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Abstract—The time varying nature of the wireless propagation
channel causes a mismatch between the true channel at the
time of data transmission and its available estimate based on
previously received pilot symbols, and is known to impair the per-
formance of the massive multiple input multiple output (MIMO)
systems. In this paper, we develop and evaluate adaptive data
aided channel tracking and data detection algorithms to counter
the effects of channel aging for uplink and downlink massive
MIMO systems. We first present a recursive least squares (RLS)
algorithm for tracking the matrix uplink channel at the base
station (BS), and derive bounds on its MSE performance. We
also derive a linear complexity stochastic gradient descent (SGD)
algorithm for tracking the uplink channel, along with its perfor-
mance bounds. Following this, we develop RLS and SGD based
algorithms for tracking the scalar effective downlink channel
at each UE, and derive their performance guarantees. Finally,
via Monte Carlo simulations, we validate the efficacy of the
algorithms in terms of their mean squared error performance,
and demonstrate the gains achievable by channel tracking in the
form of the improvement in the symbol error rates.

Index Terms—Massive MIMO, channel aging, recursive least
squares, least mean squares

I. INTRODUCTION

Massive multiple input multiple output (mMIMO) is the
name given to a cellular communication system architecture
with a large number of user equipments (UEs) being served
over the same time-frequency resource by an even larger
number of centrally located base station (BS) antennas [1].
Early results on mMIMO [2]–[5] have established that the
availability of a large number of degrees of freedom in such
a system leads to quasi orthogonality among the channels to
the different users. Therefore, under the assumption of avail-
ability of accurate channel state information (CSI) at the BS,
conjugate beamforming and combining potentially produce
orthogonal effective channels to/from the UEs [1]. Due to this,
mMIMO systems can potentially offer high spectral, energy,
and computational efficiencies, at the cost of a large number of
BS antennas. However, this seemingly simple trade off is only
valid under the assumption that accurate CSI is available at the
BS [1], [6]. In practical systems, this assumption is violated
due to multiple causes, including additive noise in channel
estimation [4], pilot contamination [7], reciprocity calibration
imperfections [8]–[10] and channel aging [11].
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Conventionally, the temporal variations of communication
channels are modeled using the block fading channel model.
Under this model, the channel coefficients remain unchanged
for one coherence interval, and take independent values from
the same distribution during the next coherence interval.
However, this model fails to capture the continuous variation
in the propagation channel due to UE movement [11] and
phase noise [12]. It is therefore more appropriate to model the
time variations in the channel as a slow temporal drift rather
than a jump from one set of channel coefficients to another.
It can be observed that under such a model, the channel
estimate available at any node ages, or becomes obsolete,
over time: this phenomenon is termed as channel aging. In
an mMIMO system, channel aging limits the rates achievable
by the UEs, especially in high mobility scenarios [11]–[14].
The effect of channel aging is critically dependent on several
factors, including user mobility, system dimensions [15], and
the underlying communication protocol [16].

As mentioned above, when the initial channel estimates at
the BS obtained from pilot signals at the start of the frame
are fairly accurate, accurate data detection is possible via
simple linear processing in mMIMO systems. Therefore, the
first few data symbols can be detected with high fidelity in
both uplink and downlink directions. These symbols can then
be potentially used as virtual pilots to track the variations in
the corresponding uplink/downlink channels over time [17],
thus mitigating the effects of channel aging. In this paper, we
develop and evaluate different adaptive filtering algorithms for
tracking aging channels in mMIMO systems.

A. Related Work

The past works that study the effects of channel aging in
mMIMO systems mainly consider time division duplex (TDD)
systems, as they allow one to exploit channel reciprocity to
reduce the training overheads [11]–[14], [18], [19]. Also, the
focus has been on the spectral efficiency (SE) achievable via
linear signal processing techniques for precoding and data
detection. Both the sum SE [12]–[14] and the average per
user SE [15], [16] under aging channels have been analyzed.
The large system dimensions of mMIMO enables the use of
asymptotic techniques such as deterministic equivalent (DE)
analysis [13], [15] and the use-and-then-forget bounds [16],
to accurately characterize the performance of mMIMO sys-
tems under aging. The authors in [12] also discuss the non-
asymptotic achievable rates for mMIMO systems under chan-
nel aging, incorporating the effect of phase noise. The key
message of these papers is that, although the propounded
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benefits of mMIMO such as power scaling [20] still hold in
the presence of channel aging, increased user mobility and
the consequent expedited aging of channels [21] can lead to
severe performance losses. In the context of orthogonal fre-
quency division multiplexing (OFDM)-based communications,
the impact of user mobility on the uplink performance with
frequency selective channels was analyzed in [22]. However,
none of the above-mentioned papers deal with tracking the
temporal variations in a massive MIMO channel, or analyze
the performance of channel tracking algorithms.

Recently, the idea of using Kalman filtering based channel
estimators for tracking aging channels was introduced in [23],
[24], where the channel estimates from each frame were
preserved, and updated using the pilot symbols received in
the next frame. The idea of pilot-aided channel tracking has
also been explored using machine learning based techniques
in [25]–[27]. For slowly varying channels, these schemes
improve the quality of the channel estimates, but the perfor-
mance degrades when the channel is fast-varying. In [17], we
developed Kalman filtering based data aided channel tracking
algorithm for mMIMO systems with aging channels. We
showed that this approach mitigates the losses due to channel
aging, resulting in better SEs both in the uplink and the
downlink. However, the Kalman filtering approach, although
mean squared error (MSE)-optimal, requires exact knowledge
of the second order channel statistics at the BS as well as at the
UEs, and is also computationally intensive due to the matrix
inverses involved. These factors limit the applicability of this
approach and reduce the benefits obtained. In this paper, we
overcome these issues by developing and analyzing alternative
low complexity and adaptive channel tracking algorithms.

B. Contributions

We develop adaptive CSI tracking algorithms for an
mMIMO system under aging channels. The problem of track-
ing a time-varying mMIMO channel is challenging due to the
large system dimensions involved. We therefore rely on results
from random matrix theory [11], [28] to obtain low complexity
data detection procedures. The detected data symbols are then
used to update the channel estimates via recursive least squares
(RLS) and stochastic gradient descent (SGD) based methods.

We first discuss the problem of adaptive channel tracking for
uplink mMIMO channels. We note that under the assumption
of a static channel and known transmitted data symbols,
channel estimation can be posed as a least squares regression
problem without requiring the knowledge of the second order
channel statistics. Furthermore, in case of sequentially arriving
symbols, this least squares problem can be solved via the
recursive least squares (RLS) algorithm, involving a rank-1
update of the available channel estimate based on the detected
data symbols (See Theorem 1), which makes the approach
computationally inexpensive. We then invoke the direct av-
eraging approximation [29] to derive the MSE performance
of this RLS based channel tracking algorithm under aging
channels (See Theorem 2).

Noting that the computational complexity of the RLS al-
gorithm is quadratic in the the number of users, we develop

an even lower complexity solution for the channel tracking
problem. To elaborate, we revisit the MMSE channel esti-
mation problem and develop a data-aided stochastic gradient
descent (SGD) based solution (See Theorem 3). We show
that this results in a linear computational complexity in both
the number of BS antennas as well as the number of users.
We analyze the tracking performance of SGD based channel
tracking in the uplink in Theorem 4. In both cases, our analysis
accounts for the effect of error propagation due to incorrectly
detected data symbols.

We discuss the symbol estimation procedure and evaluate
the underlying probabilities of error in Sec. III-C. Finally, we
evaluate the performance of the proposed channel tracking
algorithms in Section III-D and prescribe optimal values for
the tracking parameters. We also empirically illustrate the
benefit of channel tracking in terms of the overall system
performance by evaluating the symbol error rates (SERs) with
and without adaptive channel tracking.

Next, we discuss downlink time-varying channel estimation,
and derive update equations for data-aided tracking of the
effective scalar downlink channel, using both the RLS and
SGD formulations (See Theorems 5 and 7 respectively), and
analyze their tracking performances (See Theorems 6 and 8.).
Again, we evaluate the probabilities of error in Sec. IV-C
and use Monte Carlo simulations to illustrate the benefits of
data-aided channel tracking in terms of the MSE and SER
performance of these algorithms in Sec. IV-E.

