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On the Performance of Distributed Antenna Array
Systems with Quasi-Orthogonal Pilots

Anubhab Chowdhury, Pradip Sasmal, Chandra R. Murthy, and Ribhu Chopra

Abstract—In this paper, we address the problem of channel
estimation in a single cell massive multiple-input multiple-
output (mMIMO) system with distributed antenna arrays (DAA)
under the availability of limited pilots. Specifically, we propose to
use pilots that are not only orthogonal within a cluster but also
minimally correlated across clusters. We show that pilot sets that
form mutually unbiased orthonormal bases (MUOB) minimize
both inter- and intra-cluster pilot contamination. This also allows
us to optimally choose the number of pilots needed to serve a
given number of user equipments (UEs) within a DAA-mMIMO
system. Following this, we develop an access point (AP) centered
UE clustering algorithm to optimally cluster UEs for MUOB
pilot allocation. Our experiments reveal that in a DAA-mMIMO
system, MUOB not only offers better fairness compared to the
traditional orthogonal pilot reuse scheme in terms of channel
estimation error and per-UE throughput, but also delivers a
higher sum system throughput.

Index Terms—Distributed antenna array, channel estimation,
orthonormal bases, pilot contamination, massive MIMO

I. INTRODUCTION

D ISTRIBUTED antenna array (DAA) massive multiple
input multiple output (mMIMO) systems refer to the

architecture where multiple antenna access points (APs) dis-
tributed at arbitrary locations within a cell serve a number of
user equipments (UEs) [1]. In contrast to co-located mMIMO,
DAA systems can potentially achieve better coverage and
higher macro-diversity even under LoS channels [2]. Cell-free
massive MIMO is a special case of DAA-mMIMO [3].

Typically, DAA systems operate in the time division du-
plex (TDD) mode in order to exploit channel reciprocity
and thereby avoid the large training overhead required for
estimating the downlink channels at UEs [1]. However, even
with TDD mode of operation, the large number of UEs
whose channel state information (CSI) is required at the
access points (APs) results in either an inordinately high
pilot overhead, or in severe pilot contamination. Hence, the
development of pilot allocation strategies to minimize pilot
contamination is an important research problem in the context
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of DAA-mMIMO. In [4], a structured pilot assignment scheme
aiming to maximize the distance between pilot-sharing UEs is
discussed. The authors in [5] refine this via an iterative graph
coloring based AP selection algorithm.

Another way of looking at the problem of pilot allocation
in DAA-mMIMO systems is to allocate pilots from a set of
non-orthogonal yet distinct sequences (in the sequel, we will
refer to these as quasi-orthonormal sequences) to minimize the
effect of pilot contamination. It has been shown that mutually
unbiased orthonormal bases (MUOB) [6] can be used to
generate pilot sequences satisfying this property. Furthermore,
Zadoff-Chu (ZC) sequences with different roots have been
found to be efficient implementations of MUOB and have
been employed in 3GPP LTE and 5G NR [7], [8]. It has been
shown that that in cellular mMIMO systems, the use of MUOB
pilots can deliver uniform quality of service irrespective of the
underlying pilot assignment strategy [9].

Note that, in cellular mMIMO systems, UEs are naturally
clustered based on the base station (BS) serving them. How-
ever, no such clusters exist in the DAA case, since all the APs
can potentially serve all the UEs. This makes the problem
of CSI acquisition more challenging in DAA-mMIMO sys-
tems compared to their cellular counterparts, and necessitates
clustering of the UEs before pilot allocation. The current
state of the art [1]–[3] in DAA-mMIMO systems considers
the use of orthogonal pilot reuse (OPR) among different UE
clusters. One issue with this approach is that a large amount
of pilot contamination can potentially be incurred if adjacent
cluster-edge UEs from two physically proximal clusters share
same pilot sequence. This, in turn, substantially degrades the
quality of the channel estimates for that UE at all nearby
APs. However, this problem can be circumvented via suitably
designing non-orthogonal pilots. To the best of our knowledge,
the problem of channel estimation with non-orthogonal pilots
(and, in particular, mutually unbiased orthogonal bases pilots)
has not yet been explored in the context of a DAA-mMIMO
system. Therefore, our goal in this paper is to analyze the
performance of DAA-mMIMO systems with quasi-orthogonal
pilots, and to develop a strategy for pilot allocation to the UEs
that can minimize the effects of pilot contamination.

