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Abstract—We consider the problem of joint activity detection
and channel estimation in massive random access. When the
receiver has multiple antennas, this is a joint sparse recovery
problem with multiple measurement vectors (MMV). For the
general setting where the channels could be correlated across
antennas, we first develop a modified minimum mean squared
error (MMSE) shrinkage function to be used in the Trainable
Iterative Soft Thresholding Algorithm (TISTA). Then, we learn
this MMSE shrinkage function using a model-based neural
network. In the simulation results, the proposed learning-based
method, L-MMSE-MMV-TISTA, offers a 30-40% reduction in
preamble length requirement compared to TISTA. We also
compare L-MMSE-MMV-TISTA with the state-of-the-art MMV
sparse Bayesian learning (M-SBL) method. While M-SBL can
provide better performance at the cost of higher complexity in
highly measurement-constrained settings, LMMSE-MMV-TISTA
provides a significant complexity advantage when only a slightly
larger number of measurements are available.

I. INTRODUCTION

Massive random access plays an important role in Internet-
of-Things (IoT) and machine-type-communications (MTC)
applications [1], [2]. In massive random access, a base station
(BS) receives data from a large number of sporadically active
devices. In such scenarios, sparse recovery algorithms are
effective for detecting user activity and estimating the channels
[1], [3]. Specifically, the joint activity detection and channel
estimation problem with a multi-antenna BS can be formulated
as a multiple-measurement-vector (MMV) or a joint-sparse
recovery problem. Most of the existing algorithms for joint
sparse recovery are variants of Iterative Soft Thresholding Al-
gorithm (ISTA) [4], [5], Approximate Message Passing (AMP)
[1], [6], [7], Alternating Direction Method of Multipliers
(ADMM) [8], [9], and Sparse Bayesian Learning (SBL) [10].

Recently, sparse recovery algorithms that can learn from
data while taking advantage of model-based signal processing
have been developed based on deep unfolding [11], algorithm
unrolling [12], or, more generally, model-based deep learn-
ing [13]. One of the first such methods is Learned ISTA
(LISTA) [14]. In the context of joint user activity detection
and channel estimation in massive random access, the most
relevant references amongst the learning-based methods are
[5], [15], [16]. Trainable ISTA (TISTA), proposed in [5] for
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sparse recovery from a single measurement vector, comprises
a linear estimation step, an error variance estimation step, and
a minimum mean squared error (MMSE) shrinkage step using
the estimated error variance. TISTA was shown to outperform
LISTA, AMP and Orthogonal AMP [17]. In [15], a deep
unfolded version of an improved version of ADMM for the
MMV setting [9] was presented. In [16], deep unfolding was
used to develop a learned version of the vector AMP method
with an MMSE denoiser in [1] for massive random access.

In this work, we enhance TISTA in the following ways:
(i) we replace the MMSE shrinkage function by a network
that can learn a more appropriate shrinkage function, (ii) we
generalize the MMV setting to account for possibly correlated
channel coefficients across the BS antennas. We obtain a
modified Bayesian MMSE shrinkage function for the prior
associated with correlated channel coefficients, in the MMV
setting. Then, in order to replace the MMSE shrinkage func-
tion in TISTA, we develop a model-based approach inspired
by [18] for learning the MMSE estimator. The model-based
network for the shrinkage function learns from the training
data and potentially overcomes inaccuracies in the model
assumptions used to derive the MMSE shrinkage function.
We numerically show that these enhancements provide a
significant reduction in the training overhead required for
user activity detection and channel estimation, compared to
a direct application of TISTA and the modified ADMM-based
approach in [15]. In terms of comparison with AMP-based
unfolding approaches, the deep unfolded version of the MMV-
ADMM method in [9] and the vector AMP-based method in
[1] are observed to be comparable in performance in [16]. The
modified-ADMM in [15] improves upon the standard MMV-
ADMM method [9] before unfolding and provides better per-
formance. We also compare against the MMV sparse Bayesian
learning (M-SBL) method. While the M-SBL method can
provide better performance at the cost of higher complexity
when the number of measurements is very low, the proposed
scheme provides a significant complexity advantage in less
measurement-constrained regimes.

