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The contents of this supplementary document are as follows.

1) A complete, detailed proof of a modified version of Theorem 5 in On the Restricted Isometry

Property of Centered Self Khatri-Rao Products [1] by Fengler et al. The modified theorem

is stated as Theorem 1.

2) A new result characterizing the gap between the restricted minimum singular values of the

centered, rescaled self Khatri-Rao product of a matrix and its uncentered self Khatri-Rao

product variant. This result is stated as Theorem 4.

The notation used in this document is carried-forward from the parent paper On the Support

Recovery of Jointly Sparse Gaussian Sources Via Sparse Bayesian Learning by S. Khanna et al.

Let A = [a1, a2, . . . , an] ∈ Rm×n be an m× n matrix with ai denoting the ith column vector

in A. The centered self Khatri-Rao (KR) product of A is denoted by A ∈ Rm2×n whose ith

column is given by

Ai = κ(m)vec(aia
T
i − Im), (1)

where

κ(m) =
m2

E {‖vec(aiaTi − Im)‖2
2}

(2)

serves as a normalization constant which ensures that the columns of A are normalized to unit

`2-norm in expectation. In Theorem 1 below, we state a modified version of Theorem 5 in [1],

which provides a probabilistic bound for the restricted isometry constant (RIC) of centered self

KR product A as defined in (1) when A is comprised of i.i.d. sub-Gaussian entries.
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Theorem 1. Let m,n, k be positive integers such that m2 ≤ n and 1 ≤ k ≤ m2. Let A =

(Aij) be a random matrix with sub-Gaussian i.i.d. entries, such that EAij = 0, EA2
ij = 1 and

‖Aij‖ψ2 ≤ B. Let A be the centered and rescaled self KR product of A as defined in (1). Then,

for any b > 0, the RIP constant of order k of A
m

satisfies

δk

(
A
m

)
≤ δ (3)

for any δ > 0 with probability larger than

1−max

(
exp

(
−c
√
n
)
,

1

(en)c
√
k/2

)
− 2C

nb
(4)

as long as

k ≤ cm2

log2(e n
cm2 )

, (5)

and

m ≥ max

(
(b+ 2)

√
2B2 log n

c
√
δ

, 1 + (Ea4 − 1)(
6

δ
− 1)

)
, (6)

where c ≤ min

(
(1/e)4/3,

(
δ

6Cξ2

)2
)
, ξ = c′B2 + 1 and c′, C are universal positive constants.

Here, a is a generic random variable with the same distribution as the i.i.d. entries of A.

Proof. See Appendix A.

In Theorem 2, we restate an important result from [1] about the concentration of `2-norm of

columns of the centered, self-KR product A. Its immediately following corollary is useful in

proving Theorem 1.

Theorem 2. (Theorem 4 in [1]) Let A = (Aij) be a random matrix with sub-Gaussian iid

entries, satisfying ‖Aij‖ψ2 ≤ B and EAij = 0 and normalized such that EA2
ij = 1. Further, let

{Ai}ni=1 be the columns of the centered self KR product of A. Then, it holds:

P
(

max
i≤n

∣∣∣∣‖Ai‖2
2

m2
− 1

∣∣∣∣ ≥ t

)
≤ C exp

(
log n− c

B2

√
tm
)

(7)

if m satisfies

m ≥ 1 + (Ea4 − 1)(3/t− 1), (8)

with a ∼ Pa, the distribution of the i.i.d. entries of A. Here, C and c are universal positive

constants.
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Proof. See proof of Theorem 4 in [1].

In the following corollary of Theorem 2, we present two tail bounds that are ultimately used

to prove Theorem 1.

Corollary 1. For A and A as defined in Theorem 2, it follows that

P
(

max
i≤n

∣∣∣∣‖Ai‖2
2

m2
− 1

∣∣∣∣ ≥ δ

2

)
≤ C

nb+1
, (9)

and

P
(

max
i≤n
‖Ai‖2 ≥

√
1 + δ/2m

)
≤ C

nb
, (10)

provided m ≥ max
(

(b+2)
√

2B2 logn

c
√
δ

, 1 + (Ea4 − 1)(6
δ
− 1)

)
, with a ∼ Pa, the distribution of the

i.i.d. entries of A, and c, C > 0 being universal constants.

