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Abstract

Multiple-Input Multiple-Output (MIMO) communication using multiple antennas has

received significant attention in recent years, both in the academia and industry, as they

offer additional spatial dimensions for high-rate and reliable communication, without

expending valuable bandwidth. However, exploiting these promised benefits of MIMO

systems critically depends on fast and accurate acquisition of Channel State Informa-

tion (CSI) at the Receiver (CSIR) and the Transmitter (CSIT). In Time Division Duplex

(TDD) MIMO systems, where the forward channel and the reverse channel are the

same, it is possible to exploit this reciprocity to reduce the overhead involved in ac-

quiring CSI, both in terms of training duration and power. Further, many popular and

efficient transmission schemes such as beamforming, spatial multiplexing over domi-

nant channel modes, etc. do not require full CSI at the transmitter. In such cases, it is

possible to reduce the Reverse Channel Training (RCT) overhead by only learning the

part of the channel that is required for data transmission at the transmitter.

In this thesis, we propose and analyze several novel channel-dependent RCT schemes

for MIMO systems and analyze their performance in terms of (a) the mean-square er-

ror in the channel estimate, (b) lower bounds on the capacity, and (c) the diversity-

multiplexing gain tradeoff. We show that the proposed training schemes offer signifi-

cant performance improvement relative to conventional channel-agnostic RCT schemes.

The main take-home messages from this thesis are as follows:

• Exploiting CSI while designing the RCT sequence improves the performance.

• The training sequence should be designed so as to convey only the part of the CSI

required for data transmission by the transmitter.

• Power-controlled RCT, when feasible, significantly outperforms fixed power RCT.
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Glossary

AWGN : Additive White Gaussian Noise
BER : Bit Error Rate
BS : Base Station
BF : Beamforming
CSI : Channel State Information
CSIR : CSI at the Receiver
CSIT : CSI at the Transmitter
CSIB : CSI at node B
CSIA : CSI at node A
CLB : Capacity Lower Bound
CSCG : Circularly Symmetric Complex Gaussian
DMT : Diversity-Multiplexing Gain Tradeoff
i.i.d. : Independent and Identically Distributed
MIMO : Multiple-Input Multiple-Output
MISO : Multiple-Input Single-Output
ML : Maximum Likelihood
MMSE : Minimum Mean Square Error
PCRCT : Power-Controlled RCT
RCT : Reverse Channel Training
SIMO : Single-Input Multiple-Output
SM : Spatial Multiplexing
SISO : Single-Input Single-Output
SNR : Signal-to-Noise Ratio
SVD : Singular Value Decomposition
TDD : Time Division Duplex
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Notation

nA : Number of antennas at node A or the transmitter
nB or r : Number of antennas at node B or the receiver
M : Number of downlink users
PB,τ : Training power at node B
PA,τ : Training power at node A
PA,d : Data power at node A
LA,d : Data duration corresponding to node A
LA,τ : Training duration corresponding to node A
LB,τ : Training duration corresponding to node B
Lc : Coherence time of the channel
ℜ(·) : Real part of the complex argument
ℑ(·) : Imaginary part of the complex argument
(·)T : Transposition
(·)H : Hermitian transposition
(·)∗ : Complex conjugation
E[·] : Expectation operator
(·)+ : Signum function
| · | : Absolute value of a complex number or the

determinant of a matrix or the cardinality
of a set, depending on the context

‖ · ‖2 : Euclidean norm of a vector
‖ · ‖F : Frobenius norm of a matrix
In : n × n identity matrix
⌊c⌋ : Largest integer less than c
C : Field of complex numbers
R : Field of real numbers
R+ : Field of non-negative real numbers
CN (µ, σ2) : Circularly symmetric complex Gaussian

distribution with mean µ and σ2 variance
Boldface lower case letters : Vectors
Upper case letters : Matrices
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Chapter 1

Introduction

Over the past decade or so, increasing demand for data, audio and video services has

lead to an enormous increase in the data rate requirement of wireless communication

systems. One possible solution to cater to this ever-increasing demand for data rate

is to increase the bandwidth and/or the transmit power. Unfortunately, the spectrum

available for wireless communication is limited. Moreover, in a network, increasing the

transmit power is often not a viable option, as higher power to one user acts as a strong

interference to unintended users, resulting in reduced sum data rate. To make matters

worse, unlike wired communication systems, wireless systems pose several other chal-

lenges such as fading, path loss, etc. Therefore, wireless communication engineers are

faced with the challenge of designing systems that efficiently combat fading by pro-

viding higher data rate for a given bandwidth and transmit power. Multiple antennas

at both the transmitter and the receiver is a key technology to meet these challenges.

Physically placing the antennas with an inter-antenna distance of about 10 times the

wavelength of the carrier frequency is known to result in fade values that are uncorre-

lated across antennas. Having independent fade values across antennas in turn yields

1



Chapter 1. 2

higher diversity and multiplexing gains by using methods such as Maximum Ratio

Transmission (Combining) (MRT(C)), Spatial Multiplexing (SM), Beamforming (BF),

etc [6, 7]. Practical realizability of multiple antenna communication systems require

the antenna separation to be within a few centimeters for it to be implementable on the

form factor of hand held devices such as mobile phones. This requires the transmitting

devices to operate in the range of Giga-Hertz to ensure independent fade values, which

is feasible in practice, and is also a part of many modern day wireless standards such

as IEEE 802.11, 3GPP-LTE, LTE-Advanced, etc. Owing to the aforementioned benefits

offered by multiple antenna communications, it has received tremendous attention in

the recent years, both in academia and in industry. However, the professed benefits of

multiple antenna systems are realizable only if the fade values are known at the receiver

and/or the transmitter. Thus, fast and reliable acquisition of fade values at both ends of

the communication system is an important aspect in designing modern wireless com-

munication systems; this is the main focus of this thesis. A well-accepted mathematical

model for Multiple-Input Multiple-Output (MIMO) systems is presented next.

1.1 Wireless Channel Model

Figure 1.1 shows a model for a point-to-point MIMO wireless communication system

with nA and nB antennas at node A and node B, respectively. The wireless channel from

node A to node B is modeled as a quasi-static block fading channel, represented by the

matrix H ∈ CnB×nA . That is, the channel is assumed to remain constant for a frame of

duration Lc, and evolve in an i.i.d. fashion from frame to frame. We assume a Time

Division Duplex (TDD) mode of operation. When the channel is perfectly reciprocal,
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by considering the complex conjugate of the transmitted and received signals as the

reverse channel input and output, respectively, the reverse-link channel is HH . The

baseband equivalent of the received signal at node A and node B corresponding to the

input xA ∈ CnA and xB ∈ CnB are given by

yB = HxA + wB, (1.1)

yA = HHxB + wA, (1.2)

where xA ∈ CnA (xB ∈ CnB ), yB ∈ CnB (yA ∈ CnA) and wA ∈ CnA (wB ∈ CnB ) are the

input, output and the additive noise vectors at node A (node B), node B (node A) and node

A (node B), respectively. The input vectors are assumed to satisfy an average power

constraint, i.e., E{xH
A xA} = PA and E{xH

BxB} = PB , where PA and PB are the transmit

powers available at node A and node B, respectively. The entries of the noise vectors

wB ∈ CnB and wA ∈ CnA are distributed as CN (0, 1).

Node A

1

2

nA

1

2

nB

Node B

H

HH

H1 H2

Lc

i.i.d.

Figure 1.1: System model of a reciprocal MIMO considered in this thesis.
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1.2 Channel Knowledge and Its Acquisition

It is well understood by now that the capacity and reliability of multiple antenna com-

munication systems are significantly increased by having perfect channel knowledge at

both node B and node A [7]. These gains are primarily due to the fact that multiple an-

tenna communication enables methods such as MRT(C), BF etc, which requires channel

knowledge at node B and/or node A. Therefore, in practical systems, efficient acquisi-

tion of channel knowledge at node B and node A is an important problem. Channel

State Information (CSI) at node B (CSIB) can be acquired by sending a known training

sequence from node A to node B, from which the latter computes an estimate of the chan-

nel. Since data and training signals are transmitted from node A, there exists an inherent

tradeoff between resources, such as training duration, training power, data power and

data duration that are spent for training and data transmission. Higher resources spent

in training result in a higher estimation accuracy, which helps in improving the rate

achievable during the data transmission phase. However, a higher training overhead

leaves less resources for data transmission, which might undo the benefits of the im-

proved channel estimation, and lead to a net reduction in the average data rate. The

problem of sharing of resources between data and training in an optimal way was first

studied in [8], where, among other things, it is shown that a training duration of nA

symbols is optimal in terms of a capacity lower bound. Since then, several researchers

have studied the tradeoff under various scenarios; these will be elaborated upon in

later chapters.