Our main contributions are:
1) We first derive a lower bound on the mean squared pilot

contamination power in a DAA-mMIMO system with
non-orthogonal pilots under arbitrary pilot assignment.
We show that pilots drawn from an MUOB codebook
achieve this lower bound. (See Theorem 1.)

2) We develop a low complexity AP-centric UE clustering
algorithm for pilot allocation to the UEs (See Algo-
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rithm 1.). The algorithm aims to minimize the pilot
contamination across the UEs for a given pilot length.

3) We derive the achievable uplink and downlink rates for
this system. (See Theorem 2.) Note that these expres-
sions are developed for arbitrarily correlated pilots and
are applicable for both MUOB and OPR.

4) Via numerical simulations, we validate our derived
results and prescribe parameter values that optimize
the achievable rates in the system under study. We
also benchmark the performance of MUOB against
the OPR based channel estimation technique, which
has previously been used in [1], [3]. We observe that
MUOB pilots with a pilot length 13 achieve a Jain’s
fairness index value of above 0.999 for a 50 UE DAA-
mMIMO system, which is comparable to the case with
no pilot contamination, i.e., pilot length 50 (see Fig. 3).
Also, with optimized pilot length, both cluster wise
MUOB and unclustered MUOB uniformly outperform
adaptive OPR as well as unclustered OPR in terms of
the achievable rates (see Fig. 4).

The key takeaway of this work is that MUOB pilots can
minimize the effects of pilot contamination in a DAA-mMIMO
system for a given pilot length. Also, we can arbitrarily
allot pilots to UEs within each cluster, and do not require
computationally expensive pilot allocation algorithms. Further-
more, optimizing the pilot length significantly improves the
throughput achievable with MUOB pilots due to the inverse
scaling of the correlation between non-orthogonal pilots. Such
properties make MUOB-codebooks an attractive choice as
training signals in distributed systems such as DAA-mMIMO.

The rest of the paper is organized as follows. In Sec. II, we
present the system model and evaluate the channel estimates
under any quasi-orthonormal pilot codebook. Next, in Sec. III,
we formulate the pilot sequence design problem, and prove
that pilot codebooks designed via MUOB sequences attain
the lower bound on inter-pilot correlation. Following this, in
Sec. IV, we present our clustering algorithms for pilot alloca-
tion. Section V derives the achievable rates under the proposed
pilot allocation schemes. We present our experimental results
and benchmark our proposed solution against the existing OPR
technique in Sec. VI, and conclude the paper in Sec. VII.

Notation: Matrices and vectors are represented using bold-
face upper and lower case alphabet, respectively. Sets are
denoted by calligraphic letters; | · | denotes the cardinality of a
set or the magnitude of a scalar depending on the context; and
\ and ∪ denote the set difference and set union operations,
respectively. 〈·, ·〉 denotes the inner-product of two vectors.
Other notations are described in Tables I and II.

II. SYSTEM MODEL

We consider a TDD DAA-mMIMO system consisting of
M APs equipped with N antennas each, jointly serving K
single antenna UEs. The channel vector between the mth
AP and kth UE is modeled as hmk =

√
βmkfmk ∈ CN ,

where the pathloss component βmk is assumed to be constant
for several coherence blocks, and the fast fading channel,
fmk ∼ CN (0, IN ), is estimated at the start of each coherence

