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I. PROOF OF THEOREM 1

The conditional probability distribution of Ỹ given X̃, Φ̃
and σ̃w is

p(Ỹ|X̃; Φ̃, σ̃2
w) =

T∏
ℓ=1

p(ỹℓ|x̃ℓ; Φ̃, σ̃2
w)

=

T∏
ℓ=1

∫
z̃ℓ∈RM̃

p(ỹℓ|z̃ℓ)p(z̃ℓ|x̃ℓ; Φ̃, σ̃2
w) dz̃ℓ

=

T∏
ℓ=1

M̃∏
m=1

Bmℓ, (52)

where

Bmℓ ≜
∫ z̃

(hi)
mℓ

−
∑Ñ

n=1 Φ̃mnx̃nℓ
σ̃w

z̃
(lo)
mℓ

−
∑Ñ

n=1 Φ̃mnx̃nℓ
σ̃w

1√
2π

exp

[
− z̃2mℓ

2

]
dz̃mℓ (53)

and z̃
(lo)
mℓ and z̃

(hi)
mℓ are the lower and upper quantization

thresholds for the (m, ℓ)th entry of Ỹ, respectively. Also, Φ̃mn

and x̃nℓ denote the (m,n)th and (n, ℓ)th entries of Φ̃ and X̃,
respectively.

Note that, since we estimate ÑT parameters in total, the
BIM is block diagonal matrix of size ÑT × ÑT , with T
blocks each of size Ñ×Ñ . Computing it requires the gradient
and Hessian of the joint probability distribution w.r.t. xℓ ∀ℓ.
Since the columns of X̃ are independent of each other, we
express the logarithm of the joint distribution using the chain
rule as shown in (54). In (54), we omit the terms that do
not depend on X̃ for brevity. We can verify that the joint
probability distribution in (54) fall into the exponential family
of distributions which satisfies the regularity conditions in
Sec. 5.2.3 of [1]. We apply Leibniz integral rule to compute
the first and second derivatives of logBml with respect to
(w.r.t.) x̃kℓ and x̃jℓ shown in (55) and (56), respectively, where

η̃
(hi)
mℓ ≜

z̃
(hi)
mℓ −

∑Ñ
n=1 Φ̃mnx̃nℓ

σ̃w
, (57)

η̃
(lo)
mℓ ≜

z̃
(lo)
mℓ −

∑Ñ
n=1 Φ̃mnx̃nℓ

σ̃w
. (58)

In (56), f(·) and F (·) denote the PDF and CDF of a
standard normal random variable, respectively. Writing in
matrix form, the ℓth diagonal block of the BIM, denoted by

M̃ℓ(Φ̃, a, r, σ̃2
w), is shown in (59).

II. PROOF OF LEMMA 1

As δ → 0, both (12) and (13) become indeterminate forms.
Further, both the numerators and denominators in the left
hand sides of (12) and (13) are differentiable at 0. Applying
L’Hôpital’s and Leibniz integral rules (for differentiating the
denominators), we get the right hand sides in (12) and (13).

III. PROOF OF LEMMA 2

The proof follows by using the lower and upper thresholds
of the 1-bit quantizer as follows:

z̃
(lo)
mℓ =

{
0 if ỹmℓ = +1

−∞ if ỹmℓ = −1
(60)

and

z̃
(hi)
mℓ =

{
∞ if ỹmℓ = +1

0 if ỹmℓ = −1.
(61)

Substituting (60) and (61) in (6), after straightforward al-
gebraic manipulation and using the facts that F (∞) = 1,
F (−∞) = 0 and F (η̃mℓ) = 1−F (−η̃mℓ) ∀m, ℓ, we get (15).

IV. CHANNEL ESTIMATION AND DATA DETECTION AS
STATISTICAL INFERENCE

We formulate the received system as probabilistic graphical
models, and infer the posterior distributions of the channel and
data symbols given the quantized pilot and data observations.
We represent these Bayesian network graphical models in
Figures 2, 3 and 4. As our goal is to obtain the posterior
beliefs or LLRs of the data symbols that will be input to a
channel decoder, a statistical inference framework is a suitable
approach to solve our problems. We use shaded circles,
transparent circles, and squares to represent the observations,
latent variables, and deterministic variables. In our channel
estimation and data detection problem, the quantized received
pilot and data signals are the observations, channel and data
symbols are the latent variables, pilot symbols and noise
variance are the deterministic variables.

