each prevalence rate and the rate achieved by
the DD algorithm, computed approximately from the counting
bound as mentioned earlier.
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Fig. 5. Comparison of two-stage Dorfman testing rate with single-stage
rates and optimum choice of deterministic matrices: Kirkman and Euler types
available across the prevalence rates, i.e., sparsity levels (%).

From Fig. 5, we can make several interesting observations.
First, pool testing is beneficial compared to individual testing
when the prevalence rate is < 25%. Second, non-adaptive
pool testing methods have an advantage over the adaptive
Dorfman style testing when the prevalence rate is < 13.5%.
Third, the quantitative (or CT) measurement-based method
has an advantage over DD, a binary model-based approach,
when the prevalence rate ∼ 1.6− 17.5%. Fourth, the adaptive
Dorfman and the quantitative measurement methods provide
similar testing rates when the prevalence rate ∼ 0.25− 1.6%.
Further from Fig. 5, we note that the testing rates shown in
the blue and red curves, corresponding to Euler and Kirkman
designs, respectively, overlap at some prevalence rates. Thus, it

indicates the existence of multiple non-adaptive deterministic
pooling strategies.

C. Performance of the Algorithms

The goal of this subsection is to illustrate the performance
of the proposed algorithms. All the results are averaged over
10, 000 Monte-Carlo runs. We use the following metrics:
average NMSE in the CT values recovered, the average FN
rate (FNR), and the average FP rate (FPR), for the prevalence
rate (sparsity) up to 10%. The NMSE is the mean squared
error (MSE) between the estimate û and the true vector u
normalized by the mean `2 norm-squared of the true vector,
i.e., NMSE , E

[
‖u− û‖22

]
/E
[
‖u‖22

]
. Ignoring the role

of the infinities in the computation of `2 norm of the CT
vector, we note that the average `2 norm of the CT vector
increases as the number of defective items in the population
increases, thereby proportionally scaling un-normalized error
metrics like MSE. In order to remove this bias in the error
performance when comparing across the sparsity levels, the
NMSE is considered instead of the MSE. We compare the
algorithms in two sets, the first where the efficiency factor, q
is known, and the second set where q is unknown and has to
be estimated. In both the sets, the comparison is performed
across two scenarios: firstly, under the various noise standard
deviations, σε ∈ {0, 3.0} [41] at q = 0.95 and secondly, under
different efficiency factors, q ∈ {0.5, 0.95} at σε = 0. In
addition, the algorithms are run with Gaussian randomization,
as mentioned earlier.

We illustrate the NMSE, FNR and FPR performances of
GD-CT and IMHT-CT algorithms in Fig. 6. From subplots B

and C in Fig. 6, we see that the FPR and FNR performances
of both GD-CT and IMHT-CT algorithms are not affected
by the noise levels. Further, the FNR and FPR performances
of the GD-CT algorithm are better than that of the IMHT-
CT algorithm. From the subplot A , we see that the NMSE
curves shift up when the noise σε > 0. From the subplots
B , C , E and F in Fig. 6, we can observe that the

FNR and FPR of the IMHT-CT algorithm show observable
variation across the efficiency factors, whereas, the GD-CT
algorithm shows relatively low variation. Also, the GD-CT
algorithm’s FPR is better, and the FNR is similar to that of
the IMHT-CT algorithm. From the subplot D , the NMSE
performance of GD-CT across efficiency factors is better than
that of the IMHT-CT algorithm. Finally, the relative variation
in the performance of algorithms across the two efficiency
factors (q) is ≈ 20% for the IMHT-CT algorithm and ≈ 9%
for the GD-CT algorithm at sparsity level of 10%. Thus, the
performance of the GD-CT algorithm is more stable with
respect to variations in the efficiency factor.

