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Abstract—This paper addresses the problem of finding outage- every pointin time, the cumulative energy consumed by a node
optimal power control policies for wireless energy harveshg cannot exceed the cumulative energy harvested by it. These
sensor (EHS) nodes with automatic repeat request (ARQ)-basl  oqyirements call for a cross-layer, energy-aware prétoco

packet transmissions. The power control policy of the EHS . L . .

specifies the transmission power for each packet transmissi de5|gn_th§1t optlmlzgs energy cpnsumptlon for reliable PHCk

attempt, based on all the information available at the EHS. h transmission. This, in turn, motivates the use of an autmmat
particular, the acknowledgement (ACK) or negative acknowkdge- repeat request (ARQ) protocol, as it is resilient to channel
ment (NACK) messages received provide the EHS with partial variations and is known to be energy efficient [1]. Moreover,
information about the channel state. We solve the problem of 4 ey et retransmissions and power control are already egabl
finding an optimal power control policy by casting it as a partally . L

observable Markov decision process (POMDP). We study the N present-day low power.commumcatlon standards such as
structure of the optimal power policy in two ways. First, for the the IEEE 802.15.4 [2], which makes schemes based on them
special case of binary power levels at the EHS, we show thateéh readily suitable for implementation.

optimal policy for the underlying Markov decision process (MDP) Transmit power management in EHS nodes has been stud-
when the channel state is observable is a simple threshold lxy ied in [3], with deterministic energy harvesting models. A

in the battery state. Second, we benchmark the performance B ili iniecti del. i hich th de h i fixed
of the EHS by rigorously analyzing the outage probability ofa ernoufli injection moael, in whic € node harvests a fixe

general fixed-power transmission scheme, where the EHS uses@mount of energy with some probability or does not harvest at
a predetermined power level at each slot within the frame. all, was proposed in [4]. Several different performancerivgt
Monte Carlo simulation results illustrate the performance of the  for EHS have been considered in the literature, including-mi
POMDP approach and verify the accuracy of the analysis. They imizing the transmission time [5], maximizing the shontrte

also show that the POMDP solutions can significantly outpedrm .
conventional ad hoc approaches. 9 youlp throughput [6] or the quality of coverage [7], and throughpu

Index Terms—  Energy harvesting sensors, power control, ARQ, Optimal and delay-optimal policies [8]. The problem of powe
retransmission, POMDP. management was formulated as a Markov decision process
(MDP) in [7], [9], but these works either ignored the channel
variability [7] or considered it as perfectly known [9]. Fuer,
. INTRODUCTION none of the aforementioned works considered the outage
Wireless energy harvesting sensors (EHS) operate usim@bability as the performance metric, or exploited theliaitp
energy harvested from environmental sources such as the sirannel state information (CSI) at the transmitter avéglab
wind, vibrations, etc. Due to their promise of a potentiallyhrough the link-layer ARQ feedback messages from the
infinite lifetime, they are fast emerging as viable optioos f destination, in designing the power control policies.
sensing-related applications ranging from inventory ng@aa  In this work, we consider an EHS node that transmits pack-
ment and surveillance to structural health monitoring ifidsu ets to a destination using an ARQ-based packet transmission
ings, bridges, and vehicles. However, due to the sporadic astheme. In eacflame the EHS can make up t& attempts to
random nature of the harvesting process, energy managemearismit a packet. After every attempt, the node receivexan
becomes critical to ensure continuous and reliable omerati knowledgement (ACK) or negative acknowledgement (NACK)
these nodes. The energy replenishment process of the hatorassage, depending on whether the packet was successfully
phenomena, the time-varying nature of the wireless chanmeteived or not by the destination. The ACK/NACK messages
and the energy storage constraints of the node all need todpre assumed to be received without error at the EHS. In case
taken into consideration when designing efficient transiois a NACK is received, it retransmits the packet, provided & ha
strategies. Further, transmission policies for EHS neeshto enough energy to do so. If the packet is not successfully-deli
isfy the constraint oenergy neutralityyhich mandates that at ered by the end of the frame, it is declared to be in outage. The
_ _ N outage probability, which is defined as the average fraation
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transmission attempt, based on the current and past infeoting policy and the ML-estimation policy, to design the
mation available at the EHS. For example, one option is power control policy for the EHS.
transmit at low power at the start of the frame, and succelssiv  To gain further insights about the proposed solution, we
increase the transmit power each time a NACK is receivestudy the structure of the underlying MDP that results when
In case the channel happens to be in a good state, the initied channel is fully observable. When the EHS is restricted
attempt would succeed, saving power for future transmissioto employ a binary power control policy, we show that the
On the other hand, since failed transmission attempts aregtimal policy is a threshold policy in the battery energy
waste of energy, one could transmit at a high power in tistate, i.e., the EHS transmits if and only if the battery gper
first attempt, and, in case a NACK is received, choose to indevel exceeds a threshold. This not only reduces the search
an outage by not transmitting and thereby saving the powamplexity for finding the optimum power policy, but also
harvested over the rest of the frame for future transmissioprovides easily implementable policies.
At first glance, it is not intuitively obvious as to which ofetbe Finally, we benchmark the proposed solutions against other
options would offer a better outage probability perform&ncsolutions proposed in the literature [15]. To this end, we
Therefore, a systematic approach is essential. rigorously analyze the outage probability performancédete

In this paper, we address the problem of transmit powapproaches under a quasi-static, block fading channel. The
control with retransmissions by formulating it as one of makanalysis generalizes that in [15] by allowing the EHS to
ing optimal sequential decisions. The ACK/NACK feedbackmploy arbitrary power levels for each retransmission of a
messages implicitly provide the EHS with partial CSI, whiclgiven packet. The theoretical expressions are useful imund
can be exploited in deciding the transmit power level fastanding the critical dependence of the outage performance
subsequent transmission attempts. Since the CSI is only p@e power control policy. Through simulations, we illuséra
tially available at the EHS, we cast the problem as a paytiallhe superior performance of the POMDP over fixed-power
observable Markov decision process (POMDP) [12]. Our focylicies, as they optimally tune the power control policy
on ARQ-based packet transmission and on exploiting th& a function of the current state and the past information
resulting partial observability of the channel using theMA@P  available at the EHS. For example, to achieve the same outage
framework makes our study fundamentally different from thgrobability, the POMDP solution requires only ab&0t80%
past work that employs decision theory to design transorissiof the energy harvesting rate required by the scheme in [15].
policies for EHS [7]-[9], [13], [14]. The organization of the paper is as follows. Section Il iatro