As mentioned earlier, the computational intractability of
joint channel estimation and data detection problem necessi-
tates us to adopt an iterative algorithm. So, we use separate
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log p(Ỹ, X̃, P̃; Φ̃, σ̃2
w, a, r) = log p(Ỹ|X̃; Φ̃, σ̃2

w) + log p(X̃; P̃) + log p(α; a, r),

∝
T∑

ℓ=1

M̃∑
m=1

log

∫ z̃
(hi)
mℓ

−
∑Ñ

n=1 Φ̃mnx̃nℓ
σ̃w

z̃
(lo)
mℓ

−
∑Ñ

n=1 Φ̃mnx̃nℓ
σ̃w

1√
2π

exp

[
− z̃2mℓ

2

]
dz̃mℓ −

T∑
ℓ=1

x̃T
ℓ P̃x̃ℓ

2
. (54)

∂

∂x̃kℓ
logBmℓ = − Φ̃mk√

2πBmℓσ̃w

[
exp

(
−
(z̃

(hi)
mℓ −

∑Ñ
n=1 Φ̃mnx̃nℓ)

2

2σ̃2
w

)
− exp

(
−
(z̃

(lo)
mℓ −

∑Ñ
n=1 Φ̃mnx̃nℓ)

2

2σ̃2
w

)]
. (55)

− ∂2

∂x̃jℓx̃kℓ
logBmℓ =

Φ̃mkΦ̃mj

σ̃2
w

 η̃(hi)
mℓ f(η̃

(hi)
mℓ )− η̃

(lo)
mℓ f(η̃

(lo)
mℓ )

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )

+

(
f(η̃

(hi)
mℓ )− f(η̃

(lo)
mℓ )

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )

)2
 , (56)

M̃ℓ(Φ̃, a, r, σ̃2
w) = E

[
− ∂2

∂x̃ℓx̃T
ℓ

log p(Ỹ, X̃; P̃, Φ̃, σ̃2
w, a, r)

]

= Φ̃T diag

 1

σ̃2
w

E

 η̃(hi)
mℓ f(η̃

(hi)
mℓ )− η̃

(lo)
mℓ f(η̃

(lo)
mℓ )

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )

+

(
f(η̃

(hi)
mℓ )− f(η̃

(lo)
mℓ )

F (η̃
(hi)
mℓ )− F (η̃

(lo)
mℓ )

)2
M̃

m=1

Φ̃+ E[P̃]. (59)

Bayesian network models for the channel estimation and data
decoding problems. We explain the intractability issue math-
ematically here. The posterior distribution of channel H and
data {x(d)

1 [τp + 1], . . . ,x
(d)
K [τp + τd]} given the observations

Y(p), Y(d) and pilots X(p)[1], . . . ,X(p)[τp] is given by (62),
where Y(p) and Y(d) are the marginal likelihoods as shown
in (63) and (64), respectively.1

Exact computation of the posterior distributions using the
above is computationally intractable, as it requires solving
high dimensional integrals over H, x(d)

1 [τp+1], . . . ,x
(d)
K [τp+

τd] to obtain the partition functions P (Y(p)) and P (Y(d)).
Moreover, we estimate the UEs’ channels in their lag do-
main, and use their frequency domain representation for data
detection, which complicates the joint channel estimation and
data detection problems further. These difficulties motivate the
need to employ approximate inference techniques to solve the
channel estimation and data detection problems.

V. PROOF OF LEMMA 3
To obtain the posterior distribution qH(H), we first com-

pute the posterior distribution of each of the factors qhn
(hn),

n = {1, . . . , Nr}. We calculate the expectation of the joint
distribution in (31) with respect to the posterior distributions
{qZ(Z(p)), qh1

(h1), . . . , qhn−1
(hn−1), qhn+1

(hn+1), . . . ,
qhNr

(hNr
), qα(α)} as follows:

ln qhn
(hn) =

〈
ln p(Y(p) |Z(p)) + ln p(Z(p) |H;Φ(p), σ2

w)

+ ln p(H|P) + ln p(α; a, r)⟩ (65)

∝ ⟨ln p(Z(p) |H;Φ(p), σ2
w) + ln p(H|P)⟩, (66)

where ⟨·⟩ denotes the expectation operation w.r.t. the posterior
distributions of all the latent variables except qhn

(hn). We

1X(d) comes from a discrete M -QAM constellation, but we use integrals
here for convenience. In the actual derivation, the integrals are replaced by
summations.

obtain (66) from (65) by including only the terms that do
not depend on hn as proportionality constants such that
qhn

(hn) becomes a probability distribution. Simplifying (66)
by separating the terms that depend only on hn, we get

ln qhn
(hn)

∝
〈
− 1

σ2
w

(
hH
n Φ(p)HΦ(p)hn − z(p)n

H
Φ(p)hn

−hH
n Φ(p)Hz(p)n

)
− hH

n Phn

〉
(67)

∝ −
(
hH
n

(
1

σ2
w

Φ(p)HΦ(p) + ⟨P⟩
)
hn

− 1

σ2
w

〈
z(p)n

〉H
Φ(p)hn − 1

σ2
w

hH
n Φ(p)H

〈
z(p)n

〉)
,

(68)

where
〈
z
(p)
n

〉
is the mean of qzn

(
z
(p)
n

)
, ⟨P⟩ = diag(⟨α⟩),

and ⟨α⟩ is the mean of qα(α). Taking exponentials on both
sides of (68), and by completing the squares, we can deduce
from the structure of the resulting expression that qhn

(hn) is
complex normal distributed with covariance matrix and mean
given by

ΣH =

(
1

σ2
w

Φ(p)HΦ(p) + ⟨P⟩
)−1

, (69)

⟨hn⟩ =
1

σ2
w

ΣHΦ(p)H
〈
z(p)n

〉
, (70)

respectively. Note that, the covariance matrix ΣH is indepen-
dent of n. So, we can write the posterior mean of qhn(hn),
n = {1, . . . , Nr} in a matrix form to get (37) and (38).

