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Abstract—This paper addresses the problem of finding outage-
optimal power control policies for wireless energy harvesting
sensor (EHS) nodes with automatic repeat request (ARQ)-based
packet transmissions. The power control policy of the EHS
specifies the transmission power for each packet transmission
attempt, based on all the information available at the EHS. In
particular, the acknowledgement (ACK) or negative acknowledge-
ment (NACK) messages received provide the EHS with partial
information about the channel state. We solve the problem of
finding an optimal power control policy by casting it as a partially
observable Markov decision process (POMDP). We study the
structure of the optimal power policy in two ways. First, for the
special case of binary power levels at the EHS, we show that the
optimal policy for the underlying Markov decision process (MDP)
when the channel state is observable is a simple threshold policy
in the battery state. Second, we benchmark the performance
of the EHS by rigorously analyzing the outage probability of a
general fixed-power transmission scheme, where the EHS uses
a predetermined power level at each slot within the frame.
Monte Carlo simulation results illustrate the performance of the
POMDP approach and verify the accuracy of the analysis. They
also show that the POMDP solutions can significantly outperform
conventional ad hoc approaches.
Index Terms— Energy harvesting sensors, power control, ARQ,
retransmission, POMDP.

I. I NTRODUCTION

Wireless energy harvesting sensors (EHS) operate using
energy harvested from environmental sources such as the sun,
wind, vibrations, etc. Due to their promise of a potentially
infinite lifetime, they are fast emerging as viable options for
sensing-related applications ranging from inventory manage-
ment and surveillance to structural health monitoring in build-
ings, bridges, and vehicles. However, due to the sporadic and
random nature of the harvesting process, energy management
becomes critical to ensure continuous and reliable operation of
these nodes. The energy replenishment process of the natural
phenomena, the time-varying nature of the wireless channel
and the energy storage constraints of the node all need to be
taken into consideration when designing efficient transmission
strategies. Further, transmission policies for EHS need tosat-
isfy the constraint ofenergy neutrality,which mandates that at
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every point in time, the cumulative energy consumed by a node
cannot exceed the cumulative energy harvested by it. These
requirements call for a cross-layer, energy-aware protocol
design that optimizes energy consumption for reliable packet
transmission. This, in turn, motivates the use of an automatic
repeat request (ARQ) protocol, as it is resilient to channel
variations and is known to be energy efficient [1]. Moreover,
packet retransmissions and power control are already enabled
in present-day low power communication standards such as
the IEEE 802.15.4 [2], which makes schemes based on them
readily suitable for implementation.

Transmit power management in EHS nodes has been stud-
ied in [3], with deterministic energy harvesting models. A
Bernoulli injection model, in which the node harvests a fixed
amount of energy with some probability or does not harvest at
all, was proposed in [4]. Several different performance metrics
for EHS have been considered in the literature, including min-
imizing the transmission time [5], maximizing the short-term
throughput [6] or the quality of coverage [7], and throughput-
optimal and delay-optimal policies [8]. The problem of power
management was formulated as a Markov decision process
(MDP) in [7], [9], but these works either ignored the channel
variability [7] or considered it as perfectly known [9]. Further,
none of the aforementioned works considered the outage
probability as the performance metric, or exploited the implicit
channel state information (CSI) at the transmitter available
through the link-layer ARQ feedback messages from the
destination, in designing the power control policies.

In this work, we consider an EHS node that transmits pack-
ets to a destination using an ARQ-based packet transmission
scheme. In eachframe, the EHS can make up toK attempts to
transmit a packet. After every attempt, the node receives anac-
knowledgement (ACK) or negative acknowledgement (NACK)
message, depending on whether the packet was successfully
received or not by the destination. The ACK/NACK messages
are assumed to be received without error at the EHS. In case
a NACK is received, it retransmits the packet, provided it has
enough energy to do so. If the packet is not successfully deliv-
ered by the end of the frame, it is declared to be in outage. The
outage probability, which is defined as the average fractionof
packets that suffer an outage, is thus an important performance
metric in ARQ-based transmission systems. The ARQ-based
transmission is pertinent in systems where the node makes
periodic measurements, and where, once a new measurement is
taken by the node, the old measurement is no longer relevant.
This is the case, for example, in air temperature sensors [10]
and environmental monitoring sensors [11].

The goal here is to select the power level for each packet
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transmission attempt, based on the current and past infor-
mation available at the EHS. For example, one option is to
transmit at low power at the start of the frame, and successively
increase the transmit power each time a NACK is received.
In case the channel happens to be in a good state, the initial
attempt would succeed, saving power for future transmissions.
On the other hand, since failed transmission attempts are a
waste of energy, one could transmit at a high power in the
first attempt, and, in case a NACK is received, choose to incur
an outage by not transmitting and thereby saving the power
harvested over the rest of the frame for future transmissions.
At first glance, it is not intuitively obvious as to which of these
options would offer a better outage probability performance.
Therefore, a systematic approach is essential.

In this paper, we address the problem of transmit power
control with retransmissions by formulating it as one of mak-
ing optimal sequential decisions. The ACK/NACK feedback
messages implicitly provide the EHS with partial CSI, which
can be exploited in deciding the transmit power level for
subsequent transmission attempts. Since the CSI is only par-
tially available at the EHS, we cast the problem as a partially
observable Markov decision process (POMDP) [12]. Our focus
on ARQ-based packet transmission and on exploiting the
resulting partial observability of the channel using the POMDP
framework makes our study fundamentally different from the
past work that employs decision theory to design transmission
policies for EHS [7]–[9], [13], [14].

The rigorous formulation shows how to optimally handle
the following key trade-off that arises in the design of ARQ
protocols for EHS nodes. Increasing the transmission power
improves the odds of successful packet reception, but drains
energy from the battery and decreases the probability that
there will be sufficient energy to deliver future packets. Onthe
other hand, a conservative approach of transmitting at a low
or minimal power could lead to packet outages and wastage of
energy if energy arrivals continue to occur after the battery gets
full. Further, the history of transmit powers and corresponding
ACK/NACK messages, the time correlation of the channel,
the statistics of the energy arrival process, and the battery
capacity. can be utilized in choosing the transmit power. The
POMDP framework uses all of the available past information
to optimally manage the power available at the EHS, subject
to the constraint of energy neutrality. To the best of our
knowledge, this is the first time in the literature that power
management in EHS with ARQ-based packet retransmission
has been studied in the POMDP framework.

The main advantage of the POMDP formulation is that it
allows one to choose from a gamut of available techniques for
finding an optimal and also near-optimal energy management
policies. Due to the large size of the state space, the exact
solution to the POMDP at hand turns out to be compu-
tationally infeasible. Further, our problem differs from the
classical POMDP due to the mixed observability of the state
process. The CSI is partially observable through ACK/NACK
messages, whereas the battery energy level and transmission
index which also form part of the state description, are fully
observable. Hence, we adapt two popular and computationally
efficient suboptimal solutions to the POMDP, namely, the

voting policy and the ML-estimation policy, to design the
power control policy for the EHS.

