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On the Relationship Between Mean Absolute Error
and Age of Incorrect Information in the Estimation
of a Piecewise Linear Signal over Noisy Channels

Subham Saha, Harkirat Singh Makkar, Vineeth Bala Sukumaran, and Chandra R. Murthy

Abstract—We consider the remote estimation of a stochastic
piecewise linear signal, observed by a sensor, at a monitor. The
sensor transmits a packet whenever the observed signal’s slope
changes. The packets are transmitted from the sensor to the
monitor through an unreliable channel which randomly loses
packets. The monitor sequentially estimates the signal using the
information obtained from successfully received packets. The
sensor does not have any feedback from the monitor. We derive an
analytical expression for the average age of incorrect information,
a recently proposed information freshness metric. The average
age of incorrect information is shown to be a function of success
probability of transmission and signal parameters representing
the rate and clustering of slope changes. We obtain an upper
bound on the mean absolute error of the remote estimate
using the slope-weighted age of incorrect information. The age
of incorrect information is also studied for a homogeneous
multisensor scenario, where sensors use slotted ALOHA and the
links between the sensors and the monitor are unreliable due to
contention.

I. INTRODUCTION

The remote estimation of a physical process observed by
a sensor at a remote monitor is a problem of current interest
[1], [2]. We consider a scenario in which the physical process
is modelled as a stochastic piecewise linear (PL) signal,
with randomly chosen slopes and slope-change epochs. Such
models are relevant in wireless sensor networks with energy,
memory, and computation constrained nodes which use low-
complexity lossy compression techniques such as lightweight
temporal compression (LTC) [3]–[5] to obtain PL signals from
monitored processes. The sensor monitors the PL signal and
uses an event-triggered transmission policy that transmits a
packet containing the current value and slope whenever the
slope changes. The packets are transmitted through a channel
which randomly loses packets due to noise or contention. An
estimate of the PL signal is obtained by the remote monitor
using successfully received packets. There is no feedback
assumed from the monitor to the sensor. We analyze the age of
incorrect information (AoII) [6], which is a recently proposed
information freshness metric, and explore its connection with
mean absolute error (MAE) of the remote estimate. We pro-
pose a slope-weighted AoII and use it to obtain an upper bound
on the MAE. The results are also applied to a homogeneous
multisensor scenario with slotted ALOHA.
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The analysis and design of sampling and transmission
policies for remote estimation problems has been considered in
[1], [2], [6]–[12]. Sun et al. [1] consider the remote estimation
of a Wiener process over a channel with random delay and
with a mean-squared error (MSE) performance metric. A
threshold-based policy is shown to be optimal for minimizing
the MSE. The authors also show the equivalence of MSE with
age of information for signal oblivious sampling schemes.
Design of sampling policies for remote estimation of Ornstein-
Uhlenbeck processes is studied in [8]. Under the assumption
that the signal model is a Markov process, the best sampling
scheme for an energy harvesting sensor has been considered
by Nayyar et al. [7]. The sampling policy is shown to be a
threshold policy when the performance metric is the MSE.
Markov sources have also been considered in [2] and [11],
although these works do not analyze remote estimation error.
Joshi et al. [12] consider the remote estimation of a autore-
gressive Markov process and obtain optimal threshold policies
that minimize a combination of estimation error and commu-
nication cost. In many practical sensor networks applications
(e.g. [13]), the sensors use lossy data compression techniques
in order to reduce memory requirements for storage as well
as reduce energy requirements for transmission of sensed data
[4], [5]. Compression techniques such as LTC [3] or PLAM-
LiS [13] result in PL signals which are then communicated
and remotely estimated at the receiver. A comparative study
in [4] shows that LTC is energy efficient in wireless networks
with a good compression ratio. Therefore, we consider the
remote estimation of PL signal models in this work. Although
PL signal models (more precisely, the slope models) can be
related to the Markov signal models considered in [2], [11],
and [12], we note that analytical characterizations of its age
metrics and connections with remote estimation error are not
available in prior work for PL signal models.