The capacity and reliability is further increased by having CSI at node A (CSIA), in ad-

dition to CSIB. For example, in a MIMO system with perfect CSIA, it can be shown that
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the probability of error falls exponentially with SNR, which is not possible with systems

with no CSIA [9]. In this thesis, we address the problem of efficiently acquiring CSIA in

reciprocal MIMO systems. The conventional method for acquiring CSIA in reciprocal

MIMO systems is to transmit a known training sequence such as the Hadamard ma-

trix in the reverse-link, from which node A computes an estimate of the reverse channel

HH . This incurs a training overhead of at least nB symbols, which could be significant,

particularly when Lc is small, i.e., in a fast fading environment. Can we do better than

the conventional training? In this thesis, we answer this question in the affirmative, by

proposing novel channel-dependent Reverse Channel Training (RCT) schemes. The fol-

lowing example motivates the study of RCT sequence design considered in this thesis

by comparing channel-agnostic conventional RCT with channel-dependent RCT that

adapts to the current CSIB.

• Example: Consider a point to point reciprocal Single-Input Single-Output (SISO)

system with perfect CSIB where the forward channel is a complex random vari-

able h = |h|ejθ and the reverse channel is h∗ = |h| e−jθ.1 Note that knowledge of

|h| would suffice at node A for power control or adaptive modulation and coding,

since the phase θ can be compensated for at node B without changing the noise

statistics. In the conventional training, node B transmits

xB,τ =
√

PB,τ · 1, (1.3)

where PB,τ is the training power. The corresponding received training signal at

1The reverse channel is |h|e−jθ due to reciprocity.
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node A is given by

yA,τ =
√

PB,τh
∗ + wA, (1.4)

where wA is distributed as CN (0, 1). Using yA,τ , node A computes an estimate of

|h| as

ˆ|h|(conv) ,
y∗

A,τ
√

PB,τ

=

∣
∣
∣
∣
∣
h +

w∗
A

√
PB,τ

∣
∣
∣
∣
∣
. (1.5)

Note that the conventional training method enables node A to estimate both |h|

and θ, but the estimation of θ is not required for data transmission. Now, we

consider a different, channel-dependent reverse training signal for estimating |h|

at node A. Suppose we employ x
(prop)
B,τ =

√
PB,τe

−jθ as the training signal, then, the

corresponding received signal at node A is given by

yA,τ =
√

PB,τe
−jθh + wA =

√

PB,τ |h| + wA. (1.6)

Note that the proposed training signal also satisfies the training power constraint

of PB,τ since
∣
∣e−jθ

∣
∣ = 1. Node B computes an estimate of |h| by discarding the

imaginary part, as follows

ˆ|h|(prop) ,
|ℜ{yA,τ}|
√

PB,τ

=

∣
∣
∣
∣
∣
|h| + ℜ{wA}

√
PB,τ

∣
∣
∣
∣
∣
. (1.7)

In the above, since the desired part of the signal (|h|) is real, the imaginary part of

the noise does not corrupt the signal, and hence removing it reduces the noise

variance by a factor of 2, and results in a reduced Mean Square Error (MSE).

Figure 1.2 plots the MSE in the estimation of |h| as a function of the training
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power in dB. The improvement in the MSE by employing the proposed channel-

dependent RCT is clear from the graph. This simple example illustrates that the

use of channel-dependent RCT can enable node A to efficiently estimate only the

part of the CSI that is required for data transmission.

−10 −8 −6 −4 −2 0 2 4 6 8 10
10
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−1
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E

 

 

Conventional
Improved

Figure 1.2: MSE versus training power in the reverse-link in a TDD-SISO system. Here,
conventional refers to the channel-agnostic training scheme, whereas improved
refers to the proposed channel-dependent training sequence.

1.3 Outline of the Thesis

Chapter 2 of this thesis generalizes the idea of channel-dependent RCT presented in

the example above to a Single-Input Multiple-Output (SIMO) channel, and investigates
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the benefits offered by the scheme in terms of the Diversity Multiplexing gain Tradeoff

(DMT). The following models for CSI are studied: (i) perfect CSIB and noisy CSIA, and

(ii) noisy CSIB and noisy CSIA. In both cases, a channel-dependent fixed-power train-

ing scheme is proposed for acquiring CSIA, along with a forward-link data transmit

power control scheme. With perfect CSIB, the proposed scheme is shown to achieve

a diversity order that is quadratically increasing with the number of receive antennas.

This is in contrast to conventional orthogonal RCT schemes, where the diversity order

is known to saturate as the number of antennas at node B is increased, for a given Lc.

Moreover, the proposed scheme can achieve a larger DMT compared to the orthogo-

nal training scheme. With noisy CSIB and noisy CSIA, a three-way training scheme is

proposed and its DMT performance is analyzed. It is shown that nearly the same di-

versity order is achievable as in the perfect CSIB case. The outage performance of the

proposed scheme is illustrated through Monte Carlo simulations. The contents of this

chapter have been published in parts in [10, 11].

Chapter 3 extends the constant power training proposed in chapter 2 to a power con-

trolled RCT scheme that enables node A to directly estimate the power control param-

eter to be used for the forward-link data transmission. We show that our proposed

scheme, with an RCT power of P̄ γ, γ > 0, and a forward data transmission power of

P̄ , achieves an infinite diversity order for 0 ≤ gm <
Lc−LB,τ

Lc
min(γ, 1) and r > 2, where

gm is the multiplexing gain, Lc is the channel coherence time, LB,τ is the RCT dura-

tion and r is the number of receive antennas. We also derive an upper bound on the

outage probability and show that it goes to zero asymptotically as exp
(
−P̄ E

)
, where

E ,

(

γ − gmLc

Lc−LB,τ

)

, at high P̄ . Thus, the proposed scheme achieves a significantly
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better DMT performance compared to the finite diversity order achieved by channel-

agnostic and fixed-power RCT schemes. The contents of this chapter have been pub-

lished in [12].

In chapter 4, we propose and optimize channel-dependent training schemes for re-

ciprocal MIMO channels with BF at the node A and node B. First, assuming that CSI

is available at node B, a channel-dependent RCT signal is proposed that enables ef-

ficient estimation of the BF vector at node A with a minimum training duration of

only one symbol. In contrast, conventional orthogonal training requires a minimum

training duration equal to the number of receive antennas. A tight approximation

to a lower bound on the capacity of the system is derived, which is used as a per-

formance metric to optimize the parameters of the RCT. Next, assuming that CSI is

available at node A, a channel-dependent forward-link training signal is proposed and

its power and duration are optimized with respect to an approximate capacity lower

bound. Finally, we demonstrate the significant performance improvement offered by

the proposed channel-dependent training schemes over the existing channel-agnostic

orthogonal training schemes through simulations. The contents of this chapter have

been published in [13].