The key takeaway of this work is that, in the context of aging
mMIMO channels, adaptive tracking results in a significantly
better performance compared to no channel tracking at virtu-
ally no additional computational complexity at the BS and the
UEs. Furthermore, and in contrast with Kalman tracking [17],
it is computationally simpler by 1-2 orders of magnitude (see
Fig. 7) and does not require the knowledge of the second
order channel statistics. Explicitly, the advancement in this
paper over our previous work [17] are the development of low-
complexity adaptive tracking algorithms, their careful theoret-
ical performance analysis in terms of the MSE in the channel
estimates, both for uplink and downlink channel estimation,
and both for the RLS and SGD algorithms. Further, we present
simple and interpretable expressions for the steady-state MSE
that uncover the dependence of the tracking performance on
the key system parameters. In the next section, we present our
system model, which is the point of departure of this work.

II. SYSTEM MODEL

We consider a canonical time division duplexed (TDD)
single cell mMIMO system consisting of an N antenna base
station (BS) serving K single antenna user equipments (UEs)
over rich scattering Rayleigh fading channels. We represent
the path loss coefficient and the velocity of the kth UE by
βk and vk, respectively. As illustrated in the frame structure
shown in [17, Fig. 1], each frame consists of a total of T
channel uses, and is subdivided into an uplink subframe of Tu
channel uses, and a downlink subframe of Td channel uses.
Each of these sub-frames is further divided into a training
phase of duration τx and a transmission phase of duration
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Tx − τx, x ∈ {u, d}. In the TDD mode of operation, it is
conventional to assume that τu ≥ K to ensure that orthogonal
pilot sequences can be assigned to the UEs, and that τd ≥ 0.
For convenience, we assume the time index of the symbols, n,
to take values between n = −τx + 1 and n = Tx− τx, within
each subframe. With this convention, in both the uplink and
downlink subframes, the first τx channel uses correspond to
the training phase, and data transmission starts at n = 1. We
assume knowledge of the second-order channel statistics and
the AR coefficients at the BS, as these typically vary slowly
with time. The estimation of these parameters is a separate
problem and is beyond the scope of this paper.

Denoting the fast fading coefficient of the channel between
the ith BS antenna and the kth UE at the nth instant as hik[n],
we can write the effective channel between the ith BS antenna
and the kth UE as

√
βkhik[n]. We denote the vector channel

to the kth UE by hk[n] , [h1k[n], . . . hNk[n]]T . The temporal
evolution of the channel is modeled by a first order auto-
regressive (AR-1) process [30], [31]:

hk[n] = ρk[n]hk[0] + ρ̄k[n]zh,k[n], (1)

with zh,k[n] ∈ CK being a temporally and spatially white
zero-mean circularly symmetric complex Gaussian (ZMC-
SCG) innovation process with unit variance entries,1 ρk[n] =
(ρk[1])n , (J0(2πfd,kTs))

n where J0(.) is the Bessel func-
tion of the first kind and zeroth order [32], Ts is the sampling
period at the BS, and fd,k = vkfc/c is the Doppler frequency
corresponding to the kth UE, fc is the carrier frequency, and
c is the speed of light. Also, zh,k[n] has the same distribution
as hk[0] and the two are independent of each other.

During uplink training, from n = −τu+1 to n = 0, the UEs
transmit τu mutually orthogonal pilot symbols, with the kth
UE’s pilot being transmitted with the energy Ep,k. These pilots
are used by the BS to obtain MMSE estimates ĥk[0] ∈ CK×1

of hk[0] related to the latter as

hk[0] = ĥk[0] + h̃k[0], (2)

with h̃k[0] ∈ CK×1 being the channel estimation error, such
that E[ĥk[0]h̃Hk [0]] = ON . Here, ON denotes the N × N
all zero matrix. Since the entries of hk[0] are i.i.d. ZMCSCG
for all k, ĥk[0] also has i.i.d. entries. Let b̄2k[0] = E[|h̃ki[0]|2]
denote the mean squared channel estimation error at n = 0,
and by extension b2k[0] = 1− b̄2k[0] = E[|ĥki[0]|2]. It can be
shown that, if the pilot signal from the kth UE is of the form
δ[n − K + k], then bk[0] = ρk[K − k]

√
βkEp,k

βkEp,k+N0
, and in

general, bk[0] can be bounded as [15]

bk[0] ≥ ρk[K − 1]

√
βkEp,k

βkEp,k +N0
. (3)

We will use the above bound later for deriving the MSE
performance of the proposed channel tracking algorithms.

Following pilot transmission, all the UEs simultaneously
transmit data symbols during the next Tu − τu instants. The
symbol transmitted by the kth UE at the nth instant is denoted

1Throughout the paper, we use the notation ρ̄ ,
√

1 − ρ2.

by su,k[n], and is transmitted with an energy Eu,s,k. Therefore,
the symbol received at the BS during (1 ≤ n ≤ Tu − τu) is

yu[n] =

K∑
k=1

√
βkEu,s,khk[n]su,k[n] +

√
N0wu[n] ∈ CN ,

(4)
with wu[n] ∼ CN (0, IN ) being the additive white Gaussian
noise (AWGN) vector at the BS, and N0 being the noise power
spectral density (PSD). This can be equivalently expressed as

yu[n] = H[n](
√
β � Eu,s)� su[n] +

√
N0wu[n], (5)

with H[n] , [h1[n],h2[n], . . . ,hK [n]], Eu,s ,
[Eu,s,1, Eu,s,2, . . . , Eu,s,K ]T , β , [β1, β2, . . . , βK ]T , and
su[n] , [su,1[n], su,2[n], . . . , su,K [n]]T . Here, A � B
represents the Hadamard (element wise) product between two
identically sized matrices A and B.

The BS uses linear combining vectors vk[n] (1 ≤ k ≤ K)
generated based on the available channel estimates to recover
the symbols transmitted by the kth UE as ŝu,k[n]. We denote
the probability of symbol error of the kth UE’s symbol at the
nth instant by Pu,k[n].

Similarly, in the downlink sub-frame, the BS uses the
available channel estimates to compute the precoding matrix
P ∈ CN×K for downlink data transmission during the next Td
channel uses. Let sd,k[n] be the data symbol to be transmitted
to the kth UE at the nth instant, such that the symbol
vector being transmitted to all the UEs can be written as
sd[n] = [sd,1[n], . . . , sd,K [n]]T . Now, letting Ed,s,k be the
downlink energy allocated to the kth UE, we can write the
signal transmitted in the downlink as

x[n] =

K∑
k=1

√
Ed,s,kpksd,k[n], (6)

such that E[‖x[n]‖22] = Ed,s, with pk being the kth column
of P. Consequently, the symbol received at the kth UE can
be written as

yd,k[n] =

K∑
l=1

√
βkEd,s,lhTk [n]plsd,l[n] +

√
N0wd,k[n], (7)

with wd,k[n] ∼ CN (0, 1) being the zero mean circularly sym-
metric complex AWGN. Let gkl[n] , 1√

N

√
βkEd,s,lhTk [n]pl

denote the effective downlink channel for the lth UE’s data
stream at the kth UE. Then, we can write

yd,k[n] =
√
Ngkk[n]sd,k[n] +

√
N

K∑
l=1
l 6=k

gkl[n]sd,l[n]

+
√
N0wd,k[n]. (8)

We can also write the time evolution of the effective downlink
channel to the kth UE as

gkk[n] = ρk[1]gkk[n− 1] + ρ̄k[1]ζkk[n], (9)

where ζkk[n] ,
√
βkEd,s,k/NzTh,k[n]pk denotes the innova-

tion component in the effective channel to the kth UE. It can
be shown that for a wide sense stationary innovation process,
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ζkk[n] can also be assumed to be wide sense stationary, such
that var(ζkk[n]) = var(gkk[n]) = βkEd,s,k.

The UE employs the use-and-then-forget [1] technique to
detect the received symbol by replacing the effective channel
coefficient with its expected value, and treating interference
as noise [1], with the probability of symbol error at the nth
instant being denoted by Pd,k[n].

III. THE UPLINK CASE

In this section, we develop and analyze algorithms to track
the matrix channel during the uplink data transmission phase.
We note that both the RLS and the SGD algorithms were
originally proposed for estimating static systems, but are able
to track time varying systems due to their adaptive nature.
Therefore, in this section, we develop these algorithms under
the assumption of static channels, and then study their tracking
behavior under time varying channels. Both these algorithms
are initialized using the channel estimate at time 0, ĥk[0].