Information freshness metrics such as age of information
and AoII have been used to design sampling and transmis-
sion policies for remote estimation. Minimization of age of
information has been shown to be equivalent to minimization
of MSE in [1], [8]. However, many other information fresh-
ness metrics, e.g, AoII [6] do not have a direct relationship
with remote estimation performance metrics. We explore the
connection between an error metric (MAE) for the remote
estimation of PL signals and AoII in this paper.
Contributions: (a) We obtain analytical expressions for AoII as
well as the MAE of the slope estimate for the PL signal model,
(b) we propose a weighted AoII to obtain an upper bound on
MAE, where the weight at a time is determined by the absolute
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Fig. 1: (a) The two state Markov chain modelling the slope transitions
for the PL signal model with state 1 denoting a slope change, ? and
@ ∈ (0, 1). (b) The set of allowed (6, @) values is the convex region
bounded by the red perimeter. Examples of - (C) corresponding to
(6, @) in different regions are also illustrated.

error in the slope estimate of the PL process at that time, (c) we
apply the above results to a homogeneous #-sensor scenario
with a remote monitor which estimates the independent PL
signals monitored by each sensor separately. The sensors use
slotted ALOHA for transmission. We obtain insights into the
behaviour of AoII as well as the source statistics which meet
AoII constraints.

Notation: The set of non-negative integers is Z+. Capital
letters (e.g., -) are used to denote random variables. The
distribution of random variables is denoted using ∼, (e.g.
- ∼ 5- ), and E denotes expectation. The uniform distribution
on [0, 1] is denoted as * [0, 1]. Independent and identically
distributed random variables are denoted as IID.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a discrete time system with slots indexed by
C ∈ Z+. The PL signal model - (C) is defined as follows. The
slope of - (C) in slot C is denoted by " (C). We define the times
at which the slope " (C) changes using a time homogeneous
Markov chain ((C) with transition probabilities as shown in
Figure 1(a). The process " (C) evolves as:

1) if ((C) = 0, then " (C) = " (C − 1),
2) if ((C) = 1, then a new slope " (C) is sampled.
The new slope is a sample of a continuous random variable

with zero mean, finite variance, and a distribution 5" (<)
symmetric about 0. In this paper, as a specific example, we
consider 5" (<) to be * [−<0, <0] where 0 < <0 < ∞. The
process - (C) then evolves as

- (C + 1) = - (C) + " (C),∀C.

We assume that ((0) is sampled from the stationary distribu-
tion of the Markov chain (((C)), " (0) = <0, and - (0) = G0.
The initial values <0 and G0 are also assumed to be known by
the receiver. We define 6 = ?/(? + @) which is the stationary
probability of ((C) = 1. We can interpret 6 as the rate at which
slope changes and @ as deciding whether the slope changes
occur close together (or clustered) or not (see Figure 1(b)).
The values of 6 and @ can be used to qualitatively classify the
PL signal as follows: (a) 6 ≈ 0 and @ ≈ 0: rare changes and
changes are clustered, (b) 6 ≈ 1 and @ ≈ 0: frequent changes
and changes are clustered, (c) 6 ≈ 0 and @ ≈ 1: rare changes
and changes are not clustered, (d) 6 ≈ 1 and @ ≈ 1: frequent
changes and changes are not clustered.

We note that PL signals could have rare/frequent and
clustered/non-clustered changes either naturally or as a result
of the choice of parameters in a sampling/compression algo-
rithm that produces a PL signal as its output. For example,
suppose the monitored signal is the velocity of a vehicle.
When the vehicle is moving on a highway with low traffic,
its velocity would have rare and non-clustered changes. If the
vehicle is moving in the downtown area of a city with low
traffic, there would be frequent, but non-clustered changes. On
the other hand, traffic may cause a number of velocity changes
to cluster together. As another example, the LTC algorithm
[13] uses a parameter, 4, to control the maximum absolute
error between the actual signal and the PL signal. If 4 is large,
the PL signal would have rare changes, and the frequency of
slope changes would increase as 4 is decreased. Furthermore,
if 4 is varied over time, the changes become clustered.

