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Abstract—This paper investigates the use of adaptive group to-date information about the availability of spectrum dl
testing for finding a spectrum hole of a specified bandwidth je., frequency bands where the primary users are inactive.
in a given wideband of interest. We propose a group testing In this work, we focus on the application aflaptivegroup
based spectrum hole search algorithm that exploits sparsjtin . ’ L o
the primary spectral occupancy by testing a group of adjacen testmg_to the_ta_sk of flndmg_spectrum h_ole of a pre-specified
sub-bands in a single test. This is enabled by a simple and Pandwidth within a given wideband of interest for use by the
easily implementable sub-Nyquist sampling scheme for sigh CR network. This problem is relevant in many CR scenarios.
acquisition by the cognitive radios. The sampling scheme de For example, in the IEER02.22 standard for cognitive radio,
liberately introduces aliasing during signal acquisition resulting the primary users occupy a bandwidth ®MHz each. A

in a signal that is the sum of signals from adjacent sub-bands . .
Energy-based hypothesis tests are used to provide an occumy secondary network that requird® MHz of bandwidth for

decision over the group of sub-bands, and this forms the basi it operation will need to find a spectrum hole consisting of
of the proposed algorithm to find contiguous spectrum holesfo 7 contiguous unoccupied bands. In practice, it is desirable

a specified_bandwid_th. We extend this framework to a multi— to have the CR network operate in a contiguous frequency
stage sensing algorithm that can be employed in a variety of 544 a5 this simplifies transceiver hardware design anshel

spectrum sensing scenarios, including non-contiguous sgieum . _
hole search. Further, we provide the analytical means to ojinize improve the energy efficiency of the CR network compared

the group tests with respect to the detection thresholds, maber ~ t0 Using non-contiguous frequency bins. Other considemati
of samples, group size, and number of stages, to minimize the for preferring contiguous frequency bin allocation are the

detection delay under a given error probability constraint. Our physical layer access mechanism (e.g., code division phlti

analysis allows one to identify the sparsity and SNR regimes access), network quality of service requirements, spetiaak
where group testing can lead to significantly lower detectio Constra)i'nts etc q y q ’

delays compared to a conventional bin-by-bin energy deteitin . . . .
scheme; the latter is in fact a special case of the group testhen ~ We consider a setup _Where a CR W_|Shes to identify a
the group size is set tol bin. We validate our analytical results given number, sayw,, contiguous unoccupied sub-bands over

via Monte Carlo simulations. a given wide bandwidth. A straightforward approach to this
Index Terms—Group testing, spectrum hole search, sub- Problem would be to test each sub-band sequentially, one at
Nyquist sampling, energy detection, multi-stage sensingfre- a time, till the requiredV. contiguous bins are found. On the
quency hopping. other hand, group testing can be used to reduce the search
time in such a problem, if a set of adjacent sub-bands can
be tested at one shot. One way to accomplish this without
increasing the sampling rate and processing requireménts a

Group testing is a natural framework for efficiently identhe CR node is to acquire the analog signal corresponding to
tifying the defective items in a large population contagin} (> 1) sub-bands using a wide front-end anti-aliasing filter,
a small fraction of defective items [2]. It is applicable irfollowed by sampling at a rate corresponding to the Nyquist
scenarios where multiple items can be tested together ifae for asingle sub-band. Although sampling at the Nyquist
single test; the group test returns positive if at least oewni rate of a single sub-band results in aliasing, it provides th
in the group is defective, and returns negative otherwiseu receiver with a signal that is threum of the signals in all the
tests are particularly useful when individually testingleitiem acquired sub-band®ased on the energy of the aliased signal,
is prohibitively time-consuming, since testing multipterhs in this paper, we develop an energy-based detector, reffesre
in a single test leads to time savings when test outcom@s$an M -bin group testto provide a joint occupancy decision
are negative. One area where group tests could potentialy the group ofM adjacent sub-bands over which the signal
offer significant benefits is that of spectrum hole search fifr acquired. We consider the popular energy-based detectio
Cognitive Radio (CR) [3]-[5]. The CR paradigm is based otsee [8]-[10] for an excellent survey of spectrum sensiag),
the fact that, at any given time, the spectral occupancy by tit is easy to implement and is optimal when the CR has no
primary users is sparse over a wideband of interest [6], [Arior information about the primary signal [11].

For efficient functioning, CR networks need accurate and up-In the literature, the idea of sampling the signal over mul-
tiple sub-bands and make joint occupancy decisions has been
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proposed in [15]. Another way to reduce the search tingroup size leads to a faster acquisition of the desired gpact
is by employing parallel data chains, e.g., using multiplleole. This, in turn, leads to a better utilization of the talalie
antenna receivers [16], [17]. However, the effective samgpl spectrum, since a shorter sensing duration leaves more time
rate requirements of these architectures are higher than tbr data transmission. Reducing the sensing duration © als
narrowband detector, since data is acquired over multiggewer efficient, since spectrum sensing is a frequentlying
narrowbands at Nyquist rates. Increasing the samplingerate task on CR devices. Moreover, group test based schemes
tails higher power consumption and processing requiresnergignificantly reduce the total number of tests that need to
which is undesirable in tasks such as spectrum sensinghwhii® set up while searching over a given wideband, thereby
are frequently performed at the CR nodes. A wideband sensieglucing the test setup overheads [15]. Finally, we notée tha
framework is proposed in [18], [19], where a bank of multipl¢he spectrum hole search algorithm always selects the aptim
narrowband energy detectors operating at Nyquist sampliggoup sizeM. In particular, in scenarios wher® = 1 is
rate are jointly optimized by choosing different threslsld optimal, the group testing scheme reduces to the conveition
to maximize the total opportunistic CR throughput, whildin-by-bin search scheme.
constraining the interference to the primary users. Thev@bo Notation: N (m, s?) represents the Gaussian distribution
framework requires the knowledge of primary-to-secondawith meanm and variances?. x? (n) denotes Chi-squared
channel coefficients and secondary throughput values fdr ealistribution with n degrees of freedom@(.) denotes the
narrowband, and is therefore limited to scenarios wheré sustandard Gaussian tail function asgh(.) denotes the signum
information is available. In practice, it may be hard for théunction. Pr{A} denotes the probability of occurrence of an
CR to obtain or estimate these parameters. eventA and Pr{A|B} denotes the conditional probability of
Group testing based signal acquisition leads to noise e¢currence of eventl given eventb.
hancement (folding), due to the aliasing introduced by the
sub-Nyquist sampling. This phenomenon is also seen in other [1. SIGNAL ACQUISITION SCHEME
wideband acquisition systems operating at sub-Nyquissfat \ve model the wideband as a set of consecutive non-
_such as compressive sensing base_d methods [20]. Th|_s rajiGStapping frequency narrowbands. Lgtdenote the band-
important questions about the efficacy of group testing {jigth of a narrowband channel, also referred to as a bin
the face of noise folding, and the dependence of the optimgal 5 g,nhand. Let the wideband being searched consist of
test parameters on the ope_ratmg SNR and thg sparsity in Wecontiguous sub-bands. Le(;2) and s,() represent the
frequency occupancy of primary users. In this context, Offqency domain and time domain signal components in the
contributions in this paper are as follows: 1™ bin, respectively, down converted to the baseband (denoted
1) We introduce a signal acquisition scheme that enablg$t) & Si(52)). Let Q £ 27 f. By our assumption on the
the use of group testing based spectrum hole seatgindwidth of each bin, we havg (yQ) = 0, Q| > 27 f,/2.
by acquiring wideband signals at a fixed sampling rat&@he frequency domain signal for the wideband channel, down
The acquisition scheme entails only a minimal hardwamnverted to the baseband, can be represented as
change, compared to the narrowband energy detector,

