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Abstract—In this work, we provide non-asymptotic, probabilis-
tic guarantees for successful recovery of the common nonzero
support of jointly sparse Gaussian sources in the multiple
measurement vector (MMV) problem. The support recovery
problem is formulated as the marginalized maximum likelihood
(or type-II ML) estimation of the variance hyperparameters of
a joint sparsity inducing Gaussian prior on the source signals.
We derive conditions under which the resulting nonconvex
constrained optimization perfectly recovers the nonzero support
of a joint-sparse Gaussian source ensemble with arbitrarily high
probability. The support error probability decays exponentially
with the number of MMVs at a rate that depends on the
smallest restricted singular value and the nonnegative null space
property of the self Khatri-Rao product of the sensing matrix.
Our analysis confirms that nonzero supports of size as high
as O(m2) are recoverable from m measurements per sparse
vector. Our derived sufficient conditions for support consistency
of the proposed constrained type-II ML solution also guarantee
the support consistency of any global solution of the multiple
sparse Bayesian learning (M-SBL) optimization whose nonzero
coefficients lie inside a bounded interval. For the case of noiseless
measurements, we further show that a single MMV is sufficient
for perfect recovery of the k-sparse support by M-SBL, provided
all subsets of k + 1 columns of the sensing matrix are linearly
independent.

Index Terms—Compressive sensing, support recovery, sparse
Bayesian Learning, joint sparsity, Restricted Isometry Property,
Khatri-Rao product.

I. INTRODUCTION

JOINT sparsity has emerged as an important and versatile
signal structure in the field of sparse signal processing.

Two or more vectors are said to be jointly sparse if their
nonzero coefficients belong to the same index set, i.e., the
vectors share a common nonzero support. Joint sparsity arises
naturally in multi-modal or multi-channel analysis of signals
residing in low dimensional signal subspaces. The underly-
ing joint sparsity of signals can prove useful in resolving
ambiguities in the common support that may arise due to
erroneous estimation of the support of the individual sparse
signal vectors from noisy measurements. This viewpoint has
been successfully exploited in several real-world applications
such as MIMO channel estimation [1]–[3], distributed source
coding [4], [5], multi-task compressive sensing [6], distributed
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event localization [7], array signal processing [8], cooperative
spectrum sensing [9]–[11], and user activity detection in
massive machine-type communications [12].

In the sparse signal recovery literature, the estimation of
jointly sparse signals is commonly referred to as the multiple
measurement vector (MMV) problem [13] where the signal
of interest is a matrix X ∈ Rn×L whose columns are jointly
sparse vectors in Rn. As a result, X is a row sparse matrix
with only a fraction of its rows containing nonzero elements
and the rest of the rows made up entirely of zeros. In the
MMV problem, the goal is to recover X from its noisy,
linear measurements Y ∈ Rm×L. The measurement matrix Y
(each column is called a single measurement vector (SMV))
is generated as

Y = AX + W, (1)

where A ∈ Rm×n is a known sensing matrix and W ∈ Rm×L
models the unknown noise in the measurements. For m < n,
the above linear system is underdetermined and has infinitely
many solutions for X. However, if A satisfies certain restricted
isometry properties, a unique row-sparse solution can still be
guaranteed [13]–[16]. In many applications, one is primarily
interested in identifying the nonzero rows of X. This gives
rise to the joint-sparse support recovery (JSSR) problem
where the goal is to recover the row support of X given Y
and A. Interestingly, unlike the nonzero coefficients in a k-
row-sparse X which can be robustly recovered only if m ≥ k,
its nonzero row support can be recovered correctly even from
m < k measurements.

The vast majority of the JSSR solvers [13], [15], [17]–
[21] implicitly assume that the number of nonzero rows in X
is less than the number of measurements per SMV, i.e.,
k < m. Recently, correlation-aware solvers such as Co-
LASSO [22] and M-SBL [23], [24], and their extensions, e.g.,
RD-CMP [25], Co-LASSO-EXPGRD [26] and MRNNQP [27]
have been empirically shown to be capable of recovering
sparse supports of size k > m when L is large. However, a
complete theoretical understanding of when these methods are
guaranteed to be successful is still lacking. Especially for M-
SBL, due to its nonseparable and nonconvex log-marginalized
likelihood objective, any support consistency guarantees about
its global or local maxima are currently known only under
restrictive assumptions, e.g., for noiseless measurements and
row orthogonality of the signal matrix X in [23], [24], for the
SMV case and row orthogonality of the measurement matrix
in [28], and under the assumption of prior knowledge of the
true support size and source signal power in [12], [29], [30].
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The main goal of the present work is to identify sufficient
conditions for exact support recovery in the JSSR problem
by a correlation-aware procedure based on the M-SBL op-
timization. This is accomplished by analyzing the support
consistency of global maxima of a constrained variant of M-
SBL’s type-II maximum-likelihood optimization. Our newly
derived sufficient conditions for exact recovery of k-sized
supports in the JSSR problem confirm that the support error
probability vanishes even for k > m when the number of
MMVs is large enough.

A. Existing results on support recovery using MMVs

Early theoretical works focussed on obtaining guarantees
for a unique joint-sparse solution to the canonical `0 norm
minimization problem:

L0 : min
X∈Rn×L

‖X‖0 s.t. AX = Y, (2)

where ‖X‖0 denotes the number of nonzero rows in X.
In [13], [14], the authors showed that the L0 prob-
lem admits a unique k-sparse solution provided k <
d(spark(A)− 1 + rank(Y)) /2e, where spark(A) denotes the
smallest integer p such that there exist p linearly dependent
columns in A. This result establishes that the SMV bottleneck
of k < m/2 for `0 norm based support recovery can be over-
come by using multiple measurement vectors. Furthermore,
the sparsity bound suggests that supports of size k < m are
uniquely recoverable.

To circumvent the combinatorial hardness of the L0 prob-
lem, [17] proposes to minimize the `p,q mixed-norm of X
instead of the `0 norm. The `p,q norm of X is evaluated
as ‖X‖p,q ,

(∑m
i=1 ‖X(i, :)‖qp

)1/q
. Variants of the `p,q

norm minimization problem with different combinations of
p and q have been investigated independently in [13], [14],
[31], [32]. For p ≥ 1, q = 1, [14] has shown that `p,q
norm minimization problem has a unique k-sparse solution,
provided A satisfies ‖A†Saj‖1 < 1, for all j /∈ S and for
all S ⊂ [n], |S| ≤ k, where A†S =

(
AT
SAS

)−1
AT
S . This

also serves as a sufficient condition for exact support recovery
via simultaneous orthogonal matching pursuit (SOMP) [15], a
greedy support recovery algorithm. In [18], support recovery
performance of various correlation based greedy and iterative
hard-thresholding type algorithms is studied in the noiseless
MMV setup. The sufficient conditions for exact support recov-
ery are specified in terms of the asymmetric restricted isometry
constants of the sensing matrix.

A common limitation of the aforementioned support recov-
ery techniques is that they are capable of uniquely recovering
supports of size up to only k < m/2. In [33], rank aware
OMP and rank aware order recursive matching pursuit are
shown to perfectly recover any k-sized support from noiseless
measurements as long as k < spark(A)−1 and rank(X) = k.
For the rank defective case, i.e., rank(X) < k, compressed
sensing MUSIC [20] and subspace-augmented MUSIC [19]
are still capable of recovering any k < spark(A) − 1 sized
support as long as partial support of size k− rank(X) can be
estimated by some other support recovery algorithm.

In [29], the MMV support recovery problem is formulated
as a multiple hypothesis testing problem. Necessary and
sufficient conditions for perfect support recovery with high
probability are derived under the assumption that the columns
of X are i.i.d. N (0,diag(1S∗)), where S∗ denotes the true
support set of a known size k. An exponential decay rate of
the support error probability is derived in closed form, which
is however not conducive to general interpretation or deeper
analysis. For the particular case of randomly constructed
Gaussian sensing matrix A with m = Ω

(
k log n

k

)
rows, it

is shown that L � logn
log logn suffices for diminishing support

error probability with increasing L. One of our contributions
in the present work is to extend this result to a more general
signal prior on X and show that the support error probability
vanishes even if m scales sublinearly in the support size k.

In [34], the support recovery problem is analyzed as a
single-input-multi-output MAC communication problem. For
number of nonzero rows fixed to k, m = Ω(k logn

c(X) ) is shown to
be both necessary and sufficient for successful support recov-
ery as the problem size tends to infinity. The quantity c(X) is a
capacity like term that depends on the elements of the nonzero
rows in X and the noise power. Even fewer measurements
m = Ω

(
k
L log n

)
suffices when each measurement vector is

generated using an independently drawn sensing matrix [35].
The m < k regime has been studied in [36], and it was
shown that L = Θ

(
k2

m2 log(k(n− k))
)

is both necessary and
sufficient to exactly recover the row-support of X.

Different from bounding the support error probability in
the JSSR problem, [37]–[39] use replica analysis to obtain
a variational characterization of the minimum mean squared
error incurred in reconstructing joint-sparse vectors from noisy
MMVs, as the dimension n scales to infinity while keeping
the measurement-rate m/n fixed. In addition, [37] shows that
the replica analysis approach can be extended to obtain tight
variational lower bounds for the mean weighted support set
error in sparse supports reconstructed via the message passing
algorithm.

B. Correlation-aware support recovery

A key insight was propounded in [22], that there often exists
a latent structure in the MMV problem: the nonzero rows
of X are uncorrelated. This signal structure can be enforced
by modeling each column of X to be i.i.d. N (0,diag(γ)),
where γ ∈ Rn+ is a nonnegative vector of variance parameters.
Under this source model, identifying the nonzero rows of X
amounts to detecting the support of γ. In [22], Co-LASSO
is proposed to recover γ. Instead of directly working with
the linear observations Y, Co-LASSO uses their covariance
form, 1

LYYT , as input, and estimates γ as a solution of the
following constrained `1-norm minimization problem:

min
γ∈Rn+

‖γ‖1 s.t. (A�A)γ = vec
(

1

L
YYT

)
, (3)

where A � A denotes the Khatri-Rao product (i.e., the
columnwise Kronecker product) of A with itself. The linear
constraints in (3) depict the second-order moment-matching
constraints, specifically, the covariance matching equation:
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1
LYYT ≈ Adiag(γ)AT . Since (3) comprises up to (m2 +
m)/2 linearly independent equations in γ, sparsity levels as
high as O(m2) are potentially recoverable. To recover the
maximum level of sparsity, k = (m2 + m)/2, a necessary
condition derived in [22], [40] dictates that the columnwise
self Khatri-Rao product matrix A�A must have full Kruskal
rank,1 i.e., Krank(A � A) = (m2 + m)/2. Another popu-
lar MMV algorithm, M-SBL [23], also imposes a common
Gaussian prior N (0,diag(γ)) on the columns of X and
hence implicitly exploits the latent uncorrelatedness of the
nonzero entries in X. Interestingly, similar to Co-LASSO,
the performance of Sparse Bayesian Learning (SBL)-based
support recovery methods depend on the null-space structure
of the self Khatri-Rao product A�A. Making this connection
explicit is one of the goals of this work.

The sparsistency of different types of constrained solutions
of the M-SBL optimization has been earlier investigated in
[23] for k < m, and in [12], [24] for k ≥ m. Here, by
the sparsistency of a support recovery method (or support
estimate), we refer to its propensity to be a consistent es-
timator (or estimate) of the common nonzero support of the
unknown joint sparse vectors, i.e., the support error probability
decays to zero as L → ∞. In [12], it is assumed that
support size and the source signal powers are known a priori,
while both [23] and [24] assume that the measurements are
noiseless, and the nonzero rows of X are orthogonal. For
finite L, the row-orthogonality condition is too restrictive for
a deterministic X and almost never true for a random X
drawn from a continuous distribution. In [41], necessary and
sufficient conditions for amplitude-wise consistency of the M-
SBL solution have been identified for L→∞. In contrast, we
study the non-asymptotic case while taking the measurement
noise into consideration, and also dispense with the restrictive
row orthogonality condition on X. Moreover, unlike [12], our
analysis does not require the source signal powers to be known
upfront.