TABLE I
SYMBOLS

Notation Description
Contmk Pilot contamination in the kth UE’s channel estimated at the mth AP
U Set of all UE indices
Ok Set of UE indices whose pilots are orthogonal to the kth UE’s pilot
Um Indices of the UEs clustered with mth AP
Ũm Indices of the UEs whose data is processed by the mth AP
Ak Indices of the APs that jointly process the kth UE’s data

Φ
The set of all pilot sequences with the kth sequence (column)
ϕk ∈ Cτp being allocated to the kth UE

TABLE II
ACRONYMS

Abbreviation Description
MUOB Mutually unbiased orthonormal bases
OPR Orthogonal pilot reuse
DAA-mMIMO Distributed antenna array massive MIMO
TDD Time division duplexing
LLSF Largest large-scale fading

interval. Let U = {1, 2, . . . ,K} be the index set of all the
UEs, and let their corresponding set of pilot sequences be
Φ , {ϕ1,ϕ2, . . . ,ϕK}, with the pilot sequence ϕk ∈ Cτp
allocated to the kth UE, such that 〈ϕk,ϕk〉 = 1 [1]. Without
loss of generality, we group the K pilot sequences (corre-
spondingly, UEs) into L clusters, with each cluster containing
at most τp sequences, such that any pair of pilots within a
cluster are mutually orthogonal. Thus, τpL ≥ K. Note that
L = 1 if all the pilot sequences are orthogonal (this requires
τp ≥ K), while L = K if no pair of the pilot sequences is
orthogonal. In the sequel, for simplicity, we assume that the
pilot sequences can be grouped into L clusters, each containing
τp mutually orthogonal pilots such that τpL = K.

Let the kth UE transmit the pilot signal with an energy Ep,k.
Also, let the index set of UEs whose pilots are orthogonal to
the pilot transmitted by the kth UE be denoted as Ok. That
is, Ok , {k′ : 〈ϕk,ϕk′〉 = 0, k′ ∈ U}.

All the APs use the received pilot symbols to obtain
minimum mean square error (MMSE) estimates of the channel
vectors to the corresponding UEs. Let ĥmk be the estimate
of hmk, such that hmk = ĥmk + h̃mk, with h̃mk ∼
CN (0, (βmk − σ2

mk)IN ) being the channel estimation error
orthogonal to ĥmk, where

σ2
mk ,

Ep,kβ2
mkτp

N0 + Ep,kβmkτp + Contmk
.

Here, Contmk represents the amount of pilot contamination in
the kth UE’s channel estimate, and is given as

Contmk =
∑

j∈U\{Ok∪k}
τpEp,jβmj |〈ϕj ,ϕk〉|2. (1)

Next, we formulate the pilot design problem as one of min-
max optimization based on the contamination derived in (1).

III. MINIMIZING PILOT CONTAMINATION

The contribution of pilot contamination to the channel
estimation error is minimized when the inner product term
|〈ϕj ,ϕk〉|2 is uniformly zero. However, this is not possible
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in a system with τp < K. Hence, we seek to minimize the
maximum inter-pilot correlation to minimize (1), that is,

P : min
Φ

max
k∈U,

j∈U\{Ok∪k}

|〈ϕj ,ϕk〉|2. (2)

We have the following theorem.

Theorem 1. For a given pilot length τp satisfying
√
K ≤

τp < K and for τpL = K, the optimal value of P is 1
τp

, and
is attained when distinct MUOB-pilot codebooks are allocated
across clusters and the chosen pilot length τp is either a prime
number or a power of a prime number.

Proof. See Appendix A. �

Also, from [6], τp distinct orthogonal pilot codebooks can be
constructed and allotted to τ2

p UEs using MUOB-codebooks.
In practice, we can choose the smallest prime or prime-
powered τ̇p, for a given number of UEs, such that τp ≥ τ̇p and
τ̇2
p ≥ K. This way, we can generate sufficiently many pilot

sequences of length τ̇p to allot to all K UEs.
We note that for prime values of τp, ZC sequences allow

for a fast implementation of MUOBs [8]. Since sequences
generated by circular shifts of a ZC sequence with a given
root are orthogonal to each other, and since a ZC sequence of
length τp has τp − 1 roots, we can generate τ2

p − τp MUOB
pilots using ZC sequences. These τ2

p − τp sequences coupled
with the columns of the τp×τp identity matrix form τ2

p distinct
pilot sequences of length τp.