) N ; (N-1)/2
in the form of a programmable anti-aliasing filter (See

prog 9 ( X(Q) = E Si (99 — %) 1)
Sec. ll). (212

2) We present a search algorithm that minimizes the time to
detect a spectrum hole of a specified bandwidth while sathere ; £ 2zl f, represents the center frequency of e
isfying an upper bound on the probability of incorrectlbin. In the above)N is assumed to be odd, but the extension
identifying the hole (See Sec. Ill). to evenN is straightforward.

3) We theoretically analyze the detection delay behaviorWe now describe a signal acquisition scheme that enables
of the algorithm, and use it to optimize the parametetgoup testing of multiple adjacent bins without increasing
(group size, samples per test, and detection thresholdskafmpling rate requirements at the CR node. Letlenote the
the search algorithm. We also identify the regimes of theumber of adjacent bins over which the signal is acquired.
sparsity and detection SNR where group tests offer pé&fhe incoming down-converted signal is first passed through
formance benefits over the conventional bin-by-bin seareln anti-aliasing filter of bandwidth/ f,, to eliminate the out-
scheme. In particular, our analytical characterization off-band signals and noise. The frequency domain signalkat th
the detection delay of the bin-by-bin detector is also newutput of the anti-aliasing filter can be represented as
(See Sec. IV).

4) We present a multi-stage detection algorithm that com-
bines multiple group sizes to identify a large fraction
of the available spectrum holes as fast as possible (See
Sec. V). The signalz,(t) <& X,()Q) is sampled at a rate, =

Extensive simulation results corroborate our theoretically- fv»- Since the anti-aliasing filter band-limits the signal to
sis and illustrate the performance benefits obtainable flem [—M f»/2, M f,/2], sampling at a ratef, introducesalias-
group testing approach under favorable conditions on #pardng. Let 7, = 1/f,. Let z4[n] = xq(nT}) represent the
and SNR (See Sec. VI). The use of group tests with the optinsgmpled signal and:;[n] & Xq(e), wherew = 27f/f

(M—1)/2

Xa() = > S(Q2-). )
I=—(M-1)/2
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Wide

Anti-aliasing Sampling & Detection proposed algorithm makes an occupancy decision on a group
filtering Accumulation framework . .
d of M < N, contiguous bins. Such group tests, referred to as
Japut Data N B Qecupancy M-bin tests, are condL_Jcted ;equentially on multiple adjta_\cen
. — 4><k $()2] [ thresholding] - qocigion groups untilb consecutivel/-bin tests declare the set of bins
being tested as unoccupied. Also, for simplicity, we assume

Cut-off = Mf,/2 Rate = fy that the requiredV, empty bins can be found using one pass

of the algorithm over the given wideband consisting\obins.
This holds true when the occupancy of the primary is sparse
in the frequency domain an¥. < N, which is typically the

Fig. 1. Block diagram of the wideband signal acquisitiontsys

[21]. With the above notation, for odd/, X4(e) = casein sc_enarios relevant for CR deploymept.
(1/T}) l(if_—(;)f/fl)/g S; (yw/Ty). Again, the extension to even An M-bin group test forms the basic building block of the

M is straightforward. The received signal,[n], is thus the above algorithm to findv, L_Jnoccupied bi_ns._LeHl denote the
sum of the signal components in the individual bins. Now, tHaypothesis thatout of M bins are occupied in the group under

received signal,[n] can be described by test and le{#;}}, denote the composite alternate hypothesis,
' i.e.,H; is true forsomeé = 1,2,..., M. An M-bin group test
Yg[n] = zaln] + v4[n] ) distinguishes between the following hypotheses:
wherew,[n] is the white noise component after aliasing. Ho:  No primary signal on any of thé/-bins

Now, due to possibly independent fading across the bin
and mismatches between transmit and receive pulse shapi

filters, timing and frequency offsets, etc. between the arim To find N, empty bins, the algorithm can use different values
transmitter and the CR receivers, the signals from differegf A/ (and henceb) and K. We first describe the algorithm
bins are effectively the result of passing a random sign@ith a fixed value of A/ and K, and later present a way
through orthogonal filters, since the different frequen@ysb of choosing the besd/ and K. The following optimization

are non-overlapping. Hence, it is reasonable to model theoblem arises naturally in the context of thé-bin test:
signal contributions from different bins as being mutually

independent. Since we assume no knowledge about the pri- minimize N,  subjectto P. < R, (6)

mary signal characteristics at the secondary node, we mog@lere P, denotes the probability that the overall search
the signal contributions frond" bin as Gaussian distributeda|gorithm makes an error, afd, denotes the average number
with zero mean and variancg;, as in [14], [22], [23]. We of tests required to findV, consecutive bins. The minimization
assume that the baseband signal is real-valued for siryplici, (6) is over the parameterd/, b, K and the detection

of exposition; the extension to czomplex sigg\als is immediatyesholds used in thé/-bin tests. Since the algorithm ter-
We note thatpy[n] ~ N (0,Mo?), whereo? = N, fy, and  minates once it has declared a set, shyof N, consecutive

N, is the white noise power spectral density. The fadtbin  pins as unoccupied, we say that an error has occurred if the

the noise variance is due to the aliasing introduced by sampl primary signal is present in one or more of the binsAn
at rate f,. We accumulate the energy froki samples at the Mathematically

output of the filter, and compute the following test statisti

2&11}?2 :  Primary signal present on at least one bin. (5)

P, £ Pr (Primary present in a set of N, bins| b @)
consecutivel -bin tests succeed for the first time)