A. RLS Based Uplink Channel Tracking

At the outset, if we assume the channel matrix H ∈ CK×N
to be static, using (5), we can write the signal vector received
at the BS in the nth instant compactly as

yu[n] = H(
√
β � Eu,s)� su[n] +

√
N0wu[n], (10)

Letting ŝu[n] be the estimate of the received symbols at the nth
instant, and s̃u[n] be the corresponding symbol error vector,
such that su[n] = ŝu[n] + s̃u[n], we can rewrite (10) as

yu[n] = H(
√
β � Eu,s)� ŝu[n]

+ H(
√
β � Eu,s)� s̃u[n] +

√
N0wu[n]. (11)

This received uplink signal can then be used to update the
channel estimate at the BS according to Theorem 1.

Theorem 1. The estimate of the channel matrix at the nth
(0 ≤ n ≤ Tu − τu) instant is updated as

Ĥ[n] = Ĥ[n− 1] + ỹu[n]gH [n]diag(
√
β � Eu,s)−1, (12)

with

ỹu[n] , yu[n]− Ĥ[n− 1]diag(
√

β � Eu,s)̂su[n],

being the a-posteriori error,

gH [n] ,
µ−1
r ŝHu [n]Φ−1[n− 1]

1 + µ−1
r ŝHu [n]Φ−1[n− 1]̂su[n]

(13)

and

Φ−1[n] = µ−1
r Φ−1[n− 1]−µ−1

r g[n]̂sHu [n]Φ−1[n− 1]. (14)

being the RLS gain, Φ[n] ,
∑n
l=1 µ

n−l
r ŝu[l]̂sHu [l], and 0 <

µr ≤ 1 is the forgetting factor.

Proof. See Appendix-A. �

We note that this algorithm requires only the decoded
data symbols, unlike the Kalman filtering-based approach [17]
which requires the second order channel statistics.

As mentioned earlier, the RLS based tracking algorithm is
developed for a static channel H. Therefore, in order to extend

the approach to the case of aging channels, and to prescribe
optimal values for the forgetting factor µr, we next assess
its tracking performance under time varying channels in the
following theorem.

Theorem 2. The mean squared channel estimation error for
the kth UE’s channel at the nth (0 ≤ n ≤ Tu− τu) instant is
given as

b̄2k[n] = µ2
r b̄

2
k[n− 1] + µ2

rρ̄
2
k[1]

+ (1− µr)2

(
N0

βkEu,s,k
+ 4Pu,k[n]

)
. (15)

Proof. See Appendix-B. �

Remark: At steady state, if b̄2k[n] ≈ b̄2k[n − 1], the above
reduces to b̄2k ≈

µ2
r ρ̄

2
k[1]

(1−µ2
r) + (1−µr)2

(1−µ2
r) (N0/(βkEu,s,k) + 4Pu,k[n]).

Thus, the steady-state error is the sum of two terms. The first
term represents the error due to the temporal variation in the
channel. The second term captures the errors due to channel
estimation at finite SNR and error propagation. It is easy to
optimize the steady state error with respect to µr and obtain
a good initialization for the forgetting factor.

It is easy to show that the principle of orthogonality,
that is, E[h[n]ỹHu [n]] = E[ĥ[n]ỹHu [n]], does not hold here,
resulting in the channel estimate not being independent of the
channel estimation error. Hence, the desired signal is no longer
independent of the interference due to channel estimation
error, and the worst case noise theorem from [33] cannot be
used to quantify the achievable rate. Therefore, in order to
quantify the performance of this algorithm, we have to rely
on simulation based metrics such as the bit error rate. These
are discussed in detail in Sec. III-D.

B. SGD based Uplink Channel Tracking

We now present a stochastic gradient descent based tech-
nique for tracking the channel state under aging. Similar to
the RLS based approach, we first develop the algorithm for
a static channel, and then analyze its tracking performance
under an aging channel.

Theorem 3. The SGD based algorithm for updating the
estimate of the channel at the BS at the nth (0 ≤ n ≤ Tu−τu)
instant is given by

Ĥ[n+1] = Ĥ[n]+µaỹu[n](diag(
√
β � Eu,s)̂su[n])H , (16)

with µa being the adaptation step size, and the estimate of
the received signal at the nth instant defined as ŷu[n] =
Ĥ[n]diag(

√
β � Eu,s)ŝu[n], such that ỹu[n] = yu[n]−ŷu[n].

Proof. See Appendix-C. �

In the following Theorem, we evaluate the mean squared
estimation error of the SGD based update.

Theorem 4. The mean squared estimation error (b̄2u,k[n+ 1])
of the kth channel vector at the (n + 1)th (0 ≤ n ≤ Tu −
τu)instant is given as

b̄2u,k[n+ 1] = (1− µaβkEu,s,k)
2
ρ2
k[1]b̄2u,k[n]
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+ ρ̄2
k[1] + (µaβkEu,s,k)2(1− ρk[1])2b̄2u,k[n]

+ µ2
a(N0 + 4Pu,k[n]βkEu,s,k)

K∑
l=1

βlEu,s,l. (17)

Proof. See Appendix-D. �

Remark: It can be shown that, for small µa, the
steady-state MSE of the SGD-based algorithm is b̄2u,k ≈

ρ̄2k[1]

ρ̄2k[1]+2µaβkEu,s,kρ2k[1]
+

µ2
a(N0+4Pu,k[n]βkEu,s,k)

∑K
l=1(βlEu,s,l)

ρ̄2k[1]+2µaβkEu,s,kρ2k[1]
.

The first term represents the error due to the temporal variation
in the channel, and the second term to the error due to finite
SNR based channel estimation and error propagation due to
symbol detection errors. It can be observed that too small a
value of the learning parameter µa will result in the first term
dominating b̄2u,k, and too large a value of µa will lead to the
dominance of the second term. Minimizing the steady state
error with respect to µa is straightforward.

Here again, due to the replacement of the deterministic
gradient by the stochastic gradient, the channel estimation
error is no longer orthogonal to the channel estimate, and
the worst case noise theorem cannot be used to bound the
achievable rates. Hence, the performance of the SGD based
channel tracker also needs to be quantified via simulations.

C. Symbol Estimation

The channel tracking algorithm described above provides
the BS receiver with updated channel estimates at each symbol
instant. These channel estimates need to be used to decode
the data symbols, which are then used to update the channel
estimates for the subsequent received symbol. We now analyze
the symbol decoding performance of the above estimator. Let
the true channel at the nth instant be expressed in terms of its
most recent estimate, obtained at the previous time instant, as

H[n] = Ĥ[n− 1]diag(ρ[1])

+ H̃[n− 1]diag(ρ[1]) + Zh[n]diag(ρ̄[1]), (18)

where Zh[n] ∈ CN×K is the channel innovation matrix
defined as Zh[n] = [zh,1[n], . . . , zh,K [n]]. Consequently, the
uplink signal received at the nth instant can be expanded as

yu[n] = Ĥ[n− 1](ρ[1]�
√

β � Eu,s)� su[n]

+ H̃[n− 1](ρ[1]�
√

β � Eu,s)� su[n]

+ Zh[n](ρ̄[1]�
√
β � Eu,s)� su[n] +

√
N0wu[n]. (19)

Assuming that all the UEs transmit from the constellation
S, the maximum likelihood estimate of the symbol vector can
be obtained at the BS by solving

ŝu[n] = arg min
s∈SK

‖yu[n]−Ĥ[n−1](ρ[1]�
√
β � Eu,s)�s‖2.