We assume that there is no feedback from the monitor to
the sensor. Without any additional information regarding the
remote estimate the sensor transmits a packet to the monitor
whenever the slope of - (C) changes (i.e., at C such that
((C) = 1).1 The transmission is not always reliable. If there is
a transmission in slot C, it is successful (denoted by � (C) = 1)
with probability ?B and unsuccessful (� (C) = 0) with prob-
ability 1 − ?B , where ?B ∈ (0, 1). We assume that � (C)
is independent across transmission slots. At a transmission
slot C, the generated packet2 %(C) consists of (- (C), " (C)).
Our objective is to remotely estimate " (C) and - (C) at the
monitor3. We denote the estimate of - (C) obtained remotely
at the monitor by -̂ (C) and that of " (C) by "̂ (C).4 Let # (C)
be the number of successfully received packets till slot C
(including any packet at slot C). The time index at which the
8th packet is successfully received is denoted by )8 . Then,

-̂ (C) =
{
- (C), if � (C) = 1
-̂ (C − 1) + "̂ (C − 1), otherwise.

Here, "̂ (C) = " (C) if � (C) = 1 and "̂ (C) = "̂ (C − 1) =

" ()# (C) ) otherwise. Note that, at time slot C, )# (C) ≤ C

denotes the time of reception of the latest successfully re-
ceived packet. Thus, the remote estimator sets the estimates
-̂ (C) = - (C) and "̂ (C) = " (C) when a packet is successfully
received at slot C. Otherwise, it uses the last successfully
received slope value to update -̂ (C) and "̂ (C). We also let
-̂ (0) = G0 and "̂ (0) = <0. The quality of the estimates for
PL signal and slope are measured using

MAE = lim
)→∞

1
)

) −1∑
C=0
E

(
| -̂ (C) − - (C) |

)
and

MAE( = lim
)→∞

1
)

) −1∑
C=0
E

(
|"̂ (C) − " (C) |

)
,

1In Section III, we also consider a case where the sensor transmits
periodically every ) slots after a slope-change transmission or when a slope
change occurs, whichever is earlier.

2Note that both � (C) and % (C) are used to define events only at slots
where transmissions occur.

3The estimation of " (C) is similar to that of remotely estimating a
piecewise constant function.

4The remote estimates -̂ (C) and "̂ (C) are computed at the end of the slot
C; but we consider the time index to be C itself.
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respectively, conditioned on the initial values.

III. AGE OF INCORRECT INFORMATION

The error metrics | -̂ (C) − - (C) | or |"̂ (C) − " (C) | can
be viewed as cost functions that penalize the sensor-remote
estimator system when there is change in the process, but
that change is not successfully communicated to the remote
estimator.5 This is similar to AoII [6] which penalizes the
sensor when it fails to update the remote estimator. In this
section, we derive an analytical characterization of AoII as
well as MAE( . Furthermore, we propose a weighted AoII to
obtain an upper bound on the MAE.

We define )2 (C) = max {B ∈ Z+ : B ≤ C, ((B) = 1}, i.e., the
latest slot in time up to C at which a slope change occurred.
The AoII is a function of slot index C defined as

�(C) =
{

0, if )2 (C) = )# (C) ,
�(C − 1) + 1, otherwise.

The initial value �(0) is assumed to be 0. Thus, �(C) counts
the number of slots for which the monitor has an incorrect
estimate of - (C). We now define the average AoII as

lim
)→∞

1
)

) −1∑
C=0
E�(C),

where the expectation is over the randomness of the under-
lying PL signal as well as random packet losses (included
by using )# (C) in the definition of �(C)) between the sensor
and remote estimator. We also define an absolute slope error
weighted AoII as , (C) =

[
�(C) × |"̂ (C) − " (C) |

]
and its time

average

WAoII = lim
)→∞

1
)

) −1∑
C=0
E, (C).