The update step in (13) of the IMHT-CT algorithm executes
a projection step, namely, the mirrored-hard thresholding op-
eration, Πuth,s(u). Compared to the GD-CT algorithm where
iterates are computed optimally using the direction of the nega-
tive gradient, the projection step in IMHT-CT algorithm does
not guarantee that the projected iterate exactly satisfies the
optimality condition. Therefore, there is a trade-off between
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ensuring that the iterates are feasible (as in IMHT-CT) vs.
the iterates satisfying the optimality condition (as in GD-CT).
Overall, in the balance, the GD-CT algorithm outperforms the
IMHT-CT algorithm. Next, we consider the case where the
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efficiency factor, q, is unknown and is estimated using the

PGD algorithm. We compare the NMSE performances of the
algorithms in Fig. 7 across various noise levels and in Fig. 8
across various efficiency factors.

From Figs. 7 and 8, the NMSE performance of the ADMM-
CT algorithm is the best, followed by that of BCD-CT-G and
BCD-CT-I algorithms. Although ADMM-CT shows a nonzero
NMSE at low sparsity levels, there is no effect on the FPR
and FNR performances, as we shall see later. Further, from
Fig. 7, the NMSE curves shift up as the noise level increases.
In addition, from Fig. 8, we see that the performance at
q = 0.5 is slightly better with relatively notable difference
for the BCD-CT-I algorithm. Thus, in line with our previous
observations from Fig. 6, the IMHT based algorithms exhibit
a wider variation in performance across different values of
q compared to the GD based algorithms, even when q is
unknown and is estimated from the observed CT values.

We define the mean squared error between q and its esti-
mate, q̂, as MSEq , E[|q − q̂|2]. When the sparsity < 5%,
we observed that MSEq ≈ 0.052, 0.101 and 0.26 for the
σε = 0, 1.0 and 3.0, respectively. Also, while small errors
in the estimate of q do not significantly affect the algorithm’s
FPR or FNR, larger errors cause the algorithm to make FP or
FN errors at lower sparsity levels (see Table II in Sec. IV-D).

Lastly, we compare the FNR and FPR performances of the
algorithms in Fig. 9 across various noise levels and efficiency
factors. We include the performance of binary measurement-
based algorithms: COMP and DD.

We can observe from the subplots A and C in Fig. 9
that the FNR of ADMM-CT, BCD-CT-I, and BCD-CT-G
are similar. The FPR of the ADMM-CT algorithm is the
best, followed by BCD-CT-G and BCD-CT-I algorithms, as
seen in the subplots B and D across the noise levels
and efficiency factors, respectively. Further, the FNR and
FPR performances are not significantly different across the
efficiency factors for each algorithm despite the variations
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observed in NMSE plots. The ADMM-CT approach is able
to match the FNR of COMP while simultaneously matching
the FPR of the DD algorithms. Although COMP and DD
optimize for FNR and FPR, respectively, the corresponding
FPR and FNR performances are poor. Thus, this highlights
the advantage of quantitative measurement-based algorithms
over binary pool testing algorithms like COMP and DD. Also,
pooled CT-based algorithms can estimate the individual CTs,
which could be independently valuable in practice.

In Algorithm 3, the BCD iterations are not tied together,
since each block is optimized by independently solving the
sub-problems in a cyclic manner (see (15) and (16)). In
contrast, the iterates are better coupled in the ADMM-CT
algorithm. In Algorithm 5, 1) an auxiliary variable, wk, similar
in behavior to the individual-sample CTs, uk, is used; 2)
the sub-problem that solves for uk uses a previous value of
qk, whereas, the sub-problem which solves for wk uses the
updated qk ← qk+1; and 3) the auxiliary variables wk and uk
are tied together using a dual variable, µk, in the ADMM-CT
algorithm. Due to these reasons, the ADMM-CT outperforms
the BCD-CT algorithm.