(4)

Note that, P, is related to the miss detection probability, i.e.,

Note that, the conventional narrowband signal acquisisom the probability that the group! is declared as empty given
special case of the above signal model with= 1. Figure 1 that at least one bin inl is actually occupied, through Bayes’
shows the block diagram for the proposed wideband sigrife- Also, a false alarm event, i.e., the event tHas declared
acquisition scheme. Let the bandwidth of the spectrum hol@gcupied given that it is actually empty, leads to an inazdas
that need to be found be denoted By,, such thatlV;, = detection delay; its effect is capturedvy,. See Proposition 1

N, f,. With this setting, the task of the sensing algorithm i@hd Appendix B. . B o

to find a set ofV. (< N) consecutivainoccupied bins in the L€t occupancy across the bins be i.i.d. and distributed as

given wideband. We discuss this in the next section. binary Bernoulli random variables (denoted3(p)), wherep
is the fraction of bins occupied on average, over the lonmter
. THE M-BIN GROUP TESTDESIGN In the current work, we focus on the i.i.d. occupancy model

Using the ab dat isiti h first d %}8], that, apart from being analytically tractable, mig$o

S||ng 'the a tOV?. da a acqut|.5| lon s¢ em;a, we hlrf e];sir & of independent interest in the area of adaptive grouiptest
an a.fgod”b md O’dtlr?oNa bc;on Ilg_lutotL;]S Spec rwt”nﬁo edg/[ h\‘/?/here the items being defective is independent of each.other
Specilied bandw! e DINS. LELINE parameters an We further assume that the occupancy pattern stays fixed over
be as defined in the previous section. Iét be an integer the search duration. Lelly, denote the event that, was
multiple of M and definé b = N./M. In each test, the declared by a single group test and define Pr{Hog}.

We consider such a combination of, and M for the simplicity of L€t Ilo andII; represent the prior .probabilities for .the null
exposition. The algorithm can be easily adapted to nomgéntenultiples also. and alternate hypotheses for tié-bin group test. With our
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assumptionsIly = (1— p)M and II; = 1 — II,. Define detection threshold in closed form. However, it can be gasil
Pre = Pr{{?—[l}l]‘iﬁHOd} as the probability that the singleshown that it is approximately quadratic Th (when M = 1,
group test makes an incorrect decision, given that the grotipis exactly quadratic inT. For M > 1, when one of
test has declared,. The following proposition connect8. the terms in the mixture density dominates the other terms
andN, to P,,. andp, the parameters of th&/-bin group test. for 7' close to the threshold, the error in the approximation

Proposition 1. Let N;, M, b, P., Pp., andp be as defined |{s{;r2all;) }l? Llje{Tm;hls'}t}heWﬁreltrlgalf reglr?dn /IS ?:ret r}ngrm
above. Then the following hold: = Tgto = Ngt11 5 fgto A TTge1 A1
and upper thresholds. For most scenarios of interest, the

b _ - contribution to P,,,. from {T" < nlgt()} is small, since it

Pe=1-(1~-Pn) and Ny= Z (p) (8) represents the unlikely event that, due to its larger vagan
=1 the instantiation of the received signal power estimateeund

Proof: See Appendix A. {#H;} M is unusually small. This allows us to replace the LRT

From Proposition 1N, depends solely op andd, and is  test by a simple, albeit sub-optimal, one-sided threshesd t
monotonically decreasing withh Thus, the design goal for the g, 7-

single M-bin test can be stated as H )
T = g (11)
Ho

b

maximize p subjectto  P,. < P, 9)

where P = 1 — (1 — P,)*/%. The maximization above is The thresholdy,,, is chosen to satisfy the constraint &,

over all possible decision rules, denoted &{"). Our next in (9). For notational simplicity, le) be the threshold used in
proposition establishes that a Likelihood Ratio Test (LEZA] the test. Define the false alarm and miss detection rate of a
is optimal for the design criterion specified in (9). l&1(T))  single M-bin test asa () £ PH{{H, M declaretH,} =

be a decision rule based on the LRT with threshgjd> 0, Pr{T > n|Ho} and 3(n) = Pr{H, declaret{H;}M,}
defined asi; (T) = 1, Pr{T|{Hi},2,} > ng Pr{T|Ho}, and pHT < p|{#,}M,}, respectively. Also, defines,

(1> 1]

= 0 otherwise, wherd is given by (4). We state: Pr{H, declared#,}, i.e., the miss detection rate when exactly
Proposition 2. Let 6. (T) be the LRT decision rule defined Pins are occupied. These can be computed as

above, withn,, chosen such thaP,,.(6,) = P;. Let §'(T) mo — 1

be any other decision rule such tha,..(6") < Fj. If g > a(mn)=1-@Q <700 > ;

Iy P[/{I11(1 — B}, then N (61) < N(8"), where N ,(d1) M

(or N.(&")) represents the average number of tests required _ 0,8 where 3, — <ml - 77> 12

to find a consecutive set df, vacant bins using the test, b ; 1A hr=@ oy ’ (12)
(or &").

wherem,; and@; are as defined in (10). The constraint Bp.
Proof: See Appendix B. in (9) leads to the following nonlinear equation, the salnti
To compute likelihood ratios, we need the probability diso which yieldsn),,:
tributions of the test statistic defined in (4) under the two ‘
hypotheses. To this end, we need to know the variances under B (n) Iy _p (13)
the primary signal present hypothesig; }/,, but these are p(n)
unknown and in general hard to estimate. To get around t\%erep(n) can be computed as
problem of unknowr{ P, }, we define a bin as being occupied
if the received primary signal power in the bin is at least p(n) =T (1 —a(n))+I15(n). (24)
Ps. Further, wedesignthe test conservatively by assumin
that the received primary signal power in any occupied b
equalsP;. This is in line with the approach recommended i
emerging CR standards such as the IE®E.22, where the
CR is required to reliably sense the primary signal whene
the received signal power exceed$16dBm [25]. With these
assumptions, it can be shown that

HO:T ~ N(m070'(2))

M

umerical techniques such as the bisection method have to be
\sed to solve (13) to obtainy,; .

This completes the design for aW-bin group test using
V%iyen values of the number of samplek, and the group
size, M. In the next section, we show how to find an optimal
value for K and M.