Using the correlation structure of MUOB pilots, we can
write the overall pilot contamination at the kth UE as

Contmk =
∑

j∈U\{Ok∪k}
Ep,jβmj . (3)

For comparison, the overall pilot contamination in a system
that uses OPR based pilot assignment is

Contmk = τp
∑

j s.t.〈ϕk,ϕj〉=1

Ep,jβmj . (4)

Note that the contamination power in (4) scales with the
number of clusters (also τp) in this case, as opposed to (3).
The latter is due to the fact that the mutual correlation of
non-orthogonal MUOB pilots scales inversely as √τp.

Having developed a technique for the optimal design of
pilot codebooks, in the next section, we present an AP-centric
UE-clustering algorithm for pilot assignment to the UEs.

IV. AP-CENTRIC PILOT ASSIGNMENT

We note that the natural UE-grouping by associating each
UE to its nearest base station (BS) of a cellular mMIMO
system is not appropriate in a DAA system, as multiple APs
cooperatively process each UE’s signal. Consequently, AP-
centric clustering is necessary to minimize the pilot con-
tamination among geographically close UEs. Thus, we now
discuss our proposed AP-centric UE clustering strategy, with
each AP forming non-overlapping clusters with at most τp
UEs.1 Hence, given M APs we set L = M . Our proposed

1The association/clustering is used only for assigning pilot sequences to
the UEs. In a cell-free system, the APs collaboratively serve all UEs.

Algorithm 1: AP-centric UE clustering
Input: τp, M , K, dmk,∀m & ∀k
Initialization: Ām = {1, 2, ...,M}, Ū = {1, 2, ...,K},

Ui = ∅, ∀i ∈ Ām.
Check: τp ≥ max{M − 1,K/M}.

1 while (|Ū | 6= 0) do
2 for i ∈ length(Ū) do
3 Find: m

′
= minm∈Ām

dmi
4 Update: Um′ = Um′ ∪ {i}, Ū = Ū \ {i}
5 end

/* Manage the overloaded APs */

6 for j ∈ Ām do
7 if |Uj | > τp then
8 Retain only the τp nearest UEs in Uj
9 Move the dropped UEs back to Ū

10 Update the available APs: Ām = Ām \ {j}
11 end
12 end
13 end

Output: Um: UEs associated with mth AP, ∀m.

strategy is summarized in Algorithm 1, with dmk being the
distance between the mth AP and the kth UE. We declare
an AP as available if the associated cluster size is less than
τp, and as overloaded if the cluster size exceeds τp. In each
iteration of this algorithm, we associate unclustered UEs with
the nearest available APs and ensure that none of the APs
is overloaded. The outputs of this algorithm are index sets
Um,m ∈ {1 . . .M}, containing UE indices clustered with the
corresponding AP.

Remark 1. MUOB pilot codebooks are generated via ZC-
sequences with τp being a prime number satisfying τp ≥
max{M−1,K/M}. We cluster UEs into M groups, each con-
taining at most τp UEs. Now, since τp ≥ K/M , the UEs within
a cluster can be assigned orthonormal pilots. This avoids intra-
cluster pilot contamination. Also, since τp ≥ M − 1, we can
assign a distinct block of pilots to each cluster.