C. Our contributions

1) We interpret the M-SBL optimization as a Bregman
matrix divergence minimization problem; opening up
new avenues to exploit the vast literature on Bregman
divergence minimization towards devising faster, more
robust algorithms for support recovery.

2) For the JSSR problem, we analyze the consistency of
the estimated nonzero support inferred from the variance
hyperparameters of a zero mean, row-sparsity inducing
Gaussian prior on X. These hyperparameters are es-
timated via a constrained type-II maximum likelihood
(ML) procedure, called cM-SBL, wherein the nonzero
coefficients of the ML estimate are constrained to lie
inside a bounded interval. We show that the support
error probability decays exponentially with number of
MMVs, and the error exponent is related to the null
space and restricted singular value properties of A�A,
the self Khatri-Rao product of the sensing matrix A

1The Kruskal rank of an m×n matrix A is the largest integer k such that
any k columns of A are linearly independent.

with itself. Explicit bounds on the number of MMVs
sufficient for vanishing support error probability for both
noisy and nearly noiseless measurements are derived (in
Theorem 4). The support consistency guarantees obtained
for the constrained type-II ML solution also apply to
any global solution of the M-SBL optimization whose
nonzero coefficients lie inside a known interval (see
Corollary 4).

3) In the special case where the sensing matrix A is
constructed from i.i.d. N

(
0, 1

m

)
entries, we bound the

MMV complexity for which the cM-SBL optimization
exactly recovers the true k-sparse support using m =
Ω(
√
k log n) measurements per MMV. In the case of

noiseless measurements, we show that M-SBL exactly
recovers the true k-sparse support from a single mea-
surement vector, provided k < spark(A)− 1.

A key aspect of our results is that our sufficient conditions are
expressed in terms of number of MMVs and properties of the
sensing matrix A. This makes our results applicable to both
random as well as deterministic constructions of A. As part of
our analysis, we present a new lower bound for the 1

2 -Rényi
divergence between a pair of multivariate Gaussian densities
(in Proposition 1), and an interesting null space property of
Khatri-Rao product matrices (in Theorem 3), which may be
of independent interest.

The remainder of the paper is organized as follows. In
section II, we formulate the JSSR problem and introduce our
source model for X. We also review the M-SBL algorithm [23]
and interpret the M-SBL cost function as a Bregman matrix
divergence. In section III, we cover some preliminary concepts
that are used while analyzing the support recovery perfor-
mance of the constrained and unconstrained variant of the SBL
procedure. In section IV, we derive an abstract upper bound
for the support error probability, which is used in section V
to derive our main result, namely, the sufficient conditions for
vanishing support error probability in M-SBL. In section VI,
we discuss the implications of the new results in the context
of several interesting special cases. Our final conclusions are
presented in section VII.

D. Notation

Throughout this paper, scalar variables are denoted by
lowercase alphabets and vectors are denoted by boldface low-
ercase alphabets. Matrices are denoted by boldface uppercase
alphabets and calligraphic uppercase alphabets denote sets.

Given a vector x, x(i) represents its ith entry. supp(x)
denotes the support of x, the set of indices corresponding
to nonzero entries in x. Likewise, R(X) denotes the set of
indices of all nonzero rows in X and is called the row-
support of X. For any n ∈ N, [n] , {1, 2, . . . , N}. For any
n dimensional vector x and index set S ⊆ [n], the vector
xS is an |S| × 1 sized vector retaining only those entries
of x that are indexed by elements of S. Likewise, AS is
a submatrix comprising the columns of A indexed by S .
Null(A) and Col(A) denote the null space and column space
of the matrix A, respectively. The spectral, Frobenius and
maximum absolute row sum matrix norms of A are denoted
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by ~A~2, ‖A‖F , and ~A~∞, respectively. P(E) denotes
the probability of event E . N (µ,Σ) denotes the Gaussian
probability density with mean µ and covariance matrix Σ.
For any square matrix C, tr(C) and |C| denote its trace and
determinant, respectively. Sn++ denotes the set of all n × n
positive definite matrices.

Given positive sequences {fn}∞n=1 and {gn}∞n=1, gn =
O(fn) denotes that there exists an N ∈ N and a universal
constant C > 0 such that gn ≤ Cfn for n ≥ N . Similarly,
gn = Ω(fn) denotes that gn ≥ cfn for n ≥ N and
some constant c > 0. Lastly, fn = Θ(gn) implies that
cfn ≤ gn ≤ Cfn for n ≥ N .

II. SYSTEM MODEL AND THE M-SBL ALGORITHM

A. Joint-sparse support recovery (JSSR)

We now formally state the JSSR problem. Suppose
x1,x2, . . . ,xL are L distinct joint-sparse vectors in Rn with a
common nonzero support denoted by the index set S∗ ⊆ [n].
Let K be the maximum size of the common support, i.e.,
|S∗| ≤ K. In JSSR, we are interested in recovering S∗ from
noisy underdetermined linear measurements y1,y2, . . . ,yL
generated as

yj = Axj + wj , 1 ≤ j ≤ L. (4)

We assume that the sensing matrix A ∈ Rm×n is a non-
degenerate matrix with m ≤ n, i.e., any m columns of A are
linearly independent, or spark(A) = m+ 1. The noise vector
w ∈ Rm is zero mean Gaussian distributed with diagonal
covariance matrix σ2Im. The linear measurement model in (4)
can be rewritten in a compact MMV form as Y = AX + W,
where Y = [y1,y2, . . . ,yL], X = [x1,x2, . . . ,xL] and
W = [w1,w2, . . . ,wL] are the observation, signal and noise
matrices, respectively. Since the columns of X are jointly
sparse with common support S∗, X is a row sparse matrix
with row support R(X) = S∗.

B. Gaussian source assumption

We assume that if the ith row of the unknown signal
matrix X is nonzero, then it is a Gaussian ensemble of L
i.i.d. zero mean random variables with a common variance
γ∗(i) which lies in the interval [γmin,γmax]. We refer to this
as Assumption (A1). An immediate consequence of (A1) is
that there exists a bounded, nonnegative, and at most K sparse
vector, γ∗ ∈ Rn+, such that the columns xj are i.i.d. N (0,Γ∗)
with Γ∗ , diag(γ∗). Furthermore, R(X) and supp(γ∗) are
the same and both are equal to S∗.

C. Multiple sparse Bayesian learning (M-SBL)

We now review M-SBL [23], a type-II maximum like-
lihood (ML) procedure for estimating joint-sparse signals
from compressive linear measurements. M-SBL models the
columns of X as i.i.d. N (0,Γ), where Γ = diag(γ), and
γ = [γ(1),γ(2), . . . ,γ(n)]

T is an n × 1 vector of un-
known nonnegative variance parameters. The elements of γ
are collectively called hyperparameters as they represent the
parameters of the signal prior. Since the hyperparameter γ(i)

models the common variance of the ith row of X, if γ(i) = 0,
it drives the posterior estimate of xj(i) to zero for 1 ≤ j ≤ L.
Consequently, if γ is estimated to be a sparse vector, it induces
joint sparsity in X.

In M-SBL, the hyperparameter vector γ is chosen to max-
imize the Bayesian evidence p(Y;γ), which is tantamount to
finding the ML estimate of γ. Let γ̂ML denote the ML estimate
of γ, i.e.,

γ̂ = arg max
γ∈Rn+

log p(Y;γ). (5)

The Gaussian prior on xj combined with the linear measure-
ment model induces Gaussian observations, i.e., p(yj ;γ) =
N (0, σ2Im + AΓAT ). For a fixed γ, the MMVs yj are
mutually independent. Hence, it follows that

log p(Y;γ) =

L∑
j=1

log p(yj ;γ)

∝ −L log |Σγ | − Tr
(
Σ−1

γ YYT
)
, (6)

where Σγ = σ2Im + AΓAT . The log likelihood log p(Y;γ)
in (6) is a nonconvex function of γ and its global maximizer γ̂
is not available in closed form. However, its local maximizers
can still be found via fixed point iterations or the Expectation-
Maximization (EM) procedure. In [23], it is empirically shown
that the EM procedure faithfully recovers the true support S∗,
provided m and L are sufficiently large.

D. The M-SBL objective is a Bregman matrix divergence

We now present an interesting interpretation of M-SBL’s
log-marginalized likelihood objective in (6) which facilitates
a deeper understanding of what is accomplished by its max-
imization. We begin by introducing the Bregman matrix di-
vergence Dϕ(X,Y) between any two n× n positive definite
matrices X and Y as

Dϕ(X,Y) , ϕ(X)− ϕ(Y)− 〈∇ϕ(Y),X−Y〉, (7)

where ϕ : Sn++ → R is a convex function with ∇ϕ(Y) as its
first order derivative evaluated at Y. In (7), the matrix inner
product 〈X,Y〉 is evaluated as tr

(
XYT

)
. For the specific case

of ϕ(·) = − log | · |, a strongly convex function, we obtain the
Bregman LogDet matrix divergence given by

Dlogdet(X,Y) = tr
(
XY−1

)
− log

∣∣XY−1
∣∣− n. (8)

By termwise comparison of (6) and (8), we observe that the
negative log likelihood − log p(Y;γ)and Dlogdet(RY,Σγ) are
the same up to a constant. In fact, in [42, Theorem 6], it is
shown that there is a one-to-one correspondence between every
regular exponential family of probability distributions and a
unique and distinct Bregman divergence.

In the divergence term Dlogdet(RY,Σγ), the first argument
RY , 1

LYYT is the sample covariance matrix of the obser-
vations Y and the second argument Σγ = σ2I + AΓAT is
the parameterized covariance matrix of Y. This connection be-
tween M-SBL’s log likelihood cost and the LogDet divergence
reveals that by maximizing the M-SBL cost, we seek a γ that
minimizes the distance between RY and Σγ , with point wise
distances measured using the Bregman LogDet divergence.
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Thus, the M-SBL algorithm, at its core, is essentially a second
order moment matching or covariance matching procedure
for finding γ such that the associated covariance matrix Σγ

is closest to the sample covariance matrix, in the Bregman
LogDet divergence sense.

This new interpretation of the M-SBL cost as a Bregman
matrix divergence elicits two interesting questions:

i Are there other matrix divergences besides LogDet Breg-
man matrix divergence which are better suited for covari-
ance matching?

ii How to exploit the structural similarities between the M-
SBL cost and the Bregman (LogDet) matrix divergence
to devise faster and more robust techniques for the type-II
likelihood maximization?

It is our opinion that exploring the use of other matrix
divergences for covariance matching is worth further inves-
tigation with the potential for new, improved algorithms for
support recovery. Preliminary results in this direction have
been quite encouraging. For example, in [25], an α-Rényi
divergence objective is considered for covariance matching,
and a fast greedy algorithm is developed for joint-sparse
support recovery.

III. SOME PRELIMINARY CONCEPTS

In this section, we review a few key definitions and results
which will be used in the later sections.

A. ε-Cover, ε-net and covering number

Suppose T is a set equipped with a pseudo-metric d. For
any set A ⊆ T , its ε-cover is defined as the coverage of A with
open balls of radius ε and centers in T . The set Aε comprising
the centers of these covering balls is called an ε-net of A. The
minimum number of ε-balls that can cover A is called the
ε-covering number of A, and is given by

N ε
cov (A, d) = min {|Aε| : Aε is an ε-net of A} .

In computational theory of learning, ε-net constructs are often
useful in converting a union over the elements of a continuous
set to a finite sized union.