IV. OPTIMAL PARAMETERS FOR THEM-BIN TEST

{%l}f\il T~ Z OGN (mz, 0’12) 7 (10) We start by describing a p_rocedure for finding the optimal
= K. Note that, (13) can be written as
whereo? £ (Mo? 4+ 1P,) /2, m; £ /(2K — 1) 0} andf; £ I'(n,K)=Cy, (15)

L(];I)Pl(l - P)Mil} /L1, such thaty”,, 6, = 1. In deriving where C; = I Pj/[IL(1 — P))] > 0, and I'(n,K) =
the above distributions, we have used the approximation tha-u with 2. forl = 0.1 M ’defined
if X ~x?(K), thenv2X ~ N (V2K —1,1) ([26], Ch. 26). EZZH @ EHQE) v o

The log-likelihood function corresponding to the test in A (mi—m)

n
(10) is analytically intractable, making it hard to obtatet A= o = V2K -1~ o (16)
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Sinceo; increases with, as seen from (10); also increases
with [ for a fixed K, i.e.,zg < z1 < -+ < zpy. We first study
the variation ofl" with » and K. Although K is an integer
valued variable, for the purpose of analysis, we trEaas a
positive real number. Due to the continuity of tfefunction,
I'(n, K) is continuous with respect tg and K, and since 0.61

M=8, b=1, SNR=5dB
0.8

21 > 209, 0 < T'(n, K) < 1. Further, we have: =
—
Proposition 3. (a) For fixed K, I'(n, K) is a quasi-convex 0.47
function of » and attains a minimum valud,,;,(K) =
I'(no, K), wherenq satisfies%f)’ =0, ie., 0.2}
n="no
M 722/2 722/2 . ; ;
Z 9[ Q(Zo)€ ! _ Q(zl)e 0 _ 07 (17) 00 5 10 15
=1 al g0 n
wherez;, 1 =0,1,..., M are evaluated afy. Fig. 2. Family of I'(n, K) functions: increasingk helps in meeting the
(b) For fixedn, T'(n, K) is a decreasing function oK. minimum performance target.

Proof: See Appendix C.

Figure 2 depicts the behavior df(, K) as implied by the front-end RF chain at the CR, and is part of its technical
above proposition. We make the following remarta For a - specifications. From (19)Vs plays significant role in the time
given probability of incorrect detectiory), there is a certain taken to find N, bins when it is comparable t& or when
minimum number of sample&,,;,(> 1), that are required N.(K) is high. We state the following:
to set up theM-bin group test to satisfy the performance N _ )
requirement?;. In fact, if Ko(> 1) is such thafl i, (Ko) > Proposition 4. For K > Kuin, Davg(K) is @ convex function
C1 (e.g., with K = 20 in Figure 2), a test cannot be designe&f K.
with K, samples. However, sincE.i,(K) is a decreasing  pygof- See Appendix D.
function of K, we can find the smallest integer, denofég;,,, Thus, for a givenM, the optimumk can be computed as
such thatl i, (Kmin) < C1. For anyK > Kyin, an M-bin  iha solution to-
test can be designed and each will result in a different geera
number of tests required to fin, unoccupied bins(b) For Kopt = minimize  Dayy(K). (20)
eachK > K, due to the quasi-convex nature Bfr, K), K2Kmin
there exist exactly two solutions of (15), and since Mebin  With regards to minimizationDayg(K) is a well-behaved
test is a threshold test, we pick the larger of the two as tfienction and simple convex optimization techniques, dtee,
threshold to be used. Defing(K'), the computed threshold Newton method [27], can be used to find the optimim
for a given value ofK, as Note that the computational complexity of evaluatifg

(andn’, in (13)) is not of major concern here, as these will
ns(K) =max {n = L(n.K) = Ci}. (18) be co'(r];lputed offine and remain unchanged as long as the
Note that, due to the way; is chosen,arg”K) ~ (. Primary usage statistics remain the same. In the aboyesisaly
) ) o9 p=n, we have assumed to be a real number. In practice, we
Also, s_lncel“_(n, K) (_jecrease_s WItlK, it is easy to see that computeDqyg( K') at the two integers nearest to the optimum
1s(K) is an increasing function ok’ real value and pick{qy to be the one with smalleb g K).

For each i Z K“%i“' a test th"_"t_ satisfies the 90n5tra'nf:igure 3 illustrates the convex behavior Bhyg(K) with K
on the probability of incorrect decision can be designedt a4 particular set of operating parameters

our next task is to decide which to use. Note that, since The last step in the design of the detector is to find

M= N?’ multiple M—bm tests are required to f.'nQN@ the optimum combinatiori), b) that minimizes the average
consecutive unoccupied bins. To run the test on a different Sletection delay. To this end, for a givel, let Kou(M)
. ’ ’ op

of M bins, we need t(.) move to a dlfferenfc center frequenoge the number of samples that minimize the average search
Due to the time required by various Radio Frequency (thzﬂjration to find N, = Mb consecutive unoccupied bins. We

components such as the phase-locke(_j loop, oscillator,stoetcuseDavg(Kopt(M)) as the metric to compare the performance
reach a steady state after the change in center frequeecs, tr\}vith different values of\. Let M = {(M,b) : b = [N./M]}

s a setup dela_y (also_ referred to as the settling timeNgf be the set of all combinations @f\/, b) that can be used to
samples associated with eakfrbin test [15]. Thus, we define find N, consecutive empty bins. To find the optimal value of

the following objective function: M for a given test scenario, we minimiz&uyg( Kopt) over M:

DavglK) = Ni(K) (K + Ns). (19) (Mopt, bopt) = Minimize  Davg (Kopt(M)) . (21)
Day(K) can be viewed as the average search duration for (M B)em
finding V. unoccupied bins with af/-bin test designed with We solve the above optimization problem by simply searching

K samples. The value dVg is known, as it depends on theover the setM, since there are only a finite number of
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that it has been declared unoccupied by the algorithm. An

600" p ‘=o.o5 [~<wm=8,b=1 | overall bin-level error probability constraint can be stid
NE128SNR = 9dB, p=1/10 jmf‘z‘v Efi if the M-bin test at every stage satisfies the same bin-level
< 500! —A-M=1 b=8l| error probability constraint. For ai/-bin test, defineP’) 2
e Pr (" bin in A, is occupied A, is declared unoccupied),
CC'- 400y where A, is the set ofM bins being tested. That is?,(ni
2 qguantifies the bin-level error probability of al-bin test. It
3 300 can be shown thaP\’) = P, i.e., it meets the target error
% probability constraint, if the threshold used in thé-bin test,
g 200 7, is chosen as the solution to the following equation:
100¢ M -
> (JZ[_ 11) pr(1— p)M"“Bk(—(n) =P. (22
o = p()
0 10 20 30 40 50 60

K Here, p denotes the occupancy ratg,(n) and p(n) are as
defined in (12) and (14), respectively. Thus, depending upon
Fig. 3. Dayg(K) is convex inK: Minimizing Davy(K) leads to an optimal p, - A7 and p, an M-bin test satisfying a specified bin-level
value of £; "< markers show the experimentlavg(K) at computediopt. g probability constraint can be designed by choosimy th
detection threshold according to the above equation. We als

combinations, and computinGavg (Kopt (M)) is not compu- note that since each stage removes a part of the unoccupied

tationally demanding. Thus, given the operating paramete?pew(ll’)m from the given band of operation, the occupancy
(02, p, P,), we have fully specified an/-bin test, and a rate, p'*, for eac_h stage nee_ds to be up(_jated accordlng_ly.
method to choose the!/, &) that minimizes the average delay We now describe the multi-stage algorithm. Let an estimate

in searching for a spectrum hole consisting\af consecutive ©f the number of bins found at the end of tffé stage be
unoccupiedgbins a gt denoted byT(1).® Let p, be the occupancy rate for the

wideband over which multi-stage algorithm is operatingt Le
P, € (0 1) denote the target bin-level error probability.