The rigorous formulation shows how to optimally handleluces the system model and the problem definition. Section Il
the following key trade-off that arises in the design of ARQresents the POMDP formulation of the power management
protocols for EHS nodes. Increasing the transmission powsioblem. Section IV discusses the approximate solutions of
improves the odds of successful packet reception, but siraihe POMDP. Section V analyzes the outage probability per-
energy from the battery and decreases the probability thatmance of the EHS with ARQ transmissions and a given
there will be sufficient energy to deliver future packets.t®& power control policy. Section VI presents simulation resul
other hand, a conservative approach of transmitting at a lewd concluding remarks are offered in Section VII.
or minimal power could lead to packet outages and wastage of
energy if energy arrivals continue to occur after the battets
full. Further, the history of transmit powers and corresting
ACK/NACK messages, the time correlation of the channel, Consider an EHS node that wishes to send a measurement
the statistics of the energy arrival process, and the lyattgracket of size bits periodically, in a frame of duratidfy,, s,
capacity. can be utilized in choosing the transmit powee Tho a destination, over a time-varying wireless channel.hEac
POMDP framework uses all of the available past informatigpacket transmission attempt happens durirsipaof duration
to optimally manage the power available at the EHS, subjetf s, which includes the time for sending the packet and
to the constraint of energy neutrality. To the best of oueceiving an ACK from the destination. Hence, the node can
knowledge, this is the first time in the literature that powenake at most< £ |T,,/T,| attempts to transmit the packet
management in EHS with ARQ-based packet retransmissieithin the frame, wherd | denotes the floor function. If the
has been studied in the POMDP framework. EHS is unable to deliver the packet within the frame duration

The main advantage of the POMDP formulation is that & measuremerdutageoccurs.
allows one to choose from a gamut of available techniques forln a slot, the receiver may fail to decode the packet if the
finding an optimal and also near-optimal energy manageméiiS node does not have sufficient energy to transmit, or if
policies. Due to the large size of the state space, the extw transmitted packet is corrupted by the channel or ndise a
solution to the POMDP at hand turns out to be compthe receiver. The following ARQ protocol is assumed at the
tationally infeasible. Further, our problem differs fromet link layer. If the EHS receives a NACK from the receiver, it
classical POMDP due to the mixed observability of the statetransmits its packet until it receives an ACK, or it rung ou
process. The CSl is partially observable through ACK/NACKTf energy, or it is time to transmit the next packet. If it rizes
messages, whereas the battery energy level and transmissio ACK, the node stops transmitting and just accumulates the
index which also form part of the state description, areyfullharvested energy during the rest of the frame. A finite energy
observable. Hence, we adapt two popular and computationdilffer (e.g., a battery) is used to store the harvested gnerg
efficient suboptimal solutions to the POMDP, namely, thand it is assumed that there are no storage inefficiencies in

Il. SYSTEM MODEL
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Our goal in this section is to sequentially decide on the
optimum packet transmit power level§Ey, E4, ...}, based
Fig. 1. Transmission timeline of the EHS node fir = 4, showing on the transmission index, battery energy level, and theryis
the random energy harvesting procgsg and periodic data arrivals of transmission energies and ACK/NACK messages received,
(T). The marker “X” denotes slots where the EHS does not transmig minimize the long term expected outage probability.

By convention, in a given slot, both the energy harvested thed The POMDP formulation naturally equips the EHS to
energy already present in the battery are assumed to belaleail

for data transmission by the EHS. For example, in 8lothe EHS €Xploit the time correlation in the wireless channel, arehde,

harvests energ¥.; this energy, along with the energy in the batteryve consider two channel models: the correlated channel mode

at the end of slo2, equals the energy’s used by the node for and the block fading channel model. In both cases, we need

transmitting the data packet. Hence, the EHS is left with nergy  the state space to be finite. To facilitate this, we disceettie

in the battery at the end of sI&t channel intoN levels, 1, . ..,vx. In the correlated channel
mode] the channel is modeled as the finite state Markov

the buffer. Apart from the ACK/NACK, no CSl is assumed t&hain (FSMC) shown in Fig. 2, with known channel transition
be available at the EHS. Figure 1 illustrates the timeline BfObab'“t'eé Piit1, Pii1 and P, ;. Such a first-order model
events, showing the sporadic energy injections, batteeygan 'S known to be.a(.:curate fqr packet-level_stud|es [18] and in
evolution, and the packet transmission powers. cross-layer optimization with slowly-varying chr_mnel@l,l

For the energy harvesting process, an independent aagl- The channel levels,, ...,y and the transition prob-
identically distributed (i.i.d.) Bernoulli model is congred, apilities can be computed based on the underlying fading
in which an energyE, is injected into the EHS node at the_ollstrlbunon and Doppler freguency, following the proceslu
beginning of every slot with probability, and with probability 1" [21]; [22]. In theblock fading channel modethe channel
1 — p, no energy is harvested. This model is motivated Id§ assumed to remain fixed for the duration of a frame, and
switch-based harvesting mechanisms [4]; a similar model f6h@nges independently and identically from one frame to the
energy recharging was also considered in [16]. Other mod8@Xt: This assumption is valid when the channel coherence
for the energy harvesting process include the leaky-buckipe equals the frame duration, due to which, the initialkgac
model [3] and the Markov model [17], etc. While the Bernoulifransmission and all of the re_tr_ansmlssmn _attempts see the
model is simple, it does capture the sporadic and rand&@me channel state [15]. To facilitate comparisons betureen
nature of energy availability at the EHS and facilitatesgsia. WO channel models, we assume that the stationary disbibut

Let B,, denote the battery energy level at the beginning &f the quantized channel is the same for both the correlated
the n'" slot, and letE, < B, denote the energy used forand block fading models. _ _ . .
packet transmission. The battery energy itself gets régfied R_ecaII that the channel state_ in a given slot is only paytiall
whenever the node harvests energy, and, consequentlys o&@ilable at the EHS transmitter through the ACK/NACK

the following Markovian evolution: messages. Hence, we cast the sequential decision problem in
a POMDP framework. The POMDP formulation consists of
By — {miﬂ (Bn+Es— Ep,Bmax) , With probabilityp the following components:
" By — FEn, with probabilityl —p a) State SpaceThe finite set of states denoted Sy=

where B..x denotes the battery capacity. The next sectiolr% x G x K xU, where

presents the outage analysis of the EHS, for a power policy® B é {0,1,..., Bmax} is the set of battery states, nor-
specified as a function of transmission index. In the remeaind ~ Malized with respect to the minimum transmit enefgy
of this paper, we normalize all energies with respect to Recall thatBmax is the battery capacity.

a minimum possible transmit energy, which s typically lin this paper, for convenience, we use the notatidghs, and P.
imposed by the lower end of the linearity range of RF ampilifigg; ' ; 5 UG

