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Abstract

In this paper, we analyze the achievable downlink spectral efficiency of cell-free massive
multiple input multiple output (CF-mMIMO) systems, accounting for the effects of channel
aging (caused by user mobility) and pilot contamination. We consider two cases, one where
user equipments (UEs) rely on downlink pilots beamformed by the access points (APs) to
estimate downlink channel, and another where UEs utilize statistical channel state informa-
tion (CSI) for data decoding. For comparison, we also consider cellular mMIMO and derive
its achievable spectral efficiency with channel aging and pilot contamination in the above
two cases. Our results show that, in CF-mMIMO, downlink training is preferable over statis-
tical CSI when the length of the data sequence is chosen optimally to maximize the spectral
efficiency. In cellular mMIMO, however, either one of the two schemes may be better de-
pending on whether user fairness or sum spectral efficiency is prioritized. Furthermore, the
CF-mMIMO system generally outperforms cellular mMIMO even after accounting for the
effects of channel aging and pilot contamination. Through numerical results, we illustrate
the effect of various system parameters such as the maximum user velocity, uplink/downlink
pilot lengths, data duration, network densification, and provide interesting insights into the
key differences between cell-free and cellular mMIMO systems.

Keywords: Cell-free massive MIMO, cellular massive MIMO, user mobility, channel aging,
pilot contamination, channel hardening

1. Introduction

Cell free massive multiple-input multiple-output (mMIMO) has received considerable
attention in recent years [1, 2, 3, 4]. Originally, the cellular mMIMO architecture, where
a large number of antennas colocated on a base station (BS) serve an exclusive set of user
equipments (UEs), was shown to bring substantial gains in spectral efficiency (SE) over older
generation technologies [5, 6]. However, in a cellular network, only the UEs that are near the
BS, i.e., in the cell center, enjoy high data rates while the UEs at the cell edge experience
high inter-cell interference and low throughput. The primary goal of next-generation wireless
networks must not be to improve the peak data rate but the rate that can be delivered at
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a vast majority of UE locations in a given region [7]. Cell-free mMIMO (CF-mMIMO) has
been proposed as a potential solution for providing uniformly high data rates in a wide
network. In a CF-mMIMO network, a large number of geographically distributed access
points (APs) coherently serve multiple UEs on the same time-frequency resource [8]. The
APs are connected to one or more central processing units (CPUs) via fronthaul links [7].
The CPU orchestrates the AP operations and jointly processes the signals to/from the UEs.
Owing to the distributed implementation, the signal co-processing at multiple APs and the
massive number of AP antennas, CF-mMIMO offers higher coverage probability to UEs than
cellular mMIMO [7]. Studies demonstrating the performance advantages of CF-mMIMO
over conventional cellular mMIMO and small-cell networks can be found in [8, 9, 10, 11].
The performance gains, however, come at the cost of increased fronthaul requirements which
could translate to increased energy and power consumption [12, 13, 14, 15].

To realize the enormous spatial multiplexing gain offered by mMIMO, each AP needs
to estimate the channel from the associated UEs on the uplink. The channel estimates
acquired at the AP are used to perform receive combining (or transmit precoding) on the
uplink (or downlink) data symbols transmitted subsequently [7]. Hence, the quality of the
channel estimates strongly affects the performance of the network. Most previous studies
on CF-mMIMO assume that the channel between the AP and the UE is quasi-static or
block-fading. Such a model is valid when the UEs in the network are stationary or move
slowly. As such, previous results on the achievable SE of CF-mMIMO may not hold true
in extreme mobility scenarios. It is important, therefore, that we investigate how mobility
impacts the performance of a CF-mMIMO network.

User mobility brings two major problems to an mMIMO system. First, the temporal
variations in the channel response resulting from user movement cause a disparity between
the channel state information (CSI) acquired at the AP and the channel experienced by the
data symbols. This is known as channel aging [16] and it results in a drop in the achievable
network SE. Second, due to the fast-varying nature of the channel, the coherence interval
may not be long enough to accommodate pairwise orthogonal pilot sequences for all the UEs
present in the network. As a result, a fraction of the UEs end up sharing the same pilot
sequence and contaminate each other’s channel estimate. This phenomenon, known as pilot
contamination [6, 7] degrades the quality of the available channel estimates and causes a
drop in the achievable SE.

In cellular mMIMO, when a signal is transmitted from a large number of BS antennas,
the effective downlink channel after transmit precoding tends to converge to its mean value.
This is known as channel hardening [5]. An important consequence of this phenomenon is
that UEs in cellular mMIMO do not need to estimate the downlink channel, and they can rely
instead on knowledge of the channel statistics to decode the data symbols. This eliminates
the need for downlink pilots and makes cellular mMIMO scalable with respect to the number
of BS antennas. In CF-mMIMO, however, the transmitting AP antennas are distributed
over a wide region and a UE experiences large path loss from the far-away APs. As a result,
the channel hardening phenomenon in CF-mMIMO is much less pronounced than in cellular
mMIMO. In this regard, the authors in [17] showed that downlink training using beamformed
pilots can significantly improve the downlink SE of CF-mMIMO, outweighing the additional
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training overhead cost. Moreover, it was shown in [18, 19] that one should not rely on
channel hardening when analyzing the performance of or designing receiver algorithms for
CF-mMIMO networks. These studies, however, do not account for the time-varying nature
of the channel arising from user mobility. In the context of single-cell orthogonal frequency
division multiplexing (OFDM)-based mMIMO communications, in [20], we analyzed the
effect of pilot contamination and channel aging on the SE, and developed pilot and data
subcarrier allocation schemes to improve the SE.

The authors in [4] have analyzed the aspect of user mobility in cell free massive MIMO
in detail. The authors in [14] studied the uplink and the downlink achievable SE of CF-
mMIMO under channel aging and pilot contamination assuming large-scale fading decoding
(LSFD) and matched filtering (MF) receivers. The performance analysis of zero-forcing (ZF)
precoding in mobility-impaired downlink CF-mMIMO was taken up in [21]. In [22], a model
involving varying rates of channel evolution across APs was developed, and the SE of uplink
CF-mMIMO was analyzed. However, none of the above works consider the use of downlink
training in CF-mMIMO. Thus, the question of whether the use of beamformed pilots can
improve the downlink SE in the face of user mobility and time-varying channels remains
open in the literature, and is the focus of this work. Furthermore, even in the context of
cellular mMIMO, it is unclear whether the channel hardening effect is sufficient to extract
the benefits of mMIMO under user mobility. We study this aspect also, in this paper.

1.1. Our Contributions

In this paper, we derive analytical expressions for the approximate achievable down-
link SE of both cell-free and cellular mMIMO systems impaired by channel aging and pilot
contamination. We incorporate time-varying channel and non-orthogonal uplink/downlink
pilots in the analysis. We investigate the effect of factors such as the maximum user ve-
locity, the relative uplink/downlink training lengths and the downlink data duration on the
downlink SE of CF-mMIMO. We find that while the downlink training scheme outperforms
the statistical CSI scheme, the relative gain in performance reduces at higher user mobility.
Moreover, as user mobility increases, the channel varies more rapidly, and it is necessary
to shorten the data duration and re-estimate the channel more frequently. Nonetheless, de-
spite the additional training overhead, downlink training outperforms statistical CSI when
the data duration is chosen optimally. We also look at the effect of densifying a cell-free
network with APs when the total number of AP antennas in the network is held fixed. We
find that the performance gain due to densification in the presence of downlink training is
much more significant compared to when UEs rely on statistical CSI to decode downlink
data. From a sum-SE perspective, however, this gain in performance diminishes as the
UEs move faster. Finally, focusing on cellular mMIMO, we show that the gain in the aver-
age 90% likely downlink SE due to downlink training is marginally negative, owing to the
higher degree of channel hardening. However, there is still substantial gain in the sum-SE
with downlink training. As such, either of the two schemes may be considered in cellular
mMIMO depending on which performance measure is important.

The rest of the paper is organized as follows. Section 2 discusses the system model
and describes the frame structure. Section 3 presents the analytical results on the approxi-
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Figure 1: A CF-mMIMO network with mobile UEs.

mate downlink SE and with downlink training and statistical CSI-based decoding. Section
4 presents the downlink SE analysis for a cellular mMIMO network. Section 5 presents
numerical results to elucidate the performances of cell-free and cellular mMIMO under user
mobility. Finally, section 6 concludes the paper and provides suggestions for future work.