. ) . . _ 1) Initialize: o™ = po; T(0) = 0; and set all the bins in
In this section, we describe av-bin test based multi-stage the wideband as occupied.

sensing algorithm, to find the available spectrum holes in az) Forl—12 . L

given wideband of interest. The basic idea, as shown in Fig- o 4P find the d :
ure 4, is to search for spectrum holes of different bandwsidth a) Using M _(lj)w p=p 0 an Fy, find the detection
by making multiple passes of search on a given wideband. th_reshold,ns » using (22). 0 .
With each successive pass, the width of the hole (specified P) Find the optimum number of sample&,", using

V. MULTI-STAGE SENSING ALGORITHM

by the value ofM used in theM-bin test) being searched (20) with b = 1. That is, find the number of samples
for is halved, and only the parts of the wideband that have ~ "€quired to minimize the detection delay in finding a
been declared occupied in the previous stages are considere spectrum hole of sizé/. Also, find the corresponding

the search. A multi-stage algorithm can be used, for example p!" using (14). _ _
in spectrum hole search with a frequency hopping primary. ©) Make a pass over the full wideband, i.e., perform

Here, the occupancy pattern keeps changing periodicaity, a a series ofM-bin tests for the b'{})s that are set as
we refer to this time interval as hopping interval, denotgd b occupied, withM = M), K = K, andy =1 -
N2 In terms of CR usage, each hopping interval is split into If a test declares{, then set the corresponding "
two phases: aensing phaseo find the unoccupied spectrum, bins as unoccupied.

and ausage phaseto exploit the spectrum hole found. Let ) Updately(1): Ty (l) = Ty (I—1)+[N — Ty(l — 1)] p).

n represent the time duration of the sensing phase. Thus, the &) Update the occupancy rate for the next stager!) =

goal for sensing algorithms in a frequency hopping scenario {Np - Tf(f)llDO}/{Nl_ Ty (D)}-

is to maximizeNyp £ M, (n)(Ny —n), whereM,(n) is the f) Update M+ = M®/2.

number of unoccupied bins found during the sensing phaseNate that, the above algorithm ensures that the overall bin-

other words, we want as much usable spectrum for as muekel error probability constraint is met, since each stage

time as possible in a given hopping interval. is designed such that the bin-level error probability inttha
Let M, p, Kop, ns @andp be as defined earlier. Lew (D, stage isFy. Also, the above update for the occupancy rate

o0, KW, ngl) andp® denote the values of above paramete?@orks well when the primary powers in the different bins are

at thel™ stage. Letl. be the number of stages. Since, at eadpproximately equal and known. In the unequal or unknown
stage, the value of\/ is halved, M) = 2L-1, Let P,,,, transmit power case, the/-bin test ensures that the empirical

denote the bin-level error prObablllty in the sense of (B”I SNote that, this can also be replaced by the number of binsatieadeclared

the probability that an individual bin is actually occup@Een a5 ynoccupied in the actual running of the algorithm. Herepse an estimate
of the number of bins declared as unoccupied in order toitf#eilan offline
2For example, in a Bluetooth network, the hopping timé /4600 s. With  calculation of the thresholds to be used at each stage, amshalytically
a sampling rate o MHz, this implies N;, = 1250. compute the detection delay.
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Multi-stage algorithm to find 16 bins in 3 stages. Tests are assumed to be error-free. . ) )
Bins marked "X’ indicate primary occupancy between the simulation and analytical results 04,4 and
Stage 1: Mt ‘ . ‘ ‘ ‘ ‘ ‘ ‘ ‘ M P at _d|fferent sparsity values, whef = P We have also
empirically verified that the observef. is below the target
o #o no el P, = 0.1. Further, we have found that the collective impact of

all of the approximations used in the above developmenten th

My
Stage 2; M= III III detection delay performance and the probability of inacirre

Green bins excluded from search < =— > <> Stage? decision is negligible, as argued in the preceding sections
oo o decisions However, we omit the detailed results here for the sake of
brevity.
Stage 3: M=1 I I Next, we co_nsider the scenario where the primary sigqals
— — undergo Rayleigh multi-path fading and lognormal shadgwin
Ho o s with variance4 dB. Figure 8 shows the variation D,y
Final Output with detection SNR. We see the same behavior as in the
AWGN case, albeit at roughlydB higher SNR values. This