To gain further insights about the proposed solution, we
study the structure of the underlying MDP that results when
the channel is fully observable. When the EHS is restricted
to employ a binary power control policy, we show that the
optimal policy is a threshold policy in the battery energy
state, i.e., the EHS transmits if and only if the battery energy
level exceeds a threshold. This not only reduces the search
complexity for finding the optimum power policy, but also
provides easily implementable policies.

Finally, we benchmark the proposed solutions against other
solutions proposed in the literature [15]. To this end, we
rigorously analyze the outage probability performance of these
approaches under a quasi-static, block fading channel. The
analysis generalizes that in [15] by allowing the EHS to
employ arbitrary power levels for each retransmission of a
given packet. The theoretical expressions are useful in under-
standing the critical dependence of the outage performanceon
the power control policy. Through simulations, we illustrate
the superior performance of the POMDP over fixed-power
policies, as they optimally tune the power control policy
as a function of the current state and the past information
available at the EHS. For example, to achieve the same outage
probability, the POMDP solution requires only about60-80%
of the energy harvesting rate required by the scheme in [15].

The organization of the paper is as follows. Section II intro-
duces the system model and the problem definition. Section III
presents the POMDP formulation of the power management
problem. Section IV discusses the approximate solutions of
the POMDP. Section V analyzes the outage probability per-
formance of the EHS with ARQ transmissions and a given
power control policy. Section VI presents simulation results,
and concluding remarks are offered in Section VII.

II. SYSTEM MODEL

Consider an EHS node that wishes to send a measurement
packet of sizeℓ bits periodically, in a frame of durationTm s,
to a destination, over a time-varying wireless channel. Each
packet transmission attempt happens during aslot of duration
Tp s, which includes the time for sending the packet and
receiving an ACK from the destination. Hence, the node can
make at mostK , ⌊Tm/Tp⌋ attempts to transmit the packet
within the frame, where⌊·⌋ denotes the floor function. If the
EHS is unable to deliver the packet within the frame duration,
a measurementoutageoccurs.

In a slot, the receiver may fail to decode the packet if the
EHS node does not have sufficient energy to transmit, or if
the transmitted packet is corrupted by the channel or noise at
the receiver. The following ARQ protocol is assumed at the
link layer. If the EHS receives a NACK from the receiver, it
retransmits its packet until it receives an ACK, or it runs out
of energy, or it is time to transmit the next packet. If it receives
an ACK, the node stops transmitting and just accumulates the
harvested energy during the rest of the frame. A finite energy
buffer (e.g., a battery) is used to store the harvested energy,
and it is assumed that there are no storage inefficiencies in
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Fig. 1. Transmission timeline of the EHS node forK = 4, showing
the random energy harvesting process
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and periodic data arrivals
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. The marker “X” denotes slots where the EHS does not transmit.
By convention, in a given slot, both the energy harvested andthe
energy already present in the battery are assumed to be available
for data transmission by the EHS. For example, in slot3, the EHS
harvests energyEs; this energy, along with the energy in the battery
at the end of slot2, equals the energyE3 used by the node for
transmitting the data packet. Hence, the EHS is left with no energy
in the battery at the end of slot3.

the buffer. Apart from the ACK/NACK, no CSI is assumed to
be available at the EHS. Figure 1 illustrates the timeline of
events, showing the sporadic energy injections, battery energy
evolution, and the packet transmission powers.

For the energy harvesting process, an independent and
identically distributed (i.i.d.) Bernoulli model is considered,
in which an energyEs is injected into the EHS node at the
beginning of every slot with probabilityρ, and with probability
1 − ρ, no energy is harvested. This model is motivated by
switch-based harvesting mechanisms [4]; a similar model for
energy recharging was also considered in [16]. Other models
for the energy harvesting process include the leaky-bucket
model [3] and the Markov model [17], etc. While the Bernoulli
model is simple, it does capture the sporadic and random
nature of energy availability at the EHS and facilitates analysis.

Let Bn denote the battery energy level at the beginning of
the nth slot, and letEn ≤ Bn denote the energy used for
packet transmission. The battery energy itself gets replenished
whenever the node harvests energy, and, consequently, obeys
the following Markovian evolution:

Bn+1=

{

min (Bn+Es−En,Bmax) ,with probabilityρ

Bn − En, with probability1−ρ

whereBmax denotes the battery capacity. The next section
presents the outage analysis of the EHS, for a power policy
specified as a function of transmission index. In the remainder
of this paper, we normalize all energies with respect to
a minimum possible transmit energyE, which is typically
imposed by the lower end of the linearity range of RF amplifier
on the EHS node. Thus, the battery energy level is considered

P1,1

γ1 γ2 γN

P2,1
P3,2

P2,2

P1,2 P2,3

PN,N

PN−1,N

PN,N−1

Fig. 2. Finite state Markov chain model for the Rayleigh fading channel.

to be an integer multiple ofE. Further, we letL , Es/E be
an integer. That is, each time an energy injection occurs, the
EHS obtains sufficient energy to makeL packet transmission
attempts at the lowest possible transmit energy level.

III. POMDP FORMULATION

Our goal in this section is to sequentially decide on the
optimum packet transmit power levels,{E0, E1, . . . }, based
on the transmission index, battery energy level, and the history
of transmission energies and ACK/NACK messages received,
to minimize the long term expected outage probability.

The POMDP formulation naturally equips the EHS to
exploit the time correlation in the wireless channel, and, hence,
we consider two channel models: the correlated channel model
and the block fading channel model. In both cases, we need
the state space to be finite. To facilitate this, we discretize the
channel intoN levels,γ1, . . . , γN . In the correlated channel
model, the channel is modeled as the finite state Markov
chain (FSMC) shown in Fig. 2, with known channel transition
probabilities1 Pi,i+1, Pi,i−1 andPi,i. Such a first-order model
is known to be accurate for packet-level studies [18] and in
cross-layer optimization with slowly-varying channels [19],
[20]. The channel levelsγ1, . . . , γN and the transition prob-
abilities can be computed based on the underlying fading
distribution and Doppler frequency, following the procedure
in [21], [22]. In theblock fading channel model, the channel
is assumed to remain fixed for the duration of a frame, and
changes independently and identically from one frame to the
next. This assumption is valid when the channel coherence
time equals the frame duration, due to which, the initial packet
transmission and all of the retransmission attempts see the
same channel state [15]. To facilitate comparisons betweenthe
two channel models, we assume that the stationary distribution
of the quantized channel is the same for both the correlated
and block fading models.

Recall that the channel state in a given slot is only partially
available at the EHS transmitter through the ACK/NACK
messages. Hence, we cast the sequential decision problem in
a POMDP framework. The POMDP formulation consists of
the following components:

a) State Space:The finite set of states denoted byS ,

B × G × K × U , where

• B , {0, 1, . . . , Bmax} is the set of battery states, nor-
malized with respect to the minimum transmit energyE.
Recall thatBmax is the battery capacity.

1In this paper, for convenience, we use the notationsPi,j and Pγi,γj
interchangeably, to represent the probability of going from channel stateγi
to γj .
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• G is the set of discrete channel states. Under the channel
model explained above,G , {γ1, γ2, . . . , γN}.