B. Rényi divergence between multi-variate Gaussian distribu-
tions

For p1 = N (0,Σ1) and p2 = N (0,Σ2), the 1
2 -Rényi

divergence D 1
2
(p1||p2) is available in closed form as [43]

D 1
2
(p1, p2) = log

∣∣∣∣Σ1 + Σ2

2

∣∣∣∣− 1

2
log |Σ1|−

1

2
log |Σ2| . (9)

Proposition 1. Let p1 and p2 be two multivariate Gaussian
distributions with zero mean and positive definite covariance
matrices Σ1 and Σ2, respectively. Then, the 1

2 -Rényi diver-
gence between p1 and p2 is bounded as

D 1
2
(p1, p2) ≥
1

2
tr
(

(Σ1 −Σ2) (Σ1 + Σ2)
−1

(Σ1 −Σ2) (Σ1 + Σ2)
−1
)
.

Proof. See Appendix A.

C. Concentration of sample covariance matrix

Proposition 2 (Vershynin [44]). Let y1,y2, . . . ,yL ∈ Rm
be L independent samples from N (0,Σ), and let ΣL =
1
L

∑L
j=1 yjy

T
j denote the sample covariance matrix. Then, for

any ε > 0,
~ΣL −Σ~2 ≤ ε~Σ~2 , (10)

holds with probability exceeding 1− δ provided L ≥ C
ε2 log 2

δ ,
C being an absolute constant.

D. Spectral norm bounds for Gaussian matrices

Proposition 3 (Corollary 5.35 in [44]). Let A be an m × n
matrix whose entries are i.i.d. N (0, 1). Then for every t ≥ 0,

~A~2 ≤
√
m+

√
n+ t,

with probability at least 1− 2e−t
2/2.

The following corollary presents a probabilistic bound for
the spectral norm of a submatrix of an m× n sized Gaussian
matrix obtained by sampling its columns.

Corollary 1. Let A be an m×n sized matrix whose entries are
i.i.d. N (0, 1). Then, for any S ⊆ [n], |S| ≤ k, the submatrix
AS obtained by sampling the columns of A indexed by S
satisfies

~AS~2 ≤
√
m+

√
k +

√
6k log n.

with probability exceeding 1− 2n−k.

Proof. See Appendix B.

IV. SUPPORT ERROR ANALYSIS

Towards studying the sparsistency of the M-SBL solution,
we first derive a Chernoff bound for the support error probabil-
ity incurred by the solution of a constrained version of M-SBL
optimization under assumption A1. We begin by introducing
some of the frequently used notation in the table below.

S∗ True row support of X.
γ∗ Principal diagonal of the common covariance matrix Γ∗ of

the i.i.d. columns in X. Consequently, supp(γ∗) = S∗.
K Maximum number of nonzero rows in X

Sk The collection of all support sets of k or lesser size, i.e.,
Sk = {S ⊆ [n], |S| ≤ k}

Θ(S) Bounded hyperparameter set associated with the
support set S, formally defined as Θ(S) ,{
γ ∈ Rn+ : supp(γ) = S,γmin � γS � γmax

}
.

Θk The collection of all k or less sparse vectors in Rn+ with
nonzero coefficients lying in [γmin,γmax]. By definition, we
have Θk =

⋃
S∈Sk Θ(S).

By assumption A1 on X, γ∗ belongs to the bounded
parameter set Θn. Therefore, in order to estimate γ∗ from the
measurement vectors Y, we consider solving a constrained
variant of the M-SBL optimization in (5), which we refer to
as the cM-SBL problem:

cM-SBL: γ̂ = arg max
γ∈Θn

L(Y;γ). (11)

The cM-SBL objective L(Y;γ) is the same as the M-SBL’s
log-marginalized likelihood log p(Y;γ) defined in (6). The
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row support of X is estimated as the support of γ̂, where γ̂
is a solution of (11). Consider the set of “bad” MMVs,

ES∗ ,
{
Y ∈ Rm×L : supp (γ̂) 6= S∗

}
, (12)

which result in erroneous estimation of S∗ via cM-SBL. In
other words, ES∗ is the collection of undesired MMVs for
which the M-SBL objective is globally maximized by some
γ ∈ Θ(S), S 6= S∗, i.e.,

ES∗ =
⋃

S∈Sn\{S∗}

{
Y : max

γ∈Θ(S)
L(Y;γ) ≥ max

γ′∈Θ(S∗)
L(Y;γ′)

}
.

(13)
We are interested in finding the conditions under which P(ES∗)
can be made arbitrarily small. Since max

γ′∈Θ(S∗)
L(Y;γ′) ≥

L(Y;γ∗), it follows that

ES∗ ⊆
⋃

S∈Sn\{S∗}

{
Y : max

γ∈Θ(S)
L(Y;γ) ≥ L(Y;γ∗)

}
=

⋃
S∈Sn\{S∗}

⋃
γ∈Θ(S)

{Y : L(Y;γ)− L(Y;γ∗) ≥ 0} .(14)

The continuous union over infinitely many elements of Θ(S)
in (14) can be relaxed to a finite sized union by using
the following ε-net argument. Consider Θε(S), a finite sized
ε-net of the hyperparameter set Θ(S), such that for any
γ ∈ Θ(S), there exists an element γ′ ∈ Θε(S) satisfying
|L(Y;γ)− L(Y;γ′)| ≤ ε. Proposition 4 gives an upper
bound on the size of such an ε-net.

Proposition 4. Given a support set S ⊆ [n], there exists a
finite set Θε(S) ⊂ Θ(S) such that it simultaneously satisfies

(i) For any γ ∈ Θ(S), there exists a γ′ ∈ Θε(S) such that
|L(Y;γ)− L(Y;γ′)| ≤ ε.

(ii) |Θε(S)| ≤ max

{
1,
(

3CL,S(γmax − γmin)
√
|S|/ε

)|S|}
,

where CL,S is the Lipschitz constant of L(Y;γ) with
respect to γ in the bounded domain Θ(S).

The set Θε(S) is an ε-net of Θ(S).

Proof. See Appendix C.

From Proposition 4-(ii), we observe that both the con-
struction as well as size of Θε(S) depends on the Lipschitz
continuity of the log-likelihood L(Y;γ) with respect to γ.
By virtue of data-dependent nature of L(Y;γ), its Lipschitz
constant CL,S depends on the instantaneous value of Y. To
make the rest of the analysis independent of Y, we introduce
a new MMV set G, conditioned on which, the Lipschitz
constant CL,S is uniformly bounded solely in terms of second-
order statistics of Y. A possible choice of G could be

G ,

{
Y ⊂ Rm×L :

�

�

�

�

1

L
YYT

�

�

�

�

2

≤ 2
�

�E
[
y1y

T
1

]�
�

2

}
. (15)

By Proposition 9 in Appendix I, for Y ∈ G, L(Y;γ) is
uniformly continuous with a Lipschitz constant that depends
only on the spectral norm of E[y1y

T
1 ]. Hence, the ε-net can

now be constructed entirely independent of Y. We denote this
ε-net by Θε(S)|G .

Since for arbitrary sets A and B, A ⊆ (A ∩ B) ∪ Bc, the
RHS in (14) relaxes as

ES∗⊆

 ⋃
S∈Sn\S∗

⋃
γ∈Θ(S)

{L(Y;γ)− L(Y;γ∗) ≥ 0} ∩ G

∪ Gc.
(16)

The continuous union over Θ(S) relaxes to a finite sized union
over Θε(S)|G as shown below.

ES∗⊆

 ⋃
S∈Sn\S∗

⋃
γ∈Θε(S)|G

{L(Y;γ)−L(Y;γ∗)≥−ε} ∩ G

∪ Gc
⊆

 ⋃
S∈Sn\S∗

⋃
γ∈Θε(S)|G

{L(Y;γ)− L(Y;γ∗) ≥ −ε}

∪ Gc.
By applying the union bound, we obtain

P (ES∗) ≤
∑

S∈Sn\S∗

∑
γ∈Θε(S)|G

P (L(Y;γ)− L(Y;γ∗) ≥ −ε)

+ P (Gc) . (17)

From (17), the support error probability P(ES∗) will be
small when the summands, P (L(Y;γ) −L(Y;γ∗) ≥ −ε),
γ ∈ Θε(S)|G , are individually sufficiently small so that their
collective contribution remains small, and P (Gc) is also small.
In Theorem 1, we show that each summand corresponds to
a large deviation event which occurs with an exponentially
decaying probability.

Theorem 1. For γ ∈ Rn+, let pγ denote the marginal
probability density of the columns of Y when the joint-sparse
columns of X are drawn independently from N (0,diag(γ)).
Then, the log-likelihood L(Y;γ) =

∑L
j=1 log pγ(yj) satisfies

the following large deviation property.

P (L(Y;γ)− L(Y;γ∗) ≥ −ε) ≤ exp
(
−Lψ∗

(
− ε
L

))
,

(18)
where ψ∗(·) is the Legendre transform2 of ψ(t) , (t −
1)Dt(pγ , pγ∗), and Dt is the t-Rényi divergence3 (of order
t > 0) between the probability densities pγ and pγ∗ .

Proof. See Appendix D.

Note that, when the measurement noise is Gaussian, the
marginal density pγ(yj) of the individual observations yj is
also Gaussian with zero mean and covariance matrix Σγ =
σ2Im + AΓAT . If σ2 > 0, both marginals pγ and pγ∗ are
non-degenerate and hence the Rényi divergence Dt(pγ , pγ∗)
in Theorem 1 is well defined. We now restate Theorem 1 as

2For any convex function f : X → R on a convex set X ⊆ Rn, its
Legendre transform is the function f∗ defined by

f∗(z) = sup
x∈X

(〈z,x〉 − f(x)) .

3Let (X ,F) be a measurable space and P and Q be two probability
measures on F with densities p and q, respectively, with respect to the
dominating Lebesgue measure µ on F . Then, for α ∈ R+\1, the Rényi
divergence of order α between P and Q, denoted Dα(p||q), is defined as

Dα(p||q) =
1

α− 1
log

∫
X
p(x)αq(x)1−αµ(dx).
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Corollary 2, which is the final form of the large deviation
result for L(Y;γ) used later for bounding P(ES∗).

Corollary 2. For any γ ∈ Rn+, and the true variance pa-
rameters γ∗, let the associated marginal densities pγ and pγ∗
be defined as in Theorem 1, and suppose σ2 > 0. Then, the
log-likelihood L(Y;γ) satisfies the large deviation property

P

(
L(Y;γ)−L(Y;γ∗) ≥−

LD 1
2
(pγ , pγ∗)

2

)
≤e−

LD 1
2

(pγ ,pγ∗ )

4 .

(19)

Proof. The large deviation result is obtained by replacing
ψ∗
(
− ε
L

)
in Theorem 1 by its lower bound − tεL − ψ (t),

followed by setting t = 1/2 and ε = LD 1
2
(pγ , pγ∗)/2.

Note that, in the above, we have used the suboptimal
choice t = 1/2 for the Chernoff parameter t, since its
optimal value is not available in closed form. However, this
suboptimal selection of t is inconsequential as it figures only
as a multiplicative factor in the final MMV complexity. By
using Corollary 2 in (17), we can bound P (ES∗) as

P(ES∗) ≤
∑

S∈Sn\S∗
|Θε(S)|G | exp

(
−LD

∗
S

4

)
+ P (Gc) , (20)

with ε =
LD∗S

2 and D∗S defined as

D∗S , inf
γ∈Θ(S)

D 1
2

(pγ , pγ∗) . (21)

Suppose the support S differs from S∗ in exactly kS,S
∗

d

locations, then

P(ES∗) ≤
∑

S∈Sn\S∗
exp

(
−LkS,S

∗

d

(η
4
− κcov

L

))
+ P (Gc) ,

(22)
where

η , min
S∈Sn\S∗

D∗S
kS,S

∗

d

, (23)

κcov , max
S∈Sn\S∗

log
∣∣Θε(S)|G

∣∣
kS,S

∗

d

, ε =
LD∗S

2
. (24)

Using the above, we can state the following theorem.