II. SYSTEM MODEL

We consider a massive random access system consisting of
one M -antenna BS and N single-antenna IoT devices. Each
device becomes active independently with a probability p. The
set of active devices is denoted by S = {1, 2, . . . , S}. Each
active user transmits an L-length pilot sequence followed by
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data. Let an ∈ CL×1 denote the L-length training sequence
employed by user n. While there are several ways of designing
an (for example, using Zadoff-Chu sequences), we consider
sequences of i.i.d. complex Gaussian entries with zero mean
and unit variance for simplicity and as an illustrative example.
The complex baseband channel vector between user n and
the BS is represented as hTn ∈ C1×M . The channel could be
correlated across antennas, e.g., hTn ∼ CN (0,Ch), where Ch

is the covariance matrix.1 The received training signal Y ∈
CL×M is modeled as

Y =
∑
i∈S

aih
T
i +N ,

where the noise N has i.i.d. CN (0, σ2) entries. For each user
n, let λn = 0 if the user is inactive and λn = 1 if the user is
active. Then, we can rewrite the above as

Y =

N∑
n=1

λnanh
T
n +N = AX +N , (1)

where X = [λ1h1, λ2h2, · · · , λNhN ]T ∈ CN×M and A =
[a1,a2, . . . ,aN ]. Since the number of active users S is much
smaller than N , matrix X is a row sparse matrix. Thus,
we have a joint sparse recovery problem, where the receiver
observes Y and needs to estimate a row sparse matrix X .
A. Trainable ISTA (TISTA)

We briefly present TISTA for the single measurement vector
case (M = 1) [5]. The following equations describe one
iteration (or layer) of TISTA. Here, t denotes the iteration
number, and the estimate of X (note that, when M = 1, X
is a vector) at iteration t is st.

rt = st + γtW (Y −Ast), (2)
st+1 = ηMMSE(rt; τ

2
t ), (3)

v2t = max

{
‖Y −Ast‖22 − Lσ2

tr(ATA)
, ε

}
, (4)

τ2t =
v2t
N

(N + (γ2t − 2γt)L) +
γ2t σ

2

N
tr(WW T ), (5)

where the matrix W is the pseudo-inverse matrix of the
sensing matrix A, and ε is a small real constant.2 The
initial condition s0 can be set to zero, and the final estimate
of X after T iterations is sT . The scalar variables γt for
t = 0, 1, . . . , T − 1, are learnable and are tuned in a training
process. ηMMSE(·; ·) is the MMSE shrinkage function that
is derived using an assumed prior on X . In [5], X is a
vector of i.i.d. Bernoulli Gaussian random variables, i.e., each
entry of X is N (0, α2) with probability p and zero with
probability 1−p. Furthermore, in each iteration, rt is modelled
as rt = X + Z, where Z ∼ N (0, τ2I). For this model, the
MMSE denoiser is an element-wise denoiser given by

η(y; τ2) =
yα2

α2 + τ2
· pF (y;α2 + τ2)

(1− p)F (y; τ2) + pF (y;α2 + τ2)
,

1The algorithm in Sec. III-A requires knowledge of Ch, while the algorithm
in Sec. III-B learns Ch from the data.

2The sparse recovery problem with complex vectors and matrices in (1) can
be converted to an equivalent real-valued problem as done in several other
works [15], [19], [20] that use deep learning based optimizers [21] which
work with real-valued parameters. Hence, we present all the algorithms for
the real-valued case in this paper.

where F (z; v) = 1√
2πv

exp
(
−z2
2v

)
. Here, {γt}, p and α2 are

learnt from the training data in TISTA, while σ2 is assumed
to be known. Note that τ2 is estimated in each iteration.

III. PROPOSED SOLUTIONS

A. MMSE-MMV-TISTA

We now consider the MMV model in (1) with M > 1
antennas. In order to exploit the row sparse structure of X
and the correlation structure of hn, the MMSE shrinkage step
in (3) needs to be modified. Before we discuss this, we briefly
mention how the other two steps of TISTA are adapted to our
problem. The linear estimation step in (2) is modified to

Rt = St + γtW (Y −ASt), (6)

where Rt and St are now N×M matrices. The error variance
estimation in (4) can be used either with the vectorized model,
or simply with the observation from any one of the antennas.