is expected, as th&/-bin detector is an energy based detector
and its performance degrades in the presence of fading.
Fig. 4. A pictorial illustration of the multi-stage algdrin. Table | shows the reduction iEavg compared to tests with
M =1 at an SNR of9 dB for the AWGN case and6 dB
for the fading case, and with different sparsity values.hwit
= 0, the reduction inD,ygy of the proposed group test
pared to theVd = 1 case is20 to 30%, depending on
sparsity level. For a conservative vdlud Ng = 5, the
percentage reduction iRayg is significantly higher, and varies
between35 and 60%. This is because tests with high&f
result in a significantly lower average number of tests (see
VI. SIMULATIONS AND RESULTS Table Il) and thus save on the test setup overheads, compared
We now present simulation results to illustrate the perfote the M = 1 case.
mance of the proposed signal acquisition scheme and spectru Figure 9 shows the variation 0Davg( Mopt, Kopt) With
hole search algorithms. We first present the results for theimary SNR for different values of targé, in the AWGN
contiguous hole search algorithm in the AWGN case. Wese. It is interesting to note that the curves are apprdrima
consider a test setup witt" = 128, N. = 8 andp € linear, even though different values aff are optimal for
{1/6,1/8,1/10,1/12,1/16,1/20}. The signal samples useddifferent primary SNRs. Also, larger sensing times are ireqi
for computing the test statistic are generated accordir{@)to to satisfy smaller values of the target probability of ermas
The signal powers for bins with occupanéy, are chosen uni- expected.
formly at random from the se{tP;, Ps+2, Ps+4, Ps+6} dB, e now compare the performance of thé-bin detector
with P, = 0 dB. We refer toP,/o* as the detection SNR, yith the energy-based Single Slot Detector (SSD) proposed
and vary it from0 to 13 dB. The test outputs a sequencg, [28]. We use the same setup as in [28], and study the
of N bins that are declared unoccupied. An error occurs dchievable opportunistic secondary throughgit(), defined
this declared set contains any occupied bin. The target ergy () 2 ¢y (1 — 7/Tx)(1 — Pf)(1 — p)B bits/s, wherer
rate constraint is set a = 0.1. For different combinations js the sensing (search) duratidf is the frame duration and
of (M, ), the value ofKqp is numerically computed, and thec, s the secondary throughput when the primary is absent,
corresponding detection dela4vg( Kopt), henceforth denoted , is the prior probability of the primary being present afd
Davg for short) performance is evaluated. For calculatings, s bandwidth of a single slot. We assume that the secondary
we usedNs = 0. o _ _ network does not obtain any throughput if it transmits data i
Figures 5 and 6 show the variation Bhyg With sparsity and the presence of the primary (that &, as defined in [28], is
SNR, respectively. As expected, with increasing spartiy, zero). Note thatP; is the probability of false alarm obtained
group tests with highei/ perform better. Atlow SNRM =1 py designing the detector to ensure that the probabilityisbm
is optimal. As the SNR increasel/ > 1 outperformsM = 1, stays helow a specified target. Thé-bin detector searches
and interestingly, the relative reduction g is higher for s consecutive adjacent slots simultaneously in each test, an
higher M. Note that, the bin-by-bin{/ = 1) test can be the corresponding secondary throughput is given ) £
considered to be the result of using the framework in [19cy (1 — 7/7p)(1 — Psar)(1 = p)MB bits/s, wherePy,; is
when the primary transmitter to secondary receiver chanigk probability of false alarm for an/-bin detector with the
gain information is absent and the test is designed to m@migjyen target probability of miss detection. We assume BPSK
the average test duration. We evaluate the performancespfnaling, a sampling rate of MHz, C;, = 6.6582 (which

the group tests with the optimal values of, K and 7  corresponds to a secondary-to-secondary SNRafB), and
computed as described in Section Ill. We see that the tests

V\{ith optimal parameter Yalues perform the best in all theay 5 sampling rate oft MHz and with a low-power phase-locked loop
simulated scenarios. In Figure 7, we show the excellentimatgee [15], Table I)Ns can be as high as20 samples.

Group of bins declared unoccupied are marked green

values ofP,sié remain below the specified target. We hav
observed, via simulations, that the algorithm works well iEoS
terms of the detection delay, and also satisfies the specif{ﬁ

target error rates. Whei/(!) = 1, we get the conventional
bin-by-bin detection scheme as a special case, as before.
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2 —-6—(M=8,b=1) = —©—(M=8,b=1)
5 120r —%— (M=4,b=2)| 5 —%— (M=4,b=2)
o © — —
% 100! —A— (M=2,b=4)| | = 150 —A— (M=2,b=4)| |
Q (M=1,b=8) g (M=1,b=8)
o 80 O optimal ] O optimal
g P g 100 g
o 60 o
2 E
401 501
20 i i i i i i i
6 8 10 12 14 16 18 20 2 4 6 8 10
Sparsity (1/p) Average Primary SNR (dB)
Fig. 5. Davg Vs.Sparsity in the AWGN case. At higher sparsity, group testsig. 6. Davg VS. SNR in the AWGN case. At higher SNRs, group tests
outperform the bin-by-bin test. outperform the bin-by-bin test.
TABLE Il
AVERAGE NUMBER OF TESTS FOR VARYING SPARSITY AGNR = DB. 120
Sparsity | 176 | 178 | 1712 | 1716 ~ _ _ _
M =8b6=1]56 |38 |26 | 21 2 100, N=128 N =8P =01 ]
M=4,b=2 |79 |59 |44 |39 a .\ Average Primary SNR=8 dB
M=2b=4 | 126 | 90 | 7.1 | 6.2 s NN -e (1,8)-emp
M=1,b=8 | 21.8| 175| 135 128 T 80r —8—(1,8)-thed]
§ - - (8,1)-emp
§ 60l —©—(8,1)-theq |
a target probability of miss of).1, as in [28]. Figure 10 %
compares the normalized throughput$r)/B for different S 4o N
values ofr for the scenario wherg = 0.1, Tr = 100 ms and < 7 e e h
a primary SNR value of-13 dB. Also, Table Il compares the p
achievable throughput for different operating scenarasthe 20, 10 12 14 16 18 20
SNR and sparsity increas&]-bin tests with largef/ provide Sparsity (1/p)
the best secondary throughput, and the group test sigrifican
outperforms the SSD. Fig 7. Good match with theoretical resultd)avg Vs. Sparsity in

AWGN case. EmpiricalP. for the above data points: Casé/( =
We now present a few representative results that |Ilustra;t% = 1) [0.092 0.093 0.095 0.095 0.097] and Case {/ = 1,b =

the key aspects of multi-stage algorithm discussed in Ség- [0.084 0.090 0.091 0.100 0.094] at sparsity values oft/p =
tion V. Here, we consider the AWGN case and an ”dirglgti/ilig g%} 1respectlvely The empiricaP. always remains below the
occupancy model wittv = 256. We first investigate the appli-

cation of the multi-stage algorithm for finding non-contigis

spectrum holes in the case with equal power primary sig-

nals. Figure 11 shows the results of running the multi-stage

algorithm with different values of\/(V), i.e., with different In this work, we investigated the use of adaptive group
number of stages. It can be observed that, depending upontdsting based techniques for spectrum hole search in dognit
number of non-contiguous unoccupied bins we wish to findadios. To enable this, we proposed a signal acquisitioaraeh
different multi-stage instantiations lead to faster skdmmes. that deliberately introduces aliasing by sampling a wideba
For example, M) = 8 (i.e., L = 4) is optimal if we wish signal at a sub-Nyquist rate. We developed spectrum hole
to find about100 unoccupied bins, whereas(!) = 4 (i.e., search algorithms based on the energy of the aliased signal.
L = 3) is optimal if we wish to find abou200 unoccupied The algorithms exploit the sparsity in the primary spectral
bins. Figure 12 shows the results for the spectrum hole Beaozcupancy by making a joint occupancy decision on the group
in the presence of frequency hopping. For the multi-stagé narrowband bins over which the signal is acquired. We
algorithm with different initial group sizes and differesgarch first designed the group testing based algorithm to search
durations, we need to pick the one that maximi2ésg, as contiguous spectrum holes while guaranteeing a given l&vel
defined in Section V. It can be seen that, under sparse spectprotection to the primary network. We extended the grougstes
occupancy by the primary, the group testing based sensioga multi-stage sensing algorithm that looks for contigaiou
schemes are more efficient in harvesting the available spact holes of different widths at each stage. Based on the theatet

in a given hopping interval. For example, at an SNRdB, analysis of the group tests, we provided a computational
multi-stage instantiations witd/(") = 2, 4 and 8 all have procedure to obtain the optimal group size, number of sasnple
higher maximumNtg compared to the bin-by-bin test. and the detection thresholds, that minimize the averagelsea

VII. CONCLUSIONS
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TABLE |
PERCENTAGE Dave REDUCTION COMPARED TOM = 1.