Proof. By invoking Theorem 2 with t = δ
2
, it follows that

P
(

max
i≤n

∣∣∣∣‖Ai‖2
2

m2
− 1

∣∣∣∣ ≥ δ

2

)
≤ C exp

(
log n− c

√
δm√

2B2

)
≤ C exp (−(b+ 1) log n) =

C

nb+1
,

(11)

provided c
√
δm√

2B2 ≥ (b + 2) log n, and m ≥ 1 + (Ea4 − 1)(6
δ
− 1). Or equivalently, the above tail

bound in (11) holds true as long as m ≥ max
(

(b+2)
√

2B2 logn

c
√
δ

, 1 + (Ea4 − 1)(6
δ
− 1)

)
.

Next, the tail bound in (10) can be obtained by noting that

P
(

max
i≤n
‖Ai‖2 ≥

√
1 + δ/2m

)
≤ nP

(
‖Ai‖2

2

m2
− 1 ≥ (1 + δ/2)− 1

)
(12)

= nP
(
‖Ai‖2

2

m2
− 1 ≥ δ/2

)
(13)

≤ nP
(∣∣∣∣‖Ai‖2

2

m2
− 1

∣∣∣∣ ≥ δ/2

)
(14)

≤ Cn exp

(
log n− c

√
δm√

2B2

)
(15)

≤ Cn exp (−(b+ 1) log n) =
C

nb
. (16)

In the above, the first inequality is the union bound. The penultimate inequality follows from

Theorem 2 with t set equal to δ/2. The final inequality holds true due to the assumption that

m ≥
√

2(b+2)B2 logn

c
√
δ

.
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Finally, we restate Theorem 3.2 from [2] as Theorem 3 below. The theorem characterizes the

restricted isometry property of randomly constructed matrices containing independent columns.

Theorem 3 (Theorem 3.2 in [2]). Let m ≥ 1 and s,N be integers such that 1 ≤ s ≤ min(N,m).

Let X1, X2, . . . , XN ∈ Rm be independent ψ1 random vectors normalized such that E {‖Xi‖2} =

m and let ψ = maxi≤N ‖Xi‖ψ1 . Let θ′ ∈ (0, 1), K,K ′ ≥ 1 and set ξ = ψK + K ′. Then, for

matrix A with columns Xi, A := (X1| . . . |XN)

δs

(
A√
m

)
≤ Cξ2

√
s

m
log

(
eN

s
√

s
m

)
+ θ′

holds with probability larger than

1− exp

(
−cK

√
s log

(
eN

s
√

s
m

))

− P
(

max
i≤N
‖Xi‖2 ≥ K ′

√
m

)
− P

(
max
i≤N

∣∣∣∣‖Xi‖2
2

m
− 1

∣∣∣∣ ≥ θ′
)
, (17)

where C, c > 0 are universal constants.

Proof. See proof of Theorem 3.2 in [2].

We conclude our discussion on RIP of self Khatri-Rao product matrices by stating the relation

between the restricted minimum singular values of the non-centered and the centered versions

of the self Khatri-Rao product of Gaussian matrices containing i.i.d. entries.

Theorem 4. Let A = (Aij) be a random matrix with i.i.d. N (0, 1) entries. Let A be the centered

and rescaled self KR product of A as defined in (1). Then, for any ξ > 1, we have

βk

(
A�A

m

)
≥ βk

(
A
m

)
− 2ξk log n

cm2
, (18)

with probability exceeding 1− 2/nξ−1, provided m ≥ 16ξ logn
c

, where c is a universal numerical

constant. Here, βk(·) denotes the squared value of the kth order restricted minimum singular

value1 of the input matrix

Proof. See Appendix C.