Theorem 2. Suppose S∗ is the true row support of the
unknown X satisfying assumption A1 and |S∗| ≤ K. Then,
for any δ ∈ (0, 1), P(ES∗) ≤ 2δ, if

L ≥ max

{
8

η
log

(
6enK

δ

)
,

8κcov

η
, C log

2

δ

}
.

Here, η and κcov are as defined in (23) and (24), respectively,
and C > 0 is a universal numerical constant.

Proof. See Appendix E.

In Theorem 2, we finally have an abstract bound on the
sufficient number of MMVs, L, which guarantees vanishing
support error probability in cM-SBL, given that the true
support is S∗. However, the MMV bound is meaningful only
when η (23) is strictly positive. We now proceed to deduce
the conditions for which

1) η > 0,

2) η and κcov scale favorably with the MMV problem
dimensions.

A. Bounds for η and κcov

To understand how small η in the MMV bound in Theo-
rem 2 can be, we first derive a lower bound on D∗S for any
S ⊆ [n], in the following proposition.

Proposition 5. Let pγ denote the parameterized multivariate
Gaussian density with zero mean and covariance matrix Σγ =
σ2I + AΓAT , Γ = diag(γ). For any pair γ,γ∗ ∈ Rn+ such
that S = supp(γ) and S∗ = supp(γ∗), the 1

2 -Rényi divergence
between pγ and pγ∗ satisfies

D 1
2

(pγ , pγ∗) ≥
‖(A�A)(γ − γ∗)‖22

4 (σ2 + γmaxσ
2
max(AS∪S∗))

2 ,

where A�A denotes the columnwise Khatri-Rao product of A
with itself and σmax(·) denotes maximum singular value of the
input matrix.

Proof. See Appendix F.

From Proposition 5, it can be observed that as long as
the null space of A � A is devoid of any vectors of the
form γ − γ∗ (i.e., difference of a nonnegative vector and a
nonnegative K-sparse vector), then η as defined in (23) is
always strictly positive. This condition for strictly positive η
can be formalized as the nonnegative restricted null space
property of A�A, defined next.

Definition 1. A matrix is said to satisfy the nonnegative
restricted null space property (NN-RNSP) of order k if its
null space does not contain any vectors that are expressible
as the difference between a k (or lesser) sparse nonnegative
vector and an arbitrary nonnegative vector.

The requirement that A�A satisfies a restricted null-space
property similar to Definition 1 has been highlighted in [8] in
the context of MMV-based support recovery using correlation-
aware priors. In [8], it is shown that A � A exhibits the
NN-RNSP for appropriate sparse-array designs of the sensing
matrix A provided the k-sparse nonnegative vector in Def-
inition 1 satisfies a certain support-separability condition. In
the theorem below, we present an interesting robust null-space
property of A�A which is satisfied under the mild condition
that the columns of A are approximately normalized. This
property will be crucial in establishing A � A’s NN-RNSP
compliance towards ensuring the positivity of η, and also
dispenses with the restrictive support-separability condition
required in [8].

Theorem 3 (Strong Robust Null Space Property of Self
Khatri-Rao Products). Let A be an m× n sized real matrix
with columns ai satisfying ‖ai‖22 ∈ [1− α, 1 + α] for some
α ∈ (0, 1) for i ∈ [n]. Then, the self Khatri-Rao product
A�A satisfies the following robust null space property:

‖(A�A)v‖22 ≥
(1− α)2

2m

(
‖v+‖21 + ‖v−‖21

)
for all v ∈ Rn such that ‖v+‖1 ≥ 4

(
1+α
1−α

)2

‖v−‖1. Here,
v+ and v− are nonnegative vectors containing the absolute
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values of the positive and negative elements of v, respectively,
such that v = v+ − v−.

Proof. See Appendix G.

An interesting consequence of Theorem 3 is that as long
as A is approximately column normalized, the null space of
A�A does not contain any vectors of the form γ−γ∗ when γ
and γ∗ have widely different nonzero supports, particularly if

‖γ‖0 ≥ 4
(

γmax
γmin

)(
1+α
1−α

)2

‖γ∗‖0. However, when the support
sizes of γ and γ∗ are comparable, it is not as straightforward
to ascertain whether γ−γ∗ lies in the null space of A�A or
not. In Proposition 6, we state verifiable sufficient conditions
that subsume the NN-RNSP condition for A � A, which in
turn guarantees that η in (23) is always strictly positive.

Proposition 6. Let the sensing matrix A = [a1,a2, . . . ,an]
satisfy the following two properties4

(P1). ∃α ∈ (0, 1) such that ‖ai‖22 ∈ [1− α, 1 + α] ,∀i ∈ [n].

(P2). For Kthreshold , 4K

(
γmax
γmin

(
1+α
1−α

)2
)

, ∃β > 0 such that

‖(A�A)v‖22 ≥ β‖v‖22 for all k-sparse vectors v ∈ Rn
and 1 ≤ k ≤ (K +Kthreshold).

Then, η defined in (23) is lower bounded as

η ≥ γ2
min

4 (σ2 + γmax)
2 min

 β

max
(

1, δ2
(K+Kthreshold)

) ,
(1− α)2

4m
min
S⊆[n],

|S\S∗|+|S∗\S|>Kthreshold

|S ∪ S∗|

max
(

1, δ2
|S∪S∗|

)
 ,

(25)

where δk , max
S⊆[n]:|S|≤k

�

�AT
SAS

�

�

2
for any k ∈ [n].

Proof. See Appendix H.

By substituting η in Proposition 4 with its lower bound in
Proposition 6, one can upper bound κcov as follows.

Proposition 7. For the same setting as Proposition 6,

κcov ≤ [(K + 5) (logm+ logK + log ∆κcov) + 2 log n]
+
,

where

∆κcov ,
24

γ2
min

(
γmax

γmin
− 1

)(
3 +

2γmax

σ2

)
(σ2 + γmax)

2

×max

(
δ2
K+Kthreshold

β
,

9

2

(1 + α)2

(1− α)2

)
and [·]+ = max(·, 0).

Proof. See Appendix I.

The above bounds for η and κcov are valid for any determin-
istic or randomly constructed sensing matrix A. The validity
of these bounds is contingent upon showing the existence of a
strictly positive β that satisfies condition P2 of Proposition 6,

4Properties P1 and P2 ensure that Null(A � A) does not contain any
vectors of the form γ−γ∗ when ‖γ‖0 ≥ K+Kthreshold and when ‖γ‖0 <
K +Kthreshold, respectively.

which tantamounts to showing that any submatrix of A �A
obtained by sampling its K+Kthreshold columns is nonsingular.
The quantity β is commonly referred to as the restricted
minimum singular value of the self Khatri-Rao product A�A.
To illustrate how the derived bounds for η and κcov scale with
the MMV problem size, we consider two example scenarios
in the following corollary wherein A is randomly constructed
and the associated η is known to be strictly positive.

Corollary 3. Let A be an m × n sized matrix with i.i.d.
N
(
0, 1

m

)
entries, and let m2 ≤ n. Then, we have

(i) η = Ω
(
K
n

)
for m = Θ(K log n),

(ii) η = Ω
(√

K
n

)
for m = Θ(

√
K log n),

and κcov = O (K logK+K log log n+log n) in both cases,
with probability exceeding 1− c0n−Ω(1).

Proof. See Appendix J.

V. EXACT SUPPORT RECOVERY USING SPARSE BAYESIAN
LEARNING

- SUFFICIENT CONDITIONS

Define Mk
m,n(α, β) to be the set of all m × n sized

real valued sensing matrices A satisfying the following two
properties:

1) ‖ai‖22 ∈ [1−α, 1 +α],∀i ∈ [n], where ai denotes the ith

column of A
2) ‖(A �A)v‖2 ≥ β‖v‖22 for all k or less sparse vectors

v ∈ Rn.
Equipped with the newly defined set Mk

m,n(α, β) and the
explicit bounds for η and κcov in Propositions 6 and 7, re-
spectively, we now state the sufficient conditions for vanishing
support error probability in cM-SBL.

Theorem 4. Suppose X has row support S∗, |S∗| ≤ K, and
satisfies assumption A1. Let γ̂ denote a solution of the cM-SBL
optimization in (11). Then, for any δ ∈ (0, 1

2 ), supp (γ̂) = S∗
with probability exceeding 1− 2δ, provided the following two
conditions are satisfied.
C1. The sensing matrix A ∈ MKo

m,n(α, β), where Ko =

K

(
1+4

(
γmax
γmin

)(
1+α
1−α

)2
)

for some α ∈ (0, 1) and β > 0.

C2. The number of MMVs, L, satisfies

L ≥ 8

η
max

{
log

(
6enK

δ

)
, κcov

}
,

where η and κcov depend on α and β as described by the
Propositions 6 and 7, respectively.

Proof. Under condition C1, η as defined in (23) is rendered
strictly positive due to Proposition 6. Further, condition C2
ensures that the abstract MMV bound in Theorem 2 is
satisfied. Therefore, it follows directly from Theorem 2 that
P(ES∗) ≤ 2δ.

The following corollary of Theorem 4 states an additional
condition besides C1 and C2 that guarantees support consis-
tency of any solution of the M-SBL optimization.

Corollary 4 (Exact support recovery in M-SBL). For the same
setting as Theorem 4, let γ̂ denote any global solution of the



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, JUN. 2022 9

M-SBL optimization in (5). If γ̂ ∈ Θn, and the conditions C1
and C2 hold for any δ ∈ (0, 1

2 ), then supp(γ̂) = S∗ with
probability exceeding 1− 2δ.

Proof. Since γ̂ belongs to Θn and maximizes the M-SBL
objective log p(Y;γ), it follows that γ̂ is also a solution to
the constrained cM-SBL optimization in (11). Therefore, the
statement of Corollary 4 follows from Theorem 4.

By Corollary 4, retrospective to the nonzero coefficients of
the M-SBL solution γ̂ lying inside [γmin,γmax], the support
error probability vanishes under conditions C1 and C2. It
is to be noted that any probablistic guarantees of support
consistency of the M-SBL solution, γ̂, for the case where
γ̂ /∈ Θn are yet to be established. We conjecture that any
global solution of the M-SBL optimization belongs to the
set Θn with overwhelming probability, where γmin and γmax
are constants independent of the MMV problem dimensions.
However, showing such a result remains an open problem for
future research.

Compared to the existing M-SBL optimization-based sup-
port recovery guarantees in [29] and [30], which assume that
γ̂ and γ∗ are K-sparse binary valued vectors, the sparsistency
guarantees derived here are applicable with wider scope. Our
guarantees are valid for any real-valued K-sparse γ∗, and for
any M-SBL solution γ̂ provided its nonzero coefficients are
bounded between γmin and γmax.

VI. DISCUSSION

We now consider a few special cases of the MMV problem
and reinterpret the sufficient conditions specified in Theorem 4
which guarantee vanishing support error probability.

A. The case of binary hyperparameters and known support
size

In [29] and [30], support recovery is treated as a multiple
hypothesis testing problem by assuming that each column
of X is i.i.d. N (0,diag(1S∗)), where S∗ is the true K-sparse
row-support of X. In this case, finding the true support via
type-II likelihood maximization as in (5) can be reformulated
as a combinatorial search over all k-sparse vertices of the
hypercube {0, 1}n, as described below.