(20)
The solution of (20) has an exponential computational com-
plexity in the number of UEs. Hence, we can use a combining
matrix V[n] to post-process the received signal to obtain
ru[n] = VH [n]yu[n]. Letting ru,k[n] denote the kth element
of ru[n] and vk[n] denote the kth column of V[n], we get

ru,k[n] = ρk[1]βkEu,s,kvHk [n]ĥk[n− 1]su,k[n]

+ ρk[1]βkEu,s,kvHk [n]h̃k[n− 1]su,k[n]

+ ρk[1]βkEu,s,kvHk [n]zh,k[n]su,k[n]

+

K∑
l=1
l 6=k

βlEu,s,lvHk [n]hl[n]su,l[n] +
√
N0v

H
k [n]wu[n]. (21)

Here, the first term corresponds to the desired signal, the
second to the interference due to the channel estimation error,
the third to the interference due to aging, the fourth to the
inter stream interference from different UEs, and the last to
the additive noise. Now, the symbols from different UEs can be
detected individually from (21), with the symbol transmitted
by the kth UE estimated as

ŝu,k=arg min
s∈S
|ru,k[n]−ρk[1]βkEu,s,kvHk [n]ĥk[n−1]s|. (22)

Note that in case the BS employs conjugate beamforming,
V[n] = Ĥ[n−1] and if the BS uses generalized MMSE beam-
forming, then V[n] = Ĥ[n−1](ĤH [n−1]Ĥ[n−1]+ξIN )−1,
with ξ being the regularizing parameter. Now, we will declare
an error event to have occurred in the data stream of the kth
UE if ŝu,k[n] 6= su,k[n]. The probability of such an event is
denoted as Pu,k[n]. However, due to the adaptive nature of
the channel estimation algorithms, and the consequent non-
orthogonality of the channel estimates and estimation errors,
this cannot be expressed in a closed form, and is evaluated via
simulations in the next subsection.
subsectionComputational Complexity

1) RLS Based Tracking: We note that the channel update
in (12) and the computation of the a-posteriori error vector
require O(KN) floating point operations each, and the com-
putation of the RLS gain in (13) and rank 1 update of Φ−1[n]
in (14) require O(K2) floating point operations. Consequently,
the overall computational complexity of RLS based channel
tracking is O(K(K +N)).

2) SGD Based Tracking: Here, the computation of the
symbol error vector ỹ[n], the calculation of the gradient,
and the update of the available estimate, all require O(KN)
floating point operations, making the overall computational
complexity of SGD based tracking as O(KN).

3) Optimal Tracking: As described in [17], the computa-
tional complexity of this algorithm is O((KN)2 +N3).

We note that the computational complexity of MRC-based
data detection, as described in Section III-C, is O(KN |S|)
for a constellation S, whereas the computational complexity
for generalized MMSE combining based data detection [17] is
O(KN3|S|); these computations need to be performed with
pilot-only based channel estimation followed by data detection
also. Hence, we see that channel tracking can be included at
the BS at little additional computational cost compared to the
no-tracking case.

D. Performance Evaluation

In this subsection, we use Monte Carlo simulations to
quantify the performance of the proposed channel tracking
schemes, and to contrast them against a conventional mMIMO
system with no tracking. To simplify things, we consider a
single cell, single carrier system with K = 16 UEs and a 256
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TABLE I: Simulation Parameters
N The number of antennas on the BS. 256
K The number of users. 16
fc Carrier frequency. 3 GHz
Ts Sampling Interval 10 µs
T Frame Duration 1024 Samples

Pilot and data SNR 10 dB

antenna BS. The system operates at a carrier frequency (fc)
of 3 GHz, such that the signal (single carrier) bandwidth is
100 kHz. Unless specified otherwise, the data and pilot SNRs
are assumed to be 10 dB. The BS is assumed to sample at the
Nyquist rate of the complex baseband signal, i.e., at 100 kHz,
and the frame duration (T ) is assumed to be 1024 sym-
bols [15]. Also, we assume the channel to age according to the
AR-1 model, i.e., ρ[n] = ρn, with the correlation coefficient
ρ taking values in the range 0.999 ≤ ρ ≤ 0.99999 [31]. For
the purpose of these simulations, we consider ρ = 0.99999,
ρ = 0.9999 and ρ = 0.999, corresponding to UE velocities
of 10, 70, and 270 km/h, respectively [31]. We note that
this model coincides with the 3GPP SCM channel model
[34], extended to a multiuser massive MIMO setup. We
summarize these parameters in Table I. Also, for simplicity,
we assume the UEs to be equidistant from the BS, and average
the performance over 1, 000 independent Monte Carlo runs.
We note that, in our previous work [17], we had compared
the performance against the state of the art [23], [24] and
showed that the technique in [17] offers the best performance.
Hence, in this paper, we consider the adaptive MMSE receiver
developed in [17] as the baseline for our comparisons.

In Figs. 1 (a) and (b), we plot the tracking performance of
the RLS based tracking algorithm for different values of the
forgetting factor µr under different channel aging conditions.
We see that using an appropriate forgetting factor improves
the MSE for both fast (ρ = 0.999) and slow (ρ = 0.99999)
moving UEs. Also, while µr = 0.95 works best for ρ = 0.999
and µr = 0.98 works best for ρ = 0.99999, using an
intermediate value like µr = 0.97 offers reasonably good
performance across all UE velocities.

In Fig 2, we plot the BER with RLS based channel tracking
for uncoded BPSK transmission as a function of the data
SNR at different sample indices for ρ = 0.999. The value
of the forgetting factor was fixed at µr = 0.9, based on the
results in Fig. 1(a). We observe that in the presence of channel
tracking, at sufficiently large data SNRs, the availability of
better channel estimates due to tracking results in significant
improvement in the BER at higher time indices. RLS based
tracking can boost the performance at a BER of 10−3 by as
much as 1 dB. For better visualization, in Fig 3, we plot the
BER at different SNRs as a function of time across four data
frames. We observe that the BER at lower SNRs continues
to worsen due to poor channel quality and error propagation,
whereas, at sufficiently high SNRs (close to 3 dB), it continues
to improve with the available channel estimates. Note that the
slight variation in the BER at lower data SNRs is due to the
finite number of samples being used for averaging.

In Fig 4, we plot the theoretically computed and the simu-
lated MSE performances of the RLS based tracking algorithm
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Fig. 1: Channel MSE with and without RLS based tracking, as
a function of the time index for (a) ρ = 0.999 (b) ρ = 0.99999
and different forgetting factors µr.
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Fig. 2: BER with RLS based tracking, as a function the data
SNR for different time indices.

as a function of the data and pilot SNRs. We observe that the
simulated MSEs agree with the theoretically derived results,
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Fig. 4: Normalized MSE with RLS based tracking vs. data and
pilot SNRs for different rates of channel aging.

and converge close to µ2
rρ̄

2
k[1], as predicted by Theorem 2.

We now discuss the performance of the SGD based channel
tracking algorithm. In Figs. 5 (a) and (b), we plot the MSE
as a function of the sample index for different values of the
adaptation parameter µa, for ρ = 0.999 and ρ = 0.99999,
respectively. Similar to RLS based tracking, a suitable choice
of the adaptation parameter can reduce the MSE by more
than one order of magnitude compared to the no tracking
case. However, in this case, since µa affects both the speed of
convergence and the residual error after convergence, it should
be judiciously chosen.

In Fig. 6, we compare the MSE achieved for the RLS,
SGD, and the optimal channel tracking algorithm discussed
in [17], for different values of ρ as a function of time. The
MSE-optimal channel tracking algorithm from [17], which
uses the knowledge of the second-order channel statistics,
performs the best, but it is closely followed by the RLS
and SGD algorithms, which is as expected. To illustrate the
relative computational complexity of the algorithms, we plot
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Fig. 5: Channel MSE with and without SGD based tracking, as
a function of the time index for (a) ρ = 0.999 (b) ρ = 0.99999
and different values of the step size parameter µa.

the time (in seconds) required for 1000 iterations of the
three algorithms as a function of the number of BS antennas
in Fig. 7. The MSE-optimal channel tracking algorithm is
significantly more computationally intensive than either RLS
or SGD based tracking. In fact, the algorithms in this paper are
1-2 orders of magnitude faster than the approach in [17]. We
note that, due to the efficient matrix inversion algorithms used
by MATLAB, the complexity of RLS based tracking turns out
to be smaller than O(N2), making it preferable over SGD.
Also, as discussed in [17], the computational complexity of
optimal tracking is of comparable order as that of MMSE data
detection (O(N3)) at the BS. Therefore, we conclude that RLS
and SGD-based channel tracking can boost the performance
of a massive MIMO system with or without channel aging
with a negligible increase in computational cost compared to
the no-tracking case.