] ” terchangeably, to represent the probability of goingrfrohannel statey;
on the EHS node. Thus, the battery energy level is considered;.
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¢ G is the set of discrete channel states. Under the chanki¢henk = K — 1, it can be shown that

model explained abovej £ {y1,72,..., 78} bl I
« K is the set of possible packet transmission attempt) ((b,u),a, (b',u’), K —1,7) = {77( ab), u'= 2)
indices within a frame. Since the EHS can make at most 0, else
K attempts in a framelC = {0,1,..., K —1}. In the Also, whenk # K — 1, it can be shown that
sequel, we usé € K to index the slot count within a
frame, andn € {1,2,...} as an absolute index for the ¢ ((b,u),a, (V' ,u'),k,v) =
sIotAcount, which increments indefinitely with time. (b, a,b), W =1u=1
o« U = {0,1} is the set ofpacket reception statesThe , ,
packet reception state takes the valughen an ACK is (b, a,6)(1 = Pe(v,aE)), v'=1u=0 ©)
received by the EHS, and sotherwise. At the beginning (b, a,b')Pe(y, aE), w=0u=0
of the frame, i.e., when the packet transmission attempt 0, else.

indexk is 0, the EHS node is always in packet receptiop| - o ;
8 \ ere, P.(v,aFE) is the probability that a packet transmitted
state(, since an ACK has not yet been received. If th (7, aE) | P iy P !

. fullv decodes th i ket and tnpoweraE will be received in error when the channel state
receiver successiully decodes the current packet and;a ~. This probability depends on the modulation and coding

ACK is received by the EHS, the packet reception Stal®heme used. For example, with uncoded binary phase shift

changes td for the rest of the frame. Irrespect_lve of thE1‘<eying (BPSK) transmission, the packet error probabildy i
system state at = K — 1, the packet reception state

) . iven b
is reset to0 at the next slot, as it corresponds to thg y
beginning of a new frame.

. . PE(FYaaE):l_ 1_Q 27aE ) (4)
b) Observation Space: The observations are the Ny

ACK/NACK messages received by the EHS node after eaci}] . . . Co .
o . . WhereQ(-) is the Gaussian tail functiod, is the packet size

packet transmission attempt. The observation space igiite fi in bits. andN. is the noise power spectral densit

set O £ {ACK,NACK}. Since the ACK/NACK messages ' 0 P P Y-

; : The expression in (3) is obtained by tracking the proba-
are assumed to be received error-free, the observatioayslw, ... . . .

) bilities of the following events: i) Whether energy has been
match the packet reception state of the system.

. _ i harvested in the current slot or not; ii) The packet receptio

€) Action Space:An action a by the EHS node cor- giate of the system: and i) The probability of successful

responds to sending a packet at power levél. The ac- ket reception given the channel state and action. Ao, t
tion space is the set of possible actions, and is denoted

n X ) é%ression in th&e = K — 1 case arises because the packet
A={0,1,..., B}, with B € B representing the battery levelyocontion state always resets to zero at the end of the frame.
in the current slot.

For example, to get the first term in (3), note that, when the
d) State Transition FunctioniLet two arbitrary states EHS has already received an ACK, it transits from battery

in S bes £ (b,y,k,u) and s’ £ (V/,7/,k,u). The state stateb to b+ L — a upon taking an actidna if it harvests

transition function is the probability that the system ttan  energy (which occurs with probabilify). If it does not harvest

state s, takes an actioru, and lands in state’. Since the energy (which occurs with probability— p), it transits to the
channel state evolution is independent of the packet rexeptsiated — q.

errors at the receiver, the state transition function ddpem Under the block fading modef[ (s, a,s’) is given by
the product of the probability of the channel state trangiti , , , .
from v to 4/ and the probability that the battery and packer (s,a,8") = (K, k) C(v: 75 K) ¥ (b, w) s @, (Vs ) Ky )

reception state transits froifd, u) to (¥’,u’) when the EHS . ®)
node takes actiom and the channel state ig. Under the with ¢(,~/s k) = 6(7,7), k#K-1 (©)
correlated fading channel model, it is given by Tyt s else.

, , ., Here, ., represents the stationary probability of the channel
T (s,a,8") = 6(K' ky) Py oy ((b,u) s 0, (Vs 0') k) (D) state+’. In contrast with the correlated fading channel, the
¢(y,7';k) term in the above equation captures the fact that
wherek, 2 (k +1)mod K, §(k', k) is the Kronecker delta the channel remains constant for the duration of a frame and
function, andP, . is the channel transition probability, asyransitions in an i.i.d. fashion from one frame to the next.
defined earlier in this section. Here, the tef®’, k) captures e) Observation FunctionThe observation function is the
the fact that the packet transmission index always incmaﬁﬁrobabinty of observing an ACK or a NACK given the current
one at a time until the end of the frame, where it reset8.to state and action. Since this probability depends only on the

Also, ¥ ((b,u),a, (V',u’), k,~) represents the probability thatcurrent channel state and action, it is given by
the EHS node starts from battery statand packet reception
P (NACK|a,7) = Pe(v,aE)

stateu, takes an actiom, and lands in the stat@’, v') when
the current channel state and packet transmission index are P (ACKla,v) = 1—P.(v,aFE) @)

and k, respectively. It is given as follows. Let o ) )
°Note that, in this example, obviously equal® since the EHS has already
received an ACK. An arbitrary is incorporated here for the sake of generality

n(b,a,b') 2 ps(t/, b+ L —a)+ (1 —p)s(t/,b—a). in the expression.
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where P, is packet error probability as defined in (4). The solution to the MDP when the system state is fully
f) Cost: Let s £ (b,v,k,u) be the state of the system.observable yields an optimal poligy,,p that maximizes the
The expected immediate cost is defined as expected long-term reward defined in (9). The optimal policy

is the solution to the following Bellman equation [27]:
P.(v,aE), a<bu=0
— _ _ * * . H !/ * !
c(s,a) = é SLS: bu=0)or(a#0,u=1) A+ h*(s) = i (s, a) + %T(s,a, s Vh*(s')
; (10)

The immediate cost of is used to preempt the EHS fromforr?" 5 E_S' \Ilvg_?fre)\* IS Ithe optlhmal average cost agf(s)
using a nonzero energy to transmit a packet when it has eylreé%t e optimal differential cost when starting at state-ere,

received an ACK, or from attempting to use more than tH’(\-flit,h a slight abu§e _Of notatio.n,. the battery energy level is
energy available in the battery. written asB(s) to indicate that it is one of the components of