• K is the set of possible packet transmission attempt
indices within a frame. Since the EHS can make at most
K attempts in a frame,K , {0, 1, . . . ,K − 1}. In the
sequel, we usek ∈ K to index the slot count within a
frame, andn ∈ {1, 2, . . .} as an absolute index for the
slot count, which increments indefinitely with time.

• U , {0, 1} is the set ofpacket reception states. The
packet reception state takes the value1 when an ACK is
received by the EHS, and is0 otherwise. At the beginning
of the frame, i.e., when the packet transmission attempt
indexk is 0, the EHS node is always in packet reception
state0, since an ACK has not yet been received. If the
receiver successfully decodes the current packet and an
ACK is received by the EHS, the packet reception state
changes to1 for the rest of the frame. Irrespective of the
system state atk = K − 1, the packet reception state
is reset to0 at the next slot, as it corresponds to the
beginning of a new frame.

b) Observation Space: The observations are the
ACK/NACK messages received by the EHS node after each
packet transmission attempt. The observation space is the finite
set O , {ACK,NACK}. Since the ACK/NACK messages
are assumed to be received error-free, the observations always
match the packet reception state of the system.

c) Action Space:An action a by the EHS node cor-
responds to sending a packet at power levelaE. The ac-
tion space is the set of possible actions, and is denoted by
A , {0, 1, . . . , B}, with B ∈ B representing the battery level
in the current slot.

d) State Transition Function:Let two arbitrary states
in S be s , (b, γ, k, u) and s′ , (b′, γ′, k′, u′). The state
transition function is the probability that the system starts in
state s, takes an actiona, and lands in states′. Since the
channel state evolution is independent of the packet reception
errors at the receiver, the state transition function depends on
the product of the probability of the channel state transiting
from γ to γ′ and the probability that the battery and packet
reception state transits from(b, u) to (b′, u′) when the EHS
node takes actiona and the channel state isγ. Under the
correlated fading channel model, it is given by

T (s, a, s′) = δ(k′, k+)Pγ,γ′ ψ ((b, u) , a, (b′, u′) , k, γ) (1)

wherek+ , (k + 1)modK, δ(k′, k) is the Kronecker delta
function, andPγ,γ′ is the channel transition probability, as
defined earlier in this section. Here, the termδ(k′, k+) captures
the fact that the packet transmission index always increases
one at a time until the end of the frame, where it resets to0.
Also, ψ ((b, u) , a, (b′, u′) , k, γ) represents the probability that
the EHS node starts from battery stateb and packet reception
stateu, takes an actiona, and lands in the state(b′, u′) when
the current channel state and packet transmission index areγ
andk, respectively. It is given as follows. Let

η(b, a, b′) , ρδ(b′, b+ L− a) + (1 − ρ)δ(b′, b− a).

Whenk = K − 1, it can be shown that

ψ ((b, u) , a, (b′, u′) ,K − 1, γ) =

{

η(b, a, b′), u′ = 0

0, else.
(2)

Also, whenk 6= K − 1, it can be shown that

ψ ((b, u) , a, (b′, u′) , k, γ) =


















η(b, a, b′), u′ = 1, u = 1

η(b, a, b′)(1− Pe(γ, aE)), u′ = 1, u = 0

η(b, a, b′)Pe(γ, aE), u′ = 0, u = 0

0, else.

(3)

Here,Pe(γ, aE) is the probability that a packet transmitted
at poweraE will be received in error when the channel state
is γ. This probability depends on the modulation and coding
scheme used. For example, with uncoded binary phase shift
keying (BPSK) transmission, the packet error probability is
given by

Pe(γ, aE) = 1−

(

1−Q

(

√

2γaE

N0

))ℓ

, (4)

whereQ(·) is the Gaussian tail function,ℓ is the packet size
in bits, andN0 is the noise power spectral density.

The expression in (3) is obtained by tracking the proba-
bilities of the following events: i) Whether energy has been
harvested in the current slot or not; ii) The packet reception
state of the system; and iii) The probability of successful
packet reception given the channel state and action. Also, the
expression in thek = K − 1 case arises because the packet
reception state always resets to zero at the end of the frame.
For example, to get the first term in (3), note that, when the
EHS has already received an ACK, it transits from battery
stateb to b + L − a upon taking an action2 a if it harvests
energy (which occurs with probabilityρ). If it does not harvest
energy (which occurs with probability1− ρ), it transits to the
stateb− a.

Under the block fading model,T (s, a, s′) is given by

T (s, a, s′) = δ(k′, k+) ζ(γ, γ
′; k)ψ ((b, u) , a, (b′, u′) , k, γ) ,

(5)

with ζ(γ, γ′; k) =

{

δ(γ, γ′), k 6= K − 1

πγ′ , else.
(6)

Here,πγ′ represents the stationary probability of the channel
stateγ′. In contrast with the correlated fading channel, the
ζ(γ, γ′; k) term in the above equation captures the fact that
the channel remains constant for the duration of a frame and
transitions in an i.i.d. fashion from one frame to the next.

e) Observation Function:The observation function is the
probability of observing an ACK or a NACK given the current
state and action. Since this probability depends only on the
current channel state and action, it is given by

P (NACK|a, γ) = Pe(γ, aE)

P (ACK|a, γ) = 1− Pe(γ, aE) (7)

2Note that, in this example,a obviously equals0 since the EHS has already
received an ACK. An arbitrarya is incorporated here for the sake of generality
in the expression.
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wherePe is packet error probability as defined in (4).
f) Cost: Let s , (b, γ, k, u) be the state of the system.

The expected immediate cost is defined as

c(s, a) =











Pe(γ, aE), a ≤ b, u = 0

1, (a > b, u = 0) or (a 6= 0, u = 1)

0, else.
(8)

The immediate cost of1 is used to preempt the EHS from
using a nonzero energy to transmit a packet when it has already
received an ACK, or from attempting to use more than the
energy available in the battery.

g) Objective: A power control policy π describes a
decision rule that determines the action taken by the EHS.
It maps the history of actions and observations to the action
to be taken in the current time slot. The goal here is to find a
policy that minimizes the expected cost incurred by the EHS
node over an infinite time horizon, which is given by

Jπ(s0) = lim
m→∞

1

m
Eπ

[

m
∑

n=1

c(Sn, an)|S0 = s0

]

(9)

wheren ∈ {1, 2, . . . } denotes the slot index,Sn is the state
sequence,an is the action sequence, ands0 is the initial state.
The expectation in (9) is over the distribution of the state
sequenceSn. The next section discusses the techniques for
solving the POMDP considered in this work.