Chapter 5 extends the RCT scheme in chapter 4 to multiuser MIMO Spatial Multi-

plexing (SM) systems. In particular, using the channel knowledge at node B, a novel,

channel-dependent power-controlled RCT sequence is proposed, using which the node

A estimates the required BF vectors for the forward-link data transmission. Tight ap-

proximate expressions for (i) the Mean Square Error (MSE) in the estimate of the BF

vectors, and (ii) a Capacity Lower Bound (CLB) for an SM system, are derived, and are
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used to optimize the parameters of the training sequence. Moreover, an extension of

the channel-dependent training scheme and the data rate analysis to a multiuser sce-

nario with M user terminals is presented. For the single mode BF system, a closed-form

expression for an upper bound on the average sum data rate is derived, which is shown

to scale with M as
Lc−LB,τ

Lc
log2 log M , where Lc and LB,τ are the channel coherence time

and training duration, respectively. Using simulation results, the significant perfor-

mance gain offered by the proposed training sequence over the conventional constant-

power orthogonal RCT sequence is demonstrated. Also, it is shown that optimal spatial

power allocation during training outperforms its equal power allocation counterpart,

while optimal temporal power allocation only offers a marginal improvement in per-

formance. The contents of this chapter have been published in part in [14], and has

been submitted as [15].
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Chapter 2

On the DMT of TDD-SIMO Systems

with Channel-Dependent Reverse

Channel Training

2.1 Introduction

Reliability and system throughput are two fundamental parameters of interest in any

wireless communication system, and the inherent tradeoff between the two at high SNR

was elegantly captured by the Diversity Multiplexing gain Tradeoff (DMT) proposed

in the seminal work of Zheng and Tse [16]. It is known that a significant improvement

in the outage performance can be obtained if the Channel State Information (CSI) at the

receiver (CSIR) and the transmitter (CSIT) are perfect [17], [9], while [16] considered

perfect CSIR and no CSIT.

In a Time Division Duplex (TDD) system, CSI could be estimated at the transmitter

and receiver by sending a known training sequence in the forward and reverse-link

directions, respectively. This has two consequences. First, the estimation error results in

12
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incorrect data rate or power adaptation at the transmitter, in turn leading to higher out-

age rate. Second, training incurs a time overhead, which could be non-trivial when the

training occupies a significant fraction of the channel coherence time, as it affects the

pre-log term in the achievable data rate [8]. This chapter therefore focuses on the im-

portant problem of analytically comparing the DMT performance of different channel

estimation techniques and identifying training signals and data power control schemes

that result in a good performance in terms of the achievable DMT. We start with a brief

survey of related literature.

The impact of imperfect CSIT on the DMT of a multiple antenna system has been a

popular area of research, and it is known that even with imperfect CSIR and CSIT, a

significant improvement in DMT can be obtained, compared to the no-CSIT case (see,

for example, [18–20]). The effect of imperfect CSIR on the DMT of a MIMO system was

first studied in [21]. The DMT analysis of a multiple antenna system with perfect CSIR

and when the CSIT is modeled as the CSI plus Gaussian noise whose variance decreases

with training SNR was investigated in [22–24]. In a TDD setup, the achievable DMT

improvement using power control based on noisy CSIT was shown in [1, 24, 25]. Other

works that study the DMT performance with quantized feedback of CSI and/or target

data rate control based on noisy CSIT include [18, 19, 23, 26–29]. In [2, 28], the DMT

of two-way and multi-round training schemes in a TDD system was derived. In these

studies, the channel feedback signal on the reverse-link is chosen to satisfy an average

power constraint, rather than an instantaneous power constraint.

Most of the aforementioned studies of the DMT with imperfect CSI typically ignore

the training duration overhead. Hence, they are primarily applicable to slowly varying
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channels, where the time overhead in training occupies an insignificant fraction of the

channel coherence time. An exception is [1], where, taking the training overhead into

account, the authors concluded that for nonzero multiplexing gain gm, the diversity or-

der saturates as r increases, where r is the number of receive antennas. Hence, for fast

varying channels, the authors suggest turning off receive antennas in order to achieve

higher multiplexing gains. It is important to account for the training duration over-

head in deriving the achievable DMT, because, as the SNR goes to infinity, although

the estimation error goes to zero, the training duration overhead remains fixed and has

a direct impact on the DMT. Also, by modeling the CSIT as the sum of the true CSI and

an additive error, most of the past studies implicitly assume that a channel-agnostic

orthogonal training signal is employed for channel estimation. When the training sig-

nal is channel-dependent, the imperfect CSI can no longer be modeled as the sum of

the true CSI and an additive noise. Due to this, the existing results cannot be directly

extended to analyze the DMT performance of channel-dependent training schemes.

When the channel is reciprocal and block-fading, e.g., in a TDD system, the receiver

could exploit its channel knowledge (acquired through an initial forward-link training

phase) in designing its reverse-training sequence, not only to reduce the channel esti-

mation error at the transmitter, but also to reduce the required training duration over-

head. Hence, the goals of this chapter are two-fold: (a) to analyze the DMT performance

of a channel-dependent training scheme for acquiring CSIT and an associated power con-

trol mechanism for data transmission; and (b) to contrast the DMT performance of

the proposed training and power control schemes with that achieved by conventional

channel-agnostic training schemes. Our study focuses on point-to-point Single-Input
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Multiple-Output (SIMO) systems. This is of practical importance, since it applies, for

example, to the uplink of wireless networks where the base station has multiple an-

tennas, the mobile users have a single antenna, and orthogonal access is used (e.g.,

OFDM/TDMA) as in WLANs and 4G/LTE systems. The channel-dependent training

sequence employed here was first proposed by us in [30] and [10] in a MIMO and SIMO

context, respectively, and was independently explored in [31], although not in a DMT

context.

In this chapter, for analytical simplicity and clarity of presentation, we start by assum-

ing that perfect CSI is available at the receiver, as in [22–24]. We propose a fixed-power

RCT sequence, using which, the CSI can be estimated at the transmitter using a mini-

mum duration of only one symbol, i.e., with a factor of r reduction in training duration

compared to orthogonal RCT. For data transmission, we propose a modified truncated

channel inversion-type power control scheme based on the noisy CSIT. For this system,

we show that a diversity of d(gm) = r
(

s + 1 − gmLc

Lc−LB,τ

)

is achievable. Here, gm is the

multiplexing gain, Lc is the coherence time, LB,τ ≥ 1 is the reverse training duration,

and 1 ≤ s < r is a parameter in the data power control scheme. (See Section 2.3.)

Next, we consider the more practical case where noisy CSIR is acquired via a forward-

link training sequence, and propose a three-way training scheme followed by data trans-

mission. We show that a DMT of d(gm) = r(s + 1 − gmLc

Lc−β
) is achievable, where β ≥ 3 is

the total training overhead from all three training phases, which is again an improve-

ment over conventional orthogonal training schemes. For example, a nonzero diversity

order can be achieved with Lc−(r+2)
Lc

≤ gm < Lc−3
Lc

, which is not possible with orthogonal

training schemes without switching off receive antennas and incurring an associated
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reduction in diversity order. (See Section 2.4.)

Note that although the perfect CSIR case is a special case of the three-way training

scheme with infinite forward-link training power, we briefly present the perfect CSIR

case also, as it provides insights into the impact of the reverse-training and data power

control mechanisms on the DMT. Moreover, it is useful as an upper bound on the per-

formance with imperfect CSIR. Also, we assume that power control is employed only

at the transmitter and focus on fixed-power RCT in the sequel. Using power controlled

RCT significantly changes the problem; we analyze this case in chapter 3 (also, see [12]).

An important implication of our work is that it shows that by exploiting the receiver’s

knowledge of the CSI in designing the reverse channel training (RCT) sequence and us-

ing our proposed data power control scheme, one can achieve a higher diversity order

than conventional RCT for all values of gm. Somewhat surprisingly, we also demon-

strate that although the DMT analysis corresponds to taking the SNR to infinity, it can

nonetheless be used to discriminate between different training schemes both in terms

of the estimation error as well as the training overhead. At finite SNR, this translates to

an improvement in the outage probability performance and the achievable data rate, as

will be illustrated through Monte Carlo simulations in Section 2.6.