VI. PROOF OF LEMMA 4
To obtain the posterior distribution qZ(Z

(p)), we first
compute the posteriors of each of its factors qzn(z

(p)
n ),

n = {1, . . . , Nr}. We calculate the expectation of the log
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p
(
H,x

(d)
1 [τp + 1], . . . ,x

(d)
K [τp + τd] |Y(p),Y(d);X(p)[1], . . . ,X(p)[τp]

)
=

p(Y(p) |H;X(p)[1], . . . ,X(p)[τp]) p(Y
(d) |H,x

(d)
1 [τp + 1], . . . ,x

(d)
K [τp + τd])p(H)

∏K
k=1

∏τp+τd
t=τp+1 p(x

(d)
k [t])

p(Y(p);X(p)[1], . . . ,X(p)[τp]) p(Y(d))
. (62)

p(Y(p)) =

∫
p(Y(p) |H;X(p)[1], . . . ,X(p)[τp]) p(H) dH, (63)

p(Y(d)) =

∫
p(Y(d) |H,x

(d)
1 [τp + 1], . . . ,x

(d)
K [τp + τd]) p(H)

K∏
k=1

τp+τd∏
t=τp+1

p(x
(d)
k [t]) dx(d)

k [t] dH. (64)

of the joint probability distribution in (31) with respect to
the posterior distributions of all the latent variables except
qzn

(z
(p)
n ) as follows:

ln qzn
(z(p)n )

=
〈
ln p(Y(p) |Z(p)) + ln p(Z(p) |H;Φ(p), σ2

w)

+ ln p(H|P) + ln p(α; a, r)⟩ (71)

∝
〈
ln p(y(p)

n | z(p)n ) + ln p(z(p)n |hn;Φ
(p), σ2

w)
〉

(72)

∝ ln1(z(p)n ∈ (z(lo)
n , z(hi)

n ))− 1

σ2
w

〈wwwz(p)n −Φ(p)hn

www2
〉
.

(73)

By expanding the second term in (73), completing the squares,
and taking exponential on both sides, qzn

(z
(p)
n ) is truncated

complex normal distributed with mean given by〈
z(p)n

〉
= Φ(p) ⟨hn⟩+

σw√
2

f
(

z(lo)
n −Φ(p)⟨hn⟩

σw/
√
2

)
− f

(
z(hi)
n −Φ(p)⟨hn⟩

σw/
√
2

)
F
(

z
(hi)
n −Φ(p)⟨hn⟩

σw/
√
2

)
− F

(
z
(lo)
n −Φ(p)⟨hn⟩

σw/
√
2

) .
(74)

We have included the second order terms of qhn
(hn) as part

of the proportionality constant to arrive at (74). By writing
the posterior means of qzn

(z
(p)
n ) in matrix form, we get (39).

VII. PROOF OF LEMMA 5
We follow similar steps that are used to compute qZ(Z

(p))
and qH(H) to obtain qαk

(αk), 1 ≤ k ≤ KL as follows:

ln qαk
(αk) =

〈
ln p(Y(p) |Z(p)) + ln p(Z(p) |H;Φ(p), σ2

w)

+ ln p(H|P) + ln p(α; a, r)⟩ (75)
∝ ⟨ln p(H|P) + ln p(α; a, r)⟩ (76)

∝ (a+Nr − 1) lnαk −
(
r +

Nr∑
n=1

⟨|hkn|2⟩
)
αk.

(77)

From the structure of (77), we see that qαk
(αk) ∀k is Gamma

distributed with shape and rate parameters given by (40). The
mean ⟨αk⟩ is computed as ãk/r̃k, where ãk and r̃k are as
defined in (40).

VIII. PROOF OF LEMMA 6

We obtain the posterior distribution qx

(
x
(d)
kt

)
by comput-

ing the expectation of the log of the joint distribution with
respect to the posterior distributions of all the latent variables
except qxkt

.

ln qxkt

(
x
(d)
kt

)
=
〈
ln p

(
Y(d)|Z(d)

)
+ ln p

(
Z(d)|X(d),D, σ2

w

)
+ ln p

(
X(d)

)〉
∝ − 1

σ2
w

(
∥D:,k∥2

x(d)
kt

2

− 2ℜ
[
DH

:,k

(〈
z
(d)
t

〉
−

KNc∑
k′=1
k′ ̸=k

D:,k′

〈
x
(d)
k′t

〉)
x
(d)
kt

∗])
+ ln p(x

(d)
kt ). (78)

We include all the terms that do not depend on x
(d)
kt as part

of the proportionality constant. Now, we substitute the values
of x

(d)
kt from a discrete constellation set in (78) and take

exponential on both the sides to get an expression for the
probability mass at a constellation point, and normalize it to
obtain the posterior probability mass function of x

(d)
kt given

in (46).
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