D. Comparison with CS-based Methods

In this final subsection, we compare the performance of the
ADMM-CT algorithm with the existing CS-based algorithms
in the literature [24], [29]. These previous studies directly
apply CS-based recovery techniques (with or without an
initial COMP stage) to the observation model in (2). Certain
CS-based algorithms like LASSO are known to yield the
optimal solution even in the non-linear regime, under certain
conditions [57], [58]. In particular, the authors in [57] show
that when the entries of the pooling matrix are drawn i.i.d.
from ∼ N (0, 1), the performance of LASSO with non-linear
measurements characterized by a non-linear mapping g(·)
is asymptotically the same as if the measurements were of

the linear form ci = µAT
i x + σεi, where µ , E[γ̄g(γ̄)],

σ , E[(g(γ̄)− µγ̄)2] and γ̄ ∼ N (0, 1). Similarly, the authors
in [58] derive upper and lower bounds for the MSE under
a Poisson measurement model and when the entries of the
pooling matrix satisfy certain boundedness conditions. The
simulation results in this sub-section shows that our proposed
approach is better under the non-asymptotic regime with a
deterministic binary pooling matrix. Note that, in order to
use (2) directly with CS-based algorithms, one needs to
assume a nominal value of q to compute the left hand side
of the measurement equation of the observed CT values [24].
We also mention that one can use cross-validation to choose
the value of q, instead of assuming a nominal value.

We demonstrate the robustness of the ADMM-CT algorithm
in the following two aspects. The first one is the robustness to
the CT measurement noise. The second aspect is the robustness
to the unknown efficiency factor, q. We denote the efficiency
factor used for the CT-to-viral-load conversion by qconv, which
could be different from the actual q of the PCR process. We
consider the minimum sparsity percentage (denoted by ke)
at which the recovery algorithm makes at least one FP or
FN out of 10, 000 experiments as our metric for comparison.
Table I summarizes the values of ke for each of the recovery
algorithms considered, at different noise (σε) levels.

In CS-based algorithms, a threshold is fixed, below which
the estimates are set to 0. We fix the threshold to balance out
the FP and FN errors. Further, the hyper-parameters (regu-
larization constants etc.) required by the CS based algorithms
are chosen via cross-validation [24, S.III]. We compare against
the NN-LASSO, NN-LS, NN-LAD, NN-OMP and SBL algo-
rithms proposed for RT-PCR based pool testing for Covid-
19 in the literature [24], [29]. From Table I, we note that as
the noise level increases, ke obtained by CS-based algorithms
degrades. In particular, at practical noise levels [41], ADMM-
CT has a clear advantage over the CS-based algorithms, even
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TABLE I
COMPARISON OF ke ACROSS RECOVERY ALGORITHMS AT VARIOUS

NOISE VARIANCES

Noise σε 0 (Noiseless) 0.1 0.5 1.0

NN-LASSO 3 1 1 1

NN-LS 3 1 1 1

NN-LAD 4 2 1 1

NN-OMP 4 1 1 1

SBL 8 4 2 1

ADMM-CT 4 4 4 4

TABLE II
COMPARISON OF ke ACROSS RECOVERY ALGORITHMS AT VARIOUS

PROCESS EFFICIENCY FACTORS, q, AT NOISE σε = 0.1 AND qCONV = 0.95

q 0.99 0.95 0.9 0.8 0.65 0.5

NN-LASSO 1 1 1 1 1 1

NN-LS 1 1 1 1 1 1

NN-LAD 1 2 1 1 1 1

NN-OMP 1 1 1 1 1 1

SBL 4 4 4 3 3 3

ADMM-CT 4 4 4 4 4 4

though SBL outperforms ADMM-CT in the noiseless case.
Next, we summarize the effect of mismatch between the q