We use the following notation. Bold face letters are used for vectors and normal font

letters are used for scalars. We write f(P̄ )
.
= 1

P̄ k to mean − limP̄→∞
log f(P̄ )

log P̄
= k. Similarly,

we define f(P̄ ) � 1
P̄ k to mean − limP̄→∞

log f(P̄ )
log P̄

≥ k.
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2.2 System Model

The system model consists of two communicating nodes, node A with a single antenna

and node B with r antennas, with node A attempting to send data to node B over a wire-

less channel. The forward channel from node A to node B, denoted by h ∈ Cr×1, is

modeled as a Rayleigh flat fading channel whose entries are i.i.d. Circularly Symmet-

ric Complex Gaussian (CSCG) random variables with zero mean and unit variance,

i.e., CN (0, 1). The channel is assumed to be block-fading, i.e., it remains constant for

a duration of the coherence time Lc, and evolve in an i.i.d. fashion across coherence

times. We assume a TDD system with perfect reciprocity, and hence, taking the com-

plex conjugate of the received signal at node A, the reverse-link channel is hH . We let

h = σv, where σ = ‖h‖2 is the singular value and v , h
‖h‖2

is the singular vector of h.

Since our goal is to study the achievable DMT performance with channel training, we

first explain the two-way training protocol used for acquiring CSI at node B and node A.

Later, in Sec. 2.4, an additional phase of forward-link training is introduced, which is

not presented here for simplicity of exposition.

Phase I (Forward-link training)

Here, the training sequence xA,τ =
√

P̄LA,τ1 is transmitted from node A to node B, where

LA,τ1 denotes the training duration and P̄ is the training power. Strictly speaking,

xA,τ =
√

P̄ is transmitted repeatedly LA,τ1 times. Mathematically, this is equivalent

to using xA,τ =
√

P̄LA,τ1 for a duration of one unit.. Throughout this chapter, we use

P̄ as the average power constraint during both training and data transmission. The
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corresponding received training signal is given by,

yB,τ = h

√

P̄LA,τ1 + wB,τ . (2.1)

The entries of wB,τ ∈ Cr×1 are assumed to be distributed as i.i.d. CN (0, 1). From the

received training signal yB,τ , node B computes an MMSE estimate of h, denoted ĥ. The

error in the estimate, denoted h̃ , h − ĥ, has i.i.d. CN
(
0, 1/(1 + P̄LA,τ1)

)
distributed

entries.

In a TDD-SIMO system, node A only requires knowledge of σ to perform power con-

trol, which in turn improves the diversity order compared to the no-CSIT case. There-

fore, in phase II, we estimate only σ at node A, using a channel-dependent training

sequence.

Phase II (Reverse-link training)

Since node B has an estimate (say, v̂ , ĥ

‖ĥ‖
2

) of the channel, in this phase, it exploits its

CSI to transmit the following training sequence [10, 30]:

xB,τ =
√

P̄LB,τ v̂, (2.2)

where LB,τ is the reverse training duration. Using the corresponding received signal,

yA,τ , hHxB,τ + wA,τ , where the AWGN wA,τ ∈ C is distributed as CN (0, 1), node A

computes an estimate of the singular value as follows:

σ̂ ,
ℜ{yA,τ}
√

P̄LB,τ

= σℜ{vH v̂} + w̄A,τ , (2.3)
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where w̄A,τ ,
ℜ{wA,τ}√

P̄LB,τ

. Note that the estimate σ̂ could be negative; this is taken care of

by the power control proposed in Sec. 2.3, which uses σ̂ only when it is greater than a

positive threshold. Since a low or negative σ̂ is likely to be inaccurate, the thresholding

technique helps to avoid the poor DMT performance due to such estimates. The RCT

scheme employed above is different from existing channel-agnostic methods in that the

minimum training length in the proposed scheme is only 1 symbol. This represents a

factor of r reduction compared to orthogonal RCT schemes, where the minimum train-

ing length increases linearly with r, and this difference in overhead could be significant

when Lc is small. Also, if v̂ is error-free, it is the optimal beamforming vector for esti-

mating σ at node A.

Multiplexing Gain and Diversity Order

We recall the definitions of the multiplexing gain, gm, and the diversity order d from [16]:

gm , lim
P̄→∞

RP̄

log P̄
, d , − lim

P̄→∞

log Pout

log P̄
, (2.4)

where RP̄ is the target data rate when the average data power constraint is P̄ , and Pout

is the corresponding outage probability, i.e., the probability that RP̄ exceeds the chan-

nel capacity. In this work, the target data rate RP̄ = gm log P̄ is fixed and is independent

of the CSIT; the extension of our proposed methods to joint rate and power adaptation

is relegated to future work. The rate of data transmission RP̄ is increased with P̄ by

increasing the cardinality of the signal set, keeping the symbol duration fixed. We ig-

nore the effect of spectral leakage, and assume that the signal bandwidth remains fixed

as P̄ goes to infinity. Also, we use outage probability as a proxy for the probability of
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error at high SNR with finite-length codes; this is because the probability of error can

be made to decrease as fast as the outage probability using finite-length approximately

universal codes [32, 33].

In the next section, we assume perfect CSI at node B and derive the achievable DMT

performance of our proposed training and data transmission schemes.

2.3 DMT Analysis with Perfect CSIR

When the CSIR is perfect, we have v̂ = v, and in this case, it is easy to see that (2.2)

is optimal for estimating σ given a power constraint P̄ on the training signal. This

is because, in general, the training signal can be expressed as the linear combination

xB,τ = δv + βv⊥, where v⊥ is orthogonal to v and δ and β are some constants. Then,

the received training signal at node A is yA,τ = δσ + wA,τ , i.e., the power in v⊥ does not

help in estimating σ. From (2.3), an unbiased estimator of the singular value at node A is

given by

σ̂ = σ + w̄A,τ . (2.5)

Note that since the channel is assumed to be Rayleigh fading, σ2 is chi-square dis-

tributed with 2r degrees of freedom. Also, we employ this estimator primarily because

we are interested in deriving the achievable DMT performance, and for this purpose,

this simple unbiased estimator is sufficient.

2.3.1 Power-Controlled Data Transmission from Node A to Node B

Given the CSIT σ̂ in (2.5), node A uses a power P(σ̂) in the forward-link data transmission

phase, to avoid outages while satisfying the average data power constraint P̄ . The
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corresponding data signal received at node B is given by,

yB,d =
√

P(σ̂)hxA,d + wB,d, (2.6)

where xA,d ∼ CN (0, 1), and with appropriate power normalization, the entries of the

AWGN wB,d ∈ Cr×1 are assumed to be i.i.d. CN (0, 1). Also, P(σ̂) is chosen independent

of xA,d such that E{P(σ̂)} = P̄ , where the expectation is with respect to σ̂ given in (2.5),

taken across all coherence blocks. Since E{|xA,d|2} = 1 within a block, this ensures that

the average data power constraint at node A is satisfied.

We now present the data power control function P(σ̂) considered in this chapter. Our

proposed power control function is motivated as follows. The capacity of a fading

channel with mismatched CSIT and CSIR is not known in closed form [34]. Since the

outage probability computation requires a closed form expression for the capacity, we

consider a genie-aided receiver as in [3], where node B is assumed to know P(σ̂). This is

schematically illustrated in Fig. 2.1. Then, the achievable data rate conditioned on the

knowledge of
√

P(σ̂)h is given by [34]

C ,
Lc − LB,τ

Lc

log
(
1 + σ2P(σ̂)

)
. (2.7)

An outage occurs when RP̄ , the target data rate, exceeds C. Its probability is upper

bounded by

Pout , Pr

(
Lc − LB,τ

Lc
log(1 + σ2P(σ̂)) < RP̄

)

. (2.8)

Note that the exact outage probability is obtained by minimizing the right hand side

above over all P(σ̂) satisfying E{P(σ̂)} = P̄ . Hence, using our proposed data power

control scheme leads to an upper bound on the outage probability, which is sufficient
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Figure 2.1: System model for reverse channel training with perfect CSIR used in Section
2.3.

for obtaining the achievable DMT performance. If the CSIT is perfect (i.e., σ̂2 = σ2), it is

shown in [17] that the power control that minimizes the outage probability is given by

Φ(σ2) ,
exp

(
RLc

Lc−LB,τ

)

− 1

σ2
. (2.9)

Note that since RP̄ = gm log P̄ and E
{

1
σ2

}
= 1

r−1
, Φ(σ2) satisfies E{Φ(σ2)} ≤ P̄ for large

enough P̄ , provided gm ≤ (Lc − LB,τ )/Lc. With inaccurate CSIT, due to the estimation

error in σ̂, the natural extension of using a transmission power of Φ(σ̂2) could result in

allocating insufficient power or more power than required, which could lead to subop-

timal performance. Also, inverting the channel for all values of σ̂ results in an infinite

average power since the Gaussian noise can make the estimate σ̂ arbitrarily small with

a non-zero probability. One solution is to use a transmit power of Φ(σ̂2) when σ̂ > θ0

and a zero power otherwise, where θ0 is chosen such that E[Φ(σ̂2)1σ̂>θ0] = P̄ . The draw-

back of this method is that it results in an outage probability of 1 when σ̂ ≤ θ0, leading

to a zero diversity order. To overcome this problem, we choose the threshold θ0 such
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that θ0 → 0 as P̄ → ∞. Moreover, when σ̂ ≤ θ0, we do not necessarily want to use zero

power, since the small value of σ̂ could be due to the estimation error. This motivates

the following modified power control:

P(σ̂) ,







P̄ l σ̂ ≤ θP̄ ,

κP̄ × Φ(σ̂2s) σ̂ > θP̄ ,
(2.10)

where s ≥ 1 is a parameter, and we use θP̄ , 1
P̄ n , n > 0, for mathematical tractability.

