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Abstract—This paper investigates the use of adaptive group
testing for finding a spectrum hole of a specified bandwidth
in a given wideband of interest. We propose a group testing
based spectrum hole search algorithm that exploits sparsity in
the primary spectral occupancy by testing a group of adjacent
sub-bands in a single test. This is enabled by a simple and
easily implementable sub-Nyquist sampling scheme for signal
acquisition by the cognitive radios. The sampling scheme de-
liberately introduces aliasing during signal acquisition, resulting
in a signal that is the sum of signals from adjacent sub-bands.
Energy-based hypothesis tests are used to provide an occupancy
decision over the group of sub-bands, and this forms the basis
of the proposed algorithm to find contiguous spectrum holes of
a specified bandwidth. We extend this framework to a multi-
stage sensing algorithm that can be employed in a variety of
spectrum sensing scenarios, including non-contiguous spectrum
hole search. Further, we provide the analytical means to optimize
the group tests with respect to the detection thresholds, number
of samples, group size, and number of stages, to minimize the
detection delay under a given error probability constraint. Our
analysis allows one to identify the sparsity and SNR regimes
where group testing can lead to significantly lower detection
delays compared to a conventional bin-by-bin energy detection
scheme; the latter is in fact a special case of the group test when
the group size is set to1 bin. We validate our analytical results
via Monte Carlo simulations.

Index Terms—Group testing, spectrum hole search, sub-
Nyquist sampling, energy detection, multi-stage sensing,fre-
quency hopping.

I. I NTRODUCTION

Group testing is a natural framework for efficiently iden-
tifying the defective items in a large population containing
a small fraction of defective items [2]. It is applicable in
scenarios where multiple items can be tested together in a
single test; the group test returns positive if at least one item
in the group is defective, and returns negative otherwise. Group
tests are particularly useful when individually testing each item
is prohibitively time-consuming, since testing multiple items
in a single test leads to time savings when test outcomes
are negative. One area where group tests could potentially
offer significant benefits is that of spectrum hole search for
Cognitive Radio (CR) [3]–[5]. The CR paradigm is based on
the fact that, at any given time, the spectral occupancy by the
primary users is sparse over a wideband of interest [6], [7].
For efficient functioning, CR networks need accurate and up-
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to-date information about the availability of spectrum holes,
i.e., frequency bands where the primary users are inactive.

In this work, we focus on the application ofadaptivegroup
testing to the task of findinga spectrum hole of a pre-specified
bandwidth within a given wideband of interest for use by the
CR network. This problem is relevant in many CR scenarios.
For example, in the IEEE802.22 standard for cognitive radio,
the primary users occupy a bandwidth of6 MHz each. A
secondary network that requires40 MHz of bandwidth for
its operation will need to find a spectrum hole consisting of
7 contiguous unoccupied bands. In practice, it is desirable
to have the CR network operate in a contiguous frequency
band, as this simplifies transceiver hardware design and helps
improve the energy efficiency of the CR network compared
to using non-contiguous frequency bins. Other considerations
for preferring contiguous frequency bin allocation are the
physical layer access mechanism (e.g., code division multiple
access), network quality of service requirements, spectral mask
constraints, etc.

We consider a setup where a CR wishes to identify a
given number, sayNe, contiguous unoccupied sub-bands over
a given wide bandwidth. A straightforward approach to this
problem would be to test each sub-band sequentially, one at
a time, till the requiredNe contiguous bins are found. On the
other hand, group testing can be used to reduce the search
time in such a problem, if a set of adjacent sub-bands can
be tested at one shot. One way to accomplish this without
increasing the sampling rate and processing requirements at
the CR node is to acquire the analog signal corresponding to
M(≥ 1) sub-bands using a wide front-end anti-aliasing filter,
followed by sampling at a rate corresponding to the Nyquist
rate for asinglesub-band. Although sampling at the Nyquist
rate of a single sub-band results in aliasing, it provides the
receiver with a signal that is thesum of the signals in all the
acquired sub-bands.Based on the energy of the aliased signal,
in this paper, we develop an energy-based detector, referred to
asanM -bin group test, to provide a joint occupancy decision
on the group ofM adjacent sub-bands over which the signal
is acquired. We consider the popular energy-based detection
(see [8]–[10] for an excellent survey of spectrum sensing),as
it is easy to implement and is optimal when the CR has no
prior information about the primary signal [11].

In the literature, the idea of sampling the signal over mul-
tiple sub-bands and make joint occupancy decisions has been
explored, but with sampling at the Nyquist rate corresponding
to the multiple sub-bands. For example, FFT-based architec-
tures that collect samples at a Nyquist rate corresponding to
CN narrowbands and can provide simultaneous decisions for
all theCN bins have been considered [12]–[14]. A two-stage
sensing architecture that reduces search times by extending
the narrowband energy detector to wider bands has been
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proposed in [15]. Another way to reduce the search time
is by employing parallel data chains, e.g., using multiple
antenna receivers [16], [17]. However, the effective sampling
rate requirements of these architectures are higher than the
narrowband detector, since data is acquired over multiple
narrowbands at Nyquist rates. Increasing the sampling rateen-
tails higher power consumption and processing requirements,
which is undesirable in tasks such as spectrum sensing, which
are frequently performed at the CR nodes. A wideband sensing
framework is proposed in [18], [19], where a bank of multiple
narrowband energy detectors operating at Nyquist sampling
rate are jointly optimized by choosing different thresholds,
to maximize the total opportunistic CR throughput, while
constraining the interference to the primary users. The above
framework requires the knowledge of primary-to-secondary
channel coefficients and secondary throughput values for each
narrowband, and is therefore limited to scenarios where such
information is available. In practice, it may be hard for the
CR to obtain or estimate these parameters.

Group testing based signal acquisition leads to noise en-
hancement (folding), due to the aliasing introduced by the
sub-Nyquist sampling. This phenomenon is also seen in other
wideband acquisition systems operating at sub-Nyquist rates,
such as compressive sensing based methods [20]. This raises
important questions about the efficacy of group testing in
the face of noise folding, and the dependence of the optimal
test parameters on the operating SNR and the sparsity in the
frequency occupancy of primary users. In this context, our
contributions in this paper are as follows:

1) We introduce a signal acquisition scheme that enables
the use of group testing based spectrum hole search
by acquiring wideband signals at a fixed sampling rate.
The acquisition scheme entails only a minimal hardware
change, compared to the narrowband energy detector,
in the form of a programmable anti-aliasing filter (See
Sec. II).

2) We present a search algorithm that minimizes the time to
detect a spectrum hole of a specified bandwidth while sat-
isfying an upper bound on the probability of incorrectly
identifying the hole (See Sec. III).