Sparsity 1/8 1/12 1/16

Ng=0 | Ng=5 | Ng=0 | Ng=5 Ng=0 | Ng=5
(Reduction,M): AWGN, 9dB | (19%, 4) | (43%, 4) | (26%, 4) | (52%, 8) | (29%, 4) | (61%, 8)
(Reduction,M): Fading, 16dB| (21%, 4) | (44%, 4) | (26%, 4) | (52%, 8) | (30%, 4) | (62%, 8)

300 . : ;
14+ - p=0.1, SNR=-13dB, T=100.ms .
A%, o5 N =128, N, =8 P;=01p=1/12 |
e ~ 12¢
c —©—(M=8,b=1) £
[2]

2 200f —%— (M=4,b=2) "1 =
S —A— (M=2,b=4) 21
% 150 (M=1b=g) | =
@ O optimal 2 8y
g o
g 100f F el
[
>
<

50’ 4+

10 12 14 16 0 5 10 15 20
Average Primary SNR (dB) Sensing Time (ms)

Fig. 8. Contiguous hole search, with fading and shadowibg,g Vs.SNR:  Fig. 10.  Normalized throughput vs. the sensing timg-bin detector
Similar trends as compared to AWGN case, but at higher SNRs. significantly improves secondary throughput. “SSD” reterthe energy-based
single slot detection scheme in [28].

10 :
o-P,=0.1
~ N'=128,N =8, p=1/12 0
2 € —-P,=0.15 N =256, SNR = 12dB, p = 1/15, P___= 005

g 3 w—P,=0.2 S 200}
5 = @
. P =0.3 < —*—=M"=16
g 107 Ao = -8-MW=g
2 = 1507 M(l):4
3 = =
% D § —e— D=2

] L. 4
? X % 100 A-m®=1
] 1 =
Z 10} ; 2 ol |

0 2 4 6 8 10
Primary SNR (dB)

50 100 150 200
Fig. 9. Contiguous hole search, AWGM)ayg Vs. SNR: Performance at Number of un-occupied bins found

different target error probabilities. ) . ) . o
Fig. 11. Search durations for different multi-stage ingtdions.

duration given a target error rate constraint. This enabtetb declared?,, make an error. Thus,
identify the operating parameter regimes where groupn@gsti _ o
based algorithms outperform their narrowband countespart . = 1 — Pr (None of the lasb M -bin tests is in errof

The performance gains are achieved at a minimal additional All the lastb tests have declareH )
hardware cost, which makes the group testing based sensing v b X
schemes attractive for practical implementation. =1- (1 - Pr({Hl}l:1|H0d)) =1—(1-Ppe)” (23)

Now, let N, andp be as defined beforél; can be found by
setting up a recursive equation using the following arguisien

APPENDIX (i) If we get alternate hypothesis declaration on tfeattempt
with k = 1,2,...,b, then the search process restarts since each
A. Proof of Proposition 1 test is independent. (ii) If we gétsuccessive null hypothesis

outputs then our search terminates. Note that declaring the
From the definition ofP, in (7), it follows that the algorithm alternate hypothesis on thd" attempt leads to an increase in
makes an error if any of the lagt)M -bins tests, that have all the number of tests by. The probability that we get the first
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Fig. 12. Spectrum hole search and frequency hopping. Gresting based
sensing exploits the available spectrum more efficientyngared to the bin-
by-bin case.

TABLE IlI
ACHIEVABLE THROUGHPUT, R/ B BITS/S: COMPARISON OF THEM -BIN
TEST WITH THE DETECTOR IN[28].

(SNR,p) | (=15 dB, 1/10) | (—12 dB, 1/10) | (—10 dB, 1/16)
SSD 5.66 5.88 6.19
M-bin 9.00 (M = 2) 1481 (01 =4) | 25.13 (1 =8)

alternate hypothesis on thd" attempt is given by*~ (1 —

p). Thus,
b
Ni=1-p) Y p ' (Ne+k)+bp’
k=1
b
=(1=p")Ne+(1—p) > kp" ' +bp°
k=1
Using
b b+1 b
k—1 _ | 1= (b+1)p
ka - {(1510)2 ) }’
k=1

and simplifying, the result followdll

B. Proof of Proposition 2

Let ¢ be the random variable describing the test statistic

defined in (4). LetG be the observation set. Lé(¢) and
f1(t) denote probability distributions af under the null and
alternate hypothesis, respectively, and these are as define

(10). Let (o) and 5(9) represent the false alarm and miss

detection rate, respectively, for a decision réll@hus,«(d) =
Jo(L=48(t) fo(t)dt and B(d) = [5(1 — d(t)) f1(t)dt. From
Bayes’ rule,P,,.(0) = [8(0)I11]/p(d). SinceP,,.(8") < P,
(14) imply that

1_P(; /
I p(d"),

wherell, andIl; represent the prior probabilities for the nul
and alternate hypotheses for thé-bin group test. From the
definition of 61,(¢), we have[(1—46(t)) — (1 —0(¢)")][f1(¢) —

B8 < %p(é’) and 1—a(d) > (24)

1

10

ngtfo(t)] < 0 for any ¢t € G. Integrating over the entire
observation space, we get

B(8) = B(") < gt [(1 — a (9)) (1 — a(&"))]-

Using (14) and (24), we can further simplify the above to
[(1 = B)gr /Tl — Py/TL] [p(8) — p(8')] > 0. For 5, >

Iy P /{111 (1 — P))}, p(6) > p(¢'), and the assertion follows
by noting thatN; is monotonic inp. B