The MMSE shrinkage function is derived as follows. Let xTi
be the ith row of X . This corresponds to the received signal
vector from the ith user at the M receive antennas. Thus, xi is
distributed as N (0,Ch) with probability p (if user i is active)
and is 0 with probability 1−p (if user i is not active). Here, the
correlation matrix Ch is assumed to arise due to the mutual
coupling between receive antennas, and therefore independent
of i. Further, the channel vectors xi and xj are independent
for i 6= j. Therefore, the MMSE denoiser, given by

St+1 = ηMMSE(Rt; τ
2
t ), (7)

is a row-wise denoiser, i.e., the ith row of St+1 is the MMSE
estimate of xi from the ith row of Rt. Let yTi be the ith row
of Rt, and x̂Ti be the ith row of St+1. In order to obtain the
MMSE estimate of xi, we use the model yi = xi+zi, where
zi ∼ N (0, τ2t I) and xi is a Bernoulli-Gaussian random vector
as described above. Now, using [18, Lemma 1], we get

x̂i = W (Ĉ)yi, with Ĉ =
1

τ2t
yiy

T
i , (8)

W (Ĉ) =
p exp

[
tr(WhĈ) + log |I −Wh|

]
Wh

(1− p) + p exp
[
tr(WhĈ) + log |I −Wh|

] , (9)

and Wh = Ch(Ch + τ2t I)
−1. In summary, the proposed

MMSE-MMV-TISTA method is specified by equations (6),
(7), (4) and (5), where the observations from one of the
antennas3 are used in (4). The details of (7) are in (8)-(9).
The active users are detected from the estimate X̂ = ST by
comparing the norm of each row with a threshold that is a
constant times the noise variance σ2. The value of the constant
is chosen empirically, but the performance is not sensitive to
the specific value used, since the row norms typically nicely
separate into low and high values.

B. L-MMSE-MMV-TISTA

The MMSE shrinkage function in TISTA depends on the
prior used for X . Our row-sparse prior model with possible

3An estimate of the variance of the error in entries of St can be obtained
from (4). Empirically, we observed that using one column of Y and St

provides similar results as using all the observations. So, we choose to use
only one column to simplify the computation.
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W (Ĉ) St+1

Y Y

Fig. 1: One iteration of L-MMSE-MMV-TISTA.

antenna correlation is different from the sparse vector model
in [5]. An open problem mentioned in [5] is the possibility
of learning this shrinkage function using a neural network.
In this section, we present a learned version of MMSE-
MMV-TISTA, where the shrinkage function or denoiser is
learned using a model-based neural network. The structure
of the neural network is based on (8)-(9) derived earlier.
The learned version, named L-MMSE-MMV-TISTA, has the
following advantages: (i) knowledge of Ch and p are not
required, as they are learned implicitly during training, and
(ii) inaccuracies in the model assumptions for the estimate
from the linear estimation step, i.e., Rt = X + Z, could
potentially be alleviated during the training process.

Let vec(X) denote the column vector obtained by stacking
the columns of X . Then, simplifying (9), we get

vec(W (Ĉ)) = AW
exp(AT

Wvec(Ĉ) + b)

1T exp(AT
Wvec(Ĉ) + b)

, (10)

where AW = [vec(Wh),0] is an M2×2 matrix, b = [b1, b2]
T ,

b1 = log |I−Wh|+log p, and b2 = log(1−p). In our setting,
each row of X is Gaussian with two possible covariance
matrices: zero with probability 1− p and Ch with probability
p. This is different from [18] where the case with N different
equally likely covariance matrices has been considered. We
obtain (10) with unequal probabilities for the different possible
covariance matrices, by adding the log pi term in bi, where pi
is the probability of covariance matrix i. The structure of (10)
is that of a feed-forward neural network with two linear layers
connected by a softmax activation function. The AT

Wvec(Ĉ)+b
term in (10) corresponds to the first linear layer. The softmax
activation function computes the ratio exp(AT

Wvec(Ĉ)+b)

1T exp(AT
Wvec(Ĉ)+b)

. The
multiplication by AW corresponds to the second linear layer.
Thus, this denoiser structure (shown inside a box in Fig. 1)
reduces to (10) for A1 = AT

W, b1 = b, and A2 = AW. The
input to this network is vec(Ĉ) and the output is vec(W (Ĉ)).