3) We theoretically analyze the detection delay behavior
of the algorithm, and use it to optimize the parameters
(group size, samples per test, and detection thresholds) of
the search algorithm. We also identify the regimes of the
sparsity and detection SNR where group tests offer per-
formance benefits over the conventional bin-by-bin search
scheme. In particular, our analytical characterization of
the detection delay of the bin-by-bin detector is also new
(See Sec. IV).

4) We present a multi-stage detection algorithm that com-
bines multiple group sizes to identify a large fraction
of the available spectrum holes as fast as possible (See
Sec. V).

Extensive simulation results corroborate our theoreticalanaly-
sis and illustrate the performance benefits obtainable fromthe
group testing approach under favorable conditions on sparsity
and SNR (See Sec. VI). The use of group tests with the optimal

group size leads to a faster acquisition of the desired spectrum
hole. This, in turn, leads to a better utilization of the available
spectrum, since a shorter sensing duration leaves more time
for data transmission. Reducing the sensing duration is also
power efficient, since spectrum sensing is a frequently-running
task on CR devices. Moreover, group test based schemes
significantly reduce the total number of tests that need to
be set up while searching over a given wideband, thereby
reducing the test setup overheads [15]. Finally, we note that
the spectrum hole search algorithm always selects the optimal
group sizeM . In particular, in scenarios whereM = 1 is
optimal, the group testing scheme reduces to the conventional
bin-by-bin search scheme.

Notation: N (m, s2) represents the Gaussian distribution
with meanm and variances2. χ2 (n) denotes Chi-squared
distribution with n degrees of freedom.Q(.) denotes the
standard Gaussian tail function andsgn(.) denotes the signum
function.Pr{A} denotes the probability of occurrence of an
eventA andPr{A|B} denotes the conditional probability of
occurrence of eventA given eventB.

II. SIGNAL ACQUISITION SCHEME

We model the wideband as a set of consecutive non-
overlapping frequency narrowbands. Letfb denote the band-
width of a narrowband channel, also referred to as a bin
or a sub-band. Let the wideband being searched consist of
N contiguous sub-bands. LetSl(Ω) and sl(t) represent the
frequency domain and time domain signal components in the
lth bin, respectively, down converted to the baseband (denoted
sl(t)

F←→ Sl(Ω)). Let Ω , 2πf . By our assumption on the
bandwidth of each bin, we haveSl(Ω) = 0, |Ω| > 2πfb/2.
The frequency domain signal for the wideband channel, down
converted to the baseband, can be represented as

X(Ω) =

(N−1)/2
∑

l=−(N−1)/2

Sl (Ω− Ωl) (1)

whereΩl , 2πlfb represents the center frequency of thelth

bin. In the above,N is assumed to be odd, but the extension
to evenN is straightforward.

We now describe a signal acquisition scheme that enables
group testing of multiple adjacent bins without increasingthe
sampling rate requirements at the CR node. LetM denote the
number of adjacent bins over which the signal is acquired.
The incoming down-converted signal is first passed through
an anti-aliasing filter of bandwidthMfb to eliminate the out-
of-band signals and noise. The frequency domain signal at the
output of the anti-aliasing filter can be represented as

Xa(Ω) =

(M−1)/2
∑

l=−(M−1)/2

Sl (Ω− Ωl) . (2)

The signalxa(t)
F←→ Xa(Ω) is sampled at a ratefs =

fb. Since the anti-aliasing filter band-limits the signal to
[−Mfb/2, Mfb/2], sampling at a ratefb introducesalias-
ing. Let Tb = 1/fb. Let xd[n] = xa(nTb) represent the

sampled signal andxd[n]
F←→ Xd(e

ω), whereω = 2πf/fb
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Fig. 1. Block diagram of the wideband signal acquisition system.

[21]. With the above notation, for oddM , Xd(e
ω) =

(1/Tb)
∑(M−1)/2

l=−(M−1)/2 Sl (ω/Tb). Again, the extension to even
M is straightforward. The received signal,xd[n], is thus the
sum of the signal components in the individual bins. Now, the
received signalyg[n] can be described by

yg[n] = xd[n] + vg[n] (3)

wherevg[n] is the white noise component after aliasing.
Now, due to possibly independent fading across the bins

and mismatches between transmit and receive pulse shaping
filters, timing and frequency offsets, etc. between the primary
transmitter and the CR receivers, the signals from different
bins are effectively the result of passing a random signal
through orthogonal filters, since the different frequency bins
are non-overlapping. Hence, it is reasonable to model the
signal contributions from different bins as being mutually
independent. Since we assume no knowledge about the pri-
mary signal characteristics at the secondary node, we model
the signal contributions fromlth bin as Gaussian distributed
with zero mean and variancePl, as in [14], [22], [23]. We
assume that the baseband signal is real-valued for simplicity
of exposition; the extension to complex signals is immediate.
We note that,vg[n] ∼ N

(

0,Mσ2
)

, whereσ2 = Nofb, and
No is the white noise power spectral density. The factorM in
the noise variance is due to the aliasing introduced by sampling
at ratefb. We accumulate the energy fromK samples at the
output of the filter, and compute the following test statistic:

T (y) =

√

√

√

√

K
∑

n=1

|yg[n]|2. (4)

Note that, the conventional narrowband signal acquisitionis a
special case of the above signal model withM = 1. Figure 1
shows the block diagram for the proposed wideband signal
acquisition scheme. Let the bandwidth of the spectrum holes
that need to be found be denoted byWh, such thatWh =
Nefb. With this setting, the task of the sensing algorithm is
to find a set ofNe(≪ N) consecutiveunoccupied bins in the
given wideband. We discuss this in the next section.

III. T HE M -BIN GROUP TEST DESIGN

Using the above data acquisition scheme, we first describe
an algorithm to find a contiguous spectrum hole of the
specified bandwidth ofNe bins. Let the parametersN andM
be as defined in the previous section. LetNe be an integer
multiple of M and define1 b = Ne/M . In each test, the

1We consider such a combination ofNe and M for the simplicity of
exposition. The algorithm can be easily adapted to non-integer multiples also.

proposed algorithm makes an occupancy decision on a group
of M ≤ Ne contiguous bins. Such group tests, referred to as
M -bin tests, are conducted sequentially on multiple adjacent
groups untilb consecutiveM -bin tests declare the set of bins
being tested as unoccupied. Also, for simplicity, we assume
that the requiredNe empty bins can be found using one pass
of the algorithm over the given wideband consisting ofN bins.
This holds true when the occupancy of the primary is sparse
in the frequency domain andNe ≪ N , which is typically the
case in scenarios relevant for CR deployment.