The parameters n, κP̄ and l > 0 are chosen such that E[P(σ̂)] = P̄ . Although similar

power control schemes have been employed in the literature with perfect CSIT [17]

or orthogonal RCT [1, 2, 24], the form in (2.10) is new. Specifically, the power control

scheme in [1, 17, 24] can be obtained from (2.10) by setting s = 1, θP̄ = 0 and l = −∞;

while that in [2] can be obtained by setting s = r, θP̄ = 0 and l = −∞.

Power constraint

The description of the power control would be complete if the parameters n, κP̄ and l

can be chosen such that E[P(σ̂)] = P̄ , which is the essence of the following Lemma.

Lemma 1. Let θP̄ , 1√
P̄

. For 1 ≤ s < r, there exists a κP̄
.
= 1

P̄
gm
α −1

, where α ,
Lc−LB,τ

Lc
, such

that E[P(σ̂)] = P̄ , if 0 ≤ l ≤ r + 1.

Proof : See Appendix A.0.2. �

Due to Lemma 1, in the rest of this chapter, we consider θP̄ = 1/
√

P̄ . Also, in Sec. 2.4,

we show that a minor modification of the above data power control scheme can be

employed even with imperfect CSIR. The next subsection presents the achievable DMT

of the proposed training and power control schemes.
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2.3.2 Achievable DMT Analysis

Theorem 1. Given r receive antennas and LB,τ training symbols being used per coherence

interval Lc to estimate the CSIT in a SIMO system with perfect CSIR and a genie-aided receiver,

an achievable diversity order as a function of multiplexing gain gm is given by

d(gm) = r
(

min{l, s + 1} − gm

α

)

, (2.11)

where 0 ≤ l ≤ r + 1, 1 ≤ s < r, 0 ≤ gm < α, and α ,
Lc−LB,τ

Lc
represents the fractional data

transmit duration.

Proof: See Appendix A.0.3. �

Remark: From a DMT perspective, it is clear from Theorem 1 that s → r, l = r + 1 is

superior to s = 1, l = 2. On the other hand, when σ̂ < 1, Φ(σ̂2r) could be much greater

than Φ(σ̂2). Thus, in practical systems with a peak power per transmitted codeword

constraint, s = 1, l = 2 could be preferable over s → r, l = r + 1. In the sequel, for

convenience, we associate l = 2 with s = 1 and l = r + 1 with s → r, and drop the

explicit dependence of the diversity order on l. Further remarks and discussions on the

result obtained here are deferred to Sec. 2.5.

Table 2.1: Three way training in a TDD-SIMO system
Phase Description Input-Output Equation

I Fixed power training (Node A → Node B) yB,τ = hxA,τ + wB,τ

II Fixed power training (Node B → Node A) yA,τ = hHxB,τ + wA,τ

III Power controlled training (Node A → Node B) yB,τ2 =
√

P̄LA,τ2P(σ̂)h + wB,τ2

IV Power controlled data (Node A → Node B) yB,d = hxA,d + wB,d
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2.4 Three Way Training

In this section, we consider the more practical scenario where training is performed

in both directions. We show that with fixed power training, one can achieve nearly

the same DMT as derived in Sec. 2.3 for the perfect CSIR case. Unlike in the previ-

ous section, the analysis presented here is exact, in the sense that it does not require

the assumption of a genie aided receiver, and hence, the DMT derived here is indeed

achievable in practice. The transmission protocol now consists of four phases, as shown

in Table 2.1. The CSIR and CSIT are obtained by transmitting a fixed power training

sequence in both directions, as explained in Sec. 2.2. However, even a small mismatch

in the CSI knowledge at node A and node B can potentially lead to a large mismatch in

their estimate of the data transmit power [1]. Thus, it is essential to train node B about

node A’s knowledge of P(σ̂). This leads to a third phase of training, which is an addi-

tional power-controlled forward-link training phase. First, in the following subsection,

we explain the power control scheme that is employed here.

2.4.1 Power Control Scheme

The power control scheme we propose to employ in this section is as given by (2.10),

due to the following. Let ĥ denote the MMSE estimate of the channel at node B, and

consider σ̂ in (2.3). We have

σ̂ ,
ℜ{yA,τ}
√

P̄LB,τ

= ℜ{ĥH v̂} + ℜ{h̃H v̂} +
ℜ{wA,τ}
√

P̄LB,τ

=
∥
∥
∥ĥ

∥
∥
∥

2
+ w̃eff , (2.12)
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where w̃eff , ℜ{h̃H v̂} +
ℜ{wA,τ}√

P̄LB,τ

. Note that ĥ and h̃ are independent Gaussian random

variables.1 Since v̂ is uniformly distributed on the unit sphere and is independent of h̃,

ℜ{h̃H v̂} is Gaussian distributed. This implies that the effective noise, w̃eff , is Gaussian

distributed with E|w̃eff |2 .
= 1

P̄
and independent of ĥ. Therefore, the estimate of the

singular value at node A is statistically similar to the estimate given by (2.5) in the perfect

CSIR case. Thus, we use a similar power control, P(σ̂) in (2.10), where σ̂ is given by

(2.12). Also, with a slight abuse of notation, α ,
Lc−LB,τ−LA,τ1

−LA,τ2

Lc
, where LA,τ2 is the

training duration in the third phase of training (phase III), which is in the forward-link

direction.

In this section, without loss of generality, we move the power scaling
√

P̄ into the

data symbol transmitted by node A, so that E{P(σ̂)} = 1 (see (2.13) below), where the

expectation is taken with respect to the distribution of σ̂ in (2.12). Now, in the proof

of Lemma 1, using the probability density function (pdf) of
∥
∥
∥ĥ

∥
∥
∥

2
in place of the pdf

of σ, and noting that the effective noise variance
.
= 1/P̄ , we get κP̄

.
= 1

P̄ gm/α and the

constraint 0 ≤ l ≤ r to satisfy E{P(σ̂)} = 1 at high SNR. In the next subsection, we

explain the third round of training that alleviates the mismatch in the knowledge of the

data transmit power.

2.4.2 Power-Controlled Forward Link Training Scheme

In phase III of the scheme, node A transmits the training sequence: xA,τ2 =
√

P̄LA,τ2

√

P(σ̂),

where LA,τ2 is the training duration. The corresponding received training signal at node

1ĥ → h as P̄ → ∞. Moreover,
∥
∥
∥ĥ

∥
∥
∥

2
is a chi distributed random variable.
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B is given by,

yB,τ2 =
√

P̄LA,τ2

√

P(σ̂)h + wB,τ2 , (2.13)

where wB,τ2 ∈ Cr×1 is the AWGN with CN (0, 1) entries. The goal at node B is to estimate

the composite channel pc ,
√

P(σ̂)h. Dividing (2.13) by
√

P̄LA,τ2 , we get

ỹB,τ2 ,
yB,τ2

√

P̄LA,τ2

= pc +
wB,τ2

√

P̄LA,τ2

. (2.14)

From (2.14), node B computes an MMSE estimate of pc, denoted by p̂c. Let p̃c , pc − p̂c.