IV. SOLUTION TECHNIQUES

Recall that in the POMDP formulation above, the system
states is not fully observable. In particular, the channel state
component ofs is unknown to the EHS, while the battery
state, slot count within the frame, and the packet reception
state are observable. However, given the history of actionsand
observations, a so-calledbelief stateβ(γ) can be computed,
that represents the probability that the channel is in stateγ. It is
known that the belief state is a sufficient statistic for finding
the optimal policy [23]. The belief state can be updated at
the end of each slot, based on the previous belief state, the
current observation, and the state transition function. Then,
the solution to the POMDP can be found as the solution of a
fully observable Markov decision process (MDP) on the belief
states [12]. Although several exact algorithms [12] for solving
the belief MDP exist, these algorithms are computationally
feasible only when the cardinality of the state space is of the
order of ten [24], [25]. Even approximate solution methods
can only handle a state space with cardinality of about a
hundred [26]. In our case, the state space is much larger,
as it is indexed by the number of battery energy levels, the
number of channel states, the packet transmission index, and
the ACK/NACK state. As a result, finding an exact or even an
approximate solution to the POMDP is computationally infea-
sible. Hence, in this paper, we explore two computationally
efficient suboptimal solutions for the POMDP. For this, we
first describe the solution to the MDP that is obtained when the
system state is fully observable. Both the solution techniques
we investigate rely on solving this underlying MDP.

The solution to the MDP when the system state is fully
observable yields an optimal policyµ∗

MDP that maximizes the
expected long-term reward defined in (9). The optimal policy
is the solution to the following Bellman equation [27]:

λ∗ + h∗(s) = min
a∈A,a≤B(s)

[

c(s, a) +
∑

s′∈S

T (s, a, s′)h∗(s′)

]

(10)
for all s ∈ S, whereλ∗ is the optimal average cost andh∗(s)
is the optimal differential cost when starting at states. Here,
with a slight abuse of notation, the battery energy level is
written asB(s) to indicate that it is one of the components of
the system states.

The value iteration method [12] can be used to solve the
Bellman equation (10). This involves iteratively solving

Jk+1(s) = min
a∈A,a≤B(s)

[

c(s, a) +
∑

s′∈S

T (s, a, s′)Jk(s
′)

]

(11)
for all s ∈ S, whereJk is the value function at thekth iteration,
k = 0, 1, . . .. It can be shown that [27]

lim
k→∞

Jk(s)

k
= λ∗, ∀s ∈ S. (12)

In practice, it is standard to use relative value iteration to
solve the MDP, which is a numerically stable version of the
above procedure. We refer the interested reader to [27] for
a comprehensive treatment of relative value iteration and its
convergence properties. The convergence is guaranteed, pro-
vided that one of the states is visited with positive probability
at least once within the firstm slots, for some integerm, for
all initial states and all possible policies. In our problem, this
requirement is trivially satisfied, and all states are reachable
from any given state in a finite number of steps, for all possible
policies. We have found that this algorithm converges reliably
and quickly for the problem at hand. Upon convergence, we
obtain the optimal action as the argument that minimizes the
right hand side in (11). We denote the solution to the MDP
obtained using relative value iteration asµ∗

MDP(s).
Next, we present a structural property of the solution

µ∗
MDP(s). Establishing structural properties not only provides

useful insights into the form of the solution, but more im-
portantly, helps in reducing the computational complexityof
finding the optimal solution.

A. Structure of the MDP Solution

In order to study the structural properties of the MDP, we
lean on the theory of discounted cost MDPs. We exploit the
fact that the average cost MDP under study in this paper is
the limit of a sequence of discounted cost MDPs, with the
discount factorν → 1 [28], [29]. The discounted long term
cost associated with policyπ and discount factorν ∈ (0, 1)
is given by

Jν
π (s0) = lim sup

m→∞
Eπ

[

m
∑

n=1

νn−1c(Sn, an)

∣

∣

∣

∣

∣

S0 = s0

]

. (13)

The optimal discounted cost function,V ν(s0), is given by

V ν(s0) = inf
π∈Πsd

Jν
π (s0), (14)

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/JSTSP.2013.2258656

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

whereΠsd is the set of all stationary deterministic policies.
It is known that for all discrete state MDPs with bounded
cost, an optimal stationary deterministic policy exists [30]. The
optimal discounted costV ν(s) satisfies the Bellman equation
for optimality, which is given by

V ν(s) = min
a∈A,a≤B(s)

{

c(s, a) + ν
∑

s′∈S

T (s, a, s′)V ν(s′)

}

.

(15)

The optimal actiona∗ν is the action that satisfies (15). The
discounted cost MDP can be solved using the value iteration
algorithm given by

V ν
n+1(s) = min

a∈A,a≤B(s)

{

c(s, a) + ν
∑

s′∈S

T (s, a, s′)V ν
n (s′)

}

.

(16)
Let

Qν
n+1(s, a) , c(s, a) + ν

∑

s′∈S

T (s, a, s′)V ν
n (s′). (17)

The threshold structure of discounted cost optimal policies
can now be established for the important special case of
binary actions, i.e.,A = {0, 1}. Binary actions correspond
to on-off power control at the EHS, where the node decides
whether or not to transmit a packet based on the history of
packet attempts and corresponding ACK/NACK observations.
This is summarized in the following theorem. The proof,
which is shown in Appendix A, shows thatQν

∞([b, γ, u, k], a)
is submodular in(b, a), for some initial condition. This is
sufficient to establish that the discounted cost optimal policy
is a threshold policy in the energy buffer stateb, due to the
convergence of (16) for all initial conditions [31].

Theorem 1. When the action set is binary, i.e.,A = {0, 1},
for any discount factorν ∈ (0, 1), the optimal policy is a
threshold policy in the energy buffer state. That is, given the
channel gainγ, transmission indexk, and packet reception
state u, there is a thresholdBthresh(γ, k, u) that defines the
optimal policy: the node transmits the packet if and only if
B > Bthresh(γ, k, u), whereB is the current battery level.

The simplicity of the threshold policies makes them at-
tractive for implementation on power and hardware resource
starved EHS nodes. Determining the optimal threshold re-
quires solving the underlying MDP, but this is an offline search
that does not impose a computational burden on the EHS.
Moreover, the fact that the optimal policy is a threshold policy
in the battery state can be used to reduce the computational
complexity in finding the optimal policy.

We next discuss two computationally efficient suboptimal
solutions to the original POMDP.

B. Solution of the POMDP

Recall that, in our system model, the battery state, packet
reception state, and the transmission attempt index are fully
observable, while the channel state component of the system
state is only partially observable through the ACK/NACK

messages. Therefore, it is sufficient to maintain the beliefover
only the channel state component of the system state, denoted
by β(γ), and use it to approximately solve the POMDP. When
new observations are obtained,β(γ) is updated as follows.

Let on ∈ O be the observation at time slotn, and
let3 βn(γj) denote the belief that the channel state at
time slot n equalsγj , given the historyFn−1 of actions
and observations up to timen − 1. That is, βn(γj) ,

P {channel state at time slotn = γj |Fn−1} . In the corre-
lated fading model, the belief stateβn(γj) can be updated
using Bayes’ rule as

βn(γj) =

∑

i Pγi,γj
P (on−1|an−1, γi)βn−1(γi)

∑

l

∑

i Pγi,γl
P (on−1|an−1, γi)βn−1(γi)

(18)

for j = 1, 2, . . . , N , where P (o|a, γ) is given by (7). In
the block fading model,Pγi,γj

in the above is replaced by
ζ(γi, γj ; k) as defined in (6), wherek is the transmission index
of the packet within the current frame.