As the final experiment in this section, in Fig. 8, we plot the
uplink symbol error rate (SER) as a function of the SNR with
K = 8 users transmitting data to the BS using the 8-PSK case
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Fig. 6: Channel MSE with optimal, RLS, and SGD based
tracking as a function of time for different values of ρ.

constellation (dashed lines). We also plot the SER obtained
with BPSK transmission using solid lines in the same figure.
We see that, at low SNR, when the SER is of the order 0.1,
there is a gap of about 3 dB between BPSK and 8-PSK. As
the SNR increases, the SER with 8-PSK saturates due to the
interference caused by the residual channel error, especially
in the multi-user setting. We also see that, compared to the
first data symbol (n = 0), the SER for later symbols n ≥ 256
is lower; this is because the detected data symbols help to
improve the accuracy of the channel estimates. Moreover, the
channel estimation error saturates within about 100 symbols
(see Fig. 5), so the performances coincide for all n ≥ 256,
as expected. Finally, for BPSK transmission, comparing the
SER obtained from the SGD-based algorithm with that from
the RLS-based algorithm (Fig. 2), we see that SGD achieves
an SER of 10−2 at about 7.5 dB lower SNR than RLS-based
tracking. This is partly because Fig. 3 is for the K = 16
users case while Fig. 8 of this document is for K = 8. It is
also because, although SGD and RLS have similar channel
tracking performance at high SNR (see Fig. 6, which shows
the MSE behavior at an SNR of 10 dB), at lower SNR, SGD
significantly outperforms RLS in terms of its MSE, and this
allows the former to achieve lower SER than the latter.

IV. THE DOWNLINK CASE

We now present algorithms for channel tracking at the
UEs during the downlink data transmission phase. The key
difference between channel tracking in the uplink and the
downlink is that, in the latter case, one only needs to track
the overall effective scalar channel seen by the UEs. As a
consequence, the downlink channel tracking algorithms are
computationally simpler than the corresponding algorithms for
uplink channel tracking. Both the algorithms presented here
are initialized with the deterministic equivalent of the effective
downlink channel,

√
βkEd,s,k.

Fig. 7: Run time (seconds) for 100 iterations of the channel
tracking algorithms vs. the number of BS antennas.
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Fig. 8: Uplink SER performance with K = 8 users with data
transmission from the 8-PSK constellation, as a function of
SNR with SGD-based tracking for different time indices, with
µa = 0.05 and ρ = 0.999.

A. RLS Based Tracking

Assuming the effective downlink channel coefficient gkk
to be constant across time, we can write the downlink signal
received at the kth UE at the nth instant as

yd,k[n] =
√
Ngkksd,k[n] +

√
N

K∑
l=1
l 6=k

gklsd,l[n] +
√
N0wk[n].

(23)
Also, letting ŝd,k[n] be the estimate of the received symbol
at the nth instant, with the corresponding symbol error being
s̃d,k[n], (23) takes the form,

yd,k[n] =
√
Ngkkŝd,k[n] +

√
Ngkks̃d,k[n]

+
√
N

K∑
l=1
l 6=k

gklsd,l[n] +
√
N0wk[n]. (24)
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Theorem 5. The estimate of the effective downlink channel at
the nth (Tu ≤ n ≤ Tu + Td − τd) instant is given as

ĝkk[n] = ĝkk[n− 1] + ck[n]ỹd,k[n], (25)

where ỹd,k[n] = yd,k[n]−
√
Nĝkk[n− 1]ŝk[n], and

ck[n] ,
1√
N

ŝ∗d,k[n]∑n−1
m=1 |ŝd,k[m]|2

µr +
|ŝd,k[n]|2∑n−1

m=1 |ŝd,k[m]|2

, (26)

is the RLS gain, with µr being the forgetting factor.

Proof. See Appendix-E. �

We next assess the tracking performance of this algorithm
for aging channels. For this, we let ā2

k[n] , E[|g̃kk[n]|2].

Theorem 6. The estimation error in the effective downlink
channel at the nth (Tu ≤ n ≤ Tu + Td − τd) instant can be
iteratively computed as

ā2
k[n] = µ2

rā
2
k[n− 1] + µ2

rρ̄
2
k[1]βkEd,s,k

+ (1− µr)2

βk K∑
l=1
l 6=k

Ed,s,l +N0 + 4βkEd,s,kPd,k[n]

 .

(27)

Proof. See Appendix-F. �

Remark: Similar to the uplink case, we can show
that the steady state mean squared error takes the from
ā2
k ≈ µ2

r ρ̄
2
k[1]

(1−µ2
r)βkEd,s,k + (1−µr)2

(1−µ2
r) (N0 + βk

∑
l 6=k Ed,s,l +

4Pu,k[n]βkEu,s,k). Again, it is straightforward to optimize this
expression to obtain a good initial value for the forgetting
factor µr. Also, as before, in order to quantify the data
transmission performance of this algorithm, we have to rely
on simulation based metrics such as the bit error rate.

B. SGD based Tracking

We now discuss a stochastic gradient descent based tech-
nique for tracking the effective downlink channel.

Theorem 7. The stochastic gradient based update for the
channel estimate ĝkk at the (n+1)th (Tu ≤ n ≤ Tu+Td−τd)
instant is given by

ĝkk[n+ 1] = ĝkk[n] + µaỹd,k[n]ŝ∗d,k[n], (28)

with µa being the adaptation step size, and the estimation
error in the received signal at the nth instant being defined
as,

ỹd,k[n] = yd,k[n]−
√
Nĝkk[n]ŝd,k[n]. (29)

Proof. See Appendix-G �

We now discuss the tracking performance of the above
algorithm for a time varying channel.

Theorem 8. The mean squared estimation error (ā2
k[n + 1])

of the kth UE’s desired signal channel at the (n+ 1)th (Tu ≤
n ≤ Tu + Td − τd) instant is given as,

ā2
k[n+ 1] = (1− µa)

2
ρ2
k[1]ā2

k[n] + ρ̄2
k[1]

+ µ2
a

N0 + βk

K∑
l=1
l 6=k

Ed,s,l + 4Pd,k[n]βkEd,s,k

 . (30)

Proof. See Appendix-H. �

Remark: We can again approximate the
steady state mean squared estimation error as
the sum of two terms: ā2

k ≈ ρ̄2k[1]

µ2
a+2µaρ2k[1]

+

µ2
a

µ2
a+2µaρ2k[1]

(
N0 + βk

∑K
l=1
l 6=k
Ed,s,l + 4Pd,k[n]βkEd,s,k

)
,

with the first term corresponding to the error due to aging,
and the second term corresponding to the error due to the
finite data SNR and error propagation.

C. Symbol Estimation

Letting the channel estimate available at the kth UE at the
nth instant be ĝkk[n], and the corresponding estimation error
be g̃kk[n], we can write the received signal at the kth UE as

yd,k[n] =
√
Nĝkk[n]sd,k[n] +

√
Ng̃kk[n]sd,k[n]

+
√
N

K∑
l=1
l 6=k

gkl[n]sd,l[n] +
√
N0wd,k[n]. (31)

Now assuming that the symbols transmitted to the kth UE
are contained in the constellation S, we can write an estimate
ŝd,k[n] of sd,k[n] as

ŝd,k[n] = arg min
s∈S
|yd,k[n]−

√
Nĝkk[n]s|. (32)

This operation entails O(|S|) complex floating point opera-
tions. Also, we declare the presence of an error in the data
detected by the kth UE if ŝd,k[n] 6= sd,k[n]. The probability
error in the kth UE’s detected data is denoted by Pd,k[n]. As
argued in the uplink case, due to the adaptive nature of the
channel estimation algorithms Pd,k[n] cannot be expressed in
a closed form, and is evaluated via simulations.

D. Computational Complexity

1) RLS Based Tracking: We note that the channel update
step at the kth user requires the the computation of ck[n] and
ỹd,k[n] followed by the update in (25). These steps entail O(1)
floating point operations, making the overall computational
complexity of RLS-based update O(1) at each user.

2) SGD Based Tracking: The computation of the symbol
error ỹd,k[n], and the channel estimate update in (28) both
require O(1) floating point operations, making the overall
computational complexity of SGD based tracking also O(1).

3) Optimal Tracking: As discussed in [17], the computa-
tional complexity of optimal tracking is also O(1).

We thus conclude that downlink channel tracking is possible
at the UEs at no increase in the order of computational cost
compared to the no-tracking case.