We have the following characterizations.

Proposition III.1. The average AoII is

(1 − ?B)
[
1 +

(
1 + @

?

)
1 − ?B
?B

+ @

?(? + @)

]
. (1)

The proof is provided in Appendix A. We note that the
above characterization of average AoII also holds for Markov
sources which are considered in [6] or [11]. We also have the
following characterizations for the MAE based metrics.

Proposition III.2. Suppose "0 and "1 are two independent
random variables with the slope distribution 5" (<). Then,
for ?B ∈ (0, 1), MAE( = E [|"1 − "0 |] (1 − ?B) and MAE ≤
WAoII = E [|"1 − "0 |] AoII.

The proof is provided in Appendix B. We note that MAE(
is independent of the source parameters ? and @. Also, for
"8 ∼ * [−<0, <0], E [|"1 − "0 |] = 2<0/3 (since "1 and
"0 are independent). If |" (C) | ≤ <0, then | -̂ (C) − - (C) | ≤
2<0�(C) and MAE is bounded above by 2<0 AoII. Thus, we
have a tighter upper bound in the above result.

5We note that the probability of -̂ (C) = - (C) or "̂ (C) = " (C) without
� (C) = 1 is zero.
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Fig. 2: (a) AoII (simulation vs. theoretical) as a function of ? (or ?B)
with ?B = 0.8, @ = 0.5 (and ? = 0.1, @ = 0.5). (b) MAE and MAEB
vs. ?B , for ? = 0.1, @ = 0.5. The WAoII upper bound is also shown.

Simulation Results and discussion: In Figure 2(a), we
compare the average AoII from (1) with that obtained from
simulation as a function of (a) ? with ?B = 0.8 and @ = 0.5,
and (b) ?B with ? = 0.1 and @ = 0.5. We see that the analysis
and simulations match perfectly. We observe from (1) that
sources with 6 ↓ 0 have average AoII ↑ ∞, due to the second
term in the brackets. This is because, when there are infrequent
transmissions, any unsuccessful transmission leads to a large
increase in average AoII. We also note that within the set of
sources with 6 ≈ 0, those with @ → 1 (sources with slopes
that are not clustered) have the largest average AoII. This is
intuitive, since in comparison to unclustered slope changes, for
clustered slope changes even if there is a slope change that was
not known at the receiver due to an unsuccessful transmission,
there is subsequent slope change (with high probability) which
may possibly be successful due to which the estimation error
resets to 0. In Figure 2(b) we compare the simulated MAE(
with the analytical characterization; they match perfectly. We
also plot the simulated MAE with the upper bound WAoII.
The upper bound is observed to be tight for ?B close to 1. We
also observe that the simulated and theoretical WAoII match
perfectly. Our analytical bound on the MAE can be used to
identify the source statistics which can be transmitted over
a channel with a given ?B , while satisfying a given bound
on the MAE. Furthermore, in cases where the PL signal is
obtained as the output of a compression algorithm (such as
LTC), the MAE bound can be used to choose the parameters
of the algorithm (e.g., the allowable error ‘4’ for LTC) so that
the error in compression and the error in remote estimation
can be traded off with each other.
Multiple access channels: In the above discussion, the suc-
cess probability ?B was modelled as being independent of ?
and @. However, this does not always hold true, as in the case
of multiple access channels. Consider a network consisting
of # ∈ Z+ nodes where the nodes use slotted ALOHA (SA)
as a multiple access protocol. Each node observes a PL signal
modelled as an independent Markov chain as in Figure 1, with
the same ? and @ across the nodes. The transmission from a
node which has ((C) = 1 is successful only when all other
# − 1 nodes do not transmit or have ((C) = 0. Then, we have

that ?B =
(
@

?+@

)#−1
.