The final task is to use the belief state of the channelβn(γj)
obtained above to convert the POMDP to an MDP, and use
the solution of the MDP as an approximate solution for the
POMDP. To this end, we consider two popular computationally
efficient approaches.

1) Maximum Likelihood (ML) Heuristic [32]:Here, at each
slot n, we find the most probable channel state,γML ,

arg max
γ∈G

βn(γ), of the system. Then, the ML state of the

system is defined assML , (b, γML , k, u), whereb, k andu
are the current battery, packet transmission attempt indexand
packet reception state, respectively. The ML heuristic method
adopts the action corresponding to the solution of the MDP
with the ML state as the solution of the POMDP. Thus,

µML = µ∗
MDP(sML ), (19)

where, as mentioned earlier,µ∗
MDP(s) denotes the solution to

the MDP obtained by solving (10).
2) Voting Heuristic [33]: Here, for a givenb, u, andk, we

consider the set of states(b, γ, k, u), for γ ∈ G. A given state in
this set, say states, votes for an actiona, as determined by the
optimal policyµ∗

MDP(s) of the underlying MDP corresponding
to that particular state. In any given time slotn, these votes are
weighed by the component of the belief state corresponding
to eachγ ∈ G, and the sum of the weighted votes for each
action is determined. The action with the largest sum, denoted
by µvoting, is selected as the optimal action:

µvoting = arg max
a∈A

∑

s=(b,γ,k,u)
γ∈G

βn(γ)δ(µ
∗
MDP(s), a), (20)

where, as before,δ(x, a) is the Kronecker delta function.
Note that, in order to implement the above policies, the main

computational burden on the EHS is in updating the belief
state using (18). Further, based on the belief state, the node
needs to find the ML state (eq. (19)) or the action with the
highest number of votes (eq. (20)). The MDP policy itself
can be implemented as a simple look-up table, and hence

3Note that we useβ(γ) to denote the current belief state of the channel
andβn(γ) to indicate the belief state of the channel at time slotn.
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Fig. 3. The block fading channel model.

does not impose a significant computational burden on the
EHS. Precisely accounting for the energy cost involved in the
computations and storage is beyond the scope of our work.

V. OUTAGE PROBABILITY ANALYSIS

In this section, we consider the outage analysis of the EHS
for the block fading channel model. Here, the channel remains
constant throughout the frame, but changes in an i.i.d. fashion
at the beginning of the next frame, as shown in Figure 3.
In this case, thepower control policyspecifies the packet
transmission power as a function of the transmission index
and the current battery state. In the foregoing analysis, we
derive the outage probability of a given fixed-power control
policy, which not only generalizes the result in [15], but also
serves as an important performance benchmark.

We consider the following general class of power control
policies. In the first slot of a given frame, the EHS sends the
packet at a powerL1E if the current battery stateB1 exceeds
L1, otherwise, is sends the packet at a powerB1. In general,
at thekth attempt to transmit a given packet, the EHS sends
the packet at a powerLkE if the current battery stateBk

exceedsLk; otherwise, it sends it at a powerBk. This is a
generalization of the transmit power policy considered in [15],
as settingL1 = L2 = · · · = LK results in the single-power
transmission scheme considered there.

With the above power control scheme, the evolution of the
system is a Discrete Time Markov Chain (DTMC), as shown
in Figure 4. The state at timen is denoted by(Un, Bn), where
Bn is the battery state, as before, andUn represents theACK
state. The ACK state of the EHS node is defined as

Un ,











−1, ACK received,

0, Start of transmission,

i, i NACKs received,i ∈ {1, · · · ,K}.

(21)

In this section, we assume that the battery capacity is
infinite, soBn ∈ {0, 1, · · · ,∞}. However, the extension to
the case of a finite battery capacity is straightforward. As
shown in Figure 4, the EHS does not transmit in the frame
whenUn = −1, as an ACK has been received. Under mild
conditions on the transmit power policy, it is easy to show that
the DTMC is irreducible and positive recurrent. Now, in state
(i, Bn), the packet transmission power is given by

P(i,Bn) = min(LiE,Bn). (22)

Themth frame consists of slotsmK, mK + 1, . . . , (m+
1)K − 1. The ACK state isU = 0 at the start of the frame.
At the end of each slot,U is incremented by1 if a NACK
is received, otherwise it transits toU = −1 for the rest of
the frame (i.e., when an ACK is received). Irrespective of the
value ofU at the end of the frame, it always resets to0 at the

(−1,0) (−1,1) (−1,L)(−1,L−1)

(1,0)

(K,0) (K,L)(K,L−1)(K,1)

(0,0) (0,1) (0,L−1) (0,L)

(1,1) (1,L−1) (1,L)

1
−

ρ

1 11 1

ρ

1
−

ρ

1
−

ρ

1
−

ρ

1
−

ρ

ρ
(1

−
P
e
(γ
,
2)
)

ρ(1
− Pe(

γ, 1))

ρPe(γ, 1)

1
−

ρ

Fig. 4. DTMC for the power control policyL1 = 1, L2 = 2, L3 = 3, L4 =
4, andK = 4. The energy states are normalized with respect toE.

start of the(m+1)th frame. An outage occurs in themth frame
if the packet has not yet been successfully received even at the
end of the frame. SinceBmK is independent of the channel
state in[mK, (m+1)K], the outage probability as a function
of K ≥ 1 can be written as

Pout (K) =
∑

i

π(i)Eγ {Pout (K |i, γ, r = 0)} , (23)

where π(i) is the stationary probability that the node has
energyiE at the beginning of the frame andPout(K|i, γ, r) is
the outage probability conditioned on the channel gainγ, the
battery stateiE, and the ACK stater, at the beginning of the
mth frame. Also,Eγ {·} represents the expectation over the
distribution of the channel gain.

Now, Pout(K|i, γ, r) is given by the recursive relation
over K in (24) at the bottom of the next page. In (24),
Ψ(1) , min(Lr, i + L),Ψ(2) , min(Lr, i), and Pe(γ,E)
is the packet error probability, as defined in (4). The terms
in (24) are obtained by tracking the battery transitions that
happen under different possible energy harvesting and packet
transmission events, and accounting for the outage probability
of the packet over the remainingK−1 attempts. For example,
if battery energy leveli at the start of the frame exceeds
∑K

r=1 Lr, regardless of the energy harvested, the EHS node
can make allK attempts to transmit the packet, at power levels
L1, L2, . . . , LK . Hence, a packet outage occurs only if allK
transmission attempts fail, and is given the product of their
probabilities. Note that we have omitted the dependence of
Ψ(1) andΨ(2) on r and i for notational convenience.