S , . the system state.
.g.) Objective: A power control pqllcy m describes a The value iteration method [12] can be used to solve the
decision rule that determines the action taken by the EH&. ) o . . .
. . . .Bellman equation (10). This involves iteratively solving
It maps the history of actions and observations to the action
to be taken in the current time slot. The goal here is to find a B ) , ,
policy that minimizes the expected cost incurred by the EHS Jer1(s) = aeAasB(s) c(s,a) + Z T(s,a,5)Jk(s")

node over an infinite time horizon, which is given by s'€S (11)

1 m for all s € S, whereJ;, is the value function at the™ iteration,
Jr(s0) = lim —B. Y e(Sn,an)|So = s0 (9) k=0,1,.... It can be shown that [27]
n=1

m—oo M,
] _ lim Je(s) =\, VseS. (12)

wheren € {1,2,...} denotes the slot indexs,, is the state k—oo Kk
sequencey,, is the action sequence, anglis the initial state. In practice, it is standard to use relative value iteration t
The expectation in (9) is over the distribution of the statgolve the MDP, which is a numerically stable version of the
sequenceS,,. The next section discusses the techniques fabove procedure. We refer the interested reader to [27] for
solving the POMDP considered in this work. a comprehensive treatment of relative value iteration amnd i
convergence properties. The convergence is guaranteed, pr
vided that one of the states is visited with positive proligbi
at least once within the first slots, for some integem, for

Recall that in the POMDP formulation above, the systewil initial states and all possible policies. In our probleiris
states is not fully observable. In particular, the channel stateequirement is trivially satisfied, and all states are readh
component ofs is unknown to the EHS, while the batteryfrom any given state in a finite number of steps, for all pdssib
state, slot count within the frame, and the packet receptipnlicies. We have found that this algorithm converges dfia
state are observable. However, given the history of acmas and quickly for the problem at hand. Upon convergence, we
observations, a so-callduelief state3(y) can be computed, obtain the optimal action as the argument that minimizes the
that represents the probability that the channel is in stalids  right hand side in (11). We denote the solution to the MDP
known that the belief state is a sufficient statistic for firgli obtained using relative value iteration a§pp(s).
the optimal policy [23]. The belief state can be updated at Next, we present a structural property of the solution
the end of each slot, based on the previous belief state, thgp(s). Establishing structural properties not only provides
current observation, and the state transition functioreriTh useful insights into the form of the solution, but more im-
the solution to the POMDP can be found as the solution ofg@rtantly, helps in reducing the computational complexity
fully observable Markov decision process (MDP) on the lelidinding the optimal solution.
states [12]. Although several exact algorithms [12] fovsad
the belief MDP exist, these algorithms are computationalfy- Structure of the MDP Solution
feasible only when the cardinality of the state space is ef th In order to study the structural properties of the MDP, we
order of ten [24], [25]. Even approximate solution methodsan on the theory of discounted cost MDPs. We exploit the
can only handle a state space with cardinality of aboutfact that the average cost MDP under study in this paper is
hundred [26]. In our case, the state space is much large limit of a sequence of discounted cost MDPs, with the
as it is indexed by the number of battery energy levels, tldgscount factorr — 1 [28], [29]. The discounted long term
number of channel states, the packet transmission indek, aost associated with policy and discount factor € (0,1)
the ACK/NACK state. As a result, finding an exact or even as given by
approximate solution to the POMDP is computationally infea m
sible. Hence, in this paper, we explore two computationally.J”(so) = lim sup E, Zu”‘lc(Sn,an)
efficient suboptimal solutions for the POMDP. For this, we m—o0 n=1
first describe the solution to the MDP that is obtained when tirhe optimal discounted cost functiol” (s¢), is given by
system state is fully observable. Both the solution teciesq ” ) 5
we investigate rely on solving this underlying MDP. V¥(s0) = ,T'QIdeJﬁ (s0), (14)

IV. SOLUTION TECHNIQUES

SO = 801 . (13)
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whereIlgy is the set of all stationary deterministic policiesmessages. Therefore, it is sufficient to maintain the belief
It is known that for all discrete state MDPs with boundednly the channel state component of the system state, denote
cost, an optimal stationary deterministic policy exist8][3he by 5(v), and use it to approximately solve the POMDP. When
optimal discounted codt’™”(s) satisfies the Bellman equationnew observations are obtainetl,y) is updated as follows.
for optimality, which is given by Let o, € O be the observation at time slot, and
le® 3,(y;) denote the belief that the channel state at
. time slot n equals+y;, given the historyF,_; of actions
and observations up to time — 1. That is, 8,(y;) =
P {channel state at time slet= v;|F,_1}. In the corre-
(15) lated fading model, the belief stai8,(v;) can be updated
eusing Bayes'’ rule as

ﬂ ( ) o Zipiy'YjP(On71|a/n717’Y’L‘)anl(’y’i)
s 22 Py Plon—1lan—1,7:)Bn-1(7i)
_ for j = 1,2,..., N, where P(ola,v) is given by (7). In
wr1(s) ZGGAWL'QB(S) {C(Sﬂl) tv Z T(s,a,8)V/(s") - the block fading modelp,, ,, in the above is replaced by
o s'€S (16) ¢(vi,v4; k) as defined in (6), wherk s the transmission index
of the packet within the current frame.
The final task is to use the belief state of the charihél;)
QY 1(s,a) & c(s,a) +v Z T(s,a,s")V(s"). (17) obtained above to convert the POMDP to an MDP, and use
s'eS the solution of the MDP as an approximate solution for the

The threshold structure of discounted cost optimal paici€ ©MDP- To this end, we consider two popular computationally
can now be established for the important special case §fiCient approaches. o

binary actions, i.e..A = {0,1}. Binary actions correspond 1) Maximum Likelihood (ML) Heuristic [32]Here, at eagch
to on-off power control at the EHS, where the node decid§i®t 7 we find the most probable channel statg. =
whether or not to transmit a packet based on the history @;fgemgaxﬁn(v), of the system. Then, the ML state of the
pagkgt attempts gnd gorresponding_ ACK/NACK observatiorlglgtem is defined agy, 2
This is summarized in the following theorem. The proo

which is shown in Appendix A, shows that’, (b, v, u, k], a) * packet reception state, respectively. The ML heuristichoet

is submodular in(b, a), for some initial condition. This iS 5y4nts the action corresponding to the solution of the MDP
_suff|C|ent to estab_llsh_that the discounted cost optimaicgol | i, the ML state as the solution of the POMDP. Thus,
is a threshold policy in the energy buffer statedue to the

convergence of (16) for all initial conditions [31]. pme = Hypp(smL), (19)