Notation: Matrices and column vectors are denoted by boldface uppercase and lowercase
letters. The notations (·)∗, (·)T and (·)H represent the conjugate, the transpose and the
conjugate transpose operation. The symbols 0L and IL denote the null matrix and the
identity matrix of order L. The notation CN (0L,R) refers to an L-dimensional circularly
symmetric complex normal distribution with mean vector 0L and covariance matrix R. The
notations E{·}, Cov{·} and Var{·} represent the expectation, the covariance and the variance
operations.

2. System Model

We consider a time-division duplex (TDD) CF-mMIMO network in which M APs (in-
dexed as m = 1, 2, . . . ,M) each equipped with L antennas (indexed as l = 1, 2, . . . , L)
coherently serve K single-antenna mobile UEs (indexed as k = 1, 2, . . . , K) on the same
time-frequency resource. As is common in the mMIMO literature, we assume ML ≫ K.
The APs are geographically distributed over a wide region and are connected to a CPU via
ideal fronthaul links. We denote the velocity of the kth UE by vk, and assume 0 ≤ vk ≤ Vmax

where Vmax denotes the maximum possible UE velocity in the system [23]. Furthermore, the
UEs move independently of each other. Figure 1 gives an illustration of the network.

User mobility causes the channel coefficients between the UEs and the APs to vary
with time. For the purpose of this work, we consider a transmit frame comprising τframe

contiguous symbols (indexed as n = 0, 1, . . . , τframe−1) each of which may be used for either
pilot or data transmission. The channel coefficients between an AP and a UE are assumed
to remain constant within one symbol; they may however vary from symbol to symbol. The
time duration of each symbol is Ts =

1
B
, where B denotes the system bandwidth.

Let gmk[n] =
√
βmkhmk[n] ∈ CL denote the complex-valued channel vector between the

mth AP and the kth UE during the nth symbol. Here, hmk[n] ∼ CN (0L, IL) denotes
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Figure 2: The transmit frame structure considered in this work.

the small-scale independent and identically distributed (i.i.d.) Rayleigh fading component
between the mth AP and the kth UE. The quantity βmk is the large-scale fading coefficient
that models the path-loss and the shadowing effects. We assume that βmk is constant across
all antennas of the mth AP, across all symbols in a transmit frame, and is known at the
APs and the CPU.

The temporal variation of the propagation channel between the mth AP and the kth UE
is modeled as follows: starting from the channel at the zeroth instant gmk[0], the channel at
a later instant n (n ≥ 0) is expressed as [24, 14]:

gmk[n] = ρk[n]gmk[0] + ρ̄k[n]zmk[n], (1)

where ρk[n] = J0
(
2πvkfcnTs

c

)
denotes the Jakes’ autocorrelation between gmk[0] and gmk[n]

with J0(.) representing the zeroth order Bessel function of the first kind, fc the carrier
frequency, c the speed of light, and Ts the symbol duration, and ρ̄k[n] =

√
1− ρ2k[n]. The

quantity zmk[n] in (1) represents the innovation component due to channel aging which is
independent of and identically distributed as gmk[0], i.e., as CN (0L, βmkIL).

The transmit frame comprises three successive phases: uplink training, downlink training
and downlink data transmission (see Figure 2.) Since the overall training duration is typically
small, we can assume that the channel coefficients remain approximately constant during
the training intervals1 [25, 26, 27].

2.1. Uplink Training

In the first phase, the UEs transmit pilot sequences using which the APs estimate the
uplink channel gmk = gmk[0]. We let τup < K denote the number of mutually orthogonal τup-
length pilot sequences available for transmission. The kth UE transmits the pilot sequence√
τupϕ

H
k where ||ϕk||2 = 1. Since τup < K, two or more UEs may transmit same pilot

sequence. Therefore, for two UEs k and k′, ϕH
kϕk′ equals 1 when UEs k and k′ transmit the

same pilot sequence, and equals 0 otherwise. The training signal received at the mth AP is
an L× τup matrix expressed as

Yup,m =
√

τupEup
K∑

k′=1

gmk′ϕ
H
k′ +Wup,m ∈ CL×τup . (2)

1For example, in a system with bandwidth B = 1 MHz at a center frequency of 2 GHz and with the users
moving at a maximum velocity of 100 km/hr, if the total training duration spans 20 symbols, the Jakes’
autocorrelation between the start and end of the training duration is about 0.99986.
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In the above equation, Eup denotes the normalized transmit SNR for the uplink and Wup,m ∈
CL×τup denotes noise at the mth AP whose elements are i.i.d CN (0, 1). To estimate the
uplink channel from UE k, the mth AP correlates the received pilot signal with pilot ϕk as

y̆up,mk =Yup,mϕk =
√

τupEupgmk +
√

τupEup
K∑

k′ ̸=k

gmk′ϕ
H
k′ϕk +wup,mk, (3)

where wup,mk = Wup,mϕk has i.i.d. CN (0, 1) entries. Now, using y̆up,mk, the mth AP
obtains an MMSE estimate ĝmk of gmk, as ĝmk = cmky̆up,mk, where

cmk ≜

√
τupEupβmk

τupEup
∑K

k′=1 βmk′ |ϕH
k′ϕk|2 + 1

. (4)

It is known that, with MMSE estimation, ĝmk ∼ CN (0, γmkIL), with γmk =
√

τupEupcmkβmk.
Also, the channel estimation error g̃mk = gmk− ĝmk is independent of ĝmk and is distributed
as CN (0, (βmk − γmk) IL).

2.2. Downlink Training

Having obtained the channel estimate on the uplink, the APs precode and transmit pilot
sequences to UEs in the downlink direction. We consider maximum-ratio (MR) precoding
at the APs, also known as conjugate beamforming or matched filtering (MF) precoding, as
it allows the APs to perform channel estimation and precoding locally without sharing their
CSI with the CPU [8, 17]. We note that the subsequent analysis can be extended to other
linear precoding schemes as well, with some more bookkeeping. Similar to the uplink case,
we assume that there are τdp < K mutually orthogonal downlink pilot sequences in total.
Let

√
τdpψ

H
k ∈ C1×τdp denote the pilot sequence transmitted for the kth UE, with ∥ψk∥2 = 1.

With MR precoding, the mth AP transmits τdp training symbols over its L antennas

represented by the matrix Xdp,m =
√

τdpEdp
∑K

k=1

√
ηmkĝ

∗
mkψ

H
k ∈ CL×τdp . Here, ηmk ∈ [0, 1]

denotes the power control coefficient used by the mth AP for its transmissions to UE k,
and Edp denotes the normalized downlink transmit SNR. The total power spent by the lth
antenna of the mth AP on downlink pilots is

E
{∣∣∣∣Xdp,ml

∣∣∣∣2} =τdpEdp
K∑
k=1

ηmkγmk + τdpEdp
K∑
k=1

K∑
k′ ̸=k

√
ηmkηmk′ψ

H
k′ψkE{ĝmlkĝ

∗
mlk′

}. (5)

The E{ĝmlkĝ
∗
mlk′

} term in (5) will be non-zero if UEs k and k′ transmit the same uplink
pilot sequence. As shown in [17], it can be eliminated by assigning orthogonal pilots to
UEs that share the same pilot on the uplink, i.e., if ϕk′ = ϕk, then ψ

H
k′ψk = 0. Such an

assignment is feasible as long as τupτdp ≥ K. Then, the total power spent by the mth AP

on downlink pilots equals τdpEdp
∑K

k=1 Lηmkγmk. Since the total available downlink training
power is τdpEdp, we get the following constraint on ηmk:

K∑
k=1

ηmkγmk ≤
1

L
. (6)
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Now, the downlink pilot signal received by the kth UE is

ydp,k =
M∑

m=1

gT
mkXdp,m +wdp,k =

√
τdpEdp

M∑
m=1

K∑
k′=1

√
ηmkg

T
mkĝ

∗
mk′ψ

H
k′ +wdp,k. (7)

where wdp,k containing i.i.d CN (0, 1) entries represents noise at the kth UE. To estimate
the downlink channel, the kth UE correlates the recieved signal with ψk to obtain

y̆dp,k =
√

τdpEdpdkk +
√
τdpEdp

K∑
k′ ̸=k

dkk′ψ
H
k′ψk + w̃dp,k. (8)

where w̃dp,k = wdp,kψk, and dkk′ ≜
∑M

m=1

√
ηmk′g

T
mkĝ

∗
mk′ represents the effective downlink

channel experienced by the kth user for the data stream intended to the k′th user. Note
that dkk is the desired downlink channel coefficient. The term containing ψH

k′ψk represents
the interference due to downlink pilot contamination. Using y̆dp,k, the kth UE computes an

MMSE estimate d̂kk of dkk as [28]

d̂kk =
M∑

m=1

L
√
ηmkγmk+

√
τdpEdp

∑M
m=1 Lηmkγmkβmk

1 + τdpEdp
∑M

m=1

∑K
k′=1 Lηmk′γmk′βmk|ψH

k′ψk|2

×

(
y̆dp,k −

√
τdpEdp

M∑
m=1

L
√
ηmkγmk

)
. (9)

Due to MMSE estimation, we can write dkk = d̂kk+ d̃kk where d̃kk is the zero-mean downlink
channel estimation error; note that d̂kk and d̃kk are uncorrelated.