γ̂ = arg max
γ∈{0,1}n,‖γ‖0≤K

log p (Y;γ). (26)

The binary valued hyperparameters can be accommodated as
a special case of our source model by simply setting γmin =
γmax = 1. For γmin = γmax, according to Proposition 4,
the ε-net Θε(S) collapses to a single point for all S ∈ Sn,
which ultimately amounts to κcov = 0. In [29], [30], the
correct support has to be identified from

(
n
K

)
candidate support

hypothesis. Under this restrained setting, the lower bound for
η in (25) simplifies to

η ≥ β

4(σ2 + 1)2δ2
2K

, (27)

where β denotes the smallest restricted singular value of
A�A of order 2K. By setting κcov = 0 and using (27) in
Theorem 4, we can conclude that P(ES∗) is at most 2ε if

L ≥ 32(σ2 + 1)2δ2
2K

β
log

(
6enK

ε

)
. (28)

For the special case where the sensing matrix A comprises
i.i.d. N

(
0, 1

m

)
entries and has m = Θ(K log n) rows, we

have δ2K = O(1) from Corollary 1, and β = Ω(1) from [45,
Theorem 3]. Therefore, it follows from (28) and Corollary 4
that L ≥ Ω (log n) suffices to ensure that any K or less sparse
binary vector in Rn that maximizes the M-SBL objective
also recovers the true row-support of X with overwhelming
probability. In this regard, our MMV bound matches with the
one derived in [29], L� logn

log logn , up to an additional log log n
factor.

A more interesting case arises when m = Θ(
√
K log n).

From (60) and (63) in Appendix J, we observe that β = Θ(1)
and δ2K = O(

√
K). Substituting this in (28), we conclude that

L = Ω(K log n) suffices to ensure that an M-SBL solution
from the restrained set of K-sparse binary vectors recovers
the true support with overwhelming probability.

B. The case of continuous-valued hyperparameters and un-
known support size

The sparsitency of a continuous-valued solution of the M-
SBL optimization has been investigated in [12] under the
assumption that the nonzero amplitudes of γ∗ are known a
priori and their guarantees apply to the case where the search
for γ is restricted to K or less sparse vectors in ΘK . Our
analysis dispenses with both of these restrictive assumptions.

When the sensing matrix A consists of i.i.d. N
(
0, 1

m

)
entries, by substituting η and κcov in Theorem 4 with their
respective lower and upper bounds from Corollary 3, we
see that the M-SBL solution in Θn recovers the true sup-
port with vanishing support error probability provided m =
Θ(K log n) and L = Ω

(
n
K log n+ n logK + n log log n

)
.

On the other hand, when m = Θ(
√
K log n), L =

Ω
(

n√
K

log n+ n
√
K logK + n

√
K log log n

)
is sufficient.

By restricting the hyperparameter search in M-SBL to ΘK ,
in [12], it is shown that the L = Ω

(
K log2

(
n
K

)
log(nK)

)
is

sufficient for exact support recovery when m = Ω(
√
K log n).

Comparing with our MMV bound, the same value of m is
sufficient, but we pay an extra penalty of a roughly n√

K
factor

in the MMV complexity, in order to circumvent the restrictive
assumptions on the hyperparameter search domain in [12].

C. The case when A�A is full column rank
The works in [22] and [46] have discussed random as well

as deterministic constructions of the sensing matrix A for
which the m2 × n sized self Khatri-Rao product A � A is
full column rank provided n ≤ m2+m

2 . In this case, when the
columns of A are approximately normalized, A�A satisfies
the K th order NN-RNSP (Definition 1) by default for any
1 ≤ K ≤ n, which in turn implies that η in (23) is always
strictly positive. Hence, by Theorem 2, it follows that the
support error probability decays exponentially with the number
of MMVs even for K = Θ(m2).
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D. The case when A�A is rank deficient

For n > m2+m
2 , the m2×n sized A�A is rank-deficient.

In [30] and [40], it is argued that this leads to parameter
identifiability issues in M-SBL based support reconstruction.
Specifically, the M-SBL objective can attain the same value for
multiple distinct γ, thereby fostering multiple global maxima
with potentially different supports. However, both [30] and
[40] do not take the non-negativity of the hyperparameters
in γ into consideration. In Proposition 6, we have shown
that as long as A � A satisfies NN-RNSP of order K, η
is always strictly positive and consequently K-sized supports
can be recovered exactly with arbitrarily high probability using
finitely many MMVs. Interestingly, the NN-RNSP condition
can hold even when A �A is column rank deficient, which
allows cM-SBL to recover any K = O(m2)-sized supports
exactly even when n > m2+m

2 .

E. The case of noiseless measurements

If K < spark(A) − 1, it can be shown that as the
noise variance σ2 → 0, the error exponent D 1

2
(pγ , pγ∗)

in (19) grows unbounded in the event of a support mismatch,
supp(γ) 6= supp(γ∗), culiminating in vanishing support error
probability even when L = 1. This is formally proved below.

The 1/2-Rényi divergence between two multivariate Gaus-
sian densities pγi(y) ∼ N (0,Σγi), i = 1, 2 is given by

D 1
2

(
pγ1

, pγ2

)
= log

∣∣∣∣Σγ1
+ Σγ2

2

∣∣∣∣− 1

2
log
∣∣Σγ1

Σγ2

∣∣
= log

∣∣∣∣H1/2 + H−1/2

2

∣∣∣∣. (29)

where H , Σ
1/2
γ1

Σ−1
γ2

Σ
1/2
γ1

is referred to as the discrimination
matrix. Since H is a normal matrix, it is unitarily diago-
nalizable. Let H = UΛUT , where Λ = diag(λ1, . . . , λm)
with λi’s being the strictly positive eigenvalues of H for any
σ2 > 0, and U being a unitary matrix with the eigenvectors
of H as its columns. The 1/2-Rényi divergence can be
expressed in terms of λi as

D 1
2

(
pγ1

, pγ2

)
=

m∑
i=1

log
((
λ

1/2
i + λ

−1/2
i

)
/2
)

≥ log

(
1

2

(
(λmax(H))

1/2
+ (λmax(H))

−1/2
))

.

(30)

The above inequality is obtained by dropping all positive terms
in the summation except the one term which corresponds to
λmax(H), the maximum eigenvalue of H. Proposition 8 below
relates λmax(H) to the noise variance σ2.

Proposition 8. If K < spark(A) − 1, then for any γ1,γ2 ∈
Rn+ such that supp(γ1) 6= supp(γ2) and |supp(γ2)| ≤ K, the
maximum eigenvalue of H , Σ

1/2
γ1

Σ−1
γ2

Σ
1/2
γ1

satisfies

λmax (H) ≥ c1
σ2

for some constant c1 > 0 independent of σ2.

Proof. See Appendix L.

According to Proposition 8, in the limit σ2 → 0,
λmax(H) → ∞, and consequently, D 1

2

(
pγ1
, pγ2

)
grows

unbounded (due to (30)) whenever supp(γ1) 6= supp(γ2) and
K < spark(A) − 1. Based on this observation, we now state
Theorem 5 which lays forward the sufficient conditions for
exact support recovery in the noiseless case.

Theorem 5. Consider the noiseless MMV problem, with
observations Y = AX corresponding to an unknown X
satisfying assumption A1. Suppose S∗ is the true nonzero row
support of X with |S∗| ≤ K. Further, let γ̂ be a solution
of the MSBL optimization in (5), then supp(γ̂) = S∗ almost
surely, provided that K < spark(A) − 1. This result holds
even in the SMV case, i.e., when L = 1.

Proof. Under assumption A1, there exists a γ∗ ∈ ΘK

such that every column in X is i.i.d. N (0,diag(γ∗)), and
supp(γ∗) = S∗. Since γ̂ globally maximizes the MSBL
objective L(Y;γ), it follows that L(Y; γ̂) ≥ L(Y;γ∗) if
γ̂ 6= γ∗, i.e., the following chain of implications holds.

{supp(γ̂) 6= S∗} = {supp(γ̂) 6= supp(γ∗)}
⊆ {γ̂ 6= γ∗}
⊆ {L (Y; γ̂) ≥ L (Y;γ∗)} .

By applying Corollary 2, this further implies that

P (supp(γ̂) 6= S∗) ≤ P (L (Y; γ̂) ≥ L (Y;γ∗))

≤ exp

(
−
LD 1

2
(pγ̂ , pγ∗)

4

)
.

By using the lower bound in (30) for D 1
2

(pγ̂ , pγ∗), we have

P (supp(γ̂) 6= S∗) ≤

[
1

2

(√
λmax(H) +

1√
λmax(H)

)]−L4
,

(31)
where H = Σ

1/2
γ̂ Σ−1

γ∗Σ
1/2
γ̂ . Since γ∗ is at most K-sparse, as

long as K < spark(A)− 1, by Proposition 8, σ2 → 0 results
in λmax (H) → ∞ which in turn drives the RHS in (31) to
zero for L ≥ 1.

From Theorem 5, we conclude that, in the noiseless scenario
(σ2 → 0) and for X satisfying assumption A1, MSBL requires
only a single measurement vector (L = 1) to perfectly recover
any K < spark(A)−1 sized support. If the sensing matrix A
has full spark, i.e., spark(A) = m + 1, MSBL can recover
m − 1 or lesser sparse supports exactly from m noiseless
measurements of a single sparse vector. It is noteworthy
that A satisfies the full spark condition under very mild
assumptions, e.g., the entries of A are drawn independently
from a continuous probability distribution. This result is an
improvement over the sufficient conditions for exact support
recovery by MSBL in [23, Theorem 1]. Unlike in [23], we do
not require the nonzero rows of X to be orthogonal. Also, our
result improves over the k ≤ m

2 condition shown in [29].

VII. CONCLUSIONS

We analyzed the sample complexity of error free recovery of
the common nonzero support of multiple joint-sparse Gaussian
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sources from their compressive measurements. We established
the finite MMV, high-probability consistency of the nonzero
support inferred from a constrained type-II ML estimate of
the variance hyperparameters belonging to a correlation-aware
Gaussian source prior. The nonzero coefficients of the type-
II ML estimate are constrained to lie in a known interval
[γmin,γmax]. Our support consistency guarantee also applies
to any global solution of the M-SBL optimization when the
nonzero coefficients of the solutions satisfy the same interval
constraint.

We also showed that a single noiseless MMV suffices
for perfect recovery of any K-sparse support, provided that
K < spark(A) − 1. In case of noisy MMVs, we showed
that any K-sized support can be recovered exactly with high
probability using finitely many MMVs, provided A � A
admits a positive minimum restricted singular value of order
Θ(K). We also presented an interesting interpretation of M-
SBL’s marginalized log-likelihood cost as a Bregman matrix
divergence, which highlights that the M-SBL algorithm is, in
principle, a covariance matching algorithm. There still remain
the following open questions regarding M-SBL-based support
recovery:

(i) What are necessary conditions for exact support recovery
in terms of the number of required MMVs? Under the
assumption of i.i.d. measurement matrices (unlike the
common measurement matrix used in this work), such
conditions have been derived in [47]; these have been
extended to multiple support recovery in [48].

(ii) Is there a criterion under which all stationary points of the
M-SBL objective also yield the correct support estimate?

(iii) How is the support recovery performance impacted by
inter and intra vector correlations in the signals?

(iv) To derive the sufficient conditions for exact support
recovery via cM-SBL, we assumed that γmax and γmin are
roughly of the same order. This assumption needs to be
certified, perhaps by analyzing the Karush–Kuhn–Tucker
(KKT) conditions associated with M-SBL’s nonnegative
optimization.

Answering these questions would be interesting directions for
future work.