10

0 200 400 600 800 1000
Sample Index

10
-3

10
-2

10
-1

10
0

M
S

E

r
=0.9

r
=0.95

r
=0.975

r
=0.99

r
=0.995

r
=0.999

No Tracking

(a)

0 200 400 600 800 1000
Sample Index

10
-3

10
-2

M
S

E

r
=0.95

r
=0.99

r
=0.995

r
=0.999

r
=0.9995

r
=0.9999

No Tracking

(b)

Fig. 9: Channel MSE with and without RLS based tracking, as
a function of the time index for (a) ρ = 0.999 (b) ρ = 0.99999
and different forgetting factors µr.

E. Performance Evaluation

In Figs. 9(a) and 9(b), we plot the performance of the RLS
based tracking algorithm for different values of the forgetting
factor µr and under different channel aging conditions. We
see that using an appropriate choice of the forgetting factor
significantly reduces the MSE in both the cases.

In Fig. 10 we plot the symbol error rate performance of the
RLS based tracking algorithm for different time indices for a
4-PAM system for ρ = 0.999. The forgetting factor µr in all
these cases is fixed at µr = 0.95.

In Figs. 11 (a) and (b), we plot the performance of the SGD
based tracking algorithm for different values of the learning
rate µa under different channel aging conditions. We see that
using an appropriate choice of the adaptation step size can
lead to a significant improvement in the MSE of the effective
downlink channel at the UEs.

In Fig. 12, we plot the SER of SGD based channel tracking
at different time indices for 4-PAM data transmission over a
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Fig. 10: SER with and without RLS filtering based tracking
vs. the data SNR, for ρ = 0.999 at different time indices.
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Fig. 11: Channel MSE with and without SGD based tracking,
as a function of the time index for (a) ρ = 0.999 (b) ρ =
0.99999 and different adaptation step sizes µa.
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Fig. 12: SER with and without SGD filtering based tracking
vs. the data SNR, for ρ = 0.999 at different time indices.

fast-varying channel (with ρ = 0.999.) The adaptation step
size is fixed at µl = 0.002. We see that channel tracking can
reduce the SER by more than one order of magnitude under
fast-varying channels.

V. CONCLUSIONS

In this work, we developed and evaluated data aided
adaptive channel tracking algorithms for mMIMO systems
under channel aging for Rayleigh fading time-varying channels
whose temporal evolution follows the AR(1) model. Specifi-
cally, we theoretically derived the tracking-MSE performance
of two approaches, an RLS-based approach and an SGD-
based approach. Through extensive simulations, we showed
that the low complexity RLS and SGD based channel tracking
algorithms perform at par with MMSE-optimal Kalman filter
based channel tracking, but with orders of magnitude compu-
tational complexity. In fact, using the algorithms developed
here, one can obtain the benefits of channel tracking with
only a marginal increase in computational complexity com-
pared to the no-tracking case, making the algorithm attractive
for implementation. Future work can consider the effects of
other imperfections such as synchronization errors and pilot
contamination on the tracking performance of the system.

APPENDICES

A. Proof of Theorem 1

Letting Yu,n = [yu[1], . . . ,yu[n]], Ŝu,n =
[̂su[1], . . . , ŝu[n]], S̃u,n = [̃su[1], . . . , s̃u[n]], and
Wu,n = [wu,n[1], . . . ,wu,n[n]] we can write (11) as

Yn = H(
√
β � Eu,s)� Ŝu,n

+ H(
√
β � Eu,s)� S̃u,n +

√
N0Wu,n. (33)

Since Ŝu,n is known at the BS, we can use it
to obtain the least squares estimate Ĥ[n] of H as
Ĥ[n] = YnŜ†u,ndiag(

√
β � Eu,s)−1, with A† representing

the Moore-Penrose inverse of the matrix A. We define the

empirical autocorrelation matrix of the estimated symbols
and empirical cross correlation matrix between the received
samples, respectively, as

Φ[n] = Ŝu,nŜHu,n = Φ[n− 1] + ŝu[n]̂sHu [n], (34)

Γ [n] = Yu,nŜHu,n = Γ [n− 1] + yu[n]̂sHu [n]. (35)

Letting ŷu[n] = Ĥ[n− 1]diag(
√
β � Eu,s)̂su[n], it is easy to

show that

Ĥ[n]diag(
√
β � Eu,s) = Γ [n]Φ−1[n]

= (Γ [n− 1] + y[n]̂sHu [n])Φ−1[n] =

(
Γ [n− 1]

(
Φ−1[n− 1]

− Φ−1[n− 1]̂su[n]̂sHu [n]Φ−1[n− 1]

1 + ŝH [n]Φ−1[n− 1]̂su[n]

)
+ y[n]̂sHu [n]Φ−1[n]

)
= Ĥ[n− 1]diag(

√
β � Eu,s)

+ (y[n]− ŷ[n])
ŝHu [n]Φ−1[n− 1]

1 + ŝHu [n]Φ−1[n− 1]̂su[n]
. (36)

Defining gH [n] , ŝHu [n]Φ−1[n−1]

1+ŝHu [n]Φ−1[n−1]̂su[n]
as the RLS gain,

the estimate of the channel matrix at the nth instant is given
by (12) with ỹu[n] = yu[n]− ŷu[n]. Introducing a forgetting
factor 0 ≤ µr ≤ 1 to provide higher weightage to more recent
samples, can modify (34) and (35) as Φ[n] = µrΦ[n − 1] +
ŝu[n]̂sHu [n], Γ [n] = µrΓ [n−1]+ ŷu[n]̂sHu [n]. Then, (12) can
be used to update the channel estimates, with the gain g[n]
taking the value given by (13).

B. Proof of Theorem 2

Defining the channel estimation error at the nth instant as
H̃[n] = H[n] − Ĥ[n], and assuming that the channel ages
according to (1), we can write

H̃[n] = H[n− 1]diag(ρ[1]) + Zh[n]diag(ρ̄[1])− Ĥ[n− 1]

− (ỹ[n]̂sHu [n]Φ−1[n])diag(
√
β � Eu,s)−1. (37)

Also, as discussed in [31], for velocities of up to 250 km/hr,
and in the sub-6 GHz range for the carrier frequency, 0.999 ≤
ρ[1] ≤ 1. Therefore, we can approximate ρ[1] ≈ 1 [29] in the
first term above, and consequently,

H̃[n] = H̃[n− 1] + Zh[n]diag(ρ̄[1])

− (ỹ[n]̂sHu [n]Φ−1[n])diag(
√
β � Eu,s)−1. (38)

But

ỹ[n] =H[n]diag(
√
β � Eu,s)̂su[n]

− Ĥ[n− 1]diag(
√
β � Eu,s)̂su[n]

+H[n]diag(
√
β � Eu,s)s̃u[n] +

√
N0wu[n]

=H̃[n− 1]diag(
√
β � Eu,s)̂su[n]

+ Zh[n]diag(ρ̄�
√
β � Eu,s)̂s[n]

+ H[n]diag(
√
β � Eu,s)s̃u[n] +

√
N0wu[n], (39)

and thus,

H̃[n] =H̃[n− 1]− H̃[n− 1]diag(
√
β � Eu,s)



12

× ŝu[n]̂sHu [n]Φ−1[n]diag(
√
β � Eu,s)−1

+ Zh[n]diag(ρ̄[1])− Zh[n]diag(ρ̄�
√
β � Eu,s)̂su[n]

× ŝHu [n]Φ−1[n]diag(
√
β � Eu,s)−1

+ H[n]diag(
√
β � Eu,s)

× s̃u[n]ŝHu [n]Φ−1[n]diag(
√
β � Eu,s)−1

+
√
N0wu[n]̂sHu [n]Φ−1[n]diag(

√
β � Eu,s)−1.