2.3. Downlink Data Transmission

After gaining knowledge of the effective downlink channel, the UEs proceed to detect the
incoming data symbols. The data transmission phase is assumed to be τdd symbols long;
thus τframe = τup+ τdp+ τdd. During the nth signaling interval (n = τup+ τdp, . . . , τframe− 1),
the mth AP applies MR precoding on the data symbols and transmits an L-dimensional
vector given by

xm[n] =
√

Ed
K∑
k=1

√
ηmkĝ

∗
mkqk[n], (10)

where Ed denotes the normalized transmit SNR for downlink data and qk[n] denotes the nth
data symbol transmitted for the kth UE. The symbols {qk[n]} are assumed to be uncorrelated
across all the UEs. Further, they are assumed to have zero mean and unit variance, i.e.,
E{|qk[n]|2} = 1. Similar to the downlink training case, the total power spent by the mth AP

during the nth transmission is E
{∣∣∣∣xm[n]

∣∣∣∣2} = Ed
∑M

m=1 Lηmkγmk whose maximum value is

Ed. Therefore, the data power constraint at the mth AP is
∑K

k=1 ηmkγmk ≤ 1
L
, the same as
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the pilot power constraint given in (6). Now, the nth interval data signal received at the
kth UE is given by

rd,k[n] =
M∑

m=1

gT
mk[n]xm[n] + wd,k[n]

=
√

Ed
M∑

m=1

√
ηmkg

T
mk[n]ĝ

∗
mkqk[n] +

√
Ed

M∑
m=1

K∑
k′ ̸=k

√
ηmk′g

T
mk[n]ĝ

∗
mk′qk′ [n] + wd,k[n],

(11)

where wd,k[n] ∼ CN (0, 1) denotes noise at the kth UE. The above can be re-written as

rd,k[n] =
√
Eddkk[n]qk[n] +

√
Ed

K∑
k′ ̸=k

dkk′ [n]qk′ [n] + wd,k[n] (12)

where

dkk′ [n] ≜
M∑

m=1

√
ηmk′g

T
mk[n]ĝ

∗
mk′ (13)

denotes the effective downlink channel coefficient at the nth-instant. We note that substi-
tuting n = 0 in (13) gives dkk′ [0] =

∑M
m=1

√
ηmk′g

T
mk[0]ĝ

∗
mk′ . Since gmk[0] = gmk, we have

dkk′ [0] = dkk′ which is the downlink channel coefficient during downlink training. Using the
channel-aging model in (1), the quantity dkk′ [n] can be expressed as

dkk′ [n] =ρk[n]
M∑

m=1

√
ηmk′g

T
mkĝ

∗
mk′ + ρ̄k[n]

M∑
m=1

√
ηmk′z

T
mk[n]ĝ

∗
mk′

=ρk[n]dkk′ + ρ̄k[n]zkk′ [n]

=ρk[n]d̂kk′ + ρk[n]d̃kk′ + ρ̄k[n]zkk′ [n], (14)

where zkk′ [n] =
∑M

m=1

√
ηmk′z

T
mk[n]ĝ

∗
mk′ represents the nth-instant innovation component in

the downlink channel due to channel aging. We note that the quantities d̂kk′ , d̃kk′ and zkk′ [n]
in (14) are mutually uncorrelated. However, the presence of the innovation component in the
downlink channel entails significant bookkeeping in deriving the downlink SE expressions,
which is the focus of this work.

The downlink channel coefficient defined in (13) is a non-Gaussian quantity. However,
when the total number of AP antennas ML is sufficiently large, it approximates a complex
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Gaussian random variable with mean, variance and pseudo-variance [29] given by

µkk′ [n] =ρk[n]
M∑

m=1

L
√
ηmk′γmk′

βmk

βmk′
ϕH

k′ϕk (15)

ςkk′ =
M∑

m=1

Lηmk′γmk′βmk (16)

ϱkk′ [n] =ρ2k[n]
M∑

m=1

Lηmk′γ
2
mk′

(
βmk

βmk′

)2 (
ϕH

k′ϕk

)2
, (17)

where the notations µkk′ [n], ςkk′ and ϱkk′ [n] denote the mean, variance and the pseudo-
variance of dkk′ [n], respectively. Figure 3 shows the Kullback-Leibler (KL) distance [30]
between the simulated and the Gaussian probability density functions (PDFs) of the real and
the imaginary parts of dkk′ [0] and dkk[0] whenM = 100 APs andK = 40 UEs are deployed in
a cell-free network. The propagation model is adopted from [10] and the simulation settings
are provided in Section 5. We see that the KL distance between the two PDFs reduces as the
number of antennas on an AP grows. Therefore, for finite values of M and L, the downlink
channel gain can be treated as approximately complex Gaussian.2 As a consequence, d̂kk′ ,
d̃kk′ and zkk′ [n] in (14) become jointly Gaussian.

3. Performance of Cell-Free mMIMO

In this section, we derive a closed-form expression for the approximate achievable down-
link SE of the cell-free massive MIMO network considering channel aging and uplink/downlink
pilot contamination effects. We compare it against the scenario when UEs rely on statistical
CSI to recover the transmitted data symbols.

3.1. Performance with Downlink Training
Proposition 1. The nth-instant approximate achievable downlink SE of the kth UE in the
CF-mMIMO network described above takes the form

SECF,DT
k [n] = log2

(
1 + SINRCF,DT

k [n]
)

(18)

where SINRCF,DT
k [n] denotes the nth-instant effective downlink SINR of the kth UE with

downlink training, given by

SINRCF,DT
k [n]

=
ρ2k[n]Ed

(∑M
m=1 L

√
ηmkγmk

)2
+ ρ2k[n]Edκk

Ed
∑

k′ ̸=k

(
ςkk′ + ρ2k[n]

(∑M
m=1 L

√
ηmk′γmk′

βmk

βmk′

)2
|ϕH

k′ϕk|2
)
+ Ed (ςkk − ρ2k[n]κk) + 1

,

(19)

2Note, however, that unlike the uplink channel coefficient, the downlink channel gain is not circularly
symmetric owing to nonzero mean and pseudo-variance.
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Figure 3: Plot of the KL distance between the simulated (Psim) and the Gaussian (PGauss) distributions of
the downlink channel coefficient as a function of the number of antennas on an AP.

in which ςkk′ =
∑M

m=1 Lηmk′γmk′βmk denotes the variance of the effective downlink chan-

nel dkk′ [n] ∀ n and κk =
τdpEdp(

∑M
m=1 Lηmkγmkβmk)

2

1+τdpEdp
∑M

m=1

∑K
k′=1 Lηmk′γmk′βmk|ψH

k′ψk|2
denotes the variance of the

downlink channel estimate d̂kk.

Proof. See Appendix A.

From the numerator in the SINR expression, it is clear that the coherent beamforming
gain decreases with increasing transmission index n which is the effect of channel aging.
The first term in the denominator of the SINR represents the multi-user interference due to
channel aging and uplink pilot contamination. The term Ed (ςkk − ρ2k[n]κk) represents the
variance of the error in the downlink CSI available at the receiver due to channel estimation
and aging, and it increases with n. The last term represents the variance of the normal-
ized noise. Thus, we see that user mobility not only degrades the coherent beamforming
gain but also incurs additional multi-user interference caused by channel aging and pilot
contamination. The result is that the downlink SE decreases at higher transmission indices.

Note that by plugging n = 0 in (18), we obtain the expression for the approximate
downlink SE when the effect of a time-varying channel is ignored, which matches with the
result in [28].