APPENDIX

A. Proof of Proposition 1

By using the property: log |XY| = log |X| + log |Y| for
any positive definite matrices X and Y, from (9), we have

D 1
2
(p1, p2)

= log

∣∣∣∣Σ1 + Σ2

2

∣∣∣∣− 1

2
log |Σ1| −

1

2
log |Σ2|

= log

∣∣∣∣∣Im + Σ
−1/2
1 Σ2Σ

−1/2
1

2

∣∣∣∣∣+
1

2
log |Σ1| −

1

2
log |Σ2|

= log

∣∣∣∣∣Im + Σ
−1/2
1 Σ2Σ

−1/2
1

2

∣∣∣∣∣+
1

2
log
∣∣∣Σ1/2

1 Σ−1
2 Σ

1/2
1

∣∣∣
= log

∣∣∣∣Im + H−1

2

∣∣∣∣+
1

2
log |H|

= log

∣∣∣∣H1/2 + H−1/2

2

∣∣∣∣ , (32)

where H , Σ
1/2
1 Σ−1

2 Σ
1/2
1 . Denote the eigenvalue decompo-

sition of H by UΛUT , with the real and positive diagonal
entries of Λ = diag (λ1, λ2, . . . , λm) denoting the eigenval-
ues of H, and the orthonormal columns of U denoting the
eigenvectors of H. By the non-negativity of the Bregman Log-
Det divergence between positive definite matrices [42], for any
X ∈ Sm++, it follows that log |X| ≥ tr

(
I−X−1

)
. Therefore,

using (32), we have

D 1
2

(p1, p2) ≥ tr

(
Im −

(
H1/2 + H−1/2

2

)−1
)

=

m∑
i=1

1−

(
λ

1/2
i + λ

−1/2
i

2

)−1
 ≥ m∑

i=1

(λi − 1)2

2(1 + λi)2

=
1

2
tr
(
(H− Im)(Im + H)−1(H− Im)(Im + H)−1

)
.

(33)

Plugging back H = Σ
1/2
1 Σ−1

2 Σ
1/2
1 in (33), we obtain the

desired lower bound for D 1
2
(p1, p2) as shown below.

D 1
2

(p1, p2)

≥ 1

2
tr
(

(Σ
1/2
1 Σ−1

2 Σ
1/2
1 − Im)(Im + H)−1 .

(Σ
1/2
1 Σ−1

2 Σ
1/2
1 − Im)(Im + H)−1

)
=

1

2
tr
(
Σ

1/2
1 (Σ−1

2 −Σ−1
1 )Σ

1/2
1 (Im + H)−1 .

Σ
1/2
1 (Σ−1

2 −Σ−1
1 )Σ

1/2
1 (Im + H)−1

)
=

1

2
tr
(
Σ−1

1 (Σ1 −Σ2)Σ−1
2 Σ

1/2
1 (Im + H)−1Σ

1/2
1 Σ−1

1 .

(Σ1 −Σ2)Σ−1
2 Σ

1/2
1 (Im + H)−1Σ

1/2
1

)
=

1

2
tr
[
(Σ1 −Σ2)

(
Σ−1

2 Σ
1/2
1 (Im + H)−1Σ

−1/2
1

)
.

(Σ1 −Σ2)
(
Σ−1

2 Σ
1/2
1 (Im + H)−1Σ

−1/2
1

)]
=

1

2
tr
[
(Σ1 −Σ2)

(
Σ−1

2 (Im + Σ1Σ
−1
2 )−1

)
.

(Σ1 −Σ2)
(
Σ−1

2 (Im + Σ1Σ
−1
2 )−1

)]
=

1

2
tr
[
(Σ1−Σ2) (Σ2 + Σ1)

−1
(Σ1−Σ2) (Σ2 + Σ1)

−1
]
.

B. Proof of Corollary 1
For a fixed support S, |S| ≤ k, from Proposition 3,

P
(

~AS~2 ≥
√
m+

√
k +

√
6k log n

)
≤ 2e−3k logn.

By taking the union bound over
(
n
1

)
+
(
n
2

)
+. . .+

(
n
k

)
≤
(

3en
2

)k
submatrices of A containing k or fewer columns, we get

P

 ⋃
S⊂[n]:|S|≤k

{
~AS~2 ≥

√
m+

√
k +

√
6k log n

}
≤
(

3ne

2

)k
2e−3k logn ≤ 2e−3k logn+k log(3ne/2) ≤ 2

nk
,

for n > 5.
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C. Proof of Proposition 4

The following stepwise procedure shows how to construct a
δ-net of Θ(S) (with respect to the Euclidean distance metric)
which is entirely contained in Θ(S).

1) Consider an δ-blow up of Θ(S), denoted by

Θ↑δ(S) , {x : ∃x′ ∈ Θ(S) such that ‖x− x′‖2 ≤ δ} .

2) Let Θδ
↑δ(S) be a δ-net of Θ↑δ(S). Some points in Θδ

↑δ(S)
may lie outside Θ(S).

3) Let P denote the set containing the projections of all
points in Θδ

↑δ(S) ∩ Θ(S)c onto the set Θ(S). By con-
struction, P ⊂ Θ(S), and |P| ≤ |Θδ

↑δ(S) ∩Θ(S)c|.
4) Then, Θδ(S) ,

(
Θδ
↑δ(S) ∩Θ(S)

)
∪ P is a valid δ-net

of Θ(S) which is entirely contained in Θ(S).
To prove the validity of the above δ-net construction, we

need to show that for any γ ∈ Θ(S), there exists an element a
in Θδ(S) such that ‖γ−a‖2 ≤ δ. Let γ be an arbitrary element
in Θ(S). Then, γ also belongs to the larger set Θ↑δ(S), and
consequently, there exists γ′ ∈ Θδ

↑δ(S) such that ‖γ−γ′‖2 ≤
δ. Now, there are two cases. (i) γ′ ∈ Θ(S), and (ii) γ′ /∈ Θ(S).

In case (i), γ′ ∈
(

Θδ
↑δ(S) ∩Θ(S)

)
, and hence also belongs

to Θδ(S). Further, ‖γ − γ′‖2 ≤ δ. Hence a = γ′ will work.
In case (ii), γ′ ∈ Θδ

↑δ(S)∩Θ(S)c. Let γ′′ be the projection
of γ′ onto Θ(S), then γ′′ must belong to P , and hence must
also belong to Θδ(S). Note that since γ′′ is the projection
of γ′ onto the convex set Θ(S), for any γ ∈ Θ(S), we have
〈γ − γ′′,γ′ − γ′′〉 ≤ 0. Further, we have

δ ≥ ‖γ − γ′‖22 = ‖(γ − γ′′) + (γ′′ − γ′)‖22
= ‖γ − γ′′‖22 + ‖γ′′ − γ′‖22 + 2〈γ − γ′′,γ′′ − γ′〉
≥ ‖γ − γ′′‖22. (34)

The last inequality is obtained by dropping the last two
nonnegative terms in the RHS. From (34), a = γ′′ will work.

Since case (i) and (ii) together are exhaustive, Θδ(S) in
step-4 is a valid δ-net of Θ(S) which is entirely inside Θ(S).

Cardinality of Θδ(S): The diameter of Θ(S) is√
|S|(γmax − γmin). Based on the construction in step-

4, the cardinality of Θδ(S) can be upper bounded as:

|Θδ(S)| ≤ |Θδ
↑δ(S) ∩Θ(S)|+ |Θδ

↑δ(S) ∩Θ(S)c|
= |Θδ

↑δ(S)|

≤
∣∣∣δ-net of `2-ball of radius

√
|S|(γmax − γmin)

in R|S|
∣∣∣

≤ max

(
1,
(

3
√
|S|(γmax − γmin)/δ

)|S|)
. (35)

The last step is an extension of the volumetric arguments
in [49] to show that the δ-covering number of a unit ball
B1(0) in Rk with respect to the standard Euclidean norm ‖·‖2
satisfies N δ

cov (B1(0), ‖ · ‖2) ≤ (3/δ)
k. The max operation

with unity covers the case when δ is larger than the diameter
of Θ(S) and the case when γmax = γmin.

Now consider the modified net Θε/CL,S (S) obtained by
setting δ = ε

CL,S
in steps 1-4, where CL,S is the Lipschitz

constant of L(Y,γ) with respect to γ ∈ Θ(S). We claim that
Θε/CL,S (S) is the desired set which simultaneously satisfies
conditions (i) and (ii) stated in Proposition 4.

To show condition (i), we observe that since Θε/CL,S (S)
is an (ε/CL,S)-net of Θ(S) with respect to ‖ · ‖2, for any
γ ∈ Θ(S), there exists a γ′ ∈ Θε/CL,S (S) such that ‖γ −
γ′‖2 ≤ ε/CL,S . Since L(Y,γ) is CL,S -Lipschitz in Θ(S), it
follows that |L(Y,γ)− L(Y,γ′)| ≤ CL,S‖γ − γ′‖2 ≤ ε.

Condition (ii) follows from (35) by setting δ = ε/CL,S .

D. Proof of Theorem 1

For continuous probability densities pγ and pγ∗ defined on
the observation space Rm, for any ε > 0, the tail probability
of the random variable log (pγ(Y)/pγ∗(Y)) has a Chernoff
upper bound with parameter t > 0 as shown below.

P
(

log
pγ(Y)

pγ∗(Y)
≥ −ε

)
= P

 L∑
j=1

log
pγ(yj)

pγ∗(yj)
≥ −ε


≤ Epγ∗

exp

t L∑
j=1

log
pγ(yj)

pγ∗(yj)

 exp (tε)

=

(
Epγ∗

[
exp

(
t log

pγ(y)

pγ∗(y)

)])L
exp (tε)

=

(
Epγ∗

[(
pγ(y)

pγ∗(y)

)t])L
exp (tε)

=

(∫
y

pγ(y)tpγ∗(y)1−tdy

)L
exp (tε)

= exp
(
−L

[
t
(
− ε
L

)
− (t− 1)Dt(pγ , pγ∗)

])
. (36)

In the above, the first and third steps follow from the indepen-
dence of yj . The second step is the application of the Chernoff
bound. The last step is obtained by using the definition of the
Rényi divergence and rearranging the terms in the exponent.

By introducing the function ψ(t) = (t− 1)Dt(pγ , pγ∗), the
Chernoff bound in (36) can be restated as

P
(

log
pγ(Y)

pγ∗(Y)
≥ −ε

)
≤ exp

(
−L

[
t
(
− ε
L

)
− ψ(t)

])
.

(37)
For t = arg supt>0

(
t
(
− ε
L

)
− ψ(t)

)
, the upper bound in (37)

attains its tightest value
exp

(
−Lψ∗

(
− ε
L

))
, where ψ∗ is the Legendre transform of ψ.

E. Proof of Theorem 2

Since L ≥ C log 2
δ , by Proposition 2, P(Gc) ≤ δ. Combined

with L ≥ 8κcov
η , (22) can be rewritten as

P(ES∗) ≤
∑

S∈Sn\S∗
exp

(
−
ηLkS,S

∗

d

8

)
+ δ. (38)

The total number of support sets belonging to Sn\S∗ which
differ from the true support S∗ in exactly kd locations is
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∑kd
j=0

(
n−|S∗|

j

)(
j+|S∗|

min(kd,j+|S∗|)
)
. Since |S∗| ≤ K, this summa-

tion can be further upper bounded by (2nK)
kd . Thus, we can

rewrite (38) as

P(ES∗) ≤ δ +

n−|S∗|∑
kd=1

∑
S∈Sn\S∗,

|(S\S∗)∪(S∗\S)|=kd

exp

(
−ηLkd

8

)

≤ δ +

n−|S∗|∑
kd=1

(2nK)
kd
(
e−

ηL
8

)kd
. (39)

Since L ≥ 8
η log

(
2nK

(
1+δ
δ

))
, P(ES∗) can be upper bounded

by a geometric series as

P(ES∗) ≤ δ +

∞∑
kd=1

(
δ

1 + δ

)kd
= δ + δ = 2δ.

F. Proof of Proposition 5

Let ∆Γ = diag(∆γ), where ∆γ , γ − γ∗. Also, let
Σγ+γ∗ , Σγ +Σγ∗ . Then, using Proposition 1, D 1

2
(pγ , pγ∗)

can be bounded as follows.

D 1
2
(pγ , pγ∗) ≥ 1

2
tr
(
Σ−1

γ+γ∗(A∆ΓAT )Σ−1
γ+γ∗(A∆ΓAT )

)
≥ ‖A∆ΓAT ‖2F

2 ~Σγ+γ∗~
2
2

=
‖(A�A)∆γ‖22

2 ~Σγ+γ∗~
2
2

. (40)

In above, the second inequality is obtained by repeatedly
applying the trace inequality: tr

(
A−1B

)
≥ tr(B)/~A~2 for

any positive definite A and positive semidefinite B. The last
step follows from the identity: vec(A∆ΓAT ) = (A�A)∆γ.