(40)

Defining h̃[n] = vec(H̃[n]) and zh[n] = vec(Zh[n]), we get

h̃[n] = h̃[n− 1]− (diag
(√

β � Eu,s
)

ŝu[n]̂sHu [n]×

Φ−1[n]diag(
√

β � Eu,s)−1 ⊗ IN )h̃[n− 1]

+(diag(ρ̄[1])⊗IN )zh[n]− (diag(ρ̄�
√

β � Eu,s)̂su[n]̂sHu [n]

×Φ−1[n]diag(
√
β � Eu,s)−1 ⊗ IN )zh[n]

+ (diag(
√

β � Eu,s)s̃u[n]ŝHu [n]Φ−1[n]diag(
√

β � Eu,s)−1

⊗IN )h[n]+
√
N0vec(wu[n]̂sHu [n]Φ−1[n]diag(

√
β � Eu,s)−1)

(41)

This can be rewritten as

h̃[n] = ((IK − diag(
√
β � Eu,s)̂su[n]̂sHu [n]Φ−1[n]

×diag(
√
β � Eu,s)−1)⊗IN )(h̃[n−1]+(diag(ρ̄[1])⊗IN )zh[n])

+ (diag(
√
β � Eu,s)s̃u[n]ŝHu [n]Φ−1[n]

× diag(
√

β � Eu,s)−1 ⊗ IN )h[n]

+
√
N0vec(wu[n]̂sHu [n]Φ−1[n]diag(

√
β � Eu,s)−1). (42)

Now, since E[su[n]sHu [n]] = IK , for large n, Φ[n] ≈
1

(1−µr)IK and consequently, Φ−1[n] ≈ (1− µr)IK . Thus

h̃[n] = ((IK − (1− µr)diag(
√
β � Eu,s)̂su[n]

× ŝHu [n]diag(
√
β � Eu,s)−1))⊗ IN )

× (h̃[n− 1] + (diag(ρ̄[1])⊗ IN )zh[n])

+ (1− µr)(diag(
√
β � Eu,s)s̃u[n]ŝHu [n]

× diag(
√

β � Eu,s)−1 ⊗ IN )h[n]

+
√
N0(1− µr)vec(wu[n]̂sHu [n]diag(

√
β � Eu,s)−1).

(43)

Also, since µr ≈ 1, and 1− µr � 1, we can use the direct
averaging method [29] to approximate the above as

h̃[n] = µr(h̃[n− 1] + (diag(ρ̄[1])⊗ IN )zh[n])

+ (1− µr)(diag(s̃u[n]ŝHu [n]⊗ IN )h[n]

+
√
N0(1− µr)vec(wu[n]̂sHu [n]diag(

√
β � Eu,s)−1).

(44)

We assume that the symbol errors exist in the kth UE’s
data stream with a probability Pu,k[n], i.e., E[|s̃u,k[n]|2] ≤
4Pu,k[n] [35], such that E [̃su[n]̃sHu [n]] = Pu[n], with Pu[n] =
diag(Pu,1, . . . , Pu,K). We also assume that the symbol esti-
mates are independent of the corresponding estimation er-
rors. Also, letting B̄k[n] = E[h̃k[n]h̃Hk [n]], and B̄[n] =
E[h̃[n]h̃H [n]], we can write

B̄2[n] = µ2
rB̄

2[n− 1] + µ2
rdiag(ρ̄2[1])⊗ IN

+ (1− µr)2(N0diag(β � Eu,s)−1 + 4diag(Pu[n]))⊗ IN .
(45)

We note that all the terms in the above equation are diagonal
matrices with the first being a function of B̄2[n − 1]. We
also note from the system model that B̄2[0] is diagonal, and
consequently B̄2[n] is diagonal for all n. Also defining b̄[n] =
[b̄1[n], b̄2[n], . . . , b̄K [n]]T , we can write, B̄[n] = diag(b̄[n])⊗
IN , and consequently,

b̄2[n] = µ2
rb̄

2[n− 1] + µ2
r(ρ̄

2[1])

+ (1− µr)2(N0(β � Eu,s)−1 + 4(Pu[n])). (46)

Considering the kth entry of (46) completes the proof.

C. Proof of Theorem 3

Defining û[n] = diag(
√

β � Eu,s)̂su[n] and ũ[n] =
diag(

√
β � Eu,s)̃su[n] for ease of notation, and using (11),

with the knowledge of û[n] and yu[n], Ĥo, the optimal MMSE
estimate of H, satisfies

Ĥo = arg min
H

E
[
‖yu[n]−Hû[n]‖22

]
= arg min

H
J(H),

(47)
where J(H), defined implicitly, is the cost function. Letting
σ2
y = E[‖yu[n]‖22], Rûû = E[û[n]ûH [n]], and Ryû =
E[yu[n]ûH [n]], we can write,

J(H) = σ2
y − Tr{HRH

yû} − Tr{RyûH
H}+ Tr{RûûH

HH}.
(48)

We can now write the gradient of J(H) w.r.t. H as,

∇HJ = HRûû −Ryuû = −E[(yu[n]−Hû[n])ûH [n]]

= −E[ỹu[n]ûH [n]]. (49)

Therefore, using the method of steepest descent, and replac-
ing the statistical average with its instantaneous value, we can
iteratively update the channel estimate at the BS as (16).

D. Proof of Theorem 4

We can write Ĥ[n+ 1] as

Ĥ[n+ 1] = Ĥ[n] + µaỹu[n]ûH [n]

= Ĥ[n] + µaH[n]û[n]ûH [n]− µaĤ[n]û[n]ûH [n]

+ µaH[n]ũ[n]ûH [n] + µawu[n]ûH [n]. (50)

Considering the above, we can write the estimation error at
the nth instant as

H̃[n+ 1] = H̃[n]
(
IK − µaû[n]ûH [n]

)
diag(ρ[1])

+ Zh[n]diag(ρ̄[1])− µaH̃[n](û[n]ûH [n])(IK − diag(ρ[1]))

− (H[n]ũ[n] + wu[n])ûH [n]. (51)

Letting h̃[n] = vec(H̃[n]), h[n] = vec(H[n]), zh[n] =
vec(Zh[n]), and using the small step size approximation [29]
to replace µaû[n]ûH [n] with its mean, we get

h̃[n+ 1] = (INK − µa(Rûû ⊗ IN )) (diag(ρ[1])⊗ IN )h̃[n]

+ (diag(ρ̄)⊗ IN )zh[n]− µa(û∗[n]ũT [n]⊗ IN )h[n]
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−µa(Rûû(IK−diag(ρ[1]))⊗IN )h̃[n]−µa(û∗[n]⊗IN )wu[n].

Now, since the symbols transmitted by the different UEs
are uncorrelated, Rûû = diag(β � Eu,s), and therefore, the
estimation error of the (ik)th channel coefficient evolves as

h̃ik[n+ 1] = (1− µaβkEu,s,k) ρk[1]h̃ik[n]

+ ρ̄k[1]zh,ik[n]− µaβkEu,s,k(1− ρk[1])h̃ik[n] + ωik[n].
(52)

with ωik[n] being the (ik)th entry of −µa(H[n]ũ[n] +
wu[n])ûH [n], which has zero mean and a variance µ2

a(N0 +
4Pu,k[n]βkEu,s,k)

∑K
l=1 βkEu,s,k. Note that the variance does

not depend on i, the antenna index at the base station, as the
channel statistics are identical across BS antennas and only
differ from UE to UE. This completes the proof of (17).

E. Proof of Theorem 5

Defining yd,k,n = [yd,k[1], . . . , yd,k[n]]T , ŝd,k,n =
[ŝd,k[1], . . . , ŝd,k[n]]T , s̃d,k,n = [s̃d,k[1], . . . , s̃d,k[n]]T , and
wk,n = [wk[1], . . . , wk[n]]T we can write

yd,k,n =
√
N(gkkŝd,k,n+gkks̃d,k,n+

K∑
l=1
l 6=k

gklsd,l,n)+
√
N0wk,n.

(53)
Since ŝd,k,n is available at the kth UE, we can use it
to obtain the least squares estimate ĝkk[n] of gkk[n] as
ĝkk[n] = 1√

N

ŝHd,k,nyd,k,n

‖ŝd,k,n‖22
, with ‖ŝd,k,n‖2 denoting the `2 norm

of ŝd,k,n such that ‖ŝd,k,n‖22 = ‖ŝd,k,n−1‖22 + |ŝd,k[n]|2.