1For an m × n matrix X, and a positive integer k ≤ n, the kth order restricted minimum singular value of X is defined

as the smallest among the singular values of all m × k submatrices obtained by sampling k or fewer columns of X, i.e.,

minS⊆[n],|S|≤k
√
λmin (XH

SXS), where λmin(·) denotes the minimum eigenvalue of the input matrix.
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According to Theorem 4, the gap between the restricted minimum singular values of the

noncentered and centered self Khatri-Rao products can be made vanishingly small. A particularly

interesting case is m = Ω(ξ
√
k log n), wherein it is guaranteed that

βk

(
A�A

m

)
≥ βk

(
A
m

)
−Θ

(
1

ξ

)
(19)

with probability exceeding 1− 2/nξ−1.

APPENDIX

A. Proof of Theorem 1

[1, Theorem 3] shows that the columns of A are subexponential such that ‖Ai‖ψ1 ≤ c′B2. So

the prerequisites of Theorem 3 are fulfilled with ψ = c′B2, for some absolute constant c′ > 0,

and the variable m (in Theorem 3) replaced with m2. We set θ′ = δ/2 and K ′ =
√

1 + δ/2.

Furthermore, we can set K = 1 such that ξ = ψK + K ′ = c′B2 + 1. Then, by invoking

Theorem 3, it follows that

δk

(
A
m

)
≤ Cξ2

√
k

m2
log

 en

k
√

k
m2


︸ ︷︷ ︸

D

+
δ

2
(20)

with probability exceeding

1− exp

−cK√k log

 en

k
√

k
m2

− P
(

max
i≤n
‖Ai‖2 ≥

√
1 + δ/2m

)

− P
(

max
i≤n

∣∣∣∣‖Ai‖2
2

m2
− 1

∣∣∣∣ ≥ δ

2

)
. (21)

For m ≥ max
(

(b+2)
√

2B2 logn

c
√
δ

, 1 + (Ea4 − 1)(6
δ
− 1)

)
, by substituting the tail probabilities from

Corollary 1 in (21), it follows that

P
(
δk

(
A
m

)
≤ D +

δ

2

)
≥ 1− exp

−cK√k log

 en

k
√

k
m2

− 2C

nb
. (22)

Let k ≤ k∗ , cm2/ log2(e n
cm2 ) for any 0 < c ≤ 1. Note that the conditions c ≤ 1 and n ≥ cm2

guarantee that log(e n
cm2 ) ≥ 1. Further, as argued in Appendix B, the second term D in (20)

increases monotonically with k in the interval [0, k∗], provided c ≤ (1/e)4/3 and n ≥ cm2.
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Therefore for k ≤ k∗, D attains its maximum value at k = k∗ for an appropriately chosen value

for the constant c. Then, by plugging k = k∗ into (20) we see that the RIP constant satisfies

δk

(
A
m

)
≤ D|k=k∗ +

δ

2
(23)

= Cξ2
√
c
log
(
e n
c3/2m2 log3(e n

cm2 )
)

log(e n
cm2 )

+
δ

2
(24)

≤ Cξ2
√
c
log
(
e( n

cm2 )3/2 log3(e n
cm2 )

)
log(e n

cm2 )
+
δ

2
(25)

= Cξ2
√
c

(
3

2
+

3 log log e n
cm2

log e n
cm2

)
+
δ

2
(26)

≤ Cξ2
√
c

(
3

2
+

3

e

)
+
δ

2
(27)

≤ 3Cξ2
√
c+

δ

2
≤ δ, (28)

where in the first inequality we made use of m2 ≤ n and in the second to the last inequality we

used log log x/ log x ≤ 1/e. The final inequality holds for c ≤
(

δ
6Cξ2

)2

. From (21), this bound

fails with probability:

P
(
δk

(
A
m

)
≥ δ

)
≤ exp

(
−c
√
k log

(
e
nm

k3/2

))
+

2C

nb
(29)

≤ exp
(
−c
√
k log

(
e
n

k

))
︸ ︷︷ ︸

Z

+
2C

nb
, (30)

where in the second inequality it was used that k ≤ m2.