The following observations can be obtained for SA from
Proposition III.1: (a) The average AoII for a node increases
exponentially with the number of nodes # (as # → ∞, then
?B → 0 and the dominating term in average AoII is 1/?B).
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Fig. 3: AoII for SA as a function of ?, with # = 10, @ = 0.1.
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Fig. 4: AoII vs the average rate of transmissions for P1, P2, and P3
for @ = 0.5, ?B ∈ 0.8, 0.01 and (a) ? = 0.1, (b) ? = 0.01. Plots are
obtained by varying ) (for P1), # (for P2), or both (for P3).

(b) For sources with rare changes in slope (i.e., 6 → 0 for
a fixed value of @) the average AoII converges to (# − 1)/@
(this limit is obtained by approximating ?B as 1− (# − 1)?/@
when ? ≈ 0). (c) With SA, for a source with fixed @, there
is an optimal value of ? > 0 at which the minimum average
AoII is achieved (see Figure 3). An interesting observation
here is that compared to a channel with fixed ?B (for which
the average AoII ↑ ∞ as 6 ↓ 0), for SA, since ?B decreases
as 6 increases, sources with 6 ↓ 0 have finite average AoII or
MAE. Similar qualitative behavior is expected for other MAC
protocols. Exact characterization of the average AoII for other
MAC protocols is an area for future work.

Tradeoff of AoII with rate of transmission: In many
scenarios, the average AoII can be reduced by retransmissions.
However, this reduction in average AoII comes at the cost
of an increase in the average rate (or in general, cost) of
transmissions. Although the characterization of the optimal
tradeoff is beyond the scope of this work, we illustrate this
tradeoff for three families of policies in Figure 4. We first
consider a family of policies (denoted by P1, parameterized
by )) in which the sensor periodically samples and transmits
every ) slots after the previous transmission or when a slope
change occurs, whichever is earlier. We also consider a family
of policies (denoted by P2, parameterized by #) that transmits
in # contiguous slots after a slope change or till the next
slope change occurs whichever is earlier. Another family, P3,
which combines features of P1 and P2 by transmitting in #

contiguous slots periodically, with period ) , is also considered.
We observe that for higher ?B , P1 achieves a better tradeoff
compared to P2, while for lower values of ?B , P1 and P2
have similar performance. As observed from Figure 4, in many
instances (e.g., # = 5, ) = 500), P3 achieves tradeoff points
which are better than that achieved by both P1 and P2.
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(0, ∗)
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(1 − @) (1 − ?B)

(1 − @) (1 − ?B)

(1 − @)?B

?(1 − ?B)
@

(1 − ?)

??B

@

Fig. 5: Transition diagram for the (((C), � (C))-Markov chain.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we obtained an analytical characterization of
average AoII and MAE for slope estimates in terms of the
parameters of the source. We also obtained an upper bound
on MAE using a weighted AoII. Then, we considered the
case where the unreliable channel arises from slotted ALOHA.
Future work can consider the characterization of MAE and
average AoII for other multiple access protocols (for example,
CSMA, IRSA) as well as the optimal AoII-cost tradeoff.

APPENDIX A
PROOF OF PROPOSITION III.1

We define a Markov chain with state (((C), � (C)) with
transition probability diagram as in Figure 5. Note that if
((C) = 0, � (C) is not defined; we denote this by � (C) = ∗.
A renewal cycle can be defined as the total time taken by the
chain to move from (1, 1) to (1, 0) and then from (1, 0) back
to (1, 1). The first time to visit H starting from G is denoted
as ) HG . Then, the renewal cycle duration is ) (1,0)(1,1) + )

(1,1)
(1,0) . We

note that successive renewal cycle durations are IID. During
the time ) (1,0)(1,1) , there could be multiple visits to (1, 1) but
note that �(C) and the errors in - (C)’s and " (C)’s estimates
are zero. The absolute errors and AoII are nonzero during
)
(1,1)
(1,0) . In the duration ) (1,1)(1,0) , there could be multiple visits to
(1, 0) (at which the slope changes). The expected cumulative
AoII over a renewal cycle is ) (1,1)(1,0) ()