Although a closed form expression for p̂c is hard to find, the error p̃c in the MMSE

estimate has the following interesting property, which facilitates the calculation of the

outage probability in Sec. 2.4.4. An analogous result has been shown in [35] for the

scalar case.

Lemma 2. E‖p̃c‖2z
2 � 1

P̄ z for every z > 0.

Proof: See Appendix A.0.4. �

2.4.3 Power-Controlled Data Transmission from Node A to Node B

In phase IV. of the scheme, using P(σ̂), node A sends the data signal x =
√

P̄P(σ̂)xA,d,

where xA,d is distributed as CN (0, 1) and is independent of P(σ̂). Note that E|x|2 = P̄

by construction, where the expectation is taken with respect to both σ̂ and xA,d. The

corresponding signal received at node B is

yB,d =
√

P̄P(σ̂)hxA,d + wB,d (2.15)

=
√

P̄ p̂cxA,d +
√

P̄ p̃cxA,d + wB,d. (2.16)
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Since p̂c is an MMSE estimate, using the worst case noise theorem [8], we have the

following lower bound on the mutual information, I(xA,d;yB,d|p̂c) ≥ CAB , where

CAB , α log

(

1 +
P̄ ‖p̂c‖2

2
P̄
r
E[‖p̃c‖2

2 |ỹB,τ2 ] + 1

)

, (2.17)

and α ,
Lc−LB,τ−LA,τ1

−LA,τ2

Lc
is the fractional data transmit duration after accounting for

the time overheads in all three training phases.

2.4.4 Achievable DMT Analysis

Theorem 2. For a SIMO system with r receive antennas and three phases of training and the

data transmission phase as described in Table 2.1, an achievable DMT is given by

d(gm) = r
(

min{l, s} + 1 − gm

α

)

, (2.18)

where 0 ≤ l ≤ r, 1 ≤ s < r, 0 ≤ gm < α, and α ,
Lc−LB,τ−LA,τ1

−LA,τ2

Lc
.

Proof: See Appendix A.0.5. �

Remark: The above three way training scheme can be generalized to k training rounds

to improve the diversity order, as in [2, 28]. However, this is mathematically cumber-

some and out of the scope of our work.

2.5 Discussion

Recall that with perfect CSIR and imperfect CSIT, with l ≥ s + 1, and for a genie aided

channel, it was shown in Theorem 1 that the following DMT is achievable:

d(gm) = r

[

s + 1 −
(

gmLc

Lc − LB,τ

)]

, (2.19)
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Figure 2.2: The achievable DMT with the training and power control scheme proposed
in Sec. 2.3, compared with the performance of the orthogonal RCT and the data power
control proposed in [1,2] (and appropriately accounting for the training duration over-
head and switching off antennas to achieve higher values of gm). The plot corresponds
to a SIMO system with r = 5 antennas, with coherence time Lc = 20 symbols, and
reverse training duration of LB,τ = 1 symbol.

where 1 ≤ s < r, 0 ≤ gm ≤ Lc − LB,τ

Lc
. In contrast, for the same genie aided channel, it

was shown in [3] that a diversity order of

ds(gm) = r

[

2 −
(

gmLc

Lc − rLB,τ

)]

, 0 ≤ gm ≤ Lc − rLB,τ

Lc

(2.20)

is achievable using orthogonal reverse channel training. Note that ds(gm) saturates as

r gets large, as opposed to (2.19), which is monotonically increasing in r. In order to
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achieve a gm >
Lc−rLB,τ

Lc
, in [1], the authors suggest turning off one receive antenna at a

time to reduce the training burden until r = 2. For example, turning off one antenna,

gm ∈
[

Lc−rLB,τ

Lc
,

Lc−(r−1)LB,τ

Lc

]

is achievable at a reduced diversity order of ds(gm) = (r −

1)
[

2 −
(

gmLc

Lc−(r−1)LB,τ

)]

. This is in contrast to our result, which can accommodate a larger

multiplexing gain, gm ≤ Lc−LB,τ

Lc
irrespective of r, while simultaneously achieving a

higher diversity order at each gm. We note that for a SIMO channel, a diversity order of

r(r+1−gm) for 0 ≤ gm < 1 was obtained in [2,24], using channel-independent training,

and without accounting for the training duration overhead. This corresponds to taking

Lc → ∞ in (2.19). The performance of the proposed scheme is schematically contrasted

with orthogonal RCT in Fig. 2.2 for a SIMO system with r = 5, Lc = 20, and LB,τ = 1

symbol. The advantage of the proposed scheme at higher values of the multiplexing

gain is clear from the plot. The proposed training scheme thus results in a factor r-

reduction in the training duration, which, along with the proposed data power control

scheme, translates to an increase in the range of achievable multiplexing gains, while

simultaneously offering a better diversity order compared to orthogonal RCT schemes.

Comparing Theorems 1 and 2, we see that the DMT performance of a genie aided

receiver with perfect CSIR is an upper bound on the performance of the system with

imperfect CSIR and CSIT, as expected. Also, the performance of the two systems is

similar, except that in the latter case, the factor α captures the loss in data transmission

time due to all three training phases. Similar observations as the above regarding the

improvement in DMT can be made for the three way training scheme compared to

orthogonal RCT schemes.
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2.6 Simulation Results

We now briefly present Monte Carlo simulation results to illustrate the outage proba-

bility performance of our proposed RCT and forward-link data power control schemes.

We consider a Rayleigh fading channel with three receive antennas. We calculate the

outage probability by averaging over 108 i.i.d. channel and training noise instantia-

tions. We set the channel coherence time and reverse training duration as Lc = 40 and

LB,τ = 1, respectively. Figures 2.3 and 2.4 show the outage probability of the proposed

fixed-power training scheme and the data power control scheme in (2.10) with s = 1

and s = r = 3, respectively, as a function of P̄ , with gm = 0 and RP̄ = 4 bits/channel

use (1 and 1.5 bits/channel use in case of Fig. 2.4), and with gm = 0.8. Although the

slopes of the curves do not match with the theoretical diversity order because the latter

requires infinite SNR, the improved performance of the proposed schemes is clear from

the graphs. Also, in Fig. 2.3, since the proposed scheme uses only LB,τ = 1 training

symbol while the orthogonal RCT scheme uses rLB,τ = 3 training symbols, the former

shows a higher outage than the latter at lower SNRs. Note that, we have not plotted

the outage performance of the three-way training scheme in Sec. 2.4. This is because

the outage probability is hard to compute, since a closed-form expression for p̂c is not

available.

2.7 Conclusions

This chapter proposed reverse training and data power control schemes for a TDD-

SIMO system with perfect/imperfect CSIR and investigated its DMT performance. It

was shown that a diversity order of d(gm) = r
(
s + 1 − gm

α

)
is achievable for l ≥ s + 1,
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1 ≤ s < r and 0 ≤ gm < α, where α represents the fractional data transmit dura-

tion. In contrast to channel-agnostic orthogonal training schemes, the diversity order

was shown to increase monotonically with r at nonzero multiplexing gain, which is a

significant improvement. The DMT analysis was extended to a more practical situa-

tion where the training is done in both directions. In this case also, it was shown that

the DMT performance can improve quadratically with the number of receive antennas,

and nearly the same DMT can be achieved as that with perfect CSIR and a genie-aided

receiver. In terms of system design for reciprocal SIMO systems, the key messages

from this chapter are that it is important to (a) exploit the CSI at the receiver in design-

ing the RCT and (b) use a modified channel-inversion type power control scheme that

transmits data at some non-zero power even when the estimated singular value at the

transmitter is poor. For fast varying channels, these ingredients can lead to a significant

advantage in DMT performance, which, at finite SNR, can translate to a large improve-

ment in outage probability performance compared to orthogonal training schemes. In

the next chapter, we propose a power-controlled RCT scheme and analyze its DMT per-

formance. We show that our proposed power-controlled RCT can achieve an infinite

diversity order.
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Figure 2.3: Outage probability versus the average data power P̄ for the fixed-power
training scheme proposed in Sec. 2.3, with the data power control scheme given by
(2.10) with s = 1. Here, r = 3, Lc = 40 and LB,τ = 1. With gm = 0.8, the target data rate
was set as RP̄ = 4 + gm log P̄ to facilitate the comparison of the curves.
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Figure 2.4: Outage probability versus the average data power P̄ for the fixed-power
training scheme proposed in Sec. 2.3, with the data power control scheme given by
(2.10) with s = r. Here, r = 3, Lc = 40 and LB,τ = 1.
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Power Controlled Reverse Channel