An M -bin group test forms the basic building block of the
above algorithm to findNe unoccupied bins. LetHl denote the
hypothesis thatl out ofM bins are occupied in the group under
test and let{Hl}Ml=1 denote the composite alternate hypothesis,
i.e.,Hl is true for somel = 1, 2, . . . ,M . An M -bin group test
distinguishes between the following hypotheses:

H0 : No primary signal on any of theM -bins

{Hl}Ml=1 : Primary signal present on at least one bin. (5)

To find Ne empty bins, the algorithm can use different values
of M (and henceb) andK. We first describe the algorithm
with a fixed value ofM and K, and later present a way
of choosing the bestM andK. The following optimization
problem arises naturally in the context of theM -bin test:

minimize N t subject to Pe ≤ P0, (6)

where Pe denotes the probability that the overall search
algorithm makes an error, andN t denotes the average number
of tests required to findNe consecutive bins. The minimization
in (6) is over the parametersM , b, K and the detection
thresholds used in theM -bin tests. Since the algorithm ter-
minates once it has declared a set, sayA, of Ne consecutive
bins as unoccupied, we say that an error has occurred if the
primary signal is present in one or more of the bins inA.
Mathematically,

Pe , Pr (Primary present in a setA of Ne bins | b (7)

consecutiveM -bin tests succeed for the first time).

Note that,Pe is related to the miss detection probability, i.e.,
the probability that the groupA is declared as empty given
that at least one bin inA is actually occupied, through Bayes’
rule. Also, a false alarm event, i.e., the event thatA is declared
occupied given that it is actually empty, leads to an increased
detection delay; its effect is captured inN t. See Proposition 1
and Appendix B.

Let occupancy across the bins be i.i.d. and distributed as
binary Bernoulli random variables (denoted∼ B(ρ)), whereρ
is the fraction of bins occupied on average, over the long term.
In the current work, we focus on the i.i.d. occupancy model
[18], that, apart from being analytically tractable, mightalso
be of independent interest in the area of adaptive group testing
where the items being defective is independent of each other.
We further assume that the occupancy pattern stays fixed over
the search duration. LetH0d denote the event thatH0 was
declared by a single group test and definep , Pr{H0d}.
Let Π0 andΠ1 represent the prior probabilities for the null
and alternate hypotheses for theM -bin group test. With our
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assumptions,Π0 = (1− ρ)M and Π1 = 1 − Π0. Define
Pme , Pr{{Hl}Ml=1|H0d} as the probability that the single
group test makes an incorrect decision, given that the group
test has declaredH0. The following proposition connectsPe

andN t to Pme andp, the parameters of theM -bin group test.

Proposition 1. Let N t, M , b, Pe, Pme, and p be as defined
above. Then the following hold:

Pe = 1− (1− Pme)
b and N t =

b
∑

i=1

(p)
−i
. (8)

Proof: See Appendix A.
From Proposition 1,N t depends solely onp and b, and is

monotonically decreasing withp. Thus, the design goal for the
singleM -bin test can be stated as

maximize p subject to Pme ≤ P ′
0, (9)

whereP ′
0 = 1 − (1 − P0)

(1/b). The maximization above is
over all possible decision rules, denoted byδ(T ). Our next
proposition establishes that a Likelihood Ratio Test (LRT)[24]
is optimal for the design criterion specified in (9). LetδL(T )
be a decision rule based on the LRT with thresholdηgt > 0,
defined asδL(T ) = 1, P r{T |{Hl}Ml=1} ≥ ηgtPr{T |H0}, and
= 0 otherwise, whereT is given by (4). We state:

Proposition 2. Let δL(T ) be the LRT decision rule defined
above, withηgt chosen such thatPme(δL) = P ′

0. Let δ′(T )
be any other decision rule such thatPme(δ

′) ≤ P ′
0. If ηgt >

Π0P
′
0/{Π1(1 − P ′

0)}, thenN t(δL) ≤ N t(δ
′), whereN t(δL)

(or N t(δ
′)) represents the average number of tests required

to find a consecutive set ofNe vacant bins using the testδL
(or δ′).

Proof: See Appendix B.
To compute likelihood ratios, we need the probability dis-

tributions of the test statistic defined in (4) under the two
hypotheses. To this end, we need to know the variances under
the primary signal present hypothesis{Pl}Ml=1, but these are
unknown and in general hard to estimate. To get around the
problem of unknown{Pl}, we define a bin as being occupied
if the received primary signal power in the bin is at least
Ps. Further, wedesign the test conservatively by assuming
that the received primary signal power in any occupied bin
equalsPs. This is in line with the approach recommended in
emerging CR standards such as the IEEE802.22, where the
CR is required to reliably sense the primary signal whenever
the received signal power exceeds−116dBm [25]. With these
assumptions, it can be shown that

H0 : T ∼ N
(

m0, σ
2
0

)

{Hl}Ml=1 : T ∼

M
∑

l=1

θlN
(

ml, σ
2
l

)

, (10)

whereσ2
l ,

(

Mσ2 + lPs

)

/2, ml ,
√

(2K − 1)σ2
l andθl ,

[

(

M
l

)

ρl(1− ρ)
M−l

]

/Π1, such that
∑M

l=1 θl = 1. In deriving
the above distributions, we have used the approximation that
if X ∼ χ2 (K), then

√
2X ∼ N

(√
2K − 1, 1

)

([26], Ch. 26).
The log-likelihood function corresponding to the test in

(10) is analytically intractable, making it hard to obtain the

detection threshold in closed form. However, it can be easily
shown that it is approximately quadratic inT (whenM = 1,
it is exactly quadratic inT . For M > 1, when one of
the terms in the mixture density dominates the other terms
for T close to the threshold, the error in the approximation
is small.) Due to this, the critical region is of the form
{

{T ≤ η′gt0} ∪ {T ≥ η′gt1}
}

, whereη′gt0 and η′gt1 are lower
and upper thresholds. For most scenarios of interest, the
contribution to Pme from {T ≤ η′gt0} is small, since it
represents the unlikely event that, due to its larger variance,
the instantiation of the received signal power estimate under
{Hl}Ml=1 is unusually small. This allows us to replace the LRT
test by a simple, albeit sub-optimal, one-sided threshold test
on T :

T
H1

T
H0

η′gt1. (11)

The thresholdη′gt1 is chosen to satisfy the constraint onPme

in (9). For notational simplicity, letη be the threshold used in
the test. Define the false alarm and miss detection rate of a
single M -bin test asα (η) , Pr{{Hl}Ml=1 declared|H0} =
Pr{T ≥ η|H0} and β (η) , Pr{H0 declared|{Hl}Ml=1} =

Pr{T < η|{Hl}Ml=1}, respectively. Also, defineβl ,
Pr{H0 declared|Hl}, i.e., the miss detection rate when exactly
l bins are occupied. These can be computed as

α (η) = 1−Q

(

m0 − η

σ0

)

,

β (η) =

M
∑

l=1

θlβl where βl = Q

(

ml − η

σl

)

, (12)

whereml andθl are as defined in (10). The constraint onPme

in (9) leads to the following nonlinear equation, the solution
to which yieldsη′gt1:

β (η)Π1

p(η)
= P ′

0, (13)

wherep(η) can be computed as

p (η) = Π0 (1− α (η)) + Π1β(η). (14)

Numerical techniques such as the bisection method have to be
used to solve (13) to obtainη′gt1.