Since the downlink SE in (18) varies with the index n, it is useful to define an average
measure of the downlink SE across a set of symbol transmissions. For a CF-mMIMO network
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supported by downlink training, the average downlink SE across τframe symbols is defined as

SE
CF,DT

k [τframe] ≜
τdd
τframe

 1

τdd

τframe−1∑
n=τup+τdp

SECF,DT
k [n]

 . (20)

Based on the above definition, the average sum-SE of the cell-free network can be computed
as

SE
CF,DT

sum [τframe] ≜
K∑
k=1

SE
CF,DT

k [τframe]. (21)

3.2. Performance with Statistical CSI

Under the assumptions of a time-varying channel, non-orthogonal uplink pilots, maximum-
ratio precoding, and i.i.d Rayleigh fading, a closed-form expression for the nth-instant ap-
proximate achievable downlink SE of the kth UE relying on statistical CSI in a cell-free
massive MIMO network was derived in [14]. We re-write it below using our notations,

SEsCSI
k [n] = log2

(
1 + SINRCF,sCSI

k [n]
)
, (22)

where SINRCF,sCSI
k [n] denotes the nth-instant effective downlink SINR of the kth UE relying

on statistical CSI and is given by

SINRCF,sCSI
k [n] =

ρ2k[n]Ed
(∑M

m=1 L
√
ηmkγmk

)2
Ed
∑

k′ ̸=k

(
ςkk′ + ρ2k[n]

(∑M
m=1 L

√
ηmk′γmk′

βmk

βmk′

)2
|ϕH

k′ϕk|2
)
+ Edςkk + 1

,

(23)

in which ςkk′ =
∑M

m=1 Lηmk′γmk′βmk denotes the variance of the effective downlink channel
dkk′ [n] ∀ n.

Comparing the SINRs in (23) and (19), we observe that the two expressions differ by the
term ρ2k[n]Edκk which gets added to the numerator and subtracted from the denominator in
(19). The quantity κk represents the gain introduced due to downlink training and it embeds
the effect of the downlink pilot contamination [17]. The multiplication with ρ2k[n] signifies
that owing to channel aging, the additional gain due to downlink training diminishes at
higher transmission indices and/or higher user mobility.

We define the average downlink SE of the kth UE in a CF-mMIMO network relying on
statistical CSI as

SE
CF,sCSI

k [τframe] ≜
1

τframe

τframe−1∑
n=τup

SECF,sCSI
k [n], (24)

where τframe = τup + τdd. The average sum-SE of the network is computed as

SE
CF,sCSI

sum [τframe] ≜
K∑
k=1

SE
CF,sCSI

k [τframe]. (25)
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4. Performance of Cellular mMIMO

The downlink SE of a mobile UE in a cellular mMIMO network can be analyzed using
a similar approach as the above. Such an analysis is not available in the literature, and
we present it in this section. Consider a multi-cell mMIMO network comprising Lc cells.
Each BS is equipped with Mc antennas and serves Kc UEs. In total, there are K UEs
moving in the network. Thus, K = LcKc. We denote the kth UE (k = 1, . . . , Kc) in
cell l (l = 1, . . . , Lc) as UElk. We assume that the UEs in each cell are assigned mutually
orthogonal pilots on the uplink and the downlink and that the kth UE in each cell uses
the same pilot sequence (i.e., pilot reuse one). Thus, there will exist only inter-cell pilot
contamination. The channel between BS j and UElk on the nth transmission is modeled
as gj

lk[n] = ρlk[n]g
j
lk[0] + ρ̄lk[n]z

j
lk[n] where ρlk[n] = J0 (2πfcvlkTs/c) represents the temporal

correlation coefficient of UElk at the nth instant with the relative velocity of UElk denoted
by vlk, ρ̄lk[n] =

√
1− ρ2lk[n] and zjlk[n] represents the innovation due to channel aging. Under

the i.i.d Rayleigh fading model, both gj
lk[n] and zjlk[n] conform to CN

(
0, βj

lkIMc

)
distribution

with βj
lk denoting the large-scale fading coefficient between BS j and UElk. Then, we have

the following two propositions:

Proposition 2. With downlink training, the nth-instant approximate achievable downlink
SE of UElk in the cellular mMIMO network described above is

SEcell,DT
lk [n] = log2

(
1 + SINRcell,DT

lk [n]
)
, (26)

where SINRcell,DT
lk [n] denotes the nth-instant effective downlink SINR of UElk in the presence

of downlink training, given by

SINRcell,DT
lk [n] =

ρ2lk[n]
(
Mc

√
ηlkγ

l
lk

)2
+ ρ2lk[n]κlk∑Lc

l′=1

∑Kc

i=1Mcηl′iγl′
l′iβ

l′
lk + ρ2lk[n]

∑Lc

l′=1
l′ ̸=l

(
Mc

√
ηl′kγl′

l′k
βl′
lk

βl′
l′k

)2

− ρ2lk[n]κlk +
1
Ed

,

(27)

where κlk =
τdpEdp(Mcηlkγ

l
lkβ

l
lk)

2

1+τdpEdp
∑Lc

l′=1
Mcηl′kγ

l′
l′kβ

l′
lk

with ηlk denoting the power control coefficient of UElk,

γl
lk the variance of the uplink channel estimate between UElk and the lth BS, τdp the length

of the downlink pilots and Edp the normalized downlink transmit SNR.

Proof. See Appendix B.

Proposition 3. When the UEs rely on statistical CSI for data decoding, the nth-instant
approximate achievable downlink SE of UElk in cellular mMIMO is

SEcell,sCSI
lk [n] = log2

(
1 + SINRcell,sCSI

lk [n]
)

(28)
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where SINRcell,sCSI
lk [n] denotes the nth-instant effective downlink SINR of UElk relying on

statistical CSI, given by

SINRcell,sCSI
lk [n] =

ρ2lk[n]
(
Mc

√
ηlkγ

l
lk

)2
∑Lc

l′=1

∑Kc

i=1Mcηl′iγl′
l′iβ

l′
lk + ρ2lk[n]

∑Lc

l′=1
l′ ̸=l

(
Mc

√
ηl′kγl′

l′k
βl′
lk

βl′
l′k

)2

+ 1
Ed

. (29)

Proof. See Appendix C.

As in CF-mMIMO, the difference between the SINRs with and without downlink training
in (27) and (29) for cellular mMIMO, is an addition and subtraction of the term ρ2lk[n]κlk

in the numerator and denominator of (29), respectively. This suggests that the effect of
downlink training on the performance of a UE is similar in both cell-free and cellular mMIMO
networks, namely an increase in the instantaneous downlink SE. Furthermore, this gain
reduces at higher transmission indices or higher mobility due to channel aging. However,
the relative gain in performance over the statistical CSI scheme may be different in the two
networks owing to the different degrees of channel hardening. For reasons mentioned in
Section 1, it is expected that the boost in the downlink SE due to downlink training may
not be as high in cellular mMIMO as in CF-mMIMO.

Under an equal number of AP/BS antennas in both cell-free and cellular networks, we
expect that the average downlink SE in CF-mMIMO will be substantially higher than that
in cellular mMIMO at all levels of mobility with both downlink training and statistical CSI,
owing to the distributed processing enabled by CF-mMIMO.

Finally, note that, upon substituting n = 0, the expressions in (26) and (28) reduce to
those given in [31] where the effect of a time-varying channel is ignored.

5. Numerical Results

In this section, we provide numerical results that demonstrate the effect of user mobility
on the downlink performance of cell-free and cellular mMIMO. We begin by describing the
simulation setup. Then, we present the performance of the two networks.

5.1. Simulation Setup

We consider the propagation model proposed in [10]. Inside a 1 km2 square region,
for the cell-free setup, there are M = 100 APs each equipped with L = 4 antennas that
are placed at points on a uniform grid. The APs serve K = 40 UEs that are uniformly
distributed at random locations in the region. For the cellular setup, there are Lc = 4 BSs
each equipped with Mc = 100 antennas which serve Kc = 10 UEs per cell. The simulation
involves computing the average downlink SE of a UE and the sum-SE of the network for a
given system realization and repeating the same for 400 realizations. Since the location of
the UEs is random in each instance, we focus on the 90%-likely average downlink SE [10]
and the mean of the sum-SE across all such instances.