Following this, the UEs within each cluster are assigned
pilot sequences that are randomly chosen from a unique block
of MUOB-pilots, without replacement. For OPR, a set of
orthonormal pilots are assigned to UEs within a cluster and
repeated across the clusters [1], [3], [9]. We then employ the
largest large-scale fading (LLSF) based AP selection [10] to
find the set of the UE indices whose data will be processed
by the mth AP, denoted by Ũm. This is a superset of the mth
AP’s pilot cluster. The cardinality of the set Ũm is controlled
by a threshold parameter denoted by δ ∈ [0, 1]. Setting δ = 1
leads to Ũm = U ,∀m. Following this, using Ũm,∀m, we
can easily find Ak, the set of AP indices associated with
the kth UE. As an example, we demonstrate the clusters
formed for one given UE distribution, in Fig. 1, such that each
distinctly colored cluster is assigned pilots from one distinct
MUOB-pilot codebook. We observe that the UE of interest (as
indicated) is jointly served by two APs.

Remark 2. The clusters formed according to Algorithm 1
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Fig. 1. A realization of the system model. The blue squares denote the AP
positions and solid circles denote the UEs.

are used to allocate MUOB pilots across clusters. Due to
the constant correlation (i.e., 1/

√
τp) among the inter-cluster

UEs, the contamination strength is independent of how we
assign pilots from each MUOB codebook to the UEs within
a given cluster. Therefore, the UEs within each cluster are
randomly assigned pilot sequences drawn from one block of
MUOB-pilots without replacement. Then, there is no pilot
contamination from users within a cluster, and a fixed con-
tamination from users in other clusters regardless of how the
pilot sequences are assigned to the users within each cluster.
This a key advantage of MUOB, namely, that we completely
obviate the need to solve a pilot assignment problem based on
inter-cluster UE distances.

Now, in DAA mMIMO systems, OPR may lead to poor
performance because each UE is served by multiple APs. Due
to this, using τp � K may result in multiple UEs being served
by the same AP using the same pilot sequence, leading to
severe pilot contamination and loss of performance. Therefore,
for fair comparison with OPR based pilot allocation, we
allow the pilot length with OPR to exceed τp, and propose
a technique for generating pilot sequences in Algorithm 2,
which we call adaptive OPR. The algorithm ensures that if
any UE is being jointly served by more than one AP, then the
assigned pilot of that particular UE is orthogonal to all the
other UEs being served by the corresponding APs. We note
that the threshold parameter δ acts as a trade off between the
amount of pilot contamination and the pilot length (τ ′p). In
the case of adaptive OPR, the parameter δ also controls the
pilot length τ ′p, unlike MUOB, where τp is independent of δ.

Remark 3. The worst case complexity of our proposed clus-
tering Algorithm 1 is O(K2M). However, the clustering only
needs to be performed in the time scale over which the large
scale fading coefficients change. Further, Algorithm 1 is used
to allocate MUOB pilots because of the constant correlation
property as discussed in Remark 2. For adaptive OPR, we
need Algorithm 2 to mitigate inter-cluster pilot contamination,
which has worst case order complexity of O(M). Therefore,
with a very low complexity, the clustering algorithm can
procure the benefits of offered by MUOB codebooks.

Algorithm 2: Adaptive OPR

Initialization: Φ̇j = ∅,∀j = 1, 2, . . . ,M
1 Find τ ′p = max{|Ũ1|, |Ũ2|, . . . , |ŨM |}
2 Define I = {i1, . . . , iM} s.t. |Ũ i1 | ≥ |Ũ i2 | ≥ . . . |Ũ iM |
3 if τ ′p > τp then
4 Generate: New pilot codebook: Φ̄ ∈ Cτ

′
p×τ

′
p

5 else
6 Set: Φ̄ = Φ ∈ Cτp×τp (initial codebook)
7 end
8 for j = 1 : length(I) do
9 Find the UEs in Ũ ij , if any, to which pilots have

been assigned in previous iteration(s)
10 Store those pilots in Φ̇j

11 Randomly assign pilots to the remaing UEs in Ũ ij
from Φ̄\Φ̇j without replacement

12 end

V. PERFORMANCE ANALYSIS

In this section, we analyze the throughput of the proposed
system. Our analysis is applicable to any choice of pilot
codebooks, including pilots from MUOB codebooks and pilots
allocated using OPR. Let the kth UE’s transmitted symbol
be su,k (E[|su,k|2] = 1) with energy Eu,k. The uplink signal
transmitted by the kth UE is processed by the APs whose
indices are included in the index set Ak. Each AP processes
these uplink signals via maximal ratio combining. Therefore,
the processed kth stream of the received signal at the CPU be-
comes

∑
m∈Ak

∑
i∈U

√
Eu,iĥHmkhmisu,i +

∑
m∈Ak

ĥHmkwm,
with wm ∼ CN (0, N0IN ).