and qconv in Table II. Similar to the noise performance analysis,
we use the metric ke to demonstrate the robustness of different
algorithms. For this purpose, we fix the qconv = 0.95 as in [24]
and vary the actual q ∈ {0.99, 0.95, 0.9, 0.8, 0.65, 0.5} of the
RT-qPCR process [32], [41]. From Table II, we note that as the
mismatch between q and qconv increases, the performance of
the CS-based algorithms degrades. The ADMM-CT algorithm
estimates both u and q, and hence, the parameter qconv is not
used by it. Although SBL is robust to mismatch in q, the
ADMM-CT still has an advantage over the existing algorithms.
We also observed that the NMSE in the CT values returned
by SBL are of the order 0.5, while that for ADMM-CT
are of the order 0.01 − 0.04 at q = 0.99 and ke = 4.
Thus, the SBL algorithm performs poorer than ADMM-CT
in terms of estimating the individual CT values. The ADMM-
CT algorithm is robust across the values of PCR efficiency
factors observed in practice, and outputs the individual CTs
with low NMSE.

In summary, the proposed algorithms are robust to the
CT measurement noise levels observed in practical RT-qPCR.
Also, they do not require knowledge of the machine-specific
parameters, and the performance is similar across the spectrum
of PCR (amplification) efficiency factors seen in practice.

V. CONCLUSION

We considered the problem of sparse recovery in a non-
adaptive pool testing given the quantitative CT-values obtained
from a non-linear model for the RT-qPCR test used in Covid-
19 detection and a deterministic binary-valued pooling matrix.
We proposed two novel and robust sparse recovery algorithms:
ADMM-CT and BCD-CT, to jointly estimate the individual
CT values and the process efficiency parameter, given the

pooled CTs and the pooling matrix. Gradient descent and
iterative mirrored hard-thresholding algorithms were used to
solve the sub-problem involving the vector of individual CTs.
Similarly, a projected gradient descent method was used to
estimate the process efficiency parameter. We empirically
showed the advantages of pool testing and, more specifically,
that of non-adaptive pool testing with quantitative outcomes,
using actual testing-numbers datasets. We also illustrated the
algorithms’ NMSE, false-positive rate, and false-negative rate
performances. Finally, we demonstrated the advantage of the
algorithms over the CS-based algorithms available in the
literature. The future work could involve further theoretical
analysis of the algorithms in a probably approximately correct
(PAC) framework. In addition, the design of the decision logic
(e.g., list decoding-based, clustering-based, etc.) and its effect
on the testing rate are worth studying in greater depth.

APPENDIX A
KIRKMAN MATRIX DESIGNS

Consider m = 15 schoolgirls who walk out three abreast
for seven days in succession. Is it possible to arrange them
daily, so that no two girls walk abreast twice? This problem is
called Kirkman’s schoolgirl problem. Reverend T. P. Kirkman
posed this question in 1850 and wondered about the existence
of the solution [37, Example 2.76]. The answer to this problem
is known as the Kirkman Triple System of order m, KTS(m),
or more generally as a Steiner triple system of order m, or
STS(m). An STS(m) consists of

(
m
2

)
/3 m-length boolean

column vectors such that each member vector has exactly
three 1s and the dot product of any two vectors is ≤ 1.
The KTS(m) satisfies these conditions and in addition, possess
resolvability property i.e., the member vectors can be arranged
such that the sum of vectors from i to i + m/3 − 1 equals
1 ∈ Rm for every i ≡ 1 modulo m/3. This property of
KTS ensures that any l such group of vectors can be chosen
from KTS to form an m × n Kirkman matrix, n > m with
n = lm/3, 3 < l ≤ (m− 1)/2, while keeping the number of
1s in each row fixed.

In addition, KTS and STS are solutions for other problems
like social golfer problem [37]. For smaller m, the construction
of Kirkman matrices can be done via greedy methods. For
more information about Kirkman-based designs, see [24], [37].
A Kirkman matrix can be used for exact recovery of up to 3
positive samples [24]. From our simulations, we observe that
the usage of quantitative measurements enable us to do better.