This completes the design for anM -bin group test using
given values of the number of samples,K, and the group
size,M . In the next section, we show how to find an optimal
value forK andM .

IV. OPTIMAL PARAMETERS FOR THEM -BIN TEST

We start by describing a procedure for finding the optimal
K. Note that, (13) can be written as

Γ(η,K) = C1, (15)

where C1 = Π0P
′
0/[Π1(1 − P ′

0)] > 0, and Γ(η,K) ,
{∑M

l=1 θlQ (zl)}/Q(z0), with zl, for l = 0, 1, . . . ,M , defined
as

zl ,
(ml − η)

σl
=
√
2K − 1− η

σl
. (16)
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Sinceσl increases withl, as seen from (10),zl also increases
with l for a fixedK, i.e., z0 < z1 < · · · < zM . We first study
the variation ofΓ with η andK. AlthoughK is an integer
valued variable, for the purpose of analysis, we treatK as a
positive real number. Due to the continuity of theQ-function,
Γ(η,K) is continuous with respect toη and K, and since
zl > z0, 0 < Γ(η,K) < 1. Further, we have:

Proposition 3. (a) For fixedK, Γ(η,K) is a quasi-convex
function of η and attains a minimum value,Γmin(K) =

Γ(η0,K), whereη0 satisfies ∂Γ(η,K)
∂η

∣

∣

∣

η=η0

= 0, i.e.,

M
∑

l=1

θl

[

Q(z0)e
−z2

l
/2

σl
− Q(zl)e

−z2
0/2

σ0

]

= 0, (17)

wherezl, l = 0, 1, . . . ,M are evaluated atη0.
(b) For fixedη, Γ(η,K) is a decreasing function ofK.

Proof: See Appendix C.
Figure 2 depicts the behavior ofΓ(η,K) as implied by the

above proposition. We make the following remarks:(a) For a
given probability of incorrect detection,P ′

0, there is a certain
minimum number of samples,Kmin(≥ 1), that are required
to set up theM -bin group test to satisfy the performance
requirementP ′

0. In fact, if K0(≥ 1) is such thatΓmin(K0) >
C1 (e.g., withK = 20 in Figure 2), a test cannot be designed
with K0 samples. However, sinceΓmin(K) is a decreasing
function ofK, we can find the smallest integer, denotedKmin,
such thatΓmin(Kmin) ≤ C1. For anyK ≥ Kmin, an M -bin
test can be designed and each will result in a different average
number of tests required to findNe unoccupied bins.(b) For
eachK ≥ Kmin, due to the quasi-convex nature ofΓ(η,K),
there exist exactly two solutions of (15), and since theM -bin
test is a threshold test, we pick the larger of the two as the
threshold to be used. Defineηs(K), the computed threshold
for a given value ofK, as

ηs(K) = max {η : Γ(η,K) = C1} . (18)

Note that, due to the wayηs is chosen,∂Γ(η,K)
∂η

∣

∣

∣

η=ηs

> 0.

Also, sinceΓ(η,K) decreases withK, it is easy to see that
ηs(K) is an increasing function ofK.

For eachK ≥ Kmin, a test that satisfies the constraint
on the probability of incorrect decision can be designed; and
our next task is to decide whichK to use. Note that, since
M ≤ Ne, multiple M -bin tests are required to findNe

consecutive unoccupied bins. To run the test on a different set
of M bins, we need to move to a different center frequency.
Due to the time required by various Radio Frequency (RF)
components such as the phase-locked loop, oscillators, etc, to
reach a steady state after the change in center frequency, there
is a setup delay (also referred to as the settling time) ofNS

samples associated with eachM -bin test [15]. Thus, we define
the following objective function:

Davg(K) = N t(K) (K +NS) . (19)

Davg(K) can be viewed as the average search duration for
findingNe unoccupied bins with anM -bin test designed with
K samples. The value ofNS is known, as it depends on the
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Fig. 2. Family ofΓ(η, K) functions: increasingK helps in meeting the
minimum performance target.

front-end RF chain at the CR, and is part of its technical
specifications. From (19),NS plays significant role in the time
taken to findNe bins when it is comparable toK or when
N t(K) is high. We state the following:

Proposition 4. For K ≥ Kmin, Davg(K) is a convex function
of K.

Proof: See Appendix D.
Thus, for a givenM , the optimumK can be computed as

the solution to:

Kopt = minimize
K≥Kmin

Davg(K). (20)

With regards to minimization,Davg(K) is a well-behaved
function and simple convex optimization techniques, e.g.,the
Newton method [27], can be used to find the optimumK.
Note that the computational complexity of evaluatingKopt

(and η′gt in (13)) is not of major concern here, as these will
be computed offline and remain unchanged as long as the
primary usage statistics remain the same. In the above analysis,
we have assumedK to be a real number. In practice, we
computeDavg(K) at the two integers nearest to the optimum
real value and pickKopt to be the one with smallerDavg(K).
Figure 3 illustrates the convex behavior ofDavg(K) with K
for a particular set of operating parameters.

The last step in the design of the detector is to find
the optimum combination(M, b) that minimizes the average
detection delay. To this end, for a givenM , let Kopt(M)
be the number of samples that minimize the average search
duration to findNe = Mb consecutive unoccupied bins. We
useDavg(Kopt(M)) as the metric to compare the performance
with different values ofM . LetM = {(M, b) : b = ⌈Ne/M⌉}
be the set of all combinations of(M, b) that can be used to
find Ne consecutive empty bins. To find the optimal value of
M for a given test scenario, we minimizeDavg(Kopt) overM:

(Mopt, bopt) = minimize
(M,b)∈M

Davg(Kopt (M)) . (21)

We solve the above optimization problem by simply searching
over the setM, since there are only a finite number of
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combinations, and computingDavg(Kopt (M)) is not compu-
tationally demanding. Thus, given the operating parameters:
(σ2, ρ, Ps), we have fully specified anM -bin test, and a
method to choose the(M,K) that minimizes the average delay
in searching for a spectrum hole consisting ofNe consecutive
unoccupied bins.