Figure 1 shows the computations in one iteration of the
proposed learnt MMSE-MMV-TISTA method. The complexity
of one iteration of L-MMSE-MMV-TISTA is of the order
O(LNM). The trainable parameters in each iteration, namely
γt, A1, b1, and A2, are shown in red color. Note that the
same network is used to denoise each row of Rt with the Ĉ
computed as in (8) for each row. Therefore, the total number
of trainable parameters in one iteration is 4M2 + 3. This
is to be expected since the unknown covariance Ch is an
M ×M matrix. The number of parameters can be reduced
in the following ways: (i) Since one of the covariances is zero
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Fig. 2: N = 500, M = 4, SNR = 30 dB, ρ = 0.5.

(when user is not active), this information can be used by
inserting the structure of AW in (10); (ii) If the covariance
has a Toeplitz structure (which is common in many practical
settings), the number of parameters can be reduced to be of
order M [18].

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we first evaluate the performance of the pro-
posed methods, MMSE-MMV-TISTA and L-MMSE-MMV-
TISTA, in the massive random access setting. We compare
with the LMMV-MADM method in [15] and a direct imple-
mentation of TISTA by vectorizing the MMV problem to an
SMV problem. In subsection IV-A, we compare with the M-
SBL method [10]. The deep unfolded version of the MMV-
ADMM method in [9] and the vector AMP-based method in
[1] are observed to be comparable in performance in [16]. The
modified-ADMM in [15] improves upon the standard MMV-
ADMM method [9] before unfolding and provides better
performance. Therefore, we compare with [15].

In the simulations, we set the number of users N = 500,
number of antennas M = 4 or 10, and number of iterations
(or layers after unfolding) of each algorithm to 12 (similar to
[2], [5], [15], [22]). The SNR is defined to be E[‖AX‖2F ]

E[‖N‖2F ]
. The

covariance matrix Ch has (i, j)th entry equal to ρ|i−j| [23],
[24]. The L-MMSE-MMV-TISTA network is trained layer-by-
layer in a supervised manner using the ADAM optimizer [21].4

For each layer, the learning rate is 0.04, batch size is 150
and the number of batches is 200. The NMSE is defined as
E[‖X̂−X‖2F ]

E[‖X‖2F ]
, where X̂ is the estimate of X . 7500 samples are

used to compute the NMSE during testing.
Figure 2 shows the phase transition performance of the

different algorithms. The phase transition characterizes the
minimum required L/N (ratio of preamble length to the
number of users) for a given activity probability p. The SNR
is set to 30 dB, ρ = 0.5, M = 4, and the networks are then
trained and tested at various activity values of p ∈ [0.01, 0.2].
The network is considered successful in recovery if the NMSE
goes below −20 dB. We observe that LMMSE-MMV-TISTA
is significantly better than TISTA in terms of the preamble
length requirement. For example, at p = 0.1, the required

4Note that the training of the network parameters can be done offline, so
that this does not affect the complexity in the testing phase.
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Fig. 3: N = 500, M = 10, SNR = 20 dB, ρ = 0.5.
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Fig. 4: MSE convergence: N = 500, M = 4, SNR = 20 dB,
p = 0.1, L/N = 0.35.

preamble length is 35% lesser than for TISTA. Furthermore,
the L-MMSE-MMV-TISTA performs better than the MMSE-
MMV-TISTA. This is because the model Rt = X+Z used to
derive the MMSE denoiser expression in MMSE-MMV-TISTA
is not accurate. Similarly, some assumptions on the residual
error at each stage are used in the error variance estimation
step in TISTA. The neural network based approach is able to
compensate for some of these inaccuracies by learning from
the training data. Significant performance improvement is also
seen at SNR = 20 dB, M = 10, in Figure 3. At p = 0.1,
the reduction in preamble requirement with LMMSE-MMV-
TISTA compared to TISTA is 39%. For the 4 and 20 antenna
cases with the same parameters (not shown in the Figure),
the reduction in preamble requirement was 33% and 40%,
respectively. As expected, the gain is higher when the number
of antennas is higher. Using the row sparsity and correlation
structure provides more gains with larger number of antennas.