For k ≥
√
n, we note that the first term in (30) can be bounded as

Z ≤ exp
(
−c
√
n log

(
e
n

k

))
≤ exp

(
−c
√
n
)
. (31)

On the other hand, for k <
√
n, we have

Z ≤ exp
(
−c
√
k log

(
e
√
n
))
≤ 1

(en)c
√
k/2
. (32)

Combining (30), (31) and (32), we have

P
(
δk

(
A
m

)
≥ δ

)
≤ max

(
exp

(
−c
√
n
)
,

1

(en)c
√
k/2

)
+

2C

nb
, (33)

provided k ≤ cm2

log2(e n
cm2 )

, and
√
n ≥ m ≥ max

(
(b+1)

√
2B2 logn

c
√
δ

, 1 + (Ea4 − 1)(6
δ
− 1)

)
with c ≤

min

(
(1/e)4/3,

(
δ

6Cξ2

)2
)

.
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B. Characterization of D in (30) as a function of k

In this appendix, we independently show that D in (30) is a monotonic increasing function

with respect to k for k ≤ k∗ , cm2/ log2(e n
cm2 ), provided c ≤ (1/e)4/3 and n ≥ m2. Note that,

D can be expressed as

D =
Cξ2

m
g(t)

∣∣
t=
√
k

where g(t) = t log
(enm
t3

)
. (34)

The first and second derivatives of g(t) with respect to t, denoted g′(t) and g′′(t), are

g′(t) = log(enm)− 3 log t− 3 and g′′(t) = −3

t
. (35)

Since g′(0) = +∞ and g′′(t) is negative for t > 0, g(t) is monotonically increasing and

strictly concave for 0 < t ≤ t∗ as long as g′(t∗) ≥ 0. We now argue that g′(t∗) ≥ 0 for

t∗ =
√
k∗ :=

√
cm

log(e n
cm2 )

, in turn implying that g(t) increases monontonically with t in the interval

(0, t∗]. We note that

g′(t∗)|t∗=√k∗ = (log(enm)− 3 log t∗ − 3) |t∗=√k∗

= log(enm)− 3 log

( √
cm

log
(
en
cm2

))− 3

≥ log
(nm
e2

)
− 3 log

(√
cm
) (

as log
( en

cm2

)
≥ 1
)

(36)

is nonnegative if nm
e2

> (cm2)3/2, or equivalently, if c ≤
(

n
m2e2

)2/3. Since, in Corollary 1,

we assume that m2 ≤ n, it follows that choosing c ≤ (1/e)
4
3 guarantees g′(

√
k∗) ≥ 0, and

consequently g(t) is monotonically increasing in the interval 0 ≤ t ≤
√
k∗ :=

√
cm

log(e n
cm2 )

.

Therefore, for t ≤
√
k∗, or equivalently, k ≤ k∗, we have

D =
Cξ2

m
g(t) ≤ Cξ2

m
g(
√
k∗)

= Cξ2
√
c
log
(

en
c3/2m2 log3

(
e n
cm2

))
log(e n

cm2 )

≤ Cξ2
√
c
log
(
e( n

cm2 )3/2 log3(e n
cm2 )

)
log(e n

cm2 )
(as

n

m2
≥ 1). (37)
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C. Proof of Theorem 4

(Restricted singular values of non-centered self Khatri-Rao product of Gaussian matrices)

Proof. Let A denote the centered self Khatri-Rao product of A, whose columns are defined

according to (1). Then, one can write

A = κ(m) (A�A−B) , (38)

where B = vec(Im)1Tn . Let S ⊂ [n] denote an arbitrary k-sized index set with distinct elements.

Then, from (38), it follows that

AS = κ(m) (AS �AS −BS) , (39)

and furthermore,

(AS �AS)T (AS �AS) (40)

=
ATSAS
κ(m)2

−BT
SBS + BT

S (AS �AS) + (AS �AS)TBS (41)

=
ATSAS
κ(m)2

−m1k1
T
k + BT

S (AS �AS) + (AS �AS)TBS (42)

=
ATSAS
κ(m)2

−m1k1
T
k + 1kd

T
S + dS1

T
k (43)

=
ATSAS
κ(m)2

+
(
1kd

T
S −

m

2
1k1

T
k

)
+
(
1kd

T
S −

m

2
1k1

T
k

)T
(44)

=
ATSAS
κ(m)2

+ 1k

(
dS −

m

2
1k

)T
+
(
dS −

m

2
1k

)
1Tk , (45)

where d , [‖a1‖2
2 ‖a2‖2

2 . . . ‖an‖2
2]
T ∈ Rn

+ is defined to be the vector containing the squared

`2-norms of the columns of A, and dS denotes the k-dimensional subvector of d containing

entries indexed by the support set S.