V¥(s)= min {c(s, a)+v Z T(s,a,8)VV(s)

acA,a<B(s) s

The optimal actiona), is the action that satisfies (15). Th
discounted cost MDP can be solved using the value iteration
algorithm given by

(18)

Let

(b,L, k,u), whereb, k and u
re the current battery, packet transmission attempt iadex

Theorem 1. When the action set is binary, i.e4 = {0,1}, where, as mentioned earligry,5p(s) denotes the solution to
for any discount factorr € (0, 1), the optimal policy is a the MDP obtained by solving (10).
threshold policy in the energy buffer state. That is, giviem t 2) Voting Heuristic [33]: Here, for a giverb, u, andk, we
channel gainv, transmission index, and packet reception consider the set of statés, ~, k, u), fory € G. A given state in
state u, there is a thresholdBiesHy, k, u) that defines the this set, say state votes for an actiom, as determined by the
optimal policy: the node transmits the packet if and only dptimal policyufpp(s) of the underlying MDP corresponding
B > Binrest(7, k,u), where B is the current battery level. to that particular state. In any given time sigtthese votes are
The simplicity of the threshold policies makes them av_velghed by the component of the beh_ef state corresponding
. . . 0 eachy € G, and the sum of the weighted votes for each
tractive for implementation on power and hardware resource,. . : . i
E ! action is determined. The action with the largest sum, d=hot
starved EHS nodes. Determining the optimal threshold rg- is selected as the optimal action:
quires solving the underlying MDP, but this is an offline star Y Hvoting, P '
that does not impose a computational burden on the EHS. [ivoting = @rg mMax Z B ()8 (pinp(s), a), (20)

Moreover, the fact that the optimal policy is a thresholdgol a€A

s=(b,v,k,u
in the battery state can be used to reduce the computational (vgg :
complexity in finding the optimal policy. where, as beforej(z, a) is the Kronecker delta function.
We next discuss two computationally efficient suboptimal Note that, in order to implement the above policies, the main
solutions to the original POMDP. computational burden on the EHS is in updating the belief
state using (18). Further, based on the belief state, the nod
B. Solution of the POMDP needs to find the ML state (eq. (19)) or the action with the

Recall that, in our system model, the battery state, pac@gheSt number of votes (eq. (20)). The MDP policy itself

reception state, and the transmission attempt index ahg fufan be implemented as a simple look-up table, and hence

Obser\(able’ while .the channel state component of the SYSteM\ote that we use3(vy) to denote the current belief state of the channel
state is only partially observable through the ACK/NACKand 8, (v) to indicate the belief state of the channel at time slot
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Fig. 3. The block fading channel model.

does not impose a significant computational burden on the
EHS. Precisely accounting for the energy cost involved & th
computations and storage is beyond the scope of our work.

V. OUTAGE PROBABILITY ANALYSIS

In this section, we consider the outage analysis of the EHS
for the block fading channel model. Here, the channel remain
constant throughout the frame, but changes in an i.i.didash . . . .
at the beginning of the next frame, as shown in Figure 3.

In this case, thepower control policyspecifies the packet @ e o o
transmission power as a function of the transmission index ) ) )
and the current battery state. In the foregoing analysis, we . v
derive the outage probability of a given fixed-power control
policy, which not only generalizes the result in [15], busal ,

. Fig. 4. DTMC for the power control policy.; = 1,Le =2,Ls =3,L4 =
serves as an important performance benchmark. 4, and K = 4. The energy states are normalized with respedt'to

We consider the following general class of power control
policies. In the first slot of a given frame, the EHS sends the
packet at a poweL, E if the current battery stat®; exceeds start of the(m+1)™ frame. An outage occurs in the™ frame
Ly, otherwise, is sends the packet at a powegr In general, if the packet has not yet been successfully received evéreat t
at the k™ attempt to transmit a given packet, the EHS sendsid of the frame. Sincé, is independent of the channel
the packet at a poweL,E if the current battery statds,  state in[mK, (m + 1)K], the outage probability as a function
exceedsLy; otherwise, it sends it at a powe?,. This is a of K > 1 can be written as
generalization of the transmit power policy consideredlis]|
as settingL,; = L, = --- = L results in the single-power Pout(K) = > w(i)By {Pout (K |i, 7,7 =0)},  (23)
transmission scheme considered there. i

With the above power control scheme, the evolution of thehere #(i) is the stationary probability that the node has
system is a Discrete Time Markov Chain (DTMC), as showenergyiE at the beginning of the frame ar@hy(K|i,~,7) is
in Figure 4. The state at timeis denoted byU,, B,,), where the outage probability conditioned on the channel gaithe
B, is the battery state, as before, alig represents th&CK battery state F, and the ACK state, at the beginning of the
state The ACK state of the EHS node is defined as m™ frame. Also,IE, {-} represents the expectation over the

—1, ACK received dislilributi(])Dn (EfKtT.e chf);m_nel gain. - _ "
A o ow, Pou(Kl|i,y,r) is given by the recursive relation

Un =140, Start of transmissign (21) over K in (24) at the bottom of the next page. In (24),

i, i NACKs received; € {1,---,K}. v 2 min(L,,i + L), ¥® £ min(L,,i), and P,(v, E)

In this section, we assume that the battery capacity Ifs the packet error probability, as defined in (4). The terms
infinite, so B, € {0,1, - ,00}. However, the extension to N (24) are obtained by tracking the battery transitionst tha
the case of a finite battery capacity is straightforward. A¥Ppen under different possible energy harvesting andepack
shown in Figure 4, the EHS does not transmit in the franfEansmission events, and accounting for the outage prbyabi
whenU, = —1, as an ACK has been received. Under mil@f the packet over the remainirig —1 attempts. For example,
conditions on the transmit power policy, it is easy to shoat thif battery energy leveli at the start of the frame exceeds
the DTMC is irreducible and positive recurrent. Now, in etat>,—1 L+ regardless of the energy harvested, the EHS node

(i, B,), the packet transmission power is given by can make all attempts to transmit the packet, at power levels
_ Ly, Lo, ..., Lig. Hence, a packet outage occurs only if All
Pi.p,)=min(L;E, By). (22) transmission attempts fail, and is given the product ofrthei

m probabilities. Note that we have omitted the dependence of
¥ and ¥ on+ andi for notational convenience.