Next, we compare the MSE convergence performance of
the algorithms in Figure 4. Here, we set p = 0.1, L = 175,
N = 500, and ρ = 0.5. We see that L-MMSE-MMV-
TISTA converges with fewer layers and also achieves a lower
MSE after convergence than TISTA and LMMV-MADM. The
faster convergence of the L-MMSE-MMV-TISTA for a high
correlation of ρ = 0.99 is also shown in Figure 4.

In TISTA and our proposed extensions, the noise variance
σ2 is assumed to be known, while the LMMV-MADM method
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M
SE
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MMSE-MMV-TISTA

LMMV-MADM
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NO MISMATCH

Fig. 5: MSE vs. Testing SNR: Training SNR = 15 dB, N =
500, M = 4, ρ = 0.5, p = 0.1, L/N = 0.4.
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Fig. 6: N = 500, M = 4, SNR = 30 dB, ρ = 0.5.

[15] does not require σ2. In Figure 5, we plot the MSE
achieved when the testing SNR is different from training SNR.
The MSE achieved by L-MMSE-MMV-TISTA when there
is no mismatch is plotted for reference. It can be observed
that the proposed method shows significant improvement over
existing methods even under this SNR mismatch scenario.

A. Comparison with M-SBL

In Fig. 6, we compare L-MMSE-MMV-TISTA and M-SBL
[10] for the same setting as in Fig. 3. The L-MMSE-MMV-
TISTA with 20 layers outperforms M-SBL with 20 iterations,
i.e., when the computational complexity allowed is the same.
However, M-SBL can perform better with higher number of it-
erations, i.e., at a higher computational complexity. It is worth
noting that one iteration of M-SBL is more complex than one
iteration/layer of L-MMSE-MMV-TISTA. The complexity of
one iteration of M-SBL is O(L3NM), while that of L-MMSE-
MMV-TISTA and LMMV-MADM are O(LNM).

In Fig. 7, we compare the MSE convergence of L-MMSE-
MMV-TISTA, LMMV-MADM and M-SBL. Here, we use 30
dB SNR with 10 antennas and set N = 500, L = 150, ρ = 0.
The activity probability p is set to 0.05 or 0.13. For p = 0.05,
all three algorithms converge to the same MSE, and L-MMSE-
MMV-TISTA and LMMV-MADM can converge faster than
M-SBL. Thus, L-MMSE-MMV-TISTA and LMMV-MADM
can provide a lower complexity solution for this setting. The
faster convergence is achieved mainly because the parameters
for each layer are learnt from data. However, as we increase



5

0 10 20 30 40 50

10−3

10−2

10−1

100

Iteration

M
SE

LMMV-MADM
L-MMSE-MMV-TISTA

M-SBL

Solid: p = 0.05, Dashed: p = 0.13

Fig. 7: MSE convergence: N = 500, M = 10, SNR = 30 dB,
ρ = 0, p = 0.05, 0.13, L/N = 0.3.

p, we observe that M-SBL is able to achieve lower MSE
for p ≥ 0.13. This is because, for higher p, the number of
measurements is severely constrained and M-SBL can provide
a lower MSE at a higher computational cost. In Fig. 7, for
p = 0.13, even though the convergence is faster for L-MMSE-
MMV-TISTA, M-SBL is able to achieve a lower MSE after
50 iterations.

V. CONCLUSIONS

Trainable ISTA [5] is a powerful sparse recovery algorithm
with good convergence and a fast training process. Addressing
an open problem mentioned in [5], we developed an extension
of TISTA, named L-MMSE-MMV-TISTA, where the MMSE
shrinkage function is replaced by a model-based neural net-
work that can learn an appropriate shrinkage function. We
also considered a more general MMV setting that arises in
a massive random access system with correlated antennas
at the base station. We observed via simulations that the
algorithms developed here provide gains even when there
is a mismatch between training and testing SNRs. We also
compared L-MMSE-MMV-TISTA with other existing methods
like LMMV-MADM and M-SBL and identified settings where
there are significant advantages in terms of reducing the
overhead or complexity. Future work can consider extending
this approach to the M-SBL framework, to obtain algorithms
with the performance of M-SBL and the speed of L-MMSE-
MMV-TISTA, especially in measurement constrained regimes.
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