We note that 1
‖ŝd,k,n‖22

= 1
‖ŝd,k,n−1‖22

 1

1+
|ŝd,k[n]|2

‖ŝd,k,n−1‖
2
2

 , and

ŝHd,k,nyd,k,n = ŝHd,k,n−1yd,k,n−1 + yd,k[n]ŝ∗d,k[n]. Letting
ŷd,k[n] = ĝkk[n− 1]ŝd,k[n], it is easy to show that

ĝkk[n] =
1√
N

(ŝHd,k,n−1yd,k,n−1 + yd,k[n]ŝ∗d,k[n])

‖ŝd,k,n‖22

=
1√
N

ŝHd,k,n−1yd,k,n−1

‖sd,k,n−1‖22

(
1−

ŝd,k[n]ŝ∗d,k[n]

‖ŝd,k,n‖22

)
+

1√
N
yd,k[n]ŝ∗d,k[n]

(
1

‖ŝd,k,n‖22

)
= ĝkk[n−1]+

1√
N

(yd,k[n]−ŷd,k[n])ŝ∗d,k[n]

(
1

‖ŝd,k,n‖22

)
.

(54)

Defining ck[n] , 1√
N

ŝ∗d,k[n]

‖sd,k,n−1‖
2
2

1+
|ŝd,k[n]|2

‖ŝd,k,n−1‖
2
2

as the RLS gain, we can

write the estimate of the effective downlink channel at the nth
instant as (25).

Introducing a forgetting factor µr (0 ≤ µr ≤ 1), to allow
higher weightage to the recent observations, we obtain
‖ŝd,k,n‖22 = µr‖ŝd,k,n−1‖22 + |ŝd,k[n]|2,

1
‖ŝd,k,n‖22

= 1
‖ŝd,k,n−1‖22

 1

µr+
|ŝd,k[n]|2

‖ŝd,k,n−1‖
2
2

 , and

ŝHd,k,nyd,k,n = µr ŝ
H
d,k,n−1yd,k,n−1+yd,k[n]ŝ∗d,k[n]. Thus, (25)

can be used to obtain updated estimates of the channel, with
the gain ck[n] taking the value given by (26).

F. Proof of Theorem 6

Defining the channel estimation error at the nth instant as
g̃kk[n] = gkk[n] − ĝkk[n], and assuming the channel to age
according to (9) and approximating ρ[1] ≈ 1 [29], we have

g̃kk[n] = g̃kk[n− 1] + ρ̄k[1]ζkk[n]

− 1√
N

(
ỹd,k[n]

ŝ∗d,k[n]

‖sd,k,n‖22

)
. (55)

But

ỹd,k[n] =
√
Ng̃kk[n]ŝd,k[n] +

√
Ngkks̃d,k[n]

+
√
N

K∑
l=1
l 6=k

gkl[n]sd,l[n] +
√
N0wd,k[n]

=
√
Ng̃kk[n− 1]ŝd,k[n] +

√
Nρ̄k[1]ζkk[n]ŝd,k[n]

+
√
Ngkk[n]s̃d,k[n]+

√
N

K∑
l=1
l 6=k

gkl[n]sd,l[n]+
√
N0wd,k[n],

and consequently,

g̃kk[n] = g̃kk[n− 1]− g̃kk[n− 1]
|ŝd,k[n]|2

‖ŝd,k,n‖22

+ ρ̄k[1]ζkk[n]− ρ̄k[1]ζkk[n]
|ŝd,k[n]|2

‖ŝd,k,n‖22

+ gkk[n]
s̃d,k[n]ŝ∗d,k[n]

‖ŝd,k,n‖22
+

K∑
l=1
l 6=k

gkl[n]
sd,l[n]ŝ∗d,k[n]

‖ŝd,k,n‖22

+
√
N0

w[n]ŝ∗d,k[n]

‖ŝd,k,n‖22
. (56)

Since E[|sd,k[n]|2] = 1, for large n, we can approximate
1

‖ŝd,k,n‖22
≈ 1− µr. Now,

g̃kk[n] = (1− (1−µr))(g̃kk[n− 1] + ρ̄k[1]ζkk[n])|ŝd,k[n]|2

+(1−µr)
K∑
l=1
l 6=k

gkl[n]sd,l[n]ŝ∗d,k[n]+(1−µr)ŝ∗d,k[n]s̃d,k[n]gkk[n]

+ (1− µr)
√
N0wd,k[n]ŝ∗d,k[n]. (57)

Also, since µr ≈ 1, and 1− µr � 1, we can use the direct
averaging method [29] to approximate the above as

g̃kk[n] = µr(g̃kk[n− 1] + ρ̄[1]ζkk[n])

+(1−µr)
K∑
l=1
l 6=k

gkl[n]sd,l[n]ŝ∗d,k[n]+(1−µr)ŝ∗d,k[n]s̃d,k[n]gkk[n]

+ (1− µr)
√
N0wd,k[n]s∗d,k[n]. (58)

We note that all the terms being summed on
the RHS of (58) are independent, therefore, the
variance of their sum is the same as the sum of their
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variances. We also know that E[|g̃kk[n]|2] = ā2
k[n],

E[|ζkk[n]|2] = βkEd,s,k, E[|gkl[n]sd,l[n]ŝ∗d,k[n]|2] =
E[|gkl[n]|2]E[|sd,l[n]|2]E[|ŝ∗d,k[n]|2] = βkEd,s,l, and
E[|ŝ∗d,k[n]s̃d,k[n]gkk[n]|2] ≤ 4Pe,kβkEd,s,k. Substituting
these into the variance of g̃kk[n] completes the proof.

G. Proof of Theorem 7

Using (24), with the knowledge of ŝd,k[n] and yd,k[n], we
can write ĝkk,o, the MMSE estimate of gkk, as

ĝkk,o = arg min
g
E
[
|yd,k[n]−

√
Ngŝd,k[n]|22

]
= arg min

g
J(g).

(59)
Letting σ2

y = E[|yd,k[n]|22], σ2
ŝ = E[|ŝd,k|2], and σyŝ =

E[yd,k[n]ŝ∗d,k[n]], we can write,

J(g) = σ2
y − 2<{

√
Ngσ∗yŝ}+N |g|2σ2

ŝ . (60)

We can now write the gradient of J(g) at g∗ as,

∇g∗J =
√
Ngσ2

ŝ −Nσyŝ
= −
√
NE[(yd,k[n]−

√
Ngŝd,k[n])ŝ∗d,k[n]]

= −E[ỹd,k[n]ŝ∗d,k[n]], (61)

where the estimate of the received signal at the nth instant
is defined as ŷd,k[n] =

√
Nĝkk[n]ŝd,k[n], and ỹd,k[n] =

yd,k[n]− ŷd,k[n]. Approximating the expectation term in (61)
with its instantaneous stochastic value, and introducing an
adaptation step size µa, we can iteratively update the channel
estimate as (28).

H. Proof of Theorem 8

We can write ĝkk[n+ 1] as,

ĝkk[n+ 1] = ĝkk[n] + µaỹd,k[n]ŝ∗d,k[n]

= ĝkk[n] + µagkk[n]|ŝd,k[n]|2 − µaĝkk[n]|ŝd,k[n]|2

+ µaĝkk[n]s̃d,k[n]ŝ∗d,k[n]

+ µa
∑
l=1
l 6=k

gkl[n]sd,l[n]ŝ∗d,k[n] + µawd,k[n]ŝ∗d,k[n]. (62)

We can now write the channel estimation error at the nth
instant as

g̃kk[n+ 1] = ρk[1]g̃kk[n]
(
1− µa|ŝd,k[n]|2

)
+ ρ̄k[1]ζkk[n]

−µa

√Nĝkk[n]s̃d,k[n]+
√
N
∑
l=1
l 6=k

gkl[n]sd,l[n] + wd,k[n]

ŝ∗d,k[n].

Using the small step size approximation [29] to replace
µa|ŝ[n]|2 with its expected value, we can write

g̃kk[n+ 1] = ρk[1] (1− µa) g̃kk[n] + ρ̄k[1]ζkk[n]

−
√
Nµa(ŝ∗d,k[n]s̃d,k[n])gkk[n]−

√
Nµa

∑
l=1
l 6=k

gkl[n]sd,l[n]ŝ∗d,k[n]

− µawd,k[n]ŝ∗d,k[n]. (63)

Letting ωk = µa
√
N(ŝ∗d,k[n]s̃d,k[n])gkk[n] −

µa
√
N
∑

l=1
l 6=k

gkl[n]sd,l[n]ŝ∗d,k[n] − µawk[n]ŝ∗d,k[n], it

can be shown to have a zero mean and a variance
µ2
a(N0 + βk

∑
l=1
l 6=k
Ed,s,l + 4Pd,k[n]βkEd,s,k). Substituting this

into the mean squared value of (63) results in (30).
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