The stationary probabilitiesπ can be obtained by solving
the balance equation

π(j) =
∑

i

E
[

Pr
(

B(m+1)K = j |BmK = i, γ
)]

π(i), (25)
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where the expectation is taken with respect to the distribution
of γ. To obtain Pr(B(m+1)K = j|BmK = i, γ), we use
the state transition probability matrixG(γ), whose elements
represent the probability of a transition from(i, j) to (r, s). It
is defined as

Grs
ij = Pr(Bn+1 = j, Un+1 = s|Bn = i, Un = r, γ). (26)

It is easy to show that, forr = 0, 1, . . . ,K − 1 and i ≥ 1,

Grs
ij =































ρPe(γ,Ψ
(1)), j = i+ L−Ψ(1), s = r + 1,

ρ(1− Pe(γ,Ψ
(1))), j = i+ L−Ψ(1), s = −1,

(1− ρ)Pe(γ,Ψ
(2)), j = i−Ψ(2), s = r + 1,

(1− ρ)(1 − Pe(γ,Ψ
(2))), j = i−Ψ(2), s = −1,

0, else.
(27)

For r = 0, 1, . . . ,K − 1 and i = 0,

Grs
ij =



















ρPe(γ,Ψ
(1)), j = i+ L−Ψ(1), s = r + 1,

ρ(1− Pe(γ,Ψ
(1))), j = i+ L−Ψ(1), s = −1,

(1− ρ), j = i, s = r + 1,

0, else.

(28)

For r = −1 and i ≥ 0,

Grs
ij =











ρ, j = i+ L, s = −1,

(1− ρ), j = i, s = −1,

0, else.

(29)

The states(i,K), ∀i, are absorbing states. The above transition
probabilities follow from the given power control policy, and
track the following independent events: i) Whether energy
was harvested in the slot, which happens with probabilityρ.
ii) Whether the transmitted packet was correctly decoded by
the receiver, which happens with probability1− Pe(γ, r).

We can now summarize the procedure for computing the
outage probability:

1) ComputeGK(γ), where G(γ) is the state transition
probability matrix in (26).

2) Using the entries ofGK(γ), compute the probability
Pr(B(m+1)K = j|BmK = i, γ, r = 0) as:

K
∑

u=−1

Pr(B(m+1)K=j, U(m+1)K=u|BmK= i, UmK=0, γ).

(30)
3) Obtain the stationary probabilitiesπ(j) by solving (25).
4) ObtainPout (K|i, γ, r = 0) from (24).

5) ComputePout(K) using (23).

The simulation results in the next section illustrate that the
above analysis brings out the importance of tuning the transmit
power control parameters in optimizing the EHS link perfor-
mance. Moreover, by comparing with the POMDP approach
presented in the previous section, we show how the POMDP
solution improves performance over fixed-power transmission
policies by exploiting all the information available at theEHS.

VI. SIMULATION RESULTS

In this section, we present simulation results that demon-
strate the performance improvement obtainable from the
POMDP approach compared to ad hoc policies that only admit
a fixed transmit power level [15]. We also validate the outage
probability analysis in Sec. V. The channel from the EHS node
to its destination is assumed to be Rayleigh faded in the block-
fading case, and with the time-variation following the popular
Jakes’ spectrum in the correlated fading case. The noise power
spectral density is taken asN0 = 1, and the packets are
assumed to be uncoded BPSK modulated withℓ = 10 bits.
The value ofEs follows from the energy budget requirement
of a typical wireless sensor node. For example,Es = 15 dB
corresponds toL = 2, i.e., twice the energy required to
transmit a packet, with a transmit power of1.38 mW, carrier
frequency of2 GHz, slot duration ofTp = 10 ms, distance
d = 10d0, whered0 = 10 m is a reference distance, a path
loss exponent of3.9, an additive noise corresponding to a
temperature of300 K, and a bandwidth of1 MHz [34]. We
considerK = 4 attempts per packet, and all the simulations
are run for over107 slots.

a) Linear Power Algorithm:Recall the general power
policy considered in Sec. V. During theith slot within a frame,
the packet is transmitted at powerLiE, provided there is
enough energy in the battery and an ACK has not yet been
received. Let us represent the power policy as[L1 L2 L3 L4].
For example,Li = i, for i = 1, 2, . . . ,K, represents alinear
power increase policy. Also,[2 2 2 2] corresponds to the fixed-
power retransmission scheme considered in [15], where all
four transmission attempts are made at a power level2E.

The outage probability performance of the general power
policy is shown as a function of the energy harvesting proba-
bility in Fig. 5. In the legend,Sim andAnaly correspond to
the results obtained from simulations and from the analytical
expression in (23), respectively. In the region markedBetter
performance, the linear policy outperforms the scheme
considered in [15], showing that fixed-power retransmissions
schemes, are, in general, suboptimal. Thus, it is possible to
tune theLis to improve the outage performance. Also note

Pout(K|i, γ, r) =































ρPe

(

γ,Ψ(1)E
)

Pout
(

K − 1
∣

∣i+ L−Ψ(1), γ, r + 1
)

+(1− ρ)Pout (K − 1 |i, γ, r + 1) , if i = 0

ρPe

(

γ,Ψ(1)E
)

Pout
(

K − 1
∣

∣i+ L−Ψ(1), γ, r + 1
)

+(1− ρ)Pe

(

γ,Ψ(2)E
)

Pout
(

K − 1
∣

∣i−Ψ(2), γ, r + 1
)

, if 0 < i ≤
∑K

r=1Lr

ΠK
r=1Pe (γ, LrE) , else.

(24)
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the close agreement between the simulation and the analytical
results, which validates the analysis.

b) POMDP Solution:In the following, we compare the
packet outage performance of the algorithms in Sec. IV against
the conventional fixed-power retransmission scheme. Let the
fixed-power be denoted byEw and defineW , Ew/Es. For
comparison with past work [15], we assume thatW is an
integer multiple or integer fraction ofEs. Figure 7 shows
the simulation results for the block fading channel case. The
voting policy and the ML estimation policy perform almost
equally well, and they significantly outperform the fixed-power
retransmission scheme.

In the correlated fading case, the channel correlation is
assumed to follow the FSMC shown in Fig. 2. The parameters
for the FSMC model are taken asTp = 10 ms andfdTp =
0.03, where fd denotes the Doppler frequency. Figure 6
shows the threshold nature of the optimal policy of the fully
observable MDP for the correlated fading channel, when the
action space is restricted to be binary-valued. Recall thatthe
optimal policy is characterized by a single thresholdBthresh

on the battery state, one for each combination of the channel,
transmission index and ACK states. From the simulations, we
observe that the threshold decreases with transmission index.
This is intuitive, since towards the end of frame, the EHS
must transmit even if it has a lower battery level. The policy
also tries to ensure that each packet is attempted at least once
towards the end of frame. This not only improves the packet
outage, but also improves the belief state of the channel by
collecting observations.

Figure 8 compares the performance of the fixed and linear
power policies with that of the POMDP policies for the
correlated fading channel. As before, the ML heuristic and
the voting heuristic outperform the other schemes. To achieve
the same outage probability, the POMDP solution typically
requires only about60-80% of the energy harvesting rate
compared to the best fixed-power scheme. Also, we see that
the ML heuristic and the voting heuristic policies perform
nearly equally well. Hence, the ML heuristic policy is a
better choice for implementation on EHS platforms, since it
is computationally simpler.