V. M ULTI -STAGE SENSING ALGORITHM

In this section, we describe anM -bin test based multi-stage
sensing algorithm, to find the available spectrum holes in a
given wideband of interest. The basic idea, as shown in Fig-
ure 4, is to search for spectrum holes of different bandwidths
by making multiple passes of search on a given wideband.
With each successive pass, the width of the hole (specified
by the value ofM used in theM -bin test) being searched
for is halved, and only the parts of the wideband that have
been declared occupied in the previous stages are considered in
the search. A multi-stage algorithm can be used, for example,
in spectrum hole search with a frequency hopping primary.
Here, the occupancy pattern keeps changing periodically, and
we refer to this time interval as hopping interval, denoted by
Nh.2 In terms of CR usage, each hopping interval is split into
two phases: asensing phase, to find the unoccupied spectrum,
and ausage phase, to exploit the spectrum hole found. Let
n represent the time duration of the sensing phase. Thus, the
goal for sensing algorithms in a frequency hopping scenario
is to maximizeNTB , Mh(n)(Nh−n), whereMh(n) is the
number of unoccupied bins found during the sensing phase. In
other words, we want as much usable spectrum for as much
time as possible in a given hopping interval.

Let M , ρ, Kopt, ηs and p be as defined earlier. LetM (l),
ρ(l), K(l)

o , η(l)s andp(l) denote the values of above parameters
at thelth stage. LetL be the number of stages. Since, at each
stage, the value ofM is halved,M (1) = 2L−1. Let Pems

denote the bin-level error probability in the sense of (7), i.e.,
the probability that an individual bin is actually occupiedgiven

2For example, in a Bluetooth network, the hopping time is1/1600 s. With
a sampling rate of2 MHz, this impliesNh = 1250.

that it has been declared unoccupied by the algorithm. An
overall bin-level error probability constraint can be satisfied
if the M -bin test at every stage satisfies the same bin-level
error probability constraint. For anM -bin test, defineP (i)

me ,
Pr (ith bin in AM is occupied| AM is declared unoccupied),
whereAM is the set ofM bins being tested. That is,P (i)

me

quantifies the bin-level error probability of anM -bin test. It
can be shown thatP (i)

me = P0, i.e., it meets the target error
probability constraint, if the threshold used in theM -bin test,
η, is chosen as the solution to the following equation:

M
∑

k=1

(

M − 1

k − 1

)

ρk(1− ρ)M−k βk(η)

p(η)
= P0. (22)

Here, ρ denotes the occupancy rate,βk(η) and p(η) are as
defined in (12) and (14), respectively. Thus, depending upon
P0, M and ρ, an M -bin test satisfying a specified bin-level
error probability constraint can be designed by choosing the
detection threshold according to the above equation. We also
note that since each stage removes a part of the unoccupied
spectrum from the given band of operation, the occupancy
rate,ρ(l), for each stage needs to be updated accordingly.

We now describe the multi-stage algorithm. Let an estimate
of the number of bins found at the end of thelth stage be
denoted byTf (l).3 Let ρ0 be the occupancy rate for the
wideband over which multi-stage algorithm is operating. Let
P0 ∈ (0 1) denote the target bin-level error probability.

1) Initialize: ρ(1) = ρ0; Tf (0) = 0; and set all the bins in
the wideband as occupied.

2) For l = 1, 2, . . . , L

a) UsingM = M (l), ρ = ρ(l) andP0, find the detection
threshold,η(l)s , using (22).

b) Find the optimum number of samples,K(l)
o , using

(20) with b = 1. That is, find the number of samples
required to minimize the detection delay in finding a
spectrum hole of sizeM . Also, find the corresponding
p(l) using (14).

c) Make a pass over the full wideband, i.e., perform
a series ofM -bin tests for the bins that are set as
occupied, withM = M (l), K = K

(l)
o and η = η

(l)
s .

If a test declaresH0, then set the correspondingM (l)

bins as unoccupied.
d) UpdateTf(l): Tf(l) = Tf(l−1)+[N − Tf(l − 1)] p(l).
e) Update the occupancy rate for the next stage:ρ(l+1) =
{Nρ− Tf(l)P0}/{N − Tf (l)}.

f) UpdateM (l+1) = M (l)/2.

Note that, the above algorithm ensures that the overall bin-
level error probability constraint is met, since each stage
is designed such that the bin-level error probability in that
stage isP0. Also, the above update for the occupancy rate
works well when the primary powers in the different bins are
approximately equal and known. In the unequal or unknown
transmit power case, theM -bin test ensures that the empirical

3Note that, this can also be replaced by the number of bins thatare declared
as unoccupied in the actual running of the algorithm. Here, we use an estimate
of the number of bins declared as unoccupied in order to facilitate an offline
calculation of the thresholds to be used at each stage, and toanalytically
compute the detection delay.
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Fig. 4. A pictorial illustration of the multi-stage algorithm.

values ofP (i)
me remain below the specified target. We have

observed, via simulations, that the algorithm works well in
terms of the detection delay, and also satisfies the specified
target error rates. WhenM (1) = 1, we get the conventional
bin-by-bin detection scheme as a special case, as before.

VI. SIMULATIONS AND RESULTS

We now present simulation results to illustrate the perfor-
mance of the proposed signal acquisition scheme and spectrum
hole search algorithms. We first present the results for the
contiguous hole search algorithm in the AWGN case. We
consider a test setup withN = 128, Ne = 8 and ρ ∈
{1/6, 1/8, 1/10, 1/12, 1/16, 1/20}. The signal samples used
for computing the test statistic are generated according to(3).
The signal powers for bins with occupancy,Pl, are chosen uni-
formly at random from the set{Ps, Ps+2, Ps+4, Ps+6} dB,
with Ps = 0 dB. We refer toPs/σ

2 as the detection SNR,
and vary it from0 to 13 dB. The test outputs a sequence
of Ne bins that are declared unoccupied. An error occurs if
this declared set contains any occupied bin. The target error
rate constraint is set asP0 = 0.1. For different combinations
of (M, b), the value ofKopt is numerically computed, and the
corresponding detection delay (Davg(Kopt), henceforth denoted
Davg for short) performance is evaluated. For calculatingDavg,
we usedNS = 0.