The channels across multiple antennas of the AP/BS are spatially uncorrelated. We
consider carrier frequency = 2 GHz, bandwidth = 1 MHz, noise figure = 9 dB, AP transmit

13



power = 200mW and UE transmit power = 100mW. The uplink/downlink pilot assignment
for the cell-free setup is performed as per [17, Algorithm 2] with orthogonal pilot reuse.
Unless stated otherwise, we assume τup = τdp = 10 symbols in all the figures.

The APs (BSs) transmit at full power and allocate the power equally among the K (Kc)

UEs that they serve. Thus, the power control coefficients are set as ηmk =
(
L
∑K

k′=1 γmk′

)−1

for the cell-free setup and ηji =
(
Mc

∑Kc

i′=1 γ
j
ji′

)−1

for the cellular setup. All UEs are assumed

to move at velocity Vmax.

5.2. Cell-Free mMIMO

Figure 4 shows the variation in the 90%-likely average downlink SE with Vmax for different
data duration. We plot the performance with no pilot contamination (NoPC) where τup =
τdp = K = 40 symbols, and with pilot contamination (PC) where τup = τdp = 10 symbols,
for both the downlink training (DT) and the statistical CSI (StCSI) schemes. Thus, [NoPC
DT τdd = 200] incurs the highest relative training overhead and [PC StCSI τdd = 500] incurs
the least. In all cases, the average SE decreases as Vmax increases, in line with our analytical
results. At low user mobility, the effect of channel aging is small. Consequently, there is
little loss in the downlink SE across transmission indices and the AP can obtain a higher
average SE by transmitting more data symbols in a transmit frame. Thus, at Vmax = 5 m/s,
setting τdd = 500 symbols yields the higher average SE for all four sets of curves. Overall,
it is worthwhile to obtain better quality channel estimates by using a longer pilot duration,
avoiding pilot contamination and employing downlink training. Thus, [NoPC DT τdd = 500]
yields the highest average SE at low user mobility. This is followed by [NoPC StCSI τdd =
500] and [PC DT τdd = 500] which offer nearly the same performance by either avoiding pilot
contamination and using statistical CSI or incurring pilot contamination and using downlink
training. As expected, with pilot contamination, statistical CSI and shorter data duration
(τdd = 200), the UEs achieve the worst performance. On the other hand, as Vmax increases,
the downlink SE drops so quickly with the symbol index that more frequent re-estimation
of the channel is necessary. Hence, in the high mobility regime (Vmax = 85 m/s), it is
better to transmit fewer data symbols in the transmit frame, i.e., τdd = 200 outperforms
τdd = 500. Moreover, since avoiding pilot contamination and using downlink training both
incur additional overhead, the use of both techniques simultaneously is not beneficial at
high mobility: [PC DT τdd = 200] offers the highest SE followed by [NoPC StCSI τdd = 200]
followed by [NoPC DT τdd = 200], with [PC StCSI τdd = 200] offering the least SE among
the four curves. Nonetheless, we see that the use of downlink training is important: up
to ∼ Vmax = 55 m/s, [NoPC DT τdd = 200] yields the highest average SE after which [PC
DT τdd = 200] performs the best. Thus, overall, it is better to use downlink training than
statistical CSI-based decoding in CF-mMIMO.

Fig. 5 shows a plot of the 90%-likely average downlink SE as a function of the data
duration when τup = τdp = 10 symbols. When the number of data symbols in a frame
is comparable to the length of the training interval (i.e. 10 ≤ τdd ≤ 50 symbols), the
statistical CSI scheme yields better average SE than the downlink training scheme. This is
because for small data duration, the difference between the summation in (20) and (24) is
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Figure 4: The 90%-likely average downlink SE as a function of Vmax. NoPC represents no pilot contamination
as in τup = τdp = 40 symbols for the downlink training scheme and τdp = 0 for the statistical CSI scheme,
respectively. The performance gain due to downlink training reduces at higher user mobility.

marginal and in such cases, the pre-log factor dominates. However, the average SE improves
with increasing τdd, and ultimately, the downlink training scheme ends up performing better.
Furthermore, the average SE is a unimodal function of the data duration and it is maximized
at a τdd of around 150, 300 and over 600 symbols for Vmax = 85, 45 and 5 m/s, respectively.
This behavior corroborates that of the analytical expression for the average SE in (20) and
(24) and is because the downlink SE defined in (18) and (22) is monotonically decreasing
with n. When the system is operated at the optimal value of τdd, the downlink training
scheme outperforms the statistical CSI scheme, achieving about 15% better SE.

In Figure 6, we plot the 90%-likely average downlink SE with downlink training (Fig. 6(a))
and statistical CSI (Fig. 6(b)) as a function of the data duration. In both cases, we contrast
the performance obtained with no pilot contamination against that with pilot contamina-
tion. With downlink training, at low mobility, it is better to use a longer data duration and
avoid pilot contamination. In contrast, at high mobility, the channel estimation overhead
comes at a premium, so it is better to use a shorter data duration (∼ 150 symbols) and a
shorter pilot length (10 symbols) even though it incurs pilot contamination. This holds true
at low mobility even with statistical CSI, but at high mobility, it is important to obtain
good initial channel estimates at the APs, and hence we see that the no pilot contamination
scheme with τup = 40 symbols offers the best performance at τdd = 200 symbols. Similar to
the previous figure, we see that when the data duration is chosen to maximize the average
SE, the downlink training outperforms the statistical CSI scheme.

Next, we focus on the impact of the relative uplink/downlink pilot lengths on the down-
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Figure 5: Plot of the 90%-likely average downlink SE versus the data duration τdd. Statistical CSI scheme
outperforms the downlink training scheme for small data percentages.
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Figure 6: Plots of the 90%-likely average downlink SE with and without downlink training.
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Figure 7: Plot of the 90%-likely average downlink SE vs. Vmax for different {τup, τdp} pairs when τdd = 500
symbols. The relative gain in performance from having longer uplink pilots reduces as the pilot length
approaches its upper limit.

link performance of a UE. Figure 7 shows a plot of the 90%-likely average downlink SE with
Vmax for different combinations of the uplink and downlink pilot lengths. The total length
of the training interval is kept fixed across all curves, equal to 30 symbols. In such a case,
a higher τup would correspond to more number of available pilots on the uplink and fewer
pilots on the downlink which in turn would imply lesser pilot contamination on the uplink
and more pilot contamination on the downlink. From the figure, it can be seen that the
average SE for a given Vmax tends to increase as τup increases. This means that uplink pilot
contamination exerts more control on the downlink performance of a UE than downlink pilot
contamination does. The reason is that channel estimates impaired by uplink pilot contami-
nation pass on the imperfectness to the subsequent downlink training and data transmission
stages via the transmit precoding step. Although this phenomenon was brought up in [17],
Fig. 7 conveys an important corollary to it: the relative gain in the average downlink SE
due to a finite increment in τup (roughly) reduces as the pilot length approaches its upper
limit (equal to 30 symbols) even when the increment is kept fixed (equal to 5 symbols).

Next, we focus on the effect of densifying a cell-free network with APs when the total
number of AP antennas in the network is held fixed. Figure 8 shows a plot of the cumulative
distribution function (CDF) of the average downlink SE of a UE at Vmax = 5 m/s with and
without downlink training. We consider two deployments: one involving 100 APs with 4
antennas each and another involving 400 APs with a single antenna each. As more APs
are added in the network, the average distance between a UE and an AP reduces and it
is expected that the downlink performance of a UE improve. From the figure, we observe
that densification improves the 90%-likely average SE significantly provided the UEs receive
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Figure 8: CDF plot of the average downlink SE at τdd = 500 symbols and Vmax = 5 m/s. Densification
induces significant gain in the average SE provided the UEs receive downlink pilots.

downlink training. When UEs rely on statistical CSI, however, the 90%-likely average SE
marginally drops as more APs are added in the network. This is because the performance of
the statistical CSI scheme depends on how close the actual value of the downlink channel is
to the mean value, which in turn is determined by the amount of channel hardening. Channel
hardening in CF-mMIMO is governed primarily by the APs that are located geographically
close to a UE. When the number of antennas on an AP drops from 4 to 1, there is loss in the
downlink SE owing to less channel hardening which counteracts any improvement arising
from the reduced AP-UE distance.

Figure 9 shows a plot of the average sum-SE of the cell-free network drawn as a function
of Vmax for the two scenarios presented in Fig. 8. When UEs rely on statistical CSI, the
sum-SE obtained from having fewer APs with more antennas each is significantly higher
than a dense AP deployment, and this gain in performance is observed across all levels of
mobility regardless of pilot contamination. With downlink training, having more APs with
fewer antennas each yields better sum-SE. However, this gain becomes negligible (or even
slightly negative depending on the severity of pilot contamination) at extreme user mobility.
This is because, at high UE velocities, the downlink channel estimates get outdated rapidly,
and as a consequence, the advantage due to the lower UE-AP distance reduces.