The stationary probabilities can be obtained by solving
f the balance equation

The m™" frame consists of slotsi K, mK +1,..., (
1)K — 1. The ACK state isU = 0 at the start of the frame.
At the end of each slotl/ is incremented byl if a NACK
is received, otherwise it transits 16 = —1 for the rest o
the frame (i.e., when an ACK is received). Irrespective @ th .y — N" E [Pr(B — j|Bnr =i (3. (25
value ofU at the end of the frame, it always resetstat the ) 21: [Pr B+ =3 1B = i,7)] (@), (29)
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where the expectation is taken with respect to the disidbut 5) ComputeP,(K) using (23).

of 7. To obtain P(B,11)x = jlBmx = i,7), We USe  The simulation results in the next section illustrate that t
the state transition probability matri&(v), whose elements gpoyve analysis brings out the importance of tuning the imétns
represent the probability of a transition frafi j) to (r,s). It power control parameters in optimizing the EHS link perfor-
is defined as mance. Moreover, by comparing with the POMDP approach
GLf = P(Bp1 = j,Uns1 = 8B = i,Up = 1,7).  (26) presgnte.d in the previous section, we show how the PQM_DP
solution improves performance over fixed-power transrorssi

It is easy to show that, for =0,1,..., K — 1 andi > 1, policies by exploiting all the information available at thelS.
Gi7 =
' o VI. SIMULATION RESULTS
pP. (v, b)), j=i+L—0W g=r+41, _ . . _
p(1 — Po(y, TM)), =it L— O 5= 1, In this section, we pres_ent simulation resm_JIts that demon-
D (v 32 i g® 1 strate the performance improvement obtainable from the
(1= p)Pe(y, ), ) j o Z N ) s=r+1 POMDP approach compared to ad hoc policies that only admit
(1=p)(1 = P(y,¥®)), j =i — 0P s = —1, a fixed transmit power level [15]. We also validate the outage
0, else probability analysis in Sec. V. The channel from the EHS node

(27) toits destination is assumed to be Rayleigh faded in thekbloc
fading case, and with the time-variation following the plapu
Jakes’ spectrum in the correlated fading case. The noisepow

Grs — spectral density is taken a&, = 1, and the packets are

Y W o W assumed to be uncoded BPSK modulated it 10 bits.
ple(7, ¥V), j=itL-¥s=r+1, The value ofE, follows from the energy budget requirement
p(1 = Pe(v,¥W)), j=i4+L—0W 5=—1, (28) ©Of @ typical wireless sensor node. For examgilg,= 15 dB

Forr=0,1,...,K —1 andi =0,

(1-p), j=ti,s=r+1, corresponds tol = 2, i.e., twice the energy required to
0, else transmit a packet, with a transmit power b8 mw, carrier
) frequency of2 GHz, slot duration off;, = 10 ms, distance
Forr = —1andi > 0, d = 10dy, whered, = 10 m is a reference distance, a path
P, j=i+L,s=—1, loss exponent 088.9, an additive noise corresponding to a
Grr={(1-p), j=is=—1, (29) temperature o800 K, and a bandwidth ot MHz [34]. We

considerK = 4 attempts per packet, and all the simulations
are run for overl0” slots.

The statesi, K), Vi, are absorbing states. The above transition a) Linear Power Algorithm:Recall the general power
probabilities follow from the given power control policyné policy considered in Sec. V. During thi# slot within a frame,
track the following independent events: i) Whether energhe packet is transmitted at powér; E, provided there is
was harvested in the slot, which happens with probabjlity enough energy in the battery and an ACK has not yet been
ii) Whether the transmitted packet was correctly decoded bgceived. Let us represent the power policyas Ly Lz L.

0, else

the receiver, which happens with probability- P, (v, r). For example,L;, =i, for i = 1,2,..., K, represents dinear
We can now summarize the procedure for computing tig@wer increase policy. Alsg2 2 2 2] corresponds to the fixed-
outage probability: power retransmission scheme considered in [15], where all
1) Compute GX (), where G(v) is the state transition four transmission attempts are made at a power g2l
probability matrix in (26). The outage probability performance of the general power
2) Using the entries ofa¥ (), compute the probability policy is shown as a function of the energy harvesting proba-
P Bty = j|Bmi = i,7,7 = 0) as: bility in Fig. 5. In the legendSi mandAnal y correspond to
K the results obtained from simulations and from the anaytic
Z P Btk =J, U1k =U Bk =1, Unk =0,7). expression in (23), respectively. In the region marBetl t er
u=—1 per f or mance, the linear policy outperforms the scheme

(30) considered in [15], showing that fixed-power retransmissio
3) Obtain the stationary probabilitiesj) by solving (25). schemes, are, in general, suboptimal. Thus, it is possible t
4) Obtain Poy (K|i,y,r = 0) from (24). tune theL;s to improve the outage performance. Also note

pPe (7, Y WE) Pt (K —1]i + L — W y,r+1)

+(1 = p) Pout (K — 1]i,y,r+1), ifi=0

Pout(Ki,v,r) =  pPe (v, ¥WE) Pyt (K —1]i + L — ¥ y,r +1) (24)
+(1=p)P. (7, UE) Py (K —1|i = 0@ 4,r+1), if0<i<YE L,
., p.(v,L,E), else.
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the close agreement between the simulation and the aralytic : Analy [
results, which validates the analysis. |

b) POMDP Solution:In the following, we compare the
packet outage performance of the algorithms in Sec. IV &gain
the conventional fixed-power retransmission scheme. Let th
fixed-power be denoted b¥,, and definelV = E,,/E,. For
comparison with past work [15], we assume th&t is an
integer multiple or integer fraction of/,. Figure 7 shows
the simulation results for the block fading channel casee Th
voting policy and the ML estimation policy perform almost
equally well, and they significantly outperform the fixedagw
retransmission scheme.

In the correlated fading case, the channel correlation is 10*3O 0‘1 0‘2 0‘3 0‘4 ' 0.5
assumed to follow the FSMC shown in Fig. 2. The parameters ' ' ' ' '
for the FSMC model are taken &, = 10 ms andf;T, = Energy harvesting probability (p)

0.03, where f; denotes the Doppler frequency. Figure 6
shows the threshold nature of the optimal policy of the fullgig. 5. Comparison of the linear power polic(= i,i = 1,2,..., K) and
observable MDP for the correlated fading channel, when tf fixed-power algorithm [15] with various fixed-power leefor K = 4,

. . . . L =2, and Es = 18 dB. In the legend, the numbers in the square brackets
action space is restricted to be binary-valued. Recall et  onrecent the packet transmit power levels for each of4thteansmission
optimal policy is characterized by a single threshdlglesn attemptsSi mandAnal y correspond to the results obtained from simulations
on the battery state, one for each combination of the chanrgé\d from the analytical expression in (23), respectivehthe region marked

L . . . et t er performance, the linear policy[1 2 3 4], outperforms the fixed-
transmission index and ACK states. From the simulations, W&yer retransmission schemes.
observe that the threshold decreases with transmissiax.ind
This is intuitive, since towards the end of frame, the EHS 1
must transmit even if it has a lower battery level. The policy
also tries to ensure that each packet is attempted at least on
towards the end of frame. This not only improves the packet 06
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outage, but also improves the belief state of the channel by S
collecting observations. < 04
Figure 8 compares the performance of the fixed and linear 02
power policies with that of the POMDP policies for the '
correlated fading channel. As before, the ML heuristic and 0
the voting heuristic outperform the other schemes. To &ehie 0

the same outage probability, the POMDP solution typically
requires only about0-80% of the energy harvesting rate
compared to the best fixed-power scheme. Also, we see that
the ML heuristic and the voting heuristic policies perform
nearly equally well. Hence, the ML heuristic policy is a
better choice for implementation on EHS platforms, since it 30
is computationally simpler.