Then, by the Weyl inequality [3], it follows from (45) that

λmin

(
(AS �AS)T (AS �AS)

m2

)
≥ 1

κ(m)2
λmin

(
ATSAS
m2

)
+

1

m2
λmin

(
1k

(
dS −

m

2
1k

)T
+
(
dS −

m

2
1k

)
1Tk

)
,

(46)

where λmin(·) denotes the minimum eigenvalue of the input matrix. By using Lemma 1, the

minimum eigenvalue of 1k
(
dS − m

2
1k
)T

+
(
dS − m

2
1k
)
1Tk can be bounded as shown below.

λmin

(
1k

(
dS −

m

2
1k

)T
+
(
dS −

m

2
1k

)
1Tk

)
≥ vTw − ‖v‖2‖w‖2, (47)
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where v , 1k and w , dS− m
2
1k. Since v is positive and if w is also positive, then by invoking

the Cassel’s inequality [4], the lower bound in (47) can be relaxed further as

λmin

(
1k

(
dS −

m

2
1k

)T
+
(
dS −

m

2
1k

)
1Tk

)
≥ vTw − h+H

2
√
hH

vTw, (48)

where h ≤ vi
wi
≤ H .

We now show that w is a strictly positive vector with high probability, and with each of

its entries concentrating around m/2. Since A contains i.i.d. N (0, 1) entries, by invoking the

Hanson-Wright concentration inequality [5], and taking the union bound over all columns of A,

we have

P
(

max
i∈[n]

∣∣‖ai‖2
2 −m

∣∣ ≥ α

)
= P

⋃
i∈[n]

{∣∣‖ai‖2
2 −m

∣∣ ≥ α
}

≤ nP
(∣∣aT1 Ima1 −m

∣∣ ≥ α
)

≤ 2ne−cα
2/m, (49)

where c is a numerical constant. By substituting α =
√

ξm logn
c

in (49), we obtain

P

(
max
i∈[n]

∣∣‖ai‖2
2 −m

∣∣ ≥√ξm log n

c

)
≤ 2

nξ−1
. (50)

From (50), we can conclude that

|‖ai‖2
2 −m| <

√
ξm log n

c
∀i ∈ [n] (51)

with probability exceeding 1− 2
nξ−1 . Consequently, for all k-sparse supports S, the vector w =

dS − m
2
1k contains entries satisfying

m

2
−∆ < wi = ‖aS(i)‖2

2 −
m

2
<

m

2
+ ∆, for 1 ≤ i ≤ k, (52)

with probability exceeding 1 − 2
nξ−1 and ∆ ,

√
ξm logn

c
. From (52), it is evident that for m ≥

4ξ logn
c

, w is a strictly positive vector with high probability, for all k-sparse supports S.

Noting that v = 1k in (53), and by using (52), one can choose h = 1/(m
2

+ ∆) and H =

1/(m
2
−∆), to obtain

λmin

(
1k

(
dS −

m

2
1k

)T
+
(
dS −

m

2
1k

)
1Tk

)
≥ −(1Tkw)

 (
m
2

+ ∆
)

+
(
m
2
−∆

)
2
√(

m
2

+ ∆
) (

m
2
−∆

) − 1


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= −(1Tkw)

 1√
1−

(
2∆
m

)2
− 1


≥ −k

(m
2

+ ∆
) 1√

1−
(

2∆
m

)2
− 1

 . (53)

Using the binomial expansion 1√
1−( 2∆

m )
2 = 1 + 1

2

(
2∆
m

)2
+ 3

8

(
2∆
m

)4
+ 5

16

(
2∆
m

)6
+ . . ., the lower

bound in (53) simplifies as

λmin

(
1k

(
dS −

m

2
1k

)T
+
(
dS −

m

2
1k

)
1Tk

)
≥ −k

(m
2

+ ∆
)(1

2

(
2∆

m

)2

+
3

8

(
2∆

m

)4

+
5

16

(
2∆

m

)6

+ . . .