5.3. Cellular mMIMO

Figure 10 shows plots of the 90%-likely average downlink SE and the average sum-SE in
cellular mMIMO drawn as a function of Vmax. Although the effect of mobility remains largely
the same as in CF-mMIMO, in cellular mMIMO, both downlink training and statistical
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Figure 9: Plot of the network sum-SE vs. Vmax when τdd = 500 symbols. With downlink training, the gain
in the sum-SE due to densification diminishes as the UEs move faster.

CSI schemes perform equally well (in terms of the 90%-likely measure) with the latter
marginally outperforming the former. Owing to the high degree of channel hardening and
the smaller training overhead, the statistical CSI scheme yields slightly better 90%-likely
average downlink SE than the downlink training scheme when we account for the time-
varying channel. However, the average sum-SE is found to be higher with the downlink
training scheme. Thus, although it does not improve the 90%-likely SE by much, downlink
training is helpful in improving the average sum-SE of cellular mMIMO. This is because the
improved channel estimates obtained via downlink training allow the best-performing UEs
(UEs with high SEs) to retain their SE for a longer duration, thus improving the sum-SE.

Figure 11 shows plots of the 90%-likely average downlink SE and the average sum-SE
drawn as a function of the data duration τdd. As in CF-mMIMO, the average downlink
SE in cellular mMIMO is found to possess a non-monotonic behaviour with respect to τdd.
However, comparing figures 11(a) and 5, we find that the relative behavior between the
downlink training and the statistical CSI scheme is different in both networks. Unlike CF-
mMIMO, in cellular mMIMO, the disparity between the two schemes remains consistent
across the entire τdd values. Further, the performance gap between the two schemes is
maximum initially and tends to reduce as data duration increases. With CF-mMIMO,
however, the two curves tend to start off together (after the cross-over) at low τdd values
and diverge for longer data sequences. From a sum-SE perspective, however, it is found
that for smaller data duration, the statistical CSI scheme yields better sum-SE performance
in cellular mMIMO, but as the data duration increases, downlink training scheme tends
to outperform. The key takeaway is that in cellular mMIMO, depending on what is to
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Figure 10: Plots of (a) 90%-likely average downlink SE and (b) average downlink sum-SE drawn as a function
of Vmax in a cellular mMIMO network.

be optimized (user-fairness or sum-SE), either downlink training or statistical CSI may be
preferred.

6. Conclusions

In this paper, focusing on the downlink, we analyzed the performance of a CF-mMIMO
network while accounting for user mobility. We showed that mobility results in multi-
user interference in the form of channel aging and pilot contamination which degrades the
performance of the UEs present in the network. Using numerical results, the effects of the
maximum user velocity, the data duration and the uplink/downlink training lengths on the
per-user SE and the sum-SE were illustrated. While downlink training is beneficial to CF-
mMIMO UEs, the gain in performance depends on factors such as user mobility and the
data duration in the transmit frame. Furthermore, when the total number of AP antennas
in the network is fixed, it is far better to have more APs with fewer antennas each than
otherwise. When considering the sum-SE, however, this gain in performance reduces at high
user mobility. Finally, in a cellular mMIMO network, UEs generally achieve slightly better
90% likely SE when they rely on statistical CSI to decode downlink data. However, if the
sum-SE is to be optimized, downlink training must be preferred. This difference arises from
the different degrees of channel hardening in cell-free and cellular mMIMO. Future work can
study the utility of data-aided channel tracking using, e.g., Kalman filtering, to mitigate the
performance deterioration in high-mobility scenarios.

Appendix A. Proof of Proposition 1

Recall from (12) that the nth received data signal at the kth UE is given by

rd,k[n] =
√
Eddkk[n]qk[n] + w̃d,k[n], (A.1)
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Figure 11: Plots of (a) 90%-likely average downlink SE and (b) average downlink sum-SE drawn as a function
of τdd in a cellular mMIMO network.

where w̃d,k[n] ≜
√
Ed
∑K

k′ ̸=k dkk′ [n]qk′ [n]+wd,k[n] represents the effective non-Gaussian noise.
Assuming {qk′ [n]} has zero mean and is independent of dkk′ [n] ∀ k, k′, we can write

E{w̃d,k[n]|d̂kk} = E{q∗k[n]w̃d,k[n]|d̂kk} = E{d∗kk[n]q∗k[n]w̃d,k[n]|d̂kk} = 0. (A.2)

Now, the achievable downlink SE of the kth UE can be computed using the capacity bound-
ing technique in [5] for a fading channel with non-Gaussian noise where the receiver has
access to side information as

SEk[n] ≥ E

log2

1 +
Ed
∣∣∣E{dkk[n]∣∣∣d̂kk}∣∣∣2

Ed
∑K

k′=1 E
{
|dkk′ [n]|2

∣∣∣d̂kk}− Ed
∣∣∣E{dkk[n]∣∣∣d̂kk}∣∣∣2 + 1


 . (A.3)

From (14), dkk[n] can be expressed as

dkk[n] = ρk[n]d̂kk + ρk[n]d̃kk + ρ̄k[n]zkk[n], (A.4)

where the quantities d̂kk, d̃kk and zkk[n] are mutually uncorrelated with the latter two terms
having zero mean. In section II, the quantity dkk[n] was shown to be approximately Gaussian
for finite values of M and L. Furthermore, the quantities d̂kk, d̃kk and zkk[n] are (approx-
imately) jointly Gaussian and hence are statistically independent too. This allows us to
write

E
{
dkk[n]

∣∣∣d̂kk} = ρk[n]d̂kk. (A.5)
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Now, focusing on the denominator term of the SINR in (A.3), we can write

Ed
K∑

k′=1

E
{
|dkk′ [n]|2

∣∣∣d̂kk}− Ed
∣∣∣E{dkk[n]∣∣∣d̂kk}∣∣∣2 + 1

= Ed
K∑

k′ ̸=k

E
{
|dkk′ [n]|2

∣∣∣d̂kk}+ EdE
{
|dkk[n]|2

∣∣∣d̂kk}− Edρ2k[n]|d̂kk|2 + 1, (A.6)

where

E{|dkk[n]|2} =ρ2k[n]E
{
|d̂kk|2

}
+ ρ2k[n]E

{
|d̃kk|2

}
+ ρ̄2k[n]E

{
|zkk[n]|2

}
. (A.7)

Therefore,

E
{
|dkk[n]|2

∣∣∣d̂kk} =ρ2k[n]|d̂kk|2 + ρ2k[n]E
{
|d̃kk|2

}
+ ρ̄2k[n]E

{
|zkk[n]|2

}
. (A.8)

Substituting the above expression in (A.6), we obtain

Ed
K∑

k′=1

E
{
|dkk′ [n]|2

∣∣∣d̂kk}− Ed
∣∣E{dkk[n]∣∣∣d̂kk}∣∣2 + 1

= Ed
K∑

k′ ̸=k

E
{
|dkk′ [n]|2

∣∣∣d̂kk}+ Edρ2k[n]E
{
|d̃kk|2

}
+ Edρ̄2k[n]E

{
|zkk[n]|2

}
+ 1.

(A.9)

Substituting (A.5) and (A.9) back in (A.3), we obtain the following expression for the lower
bound on the downlink SE:

SEDT
k [n] = E

{
log2

(
1+

ρ2k[n]|d̂kk|2∑K
k′ ̸=k E

{
|dkk′ [n]|2

∣∣∣d̂kk}+ ρ2k[n]E
{
|d̃kk|2

}
+ ρ̄2k[n]E

{
|zkk[n]|2

}
+ 1

Ed

)}
.

(A.10)
To further approximate the lower bound, the outermost expectation in the above expression
can be taken inside the logarithm [32, Lemma 1]. This gives us the following approximation
of the achievable downlink SE:

SEDT
k [n] ≈ log2

1 +
ρ2k[n]E

{
|d̂kk|2

}
∑K

k′ ̸=k E
{
|dkk′ [n]|2

}
+ ρ2k[n]E

{
|d̃kk|2

}
+ ρ̄2k[n]E

{
|zkk[n]|2

}
+ 1

Ed

 .