Next, we derive an upper bound for the spectral norm
of Σγ+γ∗ as shown below.

~Σγ+γ∗~2 =
�

�2σ2Im + A(Γ + Γ∗)AT
�

�

2

≤ 2σ2 + 2γmax

�

�AT
S∪S∗AS∪S∗

�

�

2
. (41)

Finally, using (41) in (40), we obtain the desired lower
bound for D 1

2
(pγ , pγ∗).

G. Proof of Theorem 3

Consider the unit norm m2 length vector

w ,
1{1,m+2,2m+3,...,m2}√

m
, (42)

where 1S is a binary vector containing ones in the indices
specified by the set S and zeros everywhere else. We call w the
Hadamard sampler, as it samples the m rows of the Hadamard
submatrix contained within A�A. Let b = (A�A)Tw, then

b(i) =
(ai ◦ ai)

T1[m]√
m

=
‖ai‖22√
m
∀i ∈ [n], (43)

where ai denotes the ith column of A. Since we have assumed
that ‖ai‖22 ∈ [1− α, 1 + α],

1− α√
m

1[n] � (A�A)Tw � 1 + α√
m

1[n]. (44)

To ease the notation, let X = A � A. Given projection
matrices wwT and Π = Im2 −wwT , one can write

vTXTXv

= vTXTwwTXv + vTXTΠXv

≥ vTXTwwTXv

= vT+XTwwTXv+ + vT−XTwwTXv−

−2vT+XTwwTXv−
(a)

≥ (1− α)2

m

(
vT+1n1Tnv+

)
+

(1− α)2

m

(
vT−1n1Tnv−

)
−2

(1 + α)2

m

(
vT+1n1Tnv−

)
=

(1−α)2

m

(
‖v+‖21 + ‖v−‖21

)
− 2‖v+‖1‖v−‖1

(1+α)2

m

=
(1− α)2

m

(
‖v+‖21 + ‖v−‖21

)
×

[
1− 2‖v+‖1‖v−‖1
‖v+‖21 + ‖v−‖21

(
1 + α

1− α

)2
]
. (45)

In above, step (a) follows from (44) and the nonnegativity of

v+ and v−. We observe that for ‖v+‖1 > 4
(

1+α
1−α

)2

‖v−‖1,

the ratio 2‖v+‖1‖v−‖1
‖v+‖21+‖v−‖21

≤ 1
2

(
1−α
1+α

)2

, and therefore

vTXTXv ≥ (1− α)2

2m

(
‖v+‖21 + ‖v−‖21

)
.

H. Proof of Proposition 6

Proof. Let us define ∆γ = γ − γ∗ which also splits as

∆γ = ∆γ+ −∆γ−, (46)

where ∆γ+ and ∆γ− are nonnegative vectors in Rn+ with
non-overlapping supports and containing absolute values of
positive and negative coefficients of ∆γ, respectively. Let S
and S∗ denote the nonzero supports of γ and γ∗, respectively.
Suppose S and S∗ differ in exactly kS,S

∗

d locations. By
construction of ∆γ+ and ∆γ−, we have

‖∆γ‖22 ≥ kS,S
∗

d γ2
min (47)(

|S∗| − kS,S
∗

d

)
+
γmin ≤ ‖∆γ−‖1 ≤ |S∗|γmax (48)(

kS,S
∗

d − |S∗|
)

+
γmin ≤ ‖∆γ+‖1 ≤ kS,S

∗

d γmax

+|S∗|(γmax − γmin)

(49)

We introduce Kthreshold ,

(
1 + 4

γmax
γmin

(
1+α
1−α

)2
)
K, and B ,{

S ∈ [n] : kS,S
∗

d <Kthreshold

}
. Then, from (23), we have

η = min
S⊆[n]

D∗S
kS,S

∗

d

= min

(
min
S∈B

D∗S
kS,S

∗

d

, min
S∈Bc

D∗S
kS,S

∗

d

)
. (50)

Note that for supp(γ) = S and S ∈ B, from property P2, we
have ‖(A�A)∆γ‖22 ≥ β‖∆γ‖22. Using the lower bound on
D∗S derived in Proposition 5, we can bound minS∈B

D∗S
kS,S

∗
d

as
follows.

min
S∈B

D∗S
kS,S

∗

d

= min
γ∈Θ(S),
S∈B

β‖∆γ‖22
4kS,S

∗

d (σ2 + γmaxσ
2
max(AS∪S∗))

2
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≥ min
S∈B

βkS,S
∗

d γ2
min

4kS,S
∗

d (σ2 + γmaxσ
2
max(AS∪S∗))

2

≥ βγ2
min

4 (σ2 + γmax)
2

max(1, δ2
(K+Kthreshold)

)
. (51)

For the case where S ∈ Bc, i.e., kS,S
∗

d ≥Kthreshold, it
follows from (48) and (49) that ‖∆γ+‖1 ≥ 4

(
1+α
1−α

)
‖∆γ−‖1.

Therefore, we can invoke the restricted null space property of
A�A from Theorem 3 to bound minS∈Bc

D∗S
kS,S

∗
d

as follows.

min
S∈Bc

D∗S
kS,S

∗

d

≥ min
γ∈Θ(S),
S∈Bc

(1− α)2
(
‖∆γ+‖21 + ‖∆γ−‖21

)
8mkS,S

∗

d (σ2 + γmaxσ
2
max(AS∪S∗))

2

≥ min
γ∈Θ(S),
S∈Bc

(1− α)2‖∆γ+‖21
8mkS,S

∗

d (σ2+γmax)
2

(max (1, σ2
max(AS∪S∗)))

2

≥ min
S∈Bc

(1− α)2γ2
min

(
kS,S

∗

d − |S∗|
)2

8mkS,S
∗

d (σ2 + γmax)
2

(max (1, σ2
max(AS∪S∗)))

2

≥ (1− α)2γ2
min

8m (σ2 + γmax)
2 min
S∈Bc

(
1− |S

∗|
kS,S

∗

d

)

×

(
min
S∈Bc

kS,S
∗

d − |S∗|
(max (1, σ2

max(AS∪S∗)))
2

)

≥ (1− α)2γ2
min

8m (σ2 + γmax)
2

(
1− K

Kthreshold

)
×

(
min
S∈Bc

kS,S
∗

d − |S∗|
(max (1, σ2

max(AS∪S∗)))
2

)

≥ (1− α)2γ2
min

10m (σ2 + γmax)
2

(
min
S∈Bc

kS,S
∗

d − |S∗|
|S ∪ S∗|

)

×

(
min
S∈Bc

|S ∪ S∗|
(max (1, σ2

max(AS∪S∗)))
2

)

=
(1− α)2γ2

min

10m (σ2 + γmax)
2

(
min
S∈Bc

kS,S
∗

d − |S∗|
kS,S

∗

d + |S∗|

)

×

(
min
S∈Bc

|S ∪ S∗|
(max (1, σ2

max(AS∪S∗)))
2

)

≥ (1− α)2γ2
min

10m (σ2 + γmax)
2

(
Kthreshold −K
Kthreshold +K

)
×

(
min
S∈Bc

|S ∪ S∗|
(max (1, σ2

max(AS∪S∗)))
2

)

≥ (1− α)2γ2
min

16m (σ2 + γmax)
2

(
min
S∈Bc

|S ∪ S∗|
max(1, δ2

|S∪S∗|)

)
. (52)

In the above, the third to the last inequality follows by
substituting Kthreshold with its lower bound 5K. The penul-
timate inequality is obtained by noting that |S∗| ≤ K, and

the ratio kS,S
∗

d −|S∗|
kS,S

∗
d +|S∗|

increases monotonically with kS,S
∗

d for
S ∈ Bc. The final inequality is obtained by noting that the
ratio Kthreshold−K

Kthreshold+K
≥ 2

3 for S ∈ Bc.

Substituting (51) and (52) in (50) and simplifying, we obtain
the lower bound for η stated in the proposition.

I. Proof of Proposition 7

Proof. For any support S ⊂ [n], by setting ε =
LD∗S

2 in
Proposition 4, we have

|Θε(S)|G | ≤ max

1,

(
6
√
|S|(γmax − γmin)CL,S

LD∗S

)|S| .

(53)
where CL,S denotes the Lipschitz constant of L(Y;γ) with
respect to γ over the bounded domain Θε(S)|G . Proposition 9
characterizes the Lipschitz property of L(Y,γ).

Proposition 9. For S ∈ Sn, the log-likelihood L(Y;γ) :
Θ(S)→ R is Lipschitz continuous in γ as shown below.

|L(Y,γ2)− L(Y,γ1)|

≤ mL

γmin

(
1 +

~Ryy~2

σ2

)
‖γ2 − γ1‖2,

for any γ1,γ2 ∈ Θ(S). Here, Ryy , 1
LYYT .

Proof. See Appendix K.

By invoking the definitions of Kthreshold and set B from the
proof of Proposition 6, we can rewrite κcov in (24) as

κcov = max

(
max
S∈B

log
∣∣Θε(S)|G

∣∣
kS,S

∗

d

, max
S∈Bc

log
∣∣Θε(S)|G

∣∣
kS,S

∗

d

)
.

(54)
For the MMV set G as defined in (15) and Y ∈ G, we have

~Ryy~2 ≤ 2
(
σ2 + γmaxδK

)
. Then, for γmin 6= γmax and by

the Lipschitz continuity of L(Y;γ) as per Proposition 9, it
follows that

max
S∈B

log
∣∣ΘLD∗S

2 (S)|G
∣∣

kS,S
∗

d

≤ max
S∈B

|S|
kS,S

∗

d

log

(
6
√
|S|CL,S(γmax − γmin)

LD∗S

)

≤ max
S∈B

|S∗|+ kS,S
∗

d

kS,S
∗

d

× log

6m
√
|S∗|+ kS,S

∗

d (γmax−γmin)(3 + 2
γmax
σ2 δK)

γminD∗S


≤ (K + 1) log

(
m
√
K + 1∆1

)
, (55)

where ∆1=
24(γmax−γmin)

(
3+

2γmaxδK
σ2

)
(σ2+γmax)

2max(1,δ2K+Kthreshold)
βγ3

min
.

The last inequality is obtained by using (51) and noting that
the RHS in the second inequality decreases monotonically with
respect to kS,S

∗

d in the interval [1,Kthreshold].
The second max-term in (54) can be bounded as follows.

By invoking Proposition 5, we first note that

min
S∈Bc

D∗S ≥ min
γ∈Θ(S),
S∈Bc

‖(A�A)(γ − γ∗)‖22
4(σ2 + γmaxσ

2
max(AS∪S∗))2
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≥ min
S∈Bc

(1− α)2(kS,S
∗

d − |S∗|)2γ2
min

8m(σ2 + γmaxσ
2
max(AS∪S∗))2

≥ min
S∈Bc

(
(kS,S

∗

d −|S∗|)2

|S ∪ S∗|2

)
(1− α)2γ2

min

8m(1 + α)2(σ2 + γmax)2

= min
S∈Bc

(
kS,S

∗

d − |S∗|
kS,S

∗

d + |S∗|

)2(
1− α
1 + α

)2
γ2

min

8m(σ2 + γmax)2

≥ 1

18m

(
1− α
1 + α

)2
γ2

min

(σ2 + γmax)2
. (56)

The last inequality follows from the fact that |S∗| ≤ K and

the ratio
(
kS,S

∗
d −|S∗|
kS,S

∗
d +|S∗|

)
is nondecreasing in |S| for S ∈ Bc.