Finally, Figure 9 shows how the outage probability varies as
a function ofρ with various battery capacities. In particular,
whenBmax = 0, the optimal policy is to transmit the packet in
slots where energy is harvested, and until an ACK is received.
An outage does not occur if the EHS is able to harvest energy
and successfully deliver the packet in any of theK slots within
a given frame. The plot thus highlights the role of the battery
capacity in improving the outage probability.

VII. C ONCLUSIONS

In this paper, we considered the problem of power manage-
ment for EHS nodes with packet retransmissions. A sequential
decision-theoretic framework was used to obtain outage opti-
mal policies for the correlated channel. Since the channel state
is only partially observable through the ACK/NACK messages,
we formulated the problem as a POMDP. Exact solutions
were found to be computationally infeasible, motivating us

Better performance
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Fig. 5. Comparison of the linear power policy (Li = i, i = 1, 2, . . . ,K) and
the fixed-power algorithm [15] with various fixed-power levels, for K = 4,
L = 2, andEs = 18 dB. In the legend, the numbers in the square brackets
represent the packet transmit power levels for each of the4 transmission
attempts.Sim andAnaly correspond to the results obtained from simulations
and from the analytical expression in (23), respectively. In the region marked
Better performance, the linear policy,[1 2 3 4], outperforms the fixed-
power retransmission schemes.
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The optimal policy is a threshold policy in the battery state. Here,K = 4,
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to explore two computationally efficient suboptimal solutions:
the ML policy and the voting heuristic policy. The solutions
were based on the belief state of the channel and the solution
of the underlying MDP. We also derived structural results for
the fully observable MDP in the binary action case. Thus,
the decision-theoretic approach adopted in this paper is a
promising technique for the design of power management
policies for EHS nodes that need to operate under stringent
energy constraints and yet achieve high reliability or through-
put. We also benchmarked the performance of the POMDP
solution by deriving analytical expressions for the packet
outage probability for the case of a block fading channel with a
fixed-power retransmission scheme. Simulation results showed
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that the proposed POMDP solutions significantly outperform
the existing fixed-power retransmission schemes. Extensions
of this work could involve considering other objective func-
tions, such as maximizing the average rate by adapting the
modulation and coding scheme based on the ACK/NACK
messages, considering battery inefficiencies, and including
other energy harvesting models. These different issues promise
to offer interesting avenues for future work.

APPENDIX

A. Proof of Theorem 1

As mentioned earlier, due to the convergence of (16) for all
initial conditions, the discounted cost optimal policy would
be a threshold policy in the energy buffer stateb, provided
Qν

∞([b, γ, u, k], a) is submodular in(b, a), for some initial
condition [31]. Hence, we need to show that, with suitable
initialization, Qν

n([b, γ, u, k], a) is submodular in(b, a). That
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Fig. 9. Correlated channel case: Increasing the battery capacity decreases
the outage probability. Here,K = 4, L = 4, N = 7, andEs = 15 dB.

is, sinceA = {0, 1}, Qν
n([b, γ, u, k], 1) − Qν

n([b, γ, u, k], 0)
should monotonically decrease withb. In the following, we
consider only the case ofu = 0. Foru = 1, the possible action
set is restricted to{0} and hence monotonicity is trivial.

Notation: Let Vn,u(b) , V ν
n ([b, γ, u, k]) and

V ′
n,u′(b′) , V ν

n ([b′, γ′, u′, k′]). Similarly, let Qn,u(b, a) ,

Qν
n([b, γ, u, k], a) and Q′

n,u′(b′, a) , Qν
n([b

′, γ′, u′, k′], a).
Finally, let c(a) , c([b, γ, u, k], a). The simplified notation
above is obtained by dropping the dependence on the param-
eters that remain unchanged through the rest of the proof.

In the following, we consider the case corresponding to
transmission at the end of the frame (k = K − 1) and
transmission at the middle of the frame (k 6= K−1) separately,
as their state transition functions are different.

End of Frame (k = K − 1): We have

Qn+1,0 (b, 1)−Qn+1,0 (b, 0) = c(1)− c(0)

+ν
∑

γ′∈G

Pγ,γ′

{

ρ
{

V ′
n,0 (b+ L− 1)− V ′

n,0 (b+ L)
}

+(1− ρ)
{

V ′
n,0 (b− 1)− V ′

n,0 (b)
}}

. (31)

ForQn+1,0 (s, a) to be submodular in(b, a), we need the terms
in (31) to monotonically decrease withb. Since the two terms
in (31) are identical expect for a shift inb by L, the value
function must satisfy the following sufficient condition:

Vn,0 (b− 1)− Vn,0 (b) ≥ Vn,0 (b)− Vn,0 (b+ 1) . (32)

Rearranging terms, we need to show that

Vn,0 (b+ 1)− Vn,0 (b) ≥ Vn,0 (b)− Vn,0 (b− 1) , (33)

i.e., thatVn,0 (b) has an increasing difference inb. We show
this using an inductive argument. First, note that one can
always chooseV0,0 (b) = V ν

0 ([b, γ, u, k]) to have an increas-
ing difference inb; an example is the exponential function.
Assume thatV ν

n ([b, γ, u, k]) has increasing difference inb.
We now prove thatV ν

n+1 ([b, γ, u, k]) has increasing difference
in b. In (17), leta0, a1, a2 ∈ A correspond to the optimal
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action in the states[b−1, γ, 0, k], [b, γ, 0, k] and[b+1, γ, 0, k],
respectively. Then,

Vn+1,0 (b+ 1) = Qn+1,0 (b+ 1, a2) , (34)

Vn+1,0 (b) = Qn+1,0 (b, a1) , (35)

Vn+1,0 (b− 1) = Qn+1,0 (b− 1, a0) . (36)

Substituting (34) through (36) in (33) withn replaced with
n+1, we get the difference between the left- and right-hand-
side as

(Qn+1,0 (b+ 1, a2)−Qn+1,0 (b, a1))

− (Qn+1,0 (b, a1)−Qn+1,0 (b− 1, a0))

= (Qn+1,0 (b+ 1, a2)−Qn+1,0 (b, a2))

+ (Qn+1,0 (b, a2)−Qn+1,0 (b, a1))

+ (Qn+1,0 (b, a0)−Qn+1,0 (b, a1))

− (Qn+1,0 (b, a0)−Qn+1,0 (b− 1, a0)) . (37)

The termsQn+1,0 (b, a2)−Qn+1,0 (b, a1) andQn+1,0 (b, a0)−
Qn+1,0 (b, a1) are non-negative due to optimality of actiona1
for state[b, γ, 0, k]. Define

A , Qn+1,0 (b+ 1, a2)−Qn+1,0 (b, a2) , (38)

B , Qn+1,0 (b, a0)−Qn+1,0 (b− 1, a0) . (39)

In order to show that (37) is non-negative, we need to prove
thatA ≥ B. We lower boundA as follows:

A=ν
∑

γ′∈G

Pγγ′

{1{a2=1}

{

ρ
(

V ′
n,0 (b+ L)

−V ′
n,0 (b+ L− 1)