Figures 5 and 6 show the variation ofDavg with sparsity and
SNR, respectively. As expected, with increasing sparsity,the
group tests with higherM perform better. At low SNR,M = 1
is optimal. As the SNR increases,M > 1 outperformsM = 1,
and interestingly, the relative reduction inDavg is higher for
higher M . Note that, the bin-by-bin (M = 1) test can be
considered to be the result of using the framework in [19]
when the primary transmitter to secondary receiver channel
gain information is absent and the test is designed to minimize
the average test duration. We evaluate the performance of
the group tests with the optimal values ofM , K and ηs
computed as described in Section III. We see that the tests
with optimal parameter values perform the best in all the
simulated scenarios. In Figure 7, we show the excellent match

between the simulation and analytical results forDavg and
Pe at different sparsity values, whenPl = Ps. We have also
empirically verified that the observedPe is below the target
P0 = 0.1. Further, we have found that the collective impact of
all of the approximations used in the above development on the
detection delay performance and the probability of incorrect
decision is negligible, as argued in the preceding sections.
However, we omit the detailed results here for the sake of
brevity.

Next, we consider the scenario where the primary signals
undergo Rayleigh multi-path fading and lognormal shadowing
with variance4 dB. Figure 8 shows the variation ofDavg

with detection SNR. We see the same behavior as in the
AWGN case, albeit at roughly7dB higher SNR values. This
is expected, as theM -bin detector is an energy based detector
and its performance degrades in the presence of fading.

Table I shows the reduction inDavg compared to tests with
M = 1 at an SNR of9 dB for the AWGN case and16 dB
for the fading case, and with different sparsity values. With
NS = 0, the reduction inDavg of the proposed group test
compared to theM = 1 case is20 to 30%, depending on
the sparsity level. For a conservative value4 of NS = 5, the
percentage reduction inDavg is significantly higher, and varies
between35 and 60%. This is because tests with higherM
result in a significantly lower average number of tests (see
Table II) and thus save on the test setup overheads, compared
to theM = 1 case.

Figure 9 shows the variation ofDavg(Mopt,Kopt) with
primary SNR for different values of targetP0 in the AWGN
case. It is interesting to note that the curves are approximately
linear, even though different values ofM are optimal for
different primary SNRs. Also, larger sensing times are required
to satisfy smaller values of the target probability of error, as
expected.

We now compare the performance of theM -bin detector
with the energy-based Single Slot Detector (SSD) proposed
in [28]. We use the same setup as in [28], and study the
achievable opportunistic secondary throughput,R(τ ), defined
as,R(τ) , C0(1 − τ/TF )(1 − Pf )(1 − ρ)B bits/s, whereτ
is the sensing (search) duration,TF is the frame duration and
C0 is the secondary throughput when the primary is absent,
ρ is the prior probability of the primary being present andB
is bandwidth of a single slot. We assume that the secondary
network does not obtain any throughput if it transmits data in
the presence of the primary (that is,C1, as defined in [28], is
zero). Note that,Pf is the probability of false alarm obtained
by designing the detector to ensure that the probability of miss
stays below a specified target. TheM -bin detector searches
M consecutive adjacent slots simultaneously in each test, and
the corresponding secondary throughput is given by:R(τ) ,
MC0(1 − τ/TF )(1 − PfM )(1 − ρ)MB bits/s, wherePfM is
the probability of false alarm for anM -bin detector with the
given target probability of miss detection. We assume BPSK
signaling, a sampling rate of6 MHz, C0 = 6.6582 (which
corresponds to a secondary-to-secondary SNR of20 dB), and

4At a sampling rate of1 MHz and with a low-power phase-locked loop
(see [15], Table I),NS can be as high as120 samples.
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Fig. 5. Davg Vs.Sparsity in the AWGN case. At higher sparsity, group tests
outperform the bin-by-bin test.

TABLE II
AVERAGE NUMBER OF TESTS FOR VARYING SPARSITY ATSNR = 9DB.

Sparsity 1/6 1/8 1/12 1/16
M = 8, b = 1 5.6 3.8 2.6 2.1
M = 4, b = 2 7.9 5.9 4.4 3.9
M = 2, b = 4 12.6 9.0 7.1 6.2
M = 1, b = 8 21.8 17.5 13.5 12.8

a target probability of miss of0.1, as in [28]. Figure 10
compares the normalized throughputsR(τ)/B for different
values ofτ for the scenario whereρ = 0.1, TF = 100 ms and
a primary SNR value of−13 dB. Also, Table III compares the
achievable throughput for different operating scenarios.As the
SNR and sparsity increase,M -bin tests with largerM provide
the best secondary throughput, and the group test significantly
outperforms the SSD.

We now present a few representative results that illustrate
the key aspects of multi-stage algorithm discussed in Sec-
tion V. Here, we consider the AWGN case and an i.i.d.
occupancy model withN = 256. We first investigate the appli-
cation of the multi-stage algorithm for finding non-contiguous
spectrum holes in the case with equal power primary sig-
nals. Figure 11 shows the results of running the multi-stage
algorithm with different values ofM (1), i.e., with different
number of stages. It can be observed that, depending upon the
number of non-contiguous unoccupied bins we wish to find,
different multi-stage instantiations lead to faster search times.
For example,M (1) = 8 (i.e., L = 4) is optimal if we wish
to find about100 unoccupied bins, whereasM (1) = 4 (i.e.,
L = 3) is optimal if we wish to find about200 unoccupied
bins. Figure 12 shows the results for the spectrum hole search
in the presence of frequency hopping. For the multi-stage
algorithm with different initial group sizes and differentsearch
durations, we need to pick the one that maximizesNTB, as
defined in Section V. It can be seen that, under sparse spectrum
occupancy by the primary, the group testing based sensing
schemes are more efficient in harvesting the available spectrum
in a given hopping interval. For example, at an SNR= 7dB,
multi-stage instantiations withM (1) = 2, 4 and 8 all have
higher maximumNTB compared to the bin-by-bin test.
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Fig. 6. Davg Vs. SNR in the AWGN case. At higher SNRs, group tests
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VII. C ONCLUSIONS

In this work, we investigated the use of adaptive group
testing based techniques for spectrum hole search in cognitive
radios. To enable this, we proposed a signal acquisition scheme
that deliberately introduces aliasing by sampling a wideband
signal at a sub-Nyquist rate. We developed spectrum hole
search algorithms based on the energy of the aliased signal.
The algorithms exploit the sparsity in the primary spectral
occupancy by making a joint occupancy decision on the group
of narrowband bins over which the signal is acquired. We
first designed the group testing based algorithm to search
contiguous spectrum holes while guaranteeing a given levelof
protection to the primary network. We extended the group tests
to a multi-stage sensing algorithm that looks for contiguous
holes of different widths at each stage. Based on the theoretical
analysis of the group tests, we provided a computational
procedure to obtain the optimal group size, number of samples,
and the detection thresholds, that minimize the average search
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TABLE I
PERCENTAGEDAVG REDUCTION COMPARED TOM = 1.