Training Achieves an Infinite Diversity

Order in a TDD-SIMO System with

Perfect CSIR

3.1 Introduction

As mentioned earlier, the diversity multiplexing gain trade-off (DMT), first proposed

in [16], elegantly captures the tradeoff between throughput and reliability in a wire-

less communication system at high SNR. While [16] assumed perfect Channel State

Information at the Receiver (CSIR), the DMT analysis has been extended to imperfect

CSIR and no CSI at the Transmitter (CSIT) [21], perfect CSIT and CSIR [9], noisy CSIT

and perfect CSIR [1–3, 24]. In the studies with noisy CSIT, the error in the CSI is mod-

eled as an independent Gaussian noise matrix whose covariance approaches zero as

the training power is increased. This is statistically equivalent to the CSIT estimate

in a reciprocal Time Division Duplex (TDD) system acquired using a channel-agnostic

35
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fixed-power orthogonal Reverse Channel Training (RCT) sequence. In the presence of

CSIR acquired through an initial forward-link training phase, channel-agnostic RCT

has the disadvantage that it does not exploit the available CSIR as side information in

designing the RCT sequence. For example, in a Single-Input Multiple-Output (SIMO)

system, using a normalized version of the estimated channel as a beamforming vector

to transmit a fixed-power RCT sequence enables the transmitter to directly estimate

the norm of the channel, which can then be used for forward-link data power control.

A DMT performance advantage results from obviating the need to first estimate the

channel vector and then estimate the channel norm and data power control from the

channel estimate [11]. However, one can potentially achieve an even better DMT by us-

ing power-controlled RCT, where the training sequence is designed to satisfy an average

power constraint, rather than an instantaneous power constraint, and this is the subject

of study in this chapter.

In this chapter, we consider a SIMO system consisting of node A with a single antenna

and node B with r antennas, and with data transmission from node A to node B using an

average power of P̄ per channel use. We focus on the DMT of a reciprocal TDD SIMO

system, with perfect CSI at Node B (CSIB) as in [24]. Our contributions are:

• We propose a channel-dependent Power Controlled RCT (PCRCT) scheme with

average power P̄ γ , γ > 0, that enables node A to directly estimate the power con-

trol required for data transmission at the target rate.

• For r > 2, we show that an infinite diversity order is achievable using the proposed

PCRCT for 0 ≤ gm <
Lc−LB,τ

Lc
min(γ, 1), where gm is the multiplexing gain, LB,τ is

the RCT duration, and Lc is the coherence time of the channel.
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• We also show that as P̄ gets large, an upper bound on the outage probability goes

to zero asymptotically as exp
(
−P̄ E

)
, where E ,

(

γ − gmLc

Lc−LB,τ

)

.

• We show that, for the proposed PCRCT and data power control, there exists an

uncoded data transmission scheme for which the probability of error goes to zero

exponentially with P̄ .

An advantage of our proposed method is that it requires a minimum training duration

of only one symbol, unlike channel-agnostic training which requires at least r symbols.

This could be significant when the channel coherence time is low, i.e., for fast-varying

channels. Our infinite diversity order result is in contrast with most existing results,

that obtain only a finite diversity order with imperfect CSIT, even with perfect CSIR.

In [28, 36], an infinite diversity order result is shown using digital feedback over the

reverse-link, when the number of feedback bits is increased with the reverse training

power. Unlike [28], our scheme uses a beamformed PCRCT that leads to direct estima-

tion of the data power control at node A, due to which, our analytical development and

the corresponding DMT result are different.

Our outage exponent result shows that the rate at which the diversity order goes to

infinity is faster for smaller values of gm. Moreover, the larger the value of γ > 1

(i.e., using higher RCT power than the data transmission power), the larger the outage

exponent. The RCT scheme proposed in this chapter can thus significantly improve the

DMT performance compared to channel-agnostic orthogonal RCT schemes.

Notation: We write f(P̄ )
.
= 1

P̄ k to mean − limP̄→∞
log f(P̄ )

log P̄
= k. Similarly, we define

f(P̄ ) � 1
P̄ k to mean − limP̄→∞

log f(P̄ )
log P̄

≥ k.
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3.2 System Model

The system model consists of node A with a single antenna and node B with r > 2

antennas1 as shown in Fig. 3.1. The data transmission is from node A to node B. The

wireless channel from node A to node B, denoted by h ∈ Cr×1, is modeled as a Rayleigh

flat fading channel whose entries are i.i.d. Circularly Symmetric Complex Gaussian

(CSCG) random variables with zero mean and unit variance, denoted CN (0, 1). The

channel is assumed to be block-fading, i.e., it remains constant for a duration of the

coherence time Lc, and evolves in an i.i.d. fashion across coherence times. We assume

a reciprocal TDD system [1], and hence, without loss of generality, taking the complex

conjugate of the received signal at node A, the reverse-link channel is hH . We let h = σv,

where σ , ‖h‖2 and v , h
‖h‖2

. For analytical tractability, we assume that node B has

perfect CSI, as in [3], [24]. Extension of the analysis to handle imperfect CSIB is difficult,

because the capacity of a fading channel with mismatched CSI at node A and node B

is unknown [34]. Moreover, in a TDD setup, when (say) node B transmits a channel-

dependent training sequence based on an imperfect estimate to node A, the effective

noise in the RCT signal at node A is no longer Gaussian, due to which, even lower

bounding the capacity is not straightforward [37]. In the next section, we present the

proposed PCRCT and the data transmission scheme, which will set the stage for the

achievable DMT analysis in Sec. 3.4.

1This condition is required for the analysis to follow.
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Figure 3.1: System model for PCRCT with perfect CSIR.

3.3 PCRCT and Data Transmission Protocol

In this chapter, we propose to employ the following channel-dependent, power-controlled

training signal from node B to node A:

xB,τ =

√

P̄ γLB,τ

√

(r − 1)(r − 2)

‖h‖2
2

v, (3.1)

where γ > 0 is a parameter that controls the RCT power. In writing the above, we have

assumed r > 2. Further, the training sequence in (3.1) satisfies an average power con-

straint, i.e., E‖xB,τ‖2
2 = P̄ γLB,τ , since E

1
‖h‖4

2

= 1
(r−1)(r−2)

for a Rayleigh fading channel.

The minimum duration LB,τ of the above training signal is a single symbol, unlike a

channel-agnostic orthogonal RCT scheme, which is of minimum duration equal to r

symbols. Due to the channel reciprocity, the corresponding received signal at node A is

yA,τ =
√

P̄ γLB,τ

√

(r − 1)(r − 2)

‖h‖2

+ wA,τ , (3.2)

where wA,τ is the AWGN at node A, distributed as CN (0, 1). Note that, in the absence

of noise, yA,τ is a scaled version of the optimal channel inversion-based power control,
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which achieves infinite diversity order when the CSIT is perfect [9]. Motivated by this,

even in the presence of noise, using yA,τ , node A computes gc = cP̄ℜ{yA,τ} as the ampli-

tude scaling applied to a unit-power data symbol at node A, where cP̄ ,

√
2P̄

2(r−2)P̄ γLB,τ+1
.