APPENDIX B
EULER MATRIX DESIGNS

The Euler matrix designs considered in this paper are based
on generalized Euler squares (GES) [38]. In particular, we
consider the following construction: let p be a prime; let
n ≥ 1 and k ≤ pn denote the number of tests that an item
participates in. If R is the number of items allowed in each
test and d is a theoretical bound on the identifiable number
of defective items, i.e., the d-disjunctness property is satisfied,
then it is possible to construct a binary matrix of dimension
pnk×pn(r+1), with R = pnr and d = bk−1

r c+1, for r ∈ {1, 2}
and coherence at most r/k [38].
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APPENDIX C
NP-HARDNESS OF (6)

In this sub-subsection, we show the NP-hardness of (6). We
note that solving the optimization problem with `0 norm as
given in (6) entails enumeration of all the candidate solutions
and evaluating the cost function to find the solution.

We present a formal proof of NP-hardness below. First, we
transform the cost function in (6) as

û = arg min
u

1

2
‖ε‖22 + ψ

∥∥(1 + q)−u
∥∥

0
. (24)

The above uses the fact that τ > 0 and ψ , κ̄τ . Using (5),
solving (24) is equivalent to solving

min
u

∥∥(1 + q)−u
∥∥

0
s.t.

∥∥∥∥c +
log (A(1 + q)−u)

log(1 + q)

∥∥∥∥
2

≤ ν.
(25)

We define ν′ , ν log(1+q), x̄ , (1+q)−u and ȳ , (1+q)−c

and rewrite (25) to get

min
x̄
‖x̄‖0 s.t. ‖− log(ȳ) + log(Ax̄)‖2 ≤ ν

′. (26)

It suffices to show the NP-hardness of (26) for, say, ν′ = 0
and the Kirkman pooling matrix. Therefore, we get

min
x̄
‖x̄‖0 s.t. ȳ = Ax̄. (27)

We are now ready to use the proof steps similar to [40,
Theorem 2.17 in Section 2.3] in the noiseless case. The overall
idea is to transform a known NP-hard problem (e.g., exact
cover by 3-set problem) to the problem in (27) in polynomial
time. To this end, we start by taking ȳ = [1, 1, . . . , 1]T .
Then, using the constraint in (27), we get ‖Ax̄‖0 = m. From
Appendix A, we use n = lm/3, 3 < l ≤ (m − 1)/2 to note
that n ≤ m(m − 1)/6 <

(
m
3

)
, for m ≥ 3. Therefore, the

pooling matrix construction can be done in polynomial time.
Further, Kirkman matrices emerge from KTS which are the
solutions to the Kirkman’s schoolgirls problem. Hence, the
column sums of Kirkman matrices are equal to 3, implying
that ‖Ax̄‖0 ≤ 3 ‖x̄‖0. In conclusion, we get ‖x̄‖0 ≥ m/3.
We can run the `0 normalization problem for the two cases:
‖x̄‖0 = m/3, and ‖x̄‖0 > m/3, to conclude that solving the
`0 minimization problem enables one to solve the exact cover
by 3-sets problem [40]. Therefore, the problem in (27) and
hence, the original problem in (6) is NP-hard in general.

APPENDIX D
ŁOJASIEWICZ GRADIENT INEQUALITY

Given a real analytical function, f , the Łojasiewicz gradient
inequality gives an upper bound for the difference between
f(x) and f(x∗), where x is any point in the open neighbor-
hood of a critical point, x∗, of f . More formally, a critical point
x∗ of function, f satisfies the Łojasiewicz gradient inequality
if there exists a neighborhood V , 0 ≤ a < 1, and m, ε > 0
such that ‖∇f(x)‖ ≥ m|f(x) − f(x∗)|a ∀ x in {x ∈ V :
f(x∗) < f(x) < f(x∗) + ε} [45]. This gradient inequality
is useful in proving the global linear convergence of gradient
descent-based algorithms [45], [59].
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