Similarly, let the downlink symbol intended for the kth UE
be denoted by sd,k, with E[|sd,k|2] = 1. In the downlink,
the mth AP serves the UEs whose indices are contained in
the index set Ũm. For simplicity, we assume equal power
distribution among the APs, and let ρd be the maximum nor-
malized (as a multiple of the noise variance N0) power trans-
mitted by each AP [10]. Assuming reciprocity based matched
filter precoding in the downlink, the signal transmitted by the
mth AP can be expressed as rd,m =

∑
i∈Ũm

√
ρdζmiĥ

∗
misd,i,

where the power control coefficients, ζmk,∀k ∈ Ũm, are
designed such that E

[
‖rd,m‖2

]
≤ ρd. Also since, ĥ∗mi ∈

CN (0, σ2
miIN ),∑

i∈Ũm

ζmiE
[
‖ĥ∗mi‖2

]
≤ 1 =⇒

∑
i∈Ũm

ζmiσ
2
mi ≤

1

N
. (5)

Optimally solving (5) is beyond the scope of this paper,
however, considering each AP to transmit at the maximum
allowable power, we can set ζmk = 1/(N

∑
i∈Ũm

σ2
mi),∀k ∈

Ũm. We consider that a fraction λ (λ ∈ [0, 1]) of data
transmission duration, i.e., (τ − τp), is allotted for uplink.

Theorem 2. The achievable rate of the kth UE can be
expressed as

Rk =
(

1− τp
τ

) [
λ log2(1 + γuk ) + (1− λ) log2(1 + γdk)

]
,
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where

γuk =
NEu,k(

∑
m∈Ak

σ2
mk)2

N CohIuk + NCohIuk +N0

∑
m∈Ak

σ2
mk

, (6a)

γdk =
N2ρd(

∑
m∈Ak

√
ζmkσ

2
mk)2

N2 CohIdk +N NCohIdk + 1
, (6b)

with
CohIuk ,

∑
i∈U\{k} Eu,i|ϕHk ϕi|2(

∑
m∈Ak

σ2
mk

√
Ep,i
Ep,k

βmi

βmk
)2,

NCohIuk ,
∑
i∈U Eu,i

∑
m∈Ak

σ2
mkβmi, CohIdk ,∑

i∈U\{k} ρd|ϕHi ϕk|2(
∑
m∈Ai

σ2
mi

√
ζmi

√
Ep,k
Ep,i

βmk

βmi
)2,

and NCohIdk , ρd
∑
i∈U

∑
m∈Ai

σ2
miζmiβmk.

Proof. The proof is available in the supplementary material
available at https://ece.iisc.ac.in/∼cmurthy/Papers/
supp DAA MUOB.pdf. �

We observe that the choice of pilot sequences controls the
coherent interference power in the uplink and the downlink,
i.e., CohIuk and CohIdk, that in turn determines the achievable
rates. We have earlier shown (See Theorem 1) that for any
given pilot length, MUOB pilot code-books minimize the co-
herent interference regardless the underlying pilot assignment
strategy, hence maximizing the achievable rate.