Finally, Figure 9 shows how the outage probability varies as _ , o
g. 6. Correlated channel case: Optimal policy for the hyirection case.

a function of p with various battery capacities. In partiCUIarfl'lhé optimal policy is a threshold policy in the battery stdtere, K = 4,
whenB,.x = 0, the optimal policy is to transmit the packetinL = 4, N =7, E; = 15 dB, and Biax = 10Es.

slots where energy is harvested, and until an ACK is received

An outage does not occur if the EHS is able to harvest energy

and successfully deliver the packet in any of fieslots within  to explore two computationally efficient suboptimal sabus:

a given frame. The plot thus highlights the role of the bgttethe ML policy and the voting heuristic policy. The solutions
capacity in improving the outage probability. were based on the belief state of the channel and the solution

of the underlying MDP. We also derived structural results fo
the fully observable MDP in the binary action case. Thus,
the decision-theoretic approach adopted in this paper is a
In this paper, we considered the problem of power manageomising technique for the design of power management
ment for EHS nodes with packet retransmissions. A sequenpalicies for EHS nodes that need to operate under stringent
decision-theoretic framework was used to obtain outage optnergy constraints and yet achieve high reliability or tigio-
mal policies for the correlated channel. Since the chartag s put. We also benchmarked the performance of the POMDP
is only partially observable through the ACK/NACK messagesolution by deriving analytical expressions for the packet
we formulated the problem as a POMDP. Exact solutiormitage probability for the case of a block fading channeh\ait
were found to be computationally infeasible, motivating ufixed-power retransmission scheme. Simulation resulta/etio

123 (eeo®
S
‘W"“\(\@e‘f‘

VII. CONCLUSIONS

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.ol



This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available fattp://dx.doi.org/10.1109/JSTSP.2013.2258656

10

109

< <
z 20|
o 10— ° i
S o -
= =
& -%x= W =0.5 = -
qb)D - W =1 qb)D
8 [ [-0- w=2 S 102 }|{—e— B =0 \
5 =—fF— Linear power (Sec. VI) 5 E w—fe— Bmax = 5Eg
[ | —&— POMDP (Voting) p | | —&— Bmax = 10E;
—— POMDP (ML) | | —¢— Bnax = 15E5 ]
10—2 l l L L l l L L
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Energy harvesting probability (p) Energy harvesting probability (p)

Fig. 7. Block fading channel case: Comparison of ML and fieuristic Fig. 9. Correlated channel case: Increasing the battergoitypdecreases
solutions of the EHS POMDP against fixed-power transmisdionk = 4, the outage probability. Herd{ =4, L =4, N =7, and E; = 15 dB.
L=4,N =17, Es =12 dB, and Bpmax = 20E;.

10° is, since A = {0, 1}, Q¥((b.y,u, K, 1) — Qu([b 7., k], 0)
should monotonically decrease with In the following, we
consider only the case af= 0. Foru = 1, the possible action
set is restricted td0} and hence monotonicity is trivial.
Notation: Let V, ,(b) = VY ([b,7,u,k]) and
Vo (b) £ VY([V,4, ' K']). Similarly, let Q, .(b,a) =
Qn([b.v,u, k], a) and @, , (',a) £ Q(IV',y' ', k'], a).
Finally, let c(a) £ ¢([b,7,u, k], a). The simplified notation
above is obtained by dropping the dependence on the param-
eters that remain unchanged through the rest of the proof.
In the following, we consider the case corresponding to
—6— POVDP (ML) transmission at the end of the framé & K — 1) and
0‘2 0‘4 0‘6 0‘8 ] transmission at the middle of the framie£ K —1) separately,
' ’ ’ ' as their state transition functions are different.

Energy harvesting probability (p) End of Frame k = K — 1): We have

Fig. 8. Correlated channel case: Comparison of ML and vokiagristic QnJrl-,O (b, 1) - QnJrl-,O (b, O) = C(l) - C(O)

solutions of the EHS POMDP against fixed-power transmis&onk = 4, , / 1) v
L=4,N =17, Es = 15 dB, and Buax = 10E;. D Py {p {Vig 0+ L=1) = Vo (b+ L)}

|
k-
o

Al

107!

s =W = 0.5

s W=1

-9- W=2

=—fF— Linear power (Sec. VI)
1072 ——— POMDP (Voting)

Outage probability (FPyy)

vy eg

F(L=p){Vio(b=1) = Vo (b)}}- (31)
that the proposed POMDP solutions significantly outperform )
the existing fixed-power retransmission schemes. Extaasid O @n+1.0 (s,a) to be submodular i, a), we need the terms
of this work could involve considering other objective funcin (31) to monotonically decrease with Since the two terms
tions, such as maximizing the average rate by adapting the(31) are identical expect for a shift in by L, the value
modulation and coding scheme based on the ACK/NAchanction must satisfy the following sufficient condition:
messages, considering battery inefficiencies, and inotudi
other energy harvesting models. These different issuemipeo Vao (b=1) = Voo (b) 2 Voo (b) = Voo (b+1). - (32)

to offer interesting avenues for future work. Rearranging terms, we need to show that
APPENDIX Vio (0+1) = Voo (b) > Vo () = Voo (b—1),  (33)
A. Proof of Theorem 1 i.e., thatV,, o (b) has an increasing difference in We show