(1,1)
(1,0) + 1)/2. Then, the

average AoII can be obtained from renewal reward theorem
(RRT) [14] as the ratio of the expected cumulative AoII during
the renewal cycle and the expected length E

[
)
(1,0)
(1,1) + )

(1,1)
(1,0)

]
,

so that

AoII = E
[
)
(1,1)
(1,0) ()

(1,1)
(1,0) + 1)

] /
2E

[
)
(1,0)
(1,1) + )

(1,1)
(1,0)

]
. (2)

From Figure 5 we have the following recursive relations. To
compute E[) (1,1)(1,0) ], we note that

E[) (1,1)(1,0) ] = (1−@)?B+(1−@) (1−?B)E[1+)
(1,1)
(1,0) ]+@E[1+)

(1,1)
(0,∗) ]

(3)
and

E[) (1,1)(0,∗) ] = ??B + (1− ?)E[1+)
(1,1)
(0,∗) ] + ?(1− ?B)E[1+)

(1,1)
(1,0) ] .

(4)
From (3) and (4), we get E[) (1,1)(1,0) ] = (1 + @/?)/?B . Similarly,

using recursive relations for E[) (1,0)(1,1) ] and E[) (1,0)(0,∗) ] we have
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E[) (1,0)(1,1) ] = (1 + @/?)/(1 − ?B). We compute E[) (1,1)(1,0) ]
2 using

similar recursive relations. We obtain E[) (1,1)(1,0) ]
2 as

(1−@)?B+(1−@) (1−?B)E[(1+) (1,1)(1,0) )
2]+@E[(1+) (1,1)(0,∗) )

2]
(5)

and E[) (1,1)(0,∗) ]
2 as

??B + (1− ?)E[(1+) (1,1)(0,∗) )
2] + ?(1− ?B)E[(1+) (1,1)(1,0) )

2] .
(6)

From (3), (4), (5) and (6) we get

E[) (1,1)(1,0) ]
2 =

1
?B

[
1 + @

?

(
1 + 2

?

)
+ 2
(1 − ?B)
?B

(
1 + @

?

)2
]
.

From (2), the average AoII is

� = E

[(
)
(1,1)
(1,0)

)2
+ ) (1,1)(1,0)

]/
2E

[
)
(1,0)
(1,1) + )

(1,1)
(1,0)

]
, (7)

which can be simplified to

(1 − ?B)
[
1 +

(
1 + @

?

)
1 − ?B
?B

+ @

?(? + @)

]
,

as desired, which concludes the proof.

APPENDIX B
PROOF OF PROPOSITION III.2

We reuse the notation from Appendix A. We consider the
Markov chain in Figure 5 and the renewal process from Ap-
pendix A to characterize MAE( . Note that |"̂ (C) −" (C) | > 0
during ) (1,1)(1,0) . Starting from the state (1, 0), let us assume that
there are # ∈ Z+ visits to (1, 0) before visiting (1, 1) in the
duration ) (1,1)(1,0) . We denote the durations of these visit times

by �1, �2, . . . , �# . Furthermore, let �#+1 , )
(1,1)
(1,0) −

∑#
9=1 � 9 .

During ) (1,1)(1,0) , the expected cumulative absolute error in slope
can be obtained from the sum of expected cumulative absolute
errors over each duration �8 . The cumulative absolute error
over a duration �8 is �8 |"8 − "0 |, where "0 is the slope
before the duration ) (1,1)(1,0) starts and "8 is the slope during �8 .
The cumulative absolute error over all the renewal cycles is
therefore

∑#+1
8=1 �8 |"8 −"0 |. Since the slopes are independent

of �8s, the expected cumulative absolute error is E|"1 −
"0 |E

∑
8 �8 , which is E|"1−"0 |E) (1,1)(1,0) . Using the RRT [14],

MAE( = E|"1 − "0 |E) (1,1)(1,0) /(E)
(1,1)
(1,0) + E)