(A.11)
Focusing on the numerator term of the effective SINR in the above expression, it can be
shown that

E{|d̂kk|2} =|E{dkk}|2 +
|Cov{dkk, y̆dp,k}|2

|Var{y̆dp,k}|2
Var{y̆dp,k}

=

(
M∑

m=1

L
√
ηmkγmk

)2

+

(√
τdpEdp

∑M
m=1 Lηmkγmkβmk

)2
1 + τdpEdp

∑M
m=1

∑K
k′=1 ηmk′γmk′Lβmk|ψH

k′ψk|2
. (A.12)

22



For the denominator of the SINR in (A.11), we compute E{|dkk′ [n]|2} by writing

E{|dkk′ [n]|2} =ρ2k[n]
M∑

m=1

M∑
n=1

√
ηmk′ηnk′E{gT

mkĝ
∗
mk′g

H
nkĝnk′}

+ ρ̄2k[n]
M∑

m=1

M∑
n=1

√
ηmk′ηnk′E{zTmkĝ

∗
mk′z

H
nkĝnk′}. (A.13)

Simplifying the above expression, we obtain

E{|dkk′ [n]|2} =ρ2k[n]

(
M∑

m=1

L
√
ηmk′γmk′

βmk

βmk′

)2

|ϕH
k′ϕk|2 +

M∑
m=1

Lηmk′γmk′βmk. (A.14)

To compute E{|d̃kk|2} in (A.11), we must evaluate E{|dkk|2} first. Substituting k′ = k and
n = 0 in (A.14), we obtain

E{|dkk|2} =
M∑

m=1

Lηmkγmkβmk +

(
M∑

m=1

L
√
ηmkγmk

)2

. (A.15)

Now, the quantity E{|d̃kk|2} can be computed as

E{|d̃kk|2} =E{|dkk|2} − E{|d̂kk|2}

=
M∑

m=1

Lηmkγmkβmk −
τdpEdpL2

(∑M
m=1 ηmkγmkβmk

)2
1 + LτdpEdp

∑M
m=1

∑K
k′=1 ηmk′γmk′βmk|ψH

k′ψk|2
(A.16)

Finally, the quantity E{|zkk[n]|2} in (A.11) is found as

E{|zkk[n]|2} =
M∑

m=1

M∑
n=1

√
ηmkηnkE{zTmk[n]ĝ

∗
mkz

H
nk[n]ĝnk} =

M∑
m=1

Lηmkγmkβmk. (A.17)

Substituting (A.12), (A.14), (A.16) and (A.17) in (A.11), we obtain the desired result.

Appendix B. Proof of Proposition 2

Let ϕlk ∈ Cτup denote the uplink pilot assigned to UElk. The uplink training signal
recieved at BS j is

Yup,j =
√

τupEup
Lc∑
l′=1

Kc∑
i′=1

gj
l′i′ϕ

H
l′i′ +Wup,j, (B.1)

where Eup denotes the normalized transmit SNR for the uplink and Wup,m consisting of i.i.d
CN (0, 1) entries denotes noise at the jth BS. Now, BS j correlates the received signal with
pilot ϕli to obtain

yup,jli = Yup,jϕli =
√

τupEup
Lc∑
l′=1

Kc∑
i′=1

gj
l′i′ϕ

H
l′i′ϕli +Wup,jϕli. (B.2)
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Given yup,jli, the MMSE channel estimate ĥj
li is obtained as

ĝj
li =

√
τupEupβj

li

τupEup
∑Lc

l′=1 β
j
l′i + 1

yup,jli = cjliyup,jli. (B.3)

In the above expression, we have ĝj
li ∼ CN

(
0, γj

liIMc

)
where γj

li =
√

τupEupcjliβ
j
li.

Let ψlk ∈ Cτdp denote the downlink pilot sequence intended for UElk. The BS uses
conjugate beamforming to transmit downlink pilots. The downlink pilot signal received at
UElk is

ydp,lk =
√

τdpEdp
L∑

l′=1

Kc∑
i=1

√
ηl′ig

l′T
lk ĝl′∗

l′iψ
H
l′i +wdp,lk. (B.4)

where Edp denotes the normalized transmit SNR for the downlink, ηl′i denotes the power
control coefficient intended for UEl′i, and wdp,lk ∈ C1×τdp denotes additive Gaussian noise
at UElk. Next, UElk correlates the above received signal with pilot ψlk to obtain

y̆dp,lk =
√

τdpEdp
√
ηlkg

lT
lk ĝ

l∗
lk +

√
τdpEdp

Lc∑
l′=1
l′ ̸=l

√
ηl′kg

l′T
lk ĝl′∗

l′kψ
H
l′kψlk + w̃dp,lk, (B.5)

where w̃dp,lk = wdp,lkψlk. The above expression can be rewritten as

y̆dp,lk =
√

τdpEdpdllkk +
√
τdpEdp

Lc∑
l′=1
l′ ̸=l

dl
′

lkk + w̃dp,lk, (B.6)

where dl
′

lkk =
√
ηl′kg

l′T
lk ĝl′∗

l′k represents the downlink channel. The MMSE estimate of dllkk can
be found as [33]

d̂llkk = Mc
√
ηlkγ

l
lk +

√
τdpEdpMcηlkγ

l
lkβ

l
lk

1 + τdpEdp
∑Lc

i=1 Mcηikγi
ikβ

i
lk

(
y̆dp,lk −

√
τdpEdp

Lc∑
i=1

Mc
√
ηikγ

i
ik

βi
lk

βi
ik

)
.

(B.7)
The downlink channel is then given by dllkk = d̂llkk+ d̃llkk where d̃llkk is the channel estimation
error. Next, the jth BS proceeds to transmit data symbols on the downlink. The downlink
data vector transmitted by BS j at the nth-instant (n = τup + τdp, . . . , τup + τdp + τdd − 1) is

xj[n] =
√
Ed

Kc∑
i=1

√
ηjiĝ

j∗
ji qji[n]. (B.8)

Here, qji[n] denotes the nth data symbol intended for UEji; the symbols {qji[n]} have zero-
mean and unit variance and they are mutually uncorrelated. Now, UElk receives the nth
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transmit vector in the form

rd,lk[n] =
√
Eddllkk[n]qlk[n] +

√
Ed

Kc∑
i=1
i ̸=k

dllki[n]qli[n] +
√
Ed

Lc∑
l′=1
l′ ̸=l

Kc∑
i=1

dl
′

lki[n]ql′i[n] + wd,lk[n],

(B.9)

where dl
′

lki[n] =
√
ηl′ig

l′T
lk [n]ĝl′∗

l′i is the nth-instant downlink channel and wd,lk[n] is zero-mean,
unit-variance noise at UElk. Using the same approach as in Appendix A, the approximate
lower bound on the nth-instant downlink SE of UElk can be shown to be

SEcell, DT
lk [n] = log2

(
1 + SINRcell,DT

lk [n]
)
, (B.10)

where

SINRcell,DT
lk [n] =

(
SINRcell,DT

lk [n]
)
num(

SINRcell,DT
lk [n]

)
den

(B.11)

denotes the effective downlink SINR at the nth-instant with(
SINRcell,DT

lk [n]
)
num

=Edρ2lk[n]E
{
|d̂llkk|2

}
(B.12)(

SINRcell,DT
lk [n]

)
den

=Ed
Lc∑
l′ ̸=l

Kc∑
i=1

E
{
|dl′lki[n]|2

}
+ Ed

Kc∑
i ̸=k

E
{
|dllki[n]|2

}
+ Edρ2lk[n]E

{
|d̃llkk[n]|2

}
+ Edρ̄2lk[n]E

{
|zllkk[n]|2

}
+ 1, (B.13)

in which zllkk[n] =
√
ηlkz

lT
lk [n]ĝ

l∗
lk. Upon evaluating the expectations in the above two equa-

tions, we obtain the closed-form expression given in Proposition 2.

Appendix C. Proof of Proposition 3

When UEs rely on channel statistics to decode data symbols, the recieved signal in (B.9)
can be rewritten as [8, 5]

rd,lk[n] =
√

EdE
{
dllkk[n]

}
qlk[n] +

√
Ed
(
dllkk[n]−

√
EdE
{
dllkk[n]

})
qlk[n]

+
√
Ed

Kc∑
i=1
i ̸=k

dllki[n]qli[n] +
√
Ed

Lc∑
l′=1
l′ ̸=l

Kc∑
i=1

dl
′

lki[n]ql′i[n] + wd,lk[n], (C.1)

where the first term (containing the mean value of the downlink channel) represents the
desired signal term and the rest of the terms form the effective noise that is uncorrelated
with the desired signal term. Finally, we obtain the closed-form expression for the lower
bound on the nth-instant downlink SE as stated in the Proposition by taking the ratio of
the mean-square value of the desired signal term and the mean-square value of the effective
noise to form the effective SINR and then using the SE lower bound from [5].