VI. NUMERICAL RESULTS

We use the setup in Fig. 1 with M = 8 APs, each
equipped with N = 32 antennas. The UEs are deployed
uniformly at random over a square area of size 1 km2 and
we consider 105 realizations of the channels. The pathloss
exponent and the reference distance with respect to each AP
are taken as 3.76 and 10 m, respectively [1]. We assume a
coherence block to consist of 200 channel uses, corresponding
to a coherence time of 1 ms [1], [5]. The pilot and data
SNRs are taken as 10 dB, with λ being 0.5. We compare
the proposed MUOB pilot codebook based channel estimation
with the established OPR technique as presented in [1]. We
also compare the performance of MUOB with adaptive OPR
where the pilot contamination between inter-cluster UEs are
mitigated as described in Sec. IV. We now state the three
schemes of pilot allocation and data processing employed in
our experiments:

1) Cluster Wise MUOB [τp = x, δ = y]: We form the
clusters using Algorithm 1 setting τp = x, and then
assign pilots from a distinct MUOB codebook at each
cluster. Then, we apply LLSF-based AP section with
δ = y for joint data processing.

2) Cluster wise OPR [τp = x, δ = y]: We form the clusters
using Algorithm 1 with τp = x, and reuse a single set
of orthogonal pilots across clusters. After that, we use
LLSF-based AP section method with δ = y to find the
APs that jointly process the data of each UE.

3) Adaptive OPR [δ = y]: We first form the clusters using
Algorithm 1. Next, we apply LLSF-based AP selection
with δ = y to find the sets Ũm,∀m. Then we assign
pilots using Algorithm 2 which will result in a pilot
length τ ′p ∈ [x, |U|] depending on δ.
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p
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p
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p
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Fig. 2. CCDF of NMSE of the estimated channels with K = 40.
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Fig. 3. CDF of Jain’s Index and fairness variation with UE load.

We first evaluate the effectiveness of MUOB pilots for
channel estimation against cluster wise OPR and adaptive
OPR. We do this by plotting the complementary cumulative
distribution functions (CCDFs) of the NMSE of estimated
channels in Fig. 2. For each of the three schemes, we measure
the NMSE of a particular UE at the APs that are involved
in joint processing, and average the error variances over
the number of associated APs. Thus, the x-axis of Fig. 2
is 1
|Ak|

∑
m∈Ak

(1 − σ2
mk/βmk),∀k ∈ U . We can observe

that MUOB pilots render channel estimates with considerably
lower error variance as compared to cluster wise OPR. As
adaptive OPR reduces contamination by increasing the pilot
length, for certain UEs it can achieve better channel estimates.
However, the probability that the NMSE is greater than −3.5
dB with MUOB is almost zero, whereas, the NMSE under
adaptive OPR exceeds −3.5dB at least in 20% of the cases
even with δ = 0.85. Also, even though the pilot length is
increased in adaptive OPR, MUOB significantly outperforms
adaptive OPR. Therefore, a simple clustering-based algorithm
can attain better channel estimates with MUOB pilots.

Next, in Fig. 3, we compare the fairness offered by these pi-
lot allocation schemes via Jain’s utility index [9], which is de-
fined as J(σ) = (

∑K
k=1 σ

2
mk/βmk)2 / K

∑K
k=1(σ2

mk/βmk)2.
For δ = 1, Algorithm 2 generates orthogonal pilot code-
books (i.e. τ ′p = K) for all the UEs, which results in a Jain’s
index of unity for all UEs. We observe that MUOB pilots
can achieve nearly the same fairness as a system with no
pilot contamination. Furthermore, even as the number of UEs
increases, MUOB-pilots retain the overall fairness.

We observe that the pilot length represents an important
trade-off between the amount of pilot contamination and the
usable frame duration. We observe in Theorem 2 that CohIuk
and CohIdk are dependent on |〈ϕk,ϕi〉|2 which scales as



6

10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70
Cluster Wise MUOB

Cluster Wise MUOB

Adaptive OPR

Adaptive OPR

Cluster Wise OPR

Unclustered MUOB

Unclustered OPR

Solid lines: =0.85

Dashed lines: =0.65

Fig. 4. Pilot length optimized SE vs. UE load (K).