Sparsity 1/8 1/12 1/16
NS = 0 NS = 5 NS = 0 NS = 5 NS = 0 NS = 5

(Reduction,M ): AWGN, 9dB (19%, 4) (43%, 4) (26%, 4) (52%, 8) (29%, 4) (61%, 8)
(Reduction,M ): Fading, 16dB (21%, 4) (44%, 4) (26%, 4) (52%, 8) (30%, 4) (62%, 8)
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Fig. 8. Contiguous hole search, with fading and shadowing,Davg Vs.SNR:
Similar trends as compared to AWGN case, but at higher SNRs.
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Fig. 9. Contiguous hole search, AWGN,Davg Vs. SNR: Performance at
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duration given a target error rate constraint. This enabledus to
identify the operating parameter regimes where group testing
based algorithms outperform their narrowband counterparts.
The performance gains are achieved at a minimal additional
hardware cost, which makes the group testing based sensing
schemes attractive for practical implementation.

APPENDIX

A. Proof of Proposition 1

From the definition ofPe in (7), it follows that the algorithm
makes an error if any of the lastb M -bins tests, that have all
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declaredH0, make an error. Thus,

Pe = 1− Pr (None of the lastb M -bin tests is in error|
All the last b tests have declaredH0 )

= 1−
(

1− Pr({Hl}Ml=1|H0d)
)b

= 1− (1 − Pme)
b (23)

Now, letN t andp be as defined before.N t can be found by
setting up a recursive equation using the following arguments:
(i) If we get alternate hypothesis declaration on thekth attempt
with k = 1, 2, . . . , b, then the search process restarts since each
test is independent. (ii) If we getb successive null hypothesis
outputs then our search terminates. Note that declaring the
alternate hypothesis on thekth attempt leads to an increase in
the number of tests byk. The probability that we get the first
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TABLE III
ACHIEVABLE THROUGHPUT,R/B BITS/S: COMPARISON OF THEM -BIN

TEST WITH THE DETECTOR IN[28].

(SNR,ρ) (−15 dB, 1/10) (−12 dB, 1/10) (−10 dB, 1/16)
SSD 5.66 5.88 6.19
M -bin 9.09 (M = 2) 14.81 (M = 4) 25.13 (M = 8)

alternate hypothesis on thekth attempt is given byp(k−1)(1−
p). Thus,

N t = (1− p)
b

∑

k=1

pk−1(N t + k) + bpb

= (1− pb)N t + (1− p)

b
∑

k=1

kpk−1 + bpb.

Using

b
∑

k=1

kpk−1 =
[

1−pb+1

(1−p)2 −
(b+1)pb

1−p

]

,

and simplifying, the result follows.�

B. Proof of Proposition 2

Let t be the random variable describing the test statistic
defined in (4). LetG be the observation set. Letf0(t) and
f1(t) denote probability distributions oft under the null and
alternate hypothesis, respectively, and these are as defined in
(10). Let α(δ) and β(δ) represent the false alarm and miss
detection rate, respectively, for a decision ruleδ. Thus,α(δ) =
∫

G
(1 − δ(t))f0(t)dt and β(δ) =

∫

G
(1 − δ(t))f1(t)dt. From

Bayes’ rule,Pme(δ) = [β(δ)Π1]/p(δ). SincePme(δ
′) ≤ P ′

0,
(14) imply that

β(δ′) ≤ P ′
0

Π1
p(δ′) and 1− α(δ′) ≥ 1− P ′

0

Π0
p(δ′), (24)

whereΠ0 andΠ1 represent the prior probabilities for the null
and alternate hypotheses for theM -bin group test. From the
definition of δL(t), we have[(1− δ(t))− (1− δ(t)′)][f1(t)−

ηgtf0(t)] ≤ 0 for any t ∈ G. Integrating over the entire
observation space, we get

β(δ) − β(δ′) ≤ ηgt [(1− α (δ)) (1− α (δ′))] .

Using (14) and (24), we can further simplify the above to
[(1− P ′

0)ηgt/Π0 − P ′
0/Π1] [p(δ)− p(δ′)] ≥ 0. For ηgt >

Π0P
′
0/{Π1(1 − P ′

0)}, p(δ) ≥ p(δ′), and the assertion follows
by noting thatN t is monotonic inp. �

C. Proof of Proposition 3

1) Part (a): For a fixed K, zl =
√
2K − 1 − η/σl,

l = 0, 1, . . . ,M are functions ofη. Hence,Γ(η,K) is a
real valued, continuously differentiable function ofη, denoted
Γ(η) for short, with η > 0. Let Γ′(η) , d(Γ(η))/dη and
Γ′′(η) , d2(Γ(η))/dη2. We use the second order conditions
to prove quasi-convexity ([27], Section 3.4.3):Γ(η) is quasi-
convex in η, if, for all η0 such thatΓ′(η0) = 0, we have
Γ′′(η0) > 0. Since d(Q(x))/dx = −(1/

√
2π)e−x2/2, and

d(zl)/dη = −1/σl for l = 0, 1, . . . ,M , we have

Γ′(η) =
1√

2πQ2(z0)

[

Q(z0)

[

M
∑

l=1

θl
σl
e−z2

l
/2

]

−e−z2
0/2

σ0

[

M
∑

l=1

θlQ(zl)

]]

. (25)

SettingΓ′(η) = 0, (17) follows. We now evaluateΓ′′(η) at
η = η0 such thatη0 satisfies (17). Differentiating (25) and
substituting (17), we get

Γ′′(η0) =
1√

2πQ(z0)

[

M
∑

l=1

θl
σl
e−z2

l
/2

[

zl
σl
− z0

σ0

]

]

. (26)

Note thatzl andz0 are evaluated atη0 in the above equation.
Moreover,z0 < z1 < . . . < zM . We consider following two
scenarios:

(i) z0 > 0: This implies that zl > 0 for all l =
1, . . . ,M . It is easy to show thatg(z) , zQ(z)ez

2/2

is an increasing function ofz > 0. For any
l = 1, . . . ,M , since z0 < zl, we get g(z0) <
g(zl), i.e., z0Q(z0)e

−z2
l
/2 < zlQ(zl)e

−z2
0/2. Also,

(z0/zl)Q(z0)e
−z2

l
/2 < Q(zl)e

−z2
0/2, since zl > 0. It

follows that
M
∑

l=1

θlQ(zl)e
−z2

0/2 > Q(z0)
M
∑

l=1

θl
z0
zl
e−z2

l
/2. (27)

Using (17) and re-arranging, we get

M
∑

l=1

θle
−z2

l
/2

σl

1

(zl/σl)

[

zl
σl
− z0

σ0

]

> 0. (28)

Define

hl ,
θle

−z2
l
/2

σl

1

(z0/σ0)

[

zl
σl
− z0

σ0

]

and

gl ,
θle

−z2
l
/2

σl

1

(zl/σl)

[

zl
σl
− z0

σ0

]

.
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We claim that,
∑M

l=1 hl >
∑M

l=1 gl, and from (26) and
(28), it follows thatΓ′′(η) > 0. To prove the above claim
let us consider the following two scenarios: (a)gl ≥ 0:
In this case,(zl/σl) ≥ (z0/σ0) and thushl ≥ gl. Hence,
replacinggl by hl makes (28) more positive. (b)gl < 0:
In this case,(zl/σl) < (z0/σ0) and hl becomes less
negative compared togl. Hence, replacinggl by hl still
makes (28) more positive.