25



References

[1] J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, L. Hanzo, Cell-free massive MIMO: A new next-generation
paradigm, IEEE Access 7 (2019) 99878–99888. doi:10.1109/ACCESS.2019.2930208.

[2] G. Interdonato, E. Björnson, H. Q. Ngo, P. Frenger, E. G. Larsson, Ubiquitous cell-free massive MIMO
communications, EURASIP J. Wireless Commun. 2019 (1) (2019) 197. doi:10.1186/s13638-019-1507-0.

[3] J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, D. J. Love, Prospective multiple antenna
technologies for beyond 5G, IEEE Journal of Selected Areas in Communications 38 (8) (2020) 1637–
1660. doi:10.1109/JSAC.2020.3000826.

[4] J. Zheng, J. Zhang, H. Du, D. Niyato, B. Ai, M. Debbah, K. B. Letaief, Mobile cell-free massive mimo:
Challenges, solutions, and future directions (2023). arXiv:2302.02566.

[5] T. L. Marzetta, E. G. Larsson, H. Yang, H. Q. Ngo, Fundamentals of Massive MIMO, Cambridge
University Press, 2016. doi:10.1017/CBO9781316799895.

[6] E. Björnson, J. Hoydis, L. Sanguinetti, Massive MIMO networks: Spectral, energy, and hardware
efficiency, Foundations and Trends® in Signal Processing 11 (3-4) (2017) 154–655.

[7] Özlem Tugfe Demir, E. Björnson, L. Sanguinetti, Foundations of user-centric cell-free massive MIMO,
Foundations and Trends® in Signal Processing 14 (3-4) (2021) 162–472. doi:10.1561/2000000109.
URL http://dx.doi.org/10.1561/2000000109

[8] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, T. L. Marzetta, Cell-free massive MIMO
versus small cells, IEEE Transactions on Wireless Communications 16 (3) (2017) 1834–1850.
doi:10.1109/TWC.2017.2655515.

[9] E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, B. D. Rao, Precoding and power optimization
in cell-free massive MIMO systems, IEEE Transactions on Wireless Communications 16 (7) (2017)
4445–4459. doi:10.1109/TWC.2017.2698449.

[10] E. Björnson, L. Sanguinetti, Making cell-free massive MIMO competitive with MMSE processing and
centralized implementation, IEEE Transactions on Wireless Communications 19 (1) (2020) 77–90.
doi:10.1109/TWC.2019.2941478.

[11] E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, Cell-free massive MIMO systems, in:
2015 49th Asilomar Conference on Signals, Systems and Computers, 2015, pp. 695–699.
doi:10.1109/ACSSC.2015.7421222.

[12] H. Q. Ngo, L.-N. Tran, T. Q. Duong, M. Matthaiou, E. G. Larsson, On the total energy efficiency of
cell-free massive MIMO 2 (1) (2018) 25–39. doi:10.1109/TGCN.2017.2770215.

[13] L. D. Nguyen, T. Q. Duong, H. Q. Ngo, K. Tourki, Energy efficiency in cell-free massive MIMO with
zero-forcing precoding design, IEEE Communications Letters 21 (8) (2017) 1871–1874.

[14] J. Zheng, J. Zhang, E. Björnson, B. Ai, Impact of channel aging on cell-free massive MIMO
over spatially correlated channels, IEEE Transactions on Wireless Communications (2021) 1–
1doi:10.1109/TWC.2021.3074421.

[15] M. Bashar, K. Cumanan, A. G. Burr, H. Q. Ngo, E. G. Larsson, P. Xiao, Energy efficiency of the
cell-free massive MIMO uplink with optimal uniform quantization, IEEE Transactions on Green Com-
munications 3 (4) (2019) 971–987.

[16] K. T. Truong, R. W. Heath, Effects of channel aging in massive MIMO systems, J. Commun. Netw.
15 (4) (2013) 338–351. doi:10.1109/JCN.2013.000065.

[17] G. Interdonato, H. Q. Ngo, P. Frenger, E. G. Larsson, Downlink training in cell-free massive MIMO:
A blessing in disguise, IEEE Transactions on Wireless Communications 18 (11) (2019) 5153–5169.
doi:10.1109/TWC.2019.2933831.

[18] A. A. Polegre, F. Riera-Palou, G. Femenias, A. G. Armada, New insights on channel hardening in cell-
free massive MIMO networks, in: 2020 IEEE International Conference on Communications Workshops
(ICC Workshops), 2020, pp. 1–7. doi:10.1109/ICCWorkshops49005.2020.9145215.

[19] Z. Chen, E. Björnson, Channel hardening and favorable propagation in cell-free massive MIMO with
stochastic geometry, IEEE Transactions on Communications 66 (11) (2018) 5205–5219.

[20] A. Anand, C. R. Murthy, Impact of subcarrier allocation and user mobility on the uplink performance

26



of multiuser massive mimo-ofdm systems, IEEE Transactions on Communications 70 (8) (2022) 5285–
5299. doi:10.1109/TCOMM.2022.3186402.

[21] W. Jiang, H. D. Schotten, Impact of channel aging on zero-forcing precoding in cell-free massive MIMO
systems, IEEE Communications Letters 25 (9) (2021) 3114–3118.

[22] R. Chopra, C. R. Murthy, A. K. Papazafeiropoulos, Uplink performance analysis of cell-free
mMIMO systems under channel aging, IEEE Communications Letters 25 (7) (2021) 2206–2210.
doi:10.1109/LCOMM.2021.3073778.

[23] Z. Zhang, C. Jiao, C. Zhong, Impact of mobility on the uplink sum rate of MIMO-
OFDMA cellular systems, IEEE Transactions on Communications 65 (10) (2017) 4218–4231.
doi:10.1109/TCOMM.2017.2719020.

[24] R. Chopra, C. R. Murthy, H. A. Suraweera, E. G. Larsson, Performance analysis of FDD massive
MIMO systems under channel aging, IEEE Transactions on Wireless Communications 17 (2) (2018)
1094–1108.

[25] A. K. Papazafeiropoulos, Impact of general channel aging conditions on the downlink performance of
massive MIMO, IEEE Transactions on Vehicular Technology 66 (2) (2017) 1428–1442.

[26] A. K. Papazafeiropoulos, T. Ratnarajah, Deterministic equivalent performance analysis of time-varying
massive MIMO systems, IEEE Transactions on Wireless Communications 14 (10) (2015) 5795–5809.

[27] C. Kong, C. Zhong, A. K. Papazafeiropoulos, M. Matthaiou, Z. Zhang, Sum-rate and power scaling
of massive MIMO systems with channel aging, IEEE Transactions on Communications 63 (12) (2015)
4879–4893.

[28] G. Interdonato, H. Q. Ngo, E. G. Larsson, Enhanced normalized conjugate beamforming
for cell-free massive MIMO, IEEE Transactions on Communications 69 (5) (2021) 2863–2877.
doi:10.1109/TCOMM.2021.3055522.

[29] K. I. Park, Fundamentals of Probability and Stochastic Processes with Applications to Communications,
Springer Cham, 2018. doi:10.1007/978-3-319-68075-0.

[30] T. M. Cover, J. A. Thomas, Elements of Information Theory, John Wiley & Sons, 2006.
[31] J. Zuo, J. Zhang, C. Yuen, W. Jiang, W. Luo, Multicell multiuser massive MIMO transmission with

downlink training and pilot contamination precoding, IEEE Transactions on Vehicular Technology
65 (8) (2016) 6301–6314. doi:10.1109/TVT.2015.2475284.

[32] Q. Zhang, S. Jin, K.-K. Wong, H. Zhu, M. Matthaiou, Power scaling of uplink massive MIMO sys-
tems with arbitrary-rank channel means, IEEE J. Sel. Topics Signal Process. 8 (5) (2014) 966–981.
doi:10.1109/JSTSP.2014.2324534.

[33] S. M. Kay, Fundamentals of statistical signal processing: Detection theory, Prentice-Hall, Upper Saddle
River, NJ, USA (1993).

27