As mentioned earlier, due to the convergence of (16) for dHis using an inductive argument. First, note that one can
initial conditions, the discounted cost optimal policy Mdu always choosé/ o (b) = Vi ([b, v, u, k]) to have an increas-
be a threshold policy in the energy buffer stateprovided ing difference inb; an example is the exponential function.
Q% ([b,v,u,k],a) is submodular in(b,a), for some initial Assume thatV}Y ([b,~,u,k]) has increasing difference i
condition [31]. Hence, we need to show that, with suitabM/e now prove thavy, , ([b,v,u, k]) has increasing difference
initialization, Q¥ (b, v, u, k], a) is submodular in(b,a). That in b. In (17), letag, a1, a2 € A correspond to the optimal
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action in the statep—1,~,0, k], [b,7,0, k] and[b+1,~,0, k], a little manipulation,
respectively. Then,
@n+1,0 (b,1) = Qn1,0 (0,0)
Vat10(0+1) = Quni1o(b+1a2), (34) =¢(1) — ¢(0)
Vat10(0) = Qny10(ba1), (35) 4> APy {pP Vi (b+ L —1) =V, (b+ L)}
Vit10(b—1) = Qny10(b—1,0a0). (36) v'€g
o _ _ _ +p(1—P){V, , (b+L—-1)=V,  (b+ L)}
Substituting (34) through (36) in (33) with replaced with . P {V’ (b—1) =V (b }
n+ 1, we get the difference between the left- and right-hand- n,0 )=V, 0( ) )
side as +(1 - P) Va1 (b=1)=Vio(D)}}}- (42)
Following a similar procedure as for the end of franke=¢
n b 1, - n b7 ) . .. e
(@0 (b+1,02) = Qniro (b:01)) K —1) case, we obtain the following three sufficient conditions
— (@n41,0 (b, a1) = Qur,0 (b= 1, a0)) for Q..o (b, @) to be monotonically decreasing in
= (Qnt1,0 (b+1,a2) — Qni1,0 (b, az)) 1) Vo (b+1) = Vo (b) > Vio (b) = Vo (b—1).  (43)
+ (Qni1,0 (b,a2) — Qny1,0 (b, a1)) 2) Vo (b4+1) = Voo (b)) 2 Vi1 () = Viun (b—1). (44)
+ (Qni1.0 (b, a0) — Quaro (b,ar)) ) Vo1 (0) = Vo1 (b=1) >V, (b)) = V,0(b—1). (45)

—(Q, b,a0) — Qnitro(b—1,a0)). 37) Using a technique similar to that employed for showing (32),
(@10 (b:30) = Qnrro 2 (37 it can be shown that (43) and (44) hold. Hence, we focus our
The termQ,41.0 (b, a2) —Qni1,0 (b,a1) andQ, 11,0 (b, ap)—  attention on showing (45). As before, one can always choose
Qn+1,0 (b,a1) are non-negative due to optimality of actien the initialization Vg, (b)) = Vi'([b,v,u,k]) such that (43)
for state[b, v, 0, k]. Define to (45) is satisfied. Assume thaf, , (b) = VY([b, v, u, k])
satisfies (45).

A 2 Qui1o0+1,a2) — Quiro(ba), (38) We now use induction to show that,.;. () =
B 2 Qui10(b,a0) — Quiro(d—1,a0).  (39) Viia([b,v,u, k]) also satisfies (45), i.e., that
In order to show that (37) is non-negative, we need to prove (V41,1 (b) — Vig1,1 (b — 1))
that A > B. We lower boundA as follows: = (Vg1.0 (0)) = Vig10(b—1)) > 0.  (46)
A=v Z Py {1iay=13 {p (Vs o (b+ L) Since{0} is the only allowed action when = 1, we obtain
y'eg
Vio b+ L= 1)+ (=) (Vo ) = Vig =)} e @7 P 020D (a0 )= Vo 01
+1 {00} {p( no(b+L+1) "o (b+ 1)) =(@ni1a( ’b)_Q"“’l( _b’ i) 47
+(1_ )( (b—l—l )}} _(Qn-l-l,O(val)_Qn-ﬁ-l,O( - 7a0))7 (47)
for somea;, ap € A. In (47),a9 anda, denote the optimal
> P. o(b+ L b+L -1 1, ©0
’/Vzejg e {n ( + ) (b+ ) actions in stategb — 1,+,0, k] and [b,~,0, k], respectively.
Define P and @ as follows:
+ (1= p) (Vi (0) = Vi (- 1))} (40) N
P20, .11 (b0 ni11 (b—1,0 48
where the inequality in (40) is obtained by applying (33). PEQnt1.1(5,0) = Q1 { ); , (48)
Similarly, we upper bound3 to obtain =v Zng {p{Va 0+ L) =V, (b+L 1)}
y'e
B=v'Y" Po {Ljagry {p (Vio (b + L= 1) (1= ) Vi ) =V, (- 1)} (49)
W,GIQ o ) Q2Qn11,0 (b,a1) = Quyr,0 (b—1,0a0), (50)
~Vio(b+L=2))+ 5 (Vo (13 —1) = Voo (b=2))} —{Qns10(byar) — Quiro (byao)}
Hlian= = o ”0(b+L) wo (b+ L —1) +{@nt1,0 (b;a0) = Qny1,0 (b—1,a0)}, (51)
+ 0 (Vio®) = Vig(b=1)}}, <Qnt1,0 (b;a0) — Qny1,0 (b—1,a0), (52)
! !
=V X:QPW {p (ano (b+L) = Vop(b+L— 1)) where the inequality follows because actionis optimal in
v'e

state[b, v, 0, k]. The right hand side in (52) can be written as

+ (Voo =Vigb—1))},
=v Y Py {Ljag—oy {p{Vilo 0+ L) =V, o (b+ L 1)}
wherep = 1 — p, and the inequality in (41) is again obtained -cg
by applying (33). Thus, from (40) and (41}, > B, and hence +(1- {V’ o) =V (b—1) )}

Qn+1,0 (b,a) is submodular inb, a). B , -
Within a frame ¢ # K — 1): As before, we 'Hl{ao 1} {pP{ o0+ L=1) =V o (b+L—2)}

start with the goal of showing thaQ ., ([b,y,u, k], 1) — TPl — P){Via(b+L—1) =V, (b+L-2)}
Q% 1([b,v,u, k],0) is monotonically decreasing with With ~ + {(1 — p)P. {V,, o (b—1) =V, ; (b—2)}}
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(18]

<v Z Py {P {Vr:,o (b+1L)— Vr:,O (b+L— 1)}

+ (=) {Vio®)=Vao(0—1)}}.

oy [19]

(53)

The inequality above is obtained by using (43) and (44[)2.0]
Finally, the right hand side above is

<v Y P {p{Vi, (b+L)-V,, (b+L-1)} [21]
vy eG
+(L=p) {Vi (0) = Vi, (b= 1}},

:P’

(54)
(55)

[22]

where the inequality is obtained using (45). Thus, by i)
duction, (43), (44), (45) are satisfied, and hen@é&, (b, a)

is submodular in(b,a). Therefore, the optimal policy is [24]
monotone inb, and consequently is a threshold policy in the

battery state.
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