Then, substituting the lower bound for D∗S from (56) in (53),
and simplifying, we obtain

max
S∈Bc

log
∣∣ΘLD∗S

2 (S)|G
∣∣

kS,S
∗

d

≤ max
S∈Bc

|S∗|+ kS,S
∗

d

kS,S
∗

d

log

(
m2
√
|S∗|+ kS,S

∗

d ∆2

)
≤ 4 logm+ 2 log ∆2 +

n

n−K
log n (57)

where ∆2 =
108(γmax−γmin)

(
3+2

γmaxδK
σ2

)
(σ2+γmax)

2(1+α)2

(1−α)2γ3
min

. The
coefficient n

n−K in (57) can be replaced by a suitable constant,
say 2, even for the worst scaling K = Θ(n).

Finally, substituting the bounds from (55) and (57) in (54),
we obtain the claimed upper bound for κcov.

J. Proof of Corollary 3

In order to bound η, we first derive probabilistic bounds
for the parameters α, β and δK associated with the sensing
matrix A. We consider both cases: i. m = Θ(K log n) and ii.
m = Θ(

√
K log n).

1) Lower bound for α: By invoking the Hanson-Wright
concentration inequality [50], and taking the union bound over
all columns of A,

P

 ⋃
i∈[n]

{∣∣‖ai‖22 − 1
∣∣ ≥ α}

 ≤ nP (∣∣aT1 Ima1 − 1
∣∣ ≥ α)

≤ 2ne−cmα
2

, (58)

where c is a numerical constant. For both m = Θ(K log n)
and m = Θ(

√
K log n), by setting α = 1

2 in (58), the squared
`2-norm of columns of A lie inside the interval

[
1
2 ,

3
2

]
with

probability exceeding 1− n−Θ(
√
K).

2) Lower bound for β: In Proposition 6, β refers to
the smallest squared singular value among all submatrices
obtained by sampling K + Kthreshold or fewer columns of
A�A.

Note that the squared kth order restricted minimum singular
value of any matrix is lower bounded by 1−δk, δk being the kth

order restricted isometry constant of the matrix. Thus, noting
that Kthreshold = Θ(K), and by invoking [51, Theorem 1] (a
revised version of [52, Theorem 5]) with δ = 1

2 , b = 2, B =

Θ(1), for both m = Θ(K log n) and m = Θ(
√
K log n), we

obtain the following tail probability for β̄, the (K+Kthreshold)th

order minimum restricted singular value of the centered-and-
rescaled version of A�A as defined in [52]:

P
(
β̄ <

1

2

)
≤ c2n−2, (59)

where c2 is a numerical constant.
Further, by invoking [51, Theorem 4] with a large enough

value of ξ, for both m = Θ(K log n) and m = Θ(
√
K log n),

the squared restricted minimum singular values of the uncen-
tered Khatri-Rao product A�A and its centered-and-rescaled
counterpart [52] can be guaranteed to differ by at most 1

4

with probability exceeding 1− 2n−Θ(K) and 1− 2n−Θ(
√
K),

respectively. Therefore, we further have

β ≥ 1

4
(60)

with probability exceeding 1−Θ(n−2).
3) Upper bounds for δK+Kthreshold and δn: From Proposi-

tion 6, δk is defined as the maximum squared singular value
among any k or fewer column submatrix of A. Thus, by direct
application of Corollary 1, for k ≤ n,

δk ≤

(√
m+

√
k +
√

6k log n
)2

m
(61)

with probability exceeding 1 − 2n−k. From (61), for m =
Θ(K log n) we have

δK+Kthreshold = O(1), and δn = O

(
n

K log n

)
, (62)

and m = Θ(
√
K log n) guarantees that

δK+Kthreshold = O(
√
K), and δn = O

(
n√

K log n

)
, (63)

with probability exceeding 1 − n−Θ(
√
K). In the above, the

bounds for δn follow from Proposition 3.
Finally, for m = Θ(K log n), by substituting the above

bounds for α, β, δK and δn from (60) and (62) in Propo-
sitions 6 and 7, and simplifying, it can be verified that
η = Ω

(
K
n

)
and κcov ≤ O(K logK + K log log n + log n),

respectively, with probability exceeding 1−Ω(n−2). Likewise,
for the m = Θ(

√
K log n) case, we have η = Ω

(√
K
n

)
and

κcov ≤ O(K logK + K log log n + log n) with probability
exceeding 1− c3n−Ω(1), where c3 is a numerical constant.

K. Proof of Proposition 9

The log-likelihood L(Y;γ) can be expressed as the sum
f(γ) + g(γ) with f(γ) = −L log |Σγ | and g(γ) =
−Ltr

(
Σ−1

γ Ryy

)
. Here, Σγ = σ2Im + AΓAT .

First, we derive an upper bound for the Lipschitz constant of
f(γ) = −L log |Σγ | for γ ∈ Θ(S). By the mean value theo-
rem, any upper bound for ‖∇γf(γ)‖2 also serves as an upper
bound for the Lipschitz constant of f . So, we derive an upper
bound for ‖∇γf(γ)‖2. Note that

∣∣∣∂f(γ)
∂γ(i)

∣∣∣ = L(aTi Σ−1
γ ai) for
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i ∈ S, and 0 otherwise. Here, ai denotes the ith column of A.
Then, ‖∇γf(γ)‖2 can be upper bounded as shown below.

‖∇γf(γ)‖2 ≤ ‖∇γf(γ)‖1 = L
∑
i∈S

aTi Σ−1
γ ai

= L
(
tr
(
AT
S (σ2Im + ASΓSA

T
S )−1AS

))
= L

(
tr
(
Γ
−1/2
S ÃT

S (σ2Im + ÃSÃ
T
S )−1ÃSΓ

−1/2
S

))
(a)
= L

�

�Γ−1
S

�

�

2
tr
(
ÃT
S (σ2Im + ÃSÃ

T
S )−1ÃS

)
(b)

≤ (Lmin (m, |S|)) /γmin. (64)

where ÃS = ASΓ
1/2
S . In the above, step (a) follows from

the trace inequality tr(AB) ≤ ‖|A‖|2tr(B) for any positive
definite matrices A and B. Step (b) follows from the observa-
tion that input argument of the trace operator has min (m, |S|)
nonzero eigenvalues, all of them less than unity.

We now shift focus to the second term g(γ) of the loglike-
lihood. Note that

∣∣∣∂g(γ)
∂γ(i)

∣∣∣ = L(aTi Σ−1
γ RY Σ−1

γ ai) for i ∈ S ,
and 0 otherwise. Then, ‖∇γg(γ)‖2 can be upper bounded as

‖∇g(γ)‖2 ≤ ‖∇γg(γ)‖1 = L
∑
i∈S

aTi Σ−1
γ RY Σ−1

γ ai

= L
(
tr
(
AT
SΣ−1

γ RY Σ−1
γ AS

))
≤ L~RY~2 tr

(
AT
SΣ−1

γ Σ−1
γ AS

)
= L~RY~2 tr

(
Γ
−1/2
S ÃT

SΣ−1
γ Σ−1

γ ÃSΓ
−1/2
S

)
≤ (L~RY~2 /γmin) tr

(
ÃT
SΣ−1

γ Σ−1
γ ÃS

)
≤

(
L~RY~2

�

�Σ−1
γ

�

�

2
/γmin

)
tr
(
ÃT
SΣ−1

γ ÃS

)
(a)

≤
(
L~RY~2

�

�Σ−1
γ

�

�

2
min (m, |S|)

)
/γmin

(b)

≤ (L~RY~2 min (m, |S|)) /γminσ
2. (65)

where ÃS , ASΓ
1/2
S . The inequality in (65a) follows from(

ÃT
SΣ−1

γ ÃS

)
having min (m, |S|) nonzero eigenvalues, all

of them less than unity. The last inequality in (65b) is due
to

�

�Σ−1
γ

�

�

2
≤ 1/σ2. Finally, the Lipschitz constant CL,S can

be bounded as CL,S ≤ ‖∇γf(γ)‖2 + ‖∇γg(γ)‖2. Thus, by
combining (64) and (65), and noting that min(m, |S|) ≤ m,
we obtain the desired result.

L. Proof of Proposition 8

We assume that supp(γ1)\supp(γ2) 6= φ. The proof also
holds for the case where supp(γ1) ⊂ supp(γ2) by swapping
γ1 with γ2 and invoking the symmetry of D1/2(pγ1

, pγ2
) with

respect to its input arguments.
Let µ∗ be the largest eigenvalue of Σ

1
2
γ1

Σ−1
γ2

Σ
1
2
γ1

. Then,

µ∗ ≥
tr
(
Σ−1

γ2
Σγ1

)
m

=
1

m

[
σ2tr

(
Σ−1

γ2

)
+ tr

(
Σ−1

γ2
AΓ1A

T
)]

≥ 1

m
tr
(
Σ−1

γ2
AΓ1A

T
)
. (66)

Here, the second step is setting Σγ1
= σ2Im + AΓ1A

T . The
last inequality is obtained by dropping the strictly positive
σ2

m tr
(
Σ−1

γ2

)
term.

Let S1 and S2 be the nonzero supports of γ1 and γ2, respec-
tively. Further, let the eigendecomposition of Σγ2

be UΛUT ,
where Λ = diag(λ1, . . . , λm), λi’s are the eigenvalues of Σγ2

and U is a unitary matrix with columns as the eigenvectors
of Σγ2

. Then, U can be partitioned as [U2 U2⊥ ], where the
columns of U2 and U2⊥ span the orthogonal complementary
subspaces Col(AS2) and Col(AS2)⊥, respectively. Further, let
Λ2 and Λ2⊥ be |S2| × |S2| and ((m − |S2|) × (m − |S2|))
sized diagonal matrices containing the eigenvalues in Λ cor-
responding to the eigenvectors in U2 and U2⊥ , respectively.
We observe that Λ2⊥ = σ2Im−|S2|.

By setting Σ−1
γ2

= U2Λ−1
2 UT

2 + U2⊥Λ−1
2⊥

UT
2⊥ in (66), we

get

µ∗ ≥ 1

m

(
tr
(
U2Λ−1

2 UT
2 AΓ1A

T
)

+tr
(
U2⊥Λ−1

2⊥
UT

2⊥AΓ1A
T
))

≥ 1

m
tr
(
Λ−1

2⊥
UT

2⊥AΓ1A
TU2⊥

)
,

where the last inequality is due to nonnegativity of the first
term. Since UT

2⊥AS2 = 0 by construction of U2⊥ ,

µ∗ ≥ 1

m
tr
(

Λ−1
2⊥

UT
2⊥ASc2Γ1,Sc2AT

Sc2U2⊥

)
=

1

mσ2

m−|S2|∑
i=1

(u2⊥,i)
TASc2Γ1,Sc2AT

Sc2u2⊥,i

=
1

mσ2

m−|S2|∑
i=1

(u2⊥,i)
TAS1\S2Γ1,S1\S2A

T
S1\S2u2⊥,i.

(67)

In the above, u2⊥,i denotes the ith column of U2⊥ . The last
equality is obtained by observing that the nonzero elements of
γ1,Sc2 are located in the index set S1\S2.

We now prove that if K < spark(A)− 1, then there exists
at least one strictly positive term in the above summation. Let
us assume the contrary, i.e., let each term in the summation
in (67) be equal to zero. This implies that the columns of
U2⊥ belong to Null(Γ1/2

1,S1\S2A
T
S1\S2), which means that they

also belong to Null(AS1\S2Γ1,S1\S2A
T
S1\S2). Since, for a

symmetric matrix, the row and column spaces are equal and
orthogonal to the null space of the matrix, it follows that
Col(AS1\S2Γ1,S1\S2A

T
S1\S2) (same as Col(AS1\S2Γ

1/2
1,S1\S2))

is spanned by the columns of U2, or equivalently by columns
of AS2 . Thus, every column in AS1\S2 can be expressed as a
linear combination of columns in AS2 . Since |S2| ≤ K, this
contradicts our initial assumption that K + 1 < spark(A).
Therefore, we conclude that there is at least one strictly
positive term in the summation in (67), and consequently there
exists a constant c1 > 0 such that µ∗ ≥ c1/σ2.
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