)

≥ −k
(m

2
+ ∆

)(1

2

(
2∆

m

)2

+
1

2

(
2∆

m

)4

+
1

2

(
2∆

m

)6

+ . . .

)

= −k
(m

2
+ ∆

)(2∆2

m2

)(
1

1−
(

2∆
m

)2

)
(54)

for all k-sparse supports S with probability exceeding 1 − 2/nξ−1. For m ≥ 16ξ logn
c

, we have
2∆
m
< 1

2
, and from (54), it follows that

λmin

(
1k

(
dS −

m

2
1k

)T
+
(
dS −

m

2
1k

)
1Tk

)
≥ −k

(m
2

+ ∆
)(2∆2

m2

)(
4

3

)
= −k

(
m

2
+

√
ξm log n

c

)(
8ξ log n

3cm

)
≥ −k

(m
2

+
m

4

)(8ξ log n

3cm

)
= −2ξk log n

c
(55)

for all k-sparse supports S with probability exceeding 1− 2/nξ−1.

Combining (46) and (55), and noting that κ(m) = m
m+1

for Aij
i.i.d.∼ N (0, 1), we have

min
S⊆[n],|S|≤k

λmin

(
(AS �AS)T (AS �AS)

m2

)
≥ min
S⊆[n],|S|≤k

(
1

κ(m)2
λmin

(
ATSAS
m2

)
+

1

m2
λmin

(
1k

(
dS −

m

2
1k

)T
+
(
dS −

m

2
1k

)
1Tk

))
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≥
(

1 +
1

m

)2

min
S⊆[n],|S|≤k

λmin

(
ATSAS
m2

)
+

1

m2
min

S⊆[n],|S|≤k
λmin

(
1k

(
dS −

m

2
1k

)T
+
(
dS −

m

2
1k

)
1Tk

)
≥ min
S⊆[n],|S|≤k

λmin

(
ATSAS
m2

)
− 1

m2

(
2ξk log n

c

)
(56)

with probability exceeding 1− 2
nξ−1 , provided m ≥ 16ξ logn

c
.

Lemma 1. Let U = vwT+wvT be symmetric matrix such that v and w are linearly independent.

Then, U has rank exactly equal to 2 and its two nonzero eigenvalues λ1 and λ2 are

λ1 = vTw + ‖v‖2‖w‖2

and λ2 = vTw − ‖v‖2‖w‖2.

Proof. Since U is sum of two rank one matrices, its rank is at most two, and it has at most two

nonzero eigenvalues, say λ1 and λ2. Then, we have

λ1 + λ2 = trace(U) = 2vTw (57)

and λ2
1 + λ2

2 = trace(U2) = 2‖v‖2
2‖w‖2

2 + 2(vTw)2. (58)

Noting that λ1λ2 = 1
2

((λ1 + λ2)2 − (λ2
1 + λ2

2)), and using (57) and (58), we have

λ1λ2 = (vTw)2 − ‖v‖2
2‖w‖2

2. (59)

From (59), it is evident from the Cauchy-Schwarz inequality that since v and w are linearly

independent, λ1λ2 < 0, and therefore U has exactly two nonzero eigenvalues, which are of

opposite signs.

Further, from (57) and (59) together, we can conclude that λ1 and λ2 are the two roots of the

quadratic polynomial

f(x) = x2 − 2(vTw)x+
(
(vTw)2 − ‖v‖2

2‖w‖2
2

)
, (60)

and can be explicitly evaluated as

λ1 =
2vTw +

√
4(vTw)2 − 4 ((vTw)2 − ‖v‖2

2‖w‖2
2)

2
= vTw + ‖v‖2‖w‖2

and λ2 =
2vTw −

√
4(vTw)2 − 4 ((vTw)2 − ‖v‖2

2‖w‖2
2)

2
= vTw − ‖v‖2‖w‖2.
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