C. Proof of Proposition 3

1) Part (a): For a fixed K, z V2K —1 — n/oy,
I = 0,1,...,M are functions ofy. Hence,I'(n,K) is a
real valued, continuously differentiable function:gfdenoted
I'(n) for short, withn > 0. Let I'(n) £ d(I'(n))/dn and
I (n) £ d*(I'(n))/dn*. We use the second order conditions
to prove quasi-convexity ([27], Section 3.4.3)(n) is quasi-
convex inn, if, for all ny such thatl’(ny) = 0, we have
I'"(no) > 0. Sinced(Q(z))/dx = —(1/v2m)e *"/2, and

d(z;)/dn=—1/c; for 1 =0,1,..., M, we have
I\/( )_ 1 Q(Z ) iﬂe—z?/Q
= V 2#@2(20) 0 =1 o))
efzg/Q M
- lz 91@(21)H . (25)
9 1=

SettingI”(n) = 0, (17) follows. We now evaluat&” (n) at
n = no such thatn, satisfies (17). Differentiating (25) and

substituting (17), we get
= — H . (26)

M
b2
V27Q(20) L; a1 [

Note thatz; and z, are evaluated ajy in the above equation.
Moreover,zy < z; < ... < zp. We consider following two
scenarios:

(i) z0 > 0: This implies thatz, > 0 for all [
1,...,M. It is easy to show thay(z) £ 2Q(z)e*"/2
is an increasing function ofz > 0. For any
l 1,...,M, since zp < z, we getg(z) <
g(z), ie., 20Q(z)e %2 < zQ(z)e /2. Also,
(20/21)Q(20)e™%/2 < Q(z)e~*/2, sincez > 0. It
follows that

1 2 20

0o

r (770)
ol

M M

> 0QE)eTE2 > Qo) Y iz 2 (21)
l

=1 =1

Using (17) and re-arranging, we get

M

Gre==/2 1
ol {ﬁ_ﬁ] S0 (@9
= gl (21/01) gl ago
Define
h & e /> 1 {ﬁ _ @] and
| o (z0/00) low o0
N O/ 1 [zl zo}
9t g (Zl/Ul) g o) '
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We claim that,zl]‘i1 hy > Zl]\il g1, and from (26) and (18). Using the quasi-convexity propertiesItfy, K') we can
(28), it follows thatl”(n) > 0. To prove the above claim write n(K) as:
let us consider the following two scenarios: (g)> 0:
In this case(z;/0;) > (20/00) and thush; > ¢;. Hence,
replacingg; by h; makes (28) more positive. (lg) < 0:
In this case,(z/0;) < (z0/00) and b, becomes less For a fixed K, Q(zo) is a monotonically increasing function
negative compared tg,. Hence, replacing; by ; still  0f 7. Combining this with (30), we get
makes (28) more positive. o .

(i) zo < 0: For this case, we prove that/o;—zo /o > 0 for Q%(K)) = {n: r(f;,nzg)zcl} @(z0), and
eachl = 1,..., M. From (26) it follows thaf™"'(n) > 0.
Letly (1 <ly < M) be such that; < 0 for [ <, and
z1 >0 for il > ly. Fori > Iy, it is straightforward to see
that z; /oy — 20/00 > 0. Forl <y, sincez, < z; < 0, it where L(K,n) £ K/Q(zo) is a two dimensional function of
implies |z;| < |zo|. This implies|z;|/o; < |z0|/00 since K andn with dom L = {(K,n) : K > Kuin; 1 > n(K)}.
o1 > o¢. Hence,—|z|/o; > —|z0|/00, thereby implying In the above equatiomy;, is the threshold corresponding to

K) = inf 30
77( ) {n: F(UK)>01}77 ( )

F(K) = sup = sup L(K,n), (31)
(n: T, K)>C1 Q(20) (> nmind

z1/o1 — zp/o0 > 0, sincezy < z; < 0. K = Knin. Thus, F(K) can be represented as point-wise
2) Part (b): For a fixed 5, {z0,21,I'} are functions Supremum of a family of functions and the convexity follows
of K. Let I''(K) £ Q(2)/Q(z), and hencel(K) = by proving that for eachy > 7, L(K,n) is a convex

S°M 6,T,(K). We prove that each, is a decreasing function function of K, K € dom L [27]. Differentiating L (X, 7)
of K, and thereby prove that is a decreasing function gf.  twice with respect ta’, we get
LetI")(K) £ OT')(K)/OK. Using the derivative of)-function 9L o= 72/2

anddzo/dK = dz/dK = 1/v2K —1, we have OK? ~ \21Q(z)? [(2?{—_1)23/2
Q(zl)e—zg/z i Q(ZO)e—zf/Q K 2e—zf2)/2
, _ + — 2 32
N = e A ) =1 Vit )

. , . . . 2270 For practical values of (> 1 ), the first term is always
Provm%;l/(fz/\ffq 'S equn_/(?len; o proylng;)(zl)e s positive. The second term is always positive fgr< 0. For
Q(zo)e™*/%. We first consider the case: 20 > 0, we use the upper bound fa@@-function [29], with

21> 0 andzp > 0: We prove that for > 0, g(z) = 20 03— s, 334 and get,[2¢720/2]/[\/2 — 2 >
is a decreasing function af. Note thaty'(z ) 2 d(g(2))/dz = G et get[2c J/1vV2mQ(z0)] ~ 2o

e’ /2Q(z)z — 1/y/2r. We use the following upper bound for [(1_Q)Z0+a V70 +b] —20 = (1=a)zo = 0. Thus, LK, )

Q-function [29], is convex inK and henceF'(K) is convex ink.
We now prove the main proposition. From (14), we see
Q) < 1 ev'/2 that p(K) = C’QQ(ZO(K)). Using (8), Davg(K) can be
(I—ay+av/s? +b vor ' written as Daw(K) = 3L, (1/C3) (K + Ns)/Q"(Z). Let

Gn(K) 2 K/Q"(Z) andH (K) 21/Q™(Zy), with n > 1.
for y > 0, a = 0.344 andb = 5.334, in the above expression, e arguments that were used to prove convexitiK6€)(Z,)
to get hold for G,,(K) and H,(K) as well, and it can be easily
, 1 1 5 verified that G,,(K) and H,(K) are convex inK. The
g9'(2) < (I—a)z+av2 10 \/ﬂ[az —aVz?+b] <0, convexity of Dayg( K ) follows from this, since it can be written

as a non-negative Weighted sum of convex functions and is
since,a > 0 andb > 0. And sincez, > z, this implies therefore convex [27].

Q(z)e 7/2 < Q(z9)e~*1/2. The above can be easily shown
for the other cases, i.e{z <0 and z, < 0}, {7 > 0 and
2o < 0}, and{z > 0 andz, < 0}, using similar arguments.
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