1/τp under MUOB. However, if τp becomes comparable with
coherence interval (τ ), the pre-log factor (1− τp/τ ) degrades
the SE. Thus, the right choice of the pilot length with MUOB
is important for obtaining optimal performance. Although
optimally solving for τp in Theorem 2 is beyond the scope
of this work, we numerically solve the following problem:

max
τp

∑
k∈U

Rk, subject to

τp ∈

{
[x, τ ],Cluster wise OPR & Cluser wise MUOB
[τ ′p, τ ],Adaptive OPR,

where x and τ ′p are as defined at the beginning of this section.
We plot the average optimized SE against the UE load in
Fig. 4. We observe that MUOB pilot codebooks with optimized
pilot lengths substantially improve the average throughput
compared to adaptive OPR. Also, with increasing δ, more APs
contribute to joint data processing which improves the per user
rate. Furthermore, at optimal pilot length, the coherent inter-
ference is also minimized under MUOB-pilot books unlike any
OPR technique, where both the interference and the effective
channel gain increase linearly with the pilot length.

VII. CONCLUSIONS

The benefits of DAA-massive MIMO rely heavily on the
locally available CSI-quality at the APs. We tackled the CSI-
acquisition problem via quasi-orthonormal pilots and user
clustering. We showed that among the set of quasi orthogonal
pilot sequences, pilots from MUOB codebooks minimize the
coherent interference in DAA-mMIMO systems. We then
argued that MUOB pilot matrices can be generated using ZC-
sequences, which is compatible with the 5G-NR standard. We
also provided an AP-centric clustering algorithm assigning
pilots from MUOB codebooks. Our numerical results revealed
that MUOB-based pilots can achieve better system fairness
as well throughput compared to OPR. The performance of
MUOB can be further improved via suitable power control
strategies, which can be a potential future direction of the
current work.

APPENDIX A
PROOF OF THEOREM 1.

Proof. First, note that since the pilot length is τp and
Lτp = K, we can always generate a pilot codebook Φp ,
[ϕk]k=1:τpL ∈ Cτp×K , such that pilots within each cluster are

mutually orthogonal. Then, ΦpΦ
H
p = LIτp follows from the

fact that the intra-cluster pilots are orthonormal and there are
L clusters. Hence, all nonzero singular values of Φp are equal
to
√
L, and consequently, ‖ΦH

p x‖2 = L‖x‖2, ∀x ∈ Cτp .
Therefore,

‖ΦH
p Φp‖2F =

∑
1≤i≤τpL

‖ΦH
p ϕi‖22 = L

∑
1≤i≤τpL

‖ϕi‖22 = L2τp,

where the last equality follows from the fact that ‖ϕi‖22 =
1,∀i. Recall that U \ {Ok ∪ k} indicates the set of all UEs
that do not share the same cluster as kth UE, then,∑
k∈U

∑
j∈U\{Ok∪k}

|〈ϕj ,ϕk〉|2

= ‖ΦH
p Φp‖2F −

∑
k∈U

∑
j∈Ok∪{k}

|〈ϕj ,ϕk〉|2 = τpL(L− 1). (7)

Since the summation in (7) contains τ2
pL(L−1) non-negative

entries, it is easy to infer that

max
k∈U,

j∈U\{Ok∪k}

|〈ϕj ,ϕk〉|2 ≥
τpL(L− 1)

τ2
pL(L− 1)

=
1

τp
. (8)

Hence, |〈ϕj ,ϕk〉|2 is lower bounded by 1
τp

.
We now need to design pilots codebooks that satisfy
|〈ϕj ,ϕk〉|2 = 1

τp
, ∀k, ∀j /∈ Ok ∪ k. Invoking the definition

of MUOB2 [6], when τp is a prime or a power of a prime,
MUOB codebooks exist provided

√
K ≤ τp < K. Then, (8)

is satisfied with equality when ϕk and ϕj are chosen from
two distinct MUOB-codebooks. �
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