)

+ (1− ρ)
(

V ′
n,0 (b)− V ′

n,0 (b− 1)
)}

+1{a2=0}

{

ρ
(

V ′
n,0 (b+ L+ 1)− V ′

n,0 (b + L)
)

+ (1− ρ)
(

V ′
n,0 (b+ 1)− V ′

n,0 (b)
)}}

,

≥ν
∑

γ′∈G

Pγγ′

{

ρ
(

V ′
n,0 (b+ L)− V ′

n,0 (b+ L− 1)
)

+ (1− ρ)
(

V ′
n,0 (b)− V ′

n,0 (b− 1)
)}

(40)

where the inequality in (40) is obtained by applying (33).
Similarly, we upper boundB to obtain

B=ν
∑

γ′∈G

Pγγ′

{1{a0=1}

{

ρ
(

V ′
n,0 (b+ L− 1)

−V ′
n,0 (b + L− 2)

)

+ ρ̄
(

V ′
n,0 (b− 1)− V ′

n,0 (b− 2)
)}

+1{a2=0}

{

ρ
(

V ′
n,0 (b+ L)− V ′

n,0 (b+ L− 1)
)

+ ρ̄
(

V ′
n,0 (b)− V ′

n,0 (b− 1)
)}}

,

≤ν
∑

γ′∈G

Pγγ′

{

ρ
(

V ′
n,0 (b+ L)− V ′

n,0 (b+ L− 1)
)

+ ρ̄
(

V ′
n,0 (b)− V ′

n,0 (b− 1)
)}

, (41)

whereρ̄ , 1− ρ, and the inequality in (41) is again obtained
by applying (33). Thus, from (40) and (41),A ≥ B, and hence
Qn+1,0 (b, a) is submodular in(b, a).

Within a frame (k 6= K − 1): As before, we
start with the goal of showing thatQν

n+1([b, γ, u, k], 1) −
Qν

n+1([b, γ, u, k], 0) is monotonically decreasing withb. With

a little manipulation,

Qn+1,0 (b, 1)−Qn+1,0 (b, 0)

= c(1)− c(0)

+ν
∑

γ′∈G

{

Pγγ′

{

ρPe

{

V ′
n,0 (b+ L− 1)− V ′

n,0 (b+ L)
}

+ρ(1− Pe)
{

V ′
n,1 (b+ L− 1)− V ′

n,0 (b+ L)
}

+(1− ρ)Pe

{

V ′
n,0 (b− 1)− V ′

n,0 (b)
}

+(1− ρ)(1 − Pe)
{

V ′
n,1 (b− 1)− V ′

n,0 (b)
}}}

. (42)

Following a similar procedure as for the end of frame (k =
K−1) case, we obtain the following three sufficient conditions
for Qn,0 (b, a) to be monotonically decreasing inb:

1) Vn,0 (b+ 1)− Vn,0 (b) ≥ Vn,0 (b)− Vn,0 (b− 1) . (43)
2) Vn,0 (b+ 1)− Vn,0 (b) ≥ Vn,1 (b)− Vn,1 (b− 1) . (44)
3) Vn,1 (b)− Vn,1 (b− 1) ≥ Vn,0 (b)− Vn,0 (b− 1) . (45)

Using a technique similar to that employed for showing (32),
it can be shown that (43) and (44) hold. Hence, we focus our
attention on showing (45). As before, one can always choose
the initialization V0,u (b) = V ν

0 ([b, γ, u, k]) such that (43)
to (45) is satisfied. Assume thatVn,u (b) = V ν

n ([b, γ, u, k])
satisfies (45).

We now use induction to show thatVn+1,u (b) =
V ν
n+1([b, γ, u, k]) also satisfies (45), i.e., that

(Vn+1,1 (b)− Vn+1,1 (b− 1))

− (Vn+1,0 (b))− Vn+1,0 (b− 1)) ≥ 0. (46)

Since{0} is the only allowed action whenu = 1, we obtain

(Vn+1,1 (b)− Vn+1,1 (b− 1))− (Vn+1,0 (b)− Vn+1,0 (b− 1))

=(Qn+1,1 (b, 0)−Qn+1,1 (b− 1, 0))

− (Qn+1,0 (b, a1)−Qn+1,0 (b− 1, a0)) , (47)

for somea1, a0 ∈ A. In (47), a0 anda1 denote the optimal
actions in states[b − 1, γ, 0, k] and [b, γ, 0, k], respectively.
DefineP andQ as follows:

P,Qn+1,1 (b, 0)−Qn+1,1 (b− 1, 0) , (48)

=ν
∑

γ′∈G

Pγγ′

{

ρ
{

V ′
n,1 (b+ L))− V ′

n,1 (b+ L− 1)
}

+ (1− ρ)
{

V ′
n,1 (b)− V ′

n,1 (b− 1)
}}

. (49)

Q,Qn+1,0 (b, a1)−Qn+1,0 (b− 1, a0) , (50)

={Qn+1,0 (b, a1)−Qn+1,0 (b, a0)}

+ {Qn+1,0 (b, a0)−Qn+1,0 (b− 1, a0)} , (51)

≤Qn+1,0 (b, a0)−Qn+1,0 (b− 1, a0) , (52)

where the inequality follows because actiona1 is optimal in
state[b, γ, 0, k]. The right hand side in (52) can be written as

=ν
∑

γ′∈G

Pγγ′

{1{a0=0}

{

ρ
{

V ′
n,0 (b+ L)− V ′

n,0 (b+ L− 1)
}

+ (1− ρ)
{

V ′
n,0 (b)− V ′

n,0 (b− 1)
}}

+1{a0=1}

{

ρPe

{

V ′
n,0 (b+ L− 1)− V ′

n,0 (b + L− 2)
}

+ρ(1− Pe)
{

V ′
n,1 (b+ L− 1)− V ′

n,1 (b+ L− 2)
}

+
{

(1− ρ)Pe

{

V ′
n,0 (b − 1)− V ′

n,0 (b− 2)
}}

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/JSTSP.2013.2258656

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12

+
{

(1 − ρ)(1− Pe)
{

V ′
n,1 (b− 1)− V ′

n,1 (b− 2)
}}}}

,

≤ν
∑

γ′∈G

Pγγ′

{

ρ
{

V ′
n,0 (b+ L)− V ′

n,0 (b+ L− 1)
}

+ (1− ρ)
{

V ′
n,0 (b)− V ′

n,0 (b− 1)
}}

. (53)

The inequality above is obtained by using (43) and (44).
Finally, the right hand side above is

≤ν
∑

γ′∈G

Pγγ′

{

ρ
{

V ′
n,1 (b+ L)− V ′

n,1 (b+ L− 1)
}

+ (1 − ρ)
{

V ′
n,1 (b)− V ′

n,1 (b− 1)
}}

, (54)

=P, (55)

where the inequality is obtained using (45). Thus, by in-
duction, (43), (44), (45) are satisfied, and hence,Qν

n+1(b, a)
is submodular in(b, a). Therefore, the optimal policy is
monotone inb, and consequently is a threshold policy in the
battery state.
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