(1,0)
(1,1) ). We simplify

using (3) and (4) to obtain MAE( = E|"1 − "0 | (1 − ?B).
We characterize WAoII using RRT on the above renewal

process, for which the expected cumulative weighted AoII
during ) (1,1)(1,0) is required. This can be obtained from the sum
of expected cumulative weighted AoII over each duration �8
as follows:

�8

∑
9<8

� 9 |"8 − "0 | + �8 (�8 + 1) |"8 − "0 |/2. (8)

The cumulative weighted AoII over all the cycles �8 is
therefore

#+1∑
8=1

(∑
9<8

�8� 9 |"8 − "0 | +
�8 (�8 + 1)

2
|"8 − "0 |

)
.

The expected cumulative WAoII is therefore

E [|"1 − "0 |] E
[
#+1∑
8=1

(∑
9<8

�8� 9 +
�8 (�8 + 1)

2

)]
, (9)

since the slopes are independent of # as well as (�8). We now
consider the term

∑#+1
8=1

(∑
9<8 �8� 9 + �8 (�8+1)

2

)
, which can be

simplified to 1
2

(∑#+1
8=1 �8

)2
+ 1

2
∑#+1
8=1 �8 . This is

)
(1,1)
(1,0) ()

(1,1)
(1,0) +1)

2 .
Then, the WAoII using RRT is

E [|"1 − "0 |] E
[
)
(1,1)
(1,0) ()

(1,1)
(1,0) + 1)

]/
2E

[
)
(1,0)
(1,1) + )

(1,1)
(1,0)

]
.

From (7), we have that WAoII = E [|"1 − "0 |] AoII.
We note that for a slot C in a duration ) (1,1)(1,0) and a cycle

�8 within, -̂ (C) − - (C) = ∑
9<8 (" 9 − "0)� 9 + ("8 − "0) (C −∑

9<8 � 9 ). Applying the triangle inequality to E| -̂ (C) − - (C) |,
we get E| -̂ (C) − - (C) | ≤ ∑

9<8 E|" 9 −"0 |� 9 +E|"8 −"0 | (C −∑
9<8 � 9 ). Since E|"8−"0 | is the same for any 8, the expected

cumulative absolute error over a cycle is then bounded above
by (9). We thus obtain the bound MAE ≤ WAoII. The bound
is expected to be tight for ?B ≈ 1 since ) (1,1)(1,0) would consist
of a single cycle with high probability, for which upper bound
is equal to the error.
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[7] A. Nayyar, T. Başar, D. Teneketzis, and V. Veeravalli, “Optimal strategies
for communication and remote estimation with an energy harvesting
sensor,” IEEE Trans. Automat. Control, vol. 58, 05 2012.

[8] T. Z. Ornee and Y. Sun, “Sampling for remote estimation through
queues: Age of information and beyond,” in Proc. WiOPT. IEEE,
2019, pp. 1–8.

[9] E. U. Baran Tan Bacinoglu, Yin Sun, “On the trackability of stochastic
processes,” arXiv preprint arXiv:2002.08142, 2020.

[10] X. Chen, X. Liao, and S. S. Bidokhti, “Real-time sampling and estima-
tion on random access channels: Age of information and beyond,” arXiv
preprint arXiv:2007.03652, 2021.

[11] S. Kriouile and M. Assaad, “Minimizing the age of incorrect informa-
tion for real-time tracking of Markov remote sources,” arXiv preprint
arXiv:2102.03245, 2021.

[12] B. Joshi, R. V. Bhat, B. N. Bharath, and R. Vaze, “Minimization of
age of incorrect estimates of autoregressive markov processes,” in Proc.
WiOpt, 2021, pp. 1–8.

[13] T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wimbrow, and
D. Estrin, “Lightweight temporal compression of microclimate datasets,”
in 29th Annual IEEE International Conference on Local Computer
Networks, 2004, pp. 516–524.

[14] A. Kumar, D. Manjunath, and J. Kuri, Wireless Networking. Elsevier
Science, 2008.