(ii) z0 ≤ 0: For this case, we prove thatzl/σl−z0/σ0 > 0 for
eachl = 1, . . . ,M . From (26) it follows thatΓ′′(η) > 0.
Let l0 (1 ≤ l0 ≤M) be such thatzl < 0 for l ≤ l0 and
zl ≥ 0 for l > l0. For l > l0, it is straightforward to see
that zl/σl− z0/σ0 > 0. For l ≤ l0, sincez0 < zl < 0, it
implies |zl| < |z0|. This implies|zl|/σl < |z0|/σ0 since
σl > σ0. Hence,−|zl|/σl > −|z0|/σ0, thereby implying
zl/σl − z0/σ0 > 0, sincez0 < zl < 0.

2) Part (b): For a fixed η, {z0, z1,Γ} are functions
of K. Let Γl(K) , Q(zl)/Q(z0), and hence,Γ(K) =
∑M

l=1 θlΓl(K). We prove that eachΓl is a decreasing function
of K, and thereby prove thatΓ is a decreasing function ofK.
Let Γ′

l(K) , ∂Γl(K)/∂K. Using the derivative ofQ-function
anddz0/dK = dzl/dK = 1/

√
2K − 1, we have

Γ′
l(K) =

[

Q(zl)e
−z2

0/2 −Q(z0)e
−z2

l
/2
]

√
2π
√
2K − 1Q2(z0)

. (29)

ProvingΓ′
l(K) < 0 is equivalent to provingQ(zl)e

−z2
0/2 <

Q(z0)e
−z2

l
/2. We first consider the case:

zl > 0 andz0 ≥ 0: We prove that forz ≥ 0, g(z) , Q(z)ez
2/2

is a decreasing function ofz. Note thatg′(z) , d(g(z))/dz =
ez

2/2Q(z)z − 1/
√
2π. We use the following upper bound for

Q-function [29],

Q(y) <
1

(1− a)y + a
√

y2 + b

e−y2/2

√
2π

,

for y > 0, a = 0.344 andb = 5.334, in the above expression,
to get

g′(z) <
1

(1− a)z + a
√
z2 + b

1√
2π

[az − a
√

z2 + b] < 0,

since, a > 0 and b > 0. And sincezl > z0, this implies
Q(zl)e

−z2
0/2 < Q(z0)e

−z2
l
/2. The above can be easily shown

for the other cases, i.e.,{zl ≤ 0 and z0 < 0}, {zl > 0 and
z0 < 0}, and{zl > 0 andz0 < 0}, using similar arguments.

D. Proof of Proposition 4

DefineZ0(K) , z0 (ηs (K) ,K) =
√
2K − 1 − ηs(K)/σ0

and Z1(K) , z1 (ηs (K) ,K) =
√
2K − 1 − ηs(K)/σ1.

From (8), we see thatN t(K) depends only onp(ηs(K))
and using (14), we getp (ηs (K)) = C2Q (Z0 (K)), where
C2 = Π0/(1− P ′

0). Note thatDavg(K) is a continuous func-
tion of K (for realK). We first prove that for allK ≥ Kmin,
K/Q(Z0(K)) is a convex function ofK. Let Γ(η,K), C1

be as defined before. LetF (K) , K/Q(Z0(K)), and let
z0 ,

√

(2K − 1) − η/σ0. For a givenK, η(K) is chosen
as the threshold value that satisfiesΓ(η,K) = C1, as given in

(18). Using the quasi-convexity properties ofΓ(η,K) we can
write η(K) as:

η(K) = inf
{η: Γ(η,K)≥C1}

η. (30)

For a fixedK, Q(z0) is a monotonically increasing function
of η. Combining this with (30), we get

Q(Z0(K)) = inf
{η: Γ(η,K)≥C1}

Q(z0), and

F (K) = sup
{η: Γ(η,K)≥C1}

K

Q(z0)
= sup

{η≥ηmin}

L(K, η), (31)

whereL(K, η) , K/Q(z0) is a two dimensional function of
K andη with dom L = {(K, η) : K ≥ Kmin; η ≥ η(K)}.
In the above equation,ηmin is the threshold corresponding to
K = Kmin. Thus,F (K) can be represented as point-wise
supremum of a family of functions and the convexity follows
by proving that for eachη ≥ ηmin, L(K, η) is a convex
function of K, K ∈ dom L [27]. DifferentiatingL(K, η)
twice with respect toK, we get

∂2L

∂K2
=

e−z2
0/2

√
2πQ(z0)2

[ 3K − 2

(2K − 1)3/2

+
K

2K − 1

( 2e−z2
0/2

√
2πQ(z0)

− z0

)]

. (32)

For practical values ofK (≥ 1 ), the first term is always
positive. The second term is always positive forz0 < 0. For
z0 ≥ 0, we use the upper bound forQ-function [29], with
a = 0.344, b = 5.334 and get,[2e−z2

0/2]/[
√
2πQ(z0)]− z0 ≥

2
[

(1−a)z0+a
√

z20 + b
]

−z0 ≥ (1−a)z0 ≥ 0. Thus,L(K, η)

is convex inK and henceF (K) is convex inK.
We now prove the main proposition. From (14), we see

that p(K) = C2Q(Z0(K)). Using (8), Davg(K) can be
written asDavg(K) =

∑M
n=1(1/C

n
2 )(K +NS)/Q

n(Z0). Let
Gn(K) , K/Qn(Z0) andHn(K) , 1/Qn(Z0), with n ≥ 1.
The arguments that were used to prove convexity ofK/Q(Z0)
hold for Gn(K) and Hn(K) as well, and it can be easily
verified that Gn(K) and Hn(K) are convex inK. The
convexity ofDavg(K) follows from this, since it can be written
as a non-negative weighted sum of convex functions and is
therefore convex [27]. �
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