Using E

{
1

‖h‖2
2

}

= 1
r−1

and E{ℜ{wA,τ}2} = 1
2
, it can be shown that the average power

in gc is E{|gc|2} = P̄ . Observe that cP̄
.
= P̄

1−γ
2 ; this will be used in the outage proba-

bility analysis below. Note that the training sequence in (3.1) is different from the RCT

scheme in [28]. While (3.1) enables node A to directly estimate the data power control

as a scaled version of the RCT signal, in [28], node A first detects an index from the re-

ceived power level of the RCT signal, and then maps the decoded power index to the

forward-link data power. However, it can be shown that, as P̄ → ∞, the data power

control in [28] and the proposed data power control both approach perfect channel in-

version, albeit with different scaling factors. Let xA,d denote the data symbol at node A,

distributed as CN (0, 1). Now, node A multiplies the symbol xA,d by gc and transmits it

to node B. At node B, pre-multiplying the received data signal by vH , we get

ỹB,d , ‖h‖2 gcxA,d + vHwB,τ , (3.3)

= cP̄

√

P̄ γLB,τ

√

(r − 1)(r − 2)xA,d + neff , (3.4)

where wB,τ is the AWGN at node B with i.i.d. CN (0, 1) entries, and

neff , ‖h‖2 cP̄ℜ{wA,τ}xA,d + vHwB,τ .

Since E{|xA,d|2} = 1 and E{|gc|2} = P̄ , the power constraint P̄ on the data signal is

satisfied. Also, the data and the effective noise are uncorrelated given the channel,

i.e., E
[
neffx

∗
A,d| ‖h‖2

]
= 0. Therefore, using the worst case noise theorem in [8], a lower
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bound on the capacity of the system in (3.4) can be obtained by treating neff as Gaussian

distributed noise. With some algebraic manipulation, it is given by

CL , α log

(

1 +
2c2

P̄
(r − 1)(r − 2)P̄ γLB,τ

c2
P̄
‖h‖2

2 + 2

)

, (3.5)

where α ,
Lc−LB,τ

Lc
. Using (3.5), an upper bound on the outage probability can be

written as

Pout ≤ P u
out , Pr {CL < RP̄} , (3.6)

where RP̄ denotes the target data rate. We now state and prove the achievable DMT

result for the proposed PCRCT and data transmission scheme.

3.4 Outage Analysis

We start by recalling the definitions of the multiplexing gain, gm, and the diversity

order, d(gm), [16]:

gm , lim
P̄→∞

RP̄

log P̄
, d(gm) , lim

P̄→∞

− log Pout

log P̄
, (3.7)

where RP̄ = gm log(P̄ ) is the target data rate with average data power P̄ , and Pout is

the outage probability, i.e., the probability that RP̄ exceeds the channel capacity. Here,

we use the outage probability as a proxy for the probability of error at high SNR with

finite-length codes. This is because the latter can be made to decrease as fast as the

former using finite-length approximately universal codes [32, 33]. Since our proposed

scheme achieves an infinite diversity order, it will be useful to consider the following

additional definition: An RCT and data transmission scheme are said to achieve an
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outage exponent ς if the outage probability Pout satisfies

lim
P̄→∞

− log Pout

P̄ ς
= 1. (3.8)

The above definition captures the magnitude of the exponent with which the outage

probability goes to zero, as P̄ → ∞, and thus is useful to distinguish between schemes

that achieve an infinite diversity order. We note that a similar concept of an exponential

diversity order was defined in [38]. We are now ready to state our main result in the

following theorem.

Theorem 3. An upper bound on the outage probability, P u
out , Pr{CL < RP̄}, corresponding

to the PCRCT and the data transmission protocol proposed in Sec. 3.3, is given by

P u
out = e−SP̄

r−1∑

k=0

(SP̄ )r−k−1

(r − k − 1)!
, with (3.9)

SP̄ ,
2(r − 1)(r − 2)P̄ γLB,τ

(exp (RP̄ /α) − 1)
− 2

c2
P̄

(3.10)

for 0 ≤ gm < α. Here, r > 2, and α ,
Lc−LB,τ

Lc
as before. Moreover, the proposed scheme

achieves the DMT

d(gm) = ∞, 0 ≤ gm < α min(γ, 1), (3.11)

and an outage exponent ς = γ − gm

α
, 0 ≤ gm < α min(γ, 1).

Proof : After some manipulation, (3.6) can be rewritten as

P u
out = Pr

{
‖h‖2

2 ≥ SP̄

}
, (3.12)

where SP̄ is defined as in (3.10). Note that, since c2
P̄

.
= P̄ 1−γ , we have SP̄

.
= P̄ (γ− gm

α
)(1 −

P̄ ( gm
α

−1)) > 0 if 0 ≤ gm ≤ α. Also, the exponent of P̄ in SP̄ is positive, provided gm < γα.
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Using the fact that ‖h2‖2 is chi-square distributed with 2r degrees of freedom, (3.12) can

be written as

P u
out =

1

Γ(r)

∫ ∞

SP̄

xr−1e−xdx = e−SP̄

r−1∑

l=0

(SP̄ )r−l−1

(r − l − 1)!
, (3.13)

which results in (3.9). Since the terms inside the summation in (3.9) are polynomial

in SP̄ , due to the e−SP̄ term, we get the diversity order as d(gm) = ∞, for 0 ≤ gm <

α min(γ, 1). Recall that the condition r > 2 is required for satisfying the RCT power

constraint of P̄ γ . Using (3.9) in the definition in (3.8), it immediately follows that ς =

γ − gm

α
. �

Remarks: The above result shows that an infinite diversity order can be obtained us-

ing the proposed channel-dependent PCRCT and data power control scheme. In con-

trast, channel-agnostic orthogonal RCT with a channel inversion based power control

only achieves a finite diversity order [1, 3, 24]. Also, for a given gm, the above result

shows that the outage exponent increases with γ, i.e., using a higher power for the RCT

signal is beneficial. In addition to the outage exponent, it is interesting to investigate the

probability of error exponent with finite length codes and ascertain whether it achieves

an infinite diversity order. We address this in Theorem 4 below.

3.5 An Achievable Coding Scheme

In this section, we consider the probability of error exponent of the above PCRCT and

power control, and show that it achieves an infinite diversity order. The proof involves

proposing a transmission scheme that achieves a rate of gm

α
log P̄ , upper bounding its

pairwise probability of error, and showing that the union bound on the probability of

error achieves an infinite diversity order.
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Theorem 4. For the proposed PCRCT and power control, there exists a data transmission

scheme that achieves an infinite diversity order for 0 ≤ gm < α min(γ, 1), for all block lengths

Ld ≥ 1. In particular, the probability of error Pe � exp
(
−P̄ E

)
, where

E =







1
2

(
γ − gm

α

)
, 0 ≤ gm

α
< min(2 − γ, γ, 1)

1 − gm

α
, min(2 − γ, γ, 1) ≤ gm

α
< min(γ, 1).

(3.14)

Proof : See Appendix B.0.6. �

The above result shows that the outage analysis captures the fact that an infinite di-

versity order can be achieved using finite block length code, and hence, the proposed

scheme is DMT optimal for γ ≥ 1. However, it also indicates that there is a mismatch

in the exponential order with which the probability of error of the proposed uncoded

transmission scheme and the outage probability go to zero. Further, we see that, for

a given gm

α
, increasing the PCRCT power exponent γ beyond 2 − gm

α
does not further

improve the probability of error exponent. On the other hand, when gm

α
< γ < 2 − gm

α
,

the probability of error exponent linearly improves with γ.

3.6 Numerical Results

We now briefly present numerical results to illustrate the outage probability perfor-

mance of our proposed channel-dependent PCRCT and forward-link data power con-

trol schemes. We consider a Rayleigh fading channel with three receive antennas. We

plot the upper bound on the outage probability in (3.9) versus data power for different

values of γ in Fig. 3.2. The figure corresponds to r = 3, gm = 0.9, Lc = 10 and LB,τ = 1,

which results in α = 0.9. Thus, when γ = 1, the outage exponent becomes zero, which
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results in a constant outage probability (see (3.9)) as illustrated in the figure. Also, when

γ is increased, a lower outage probability can be achieved, as expected.

Figure 3.3 shows a plot of − log (P u
out) from (3.9) versus P̄ for a 3 × 1 system with

Lc = 100, for different values of gm and LB,τ . As expected, the slope of the curves

corresponding to gm = 0.3 is higher than that of the curves corresponding to gm = 0.6.

Also, the performance with LB,τ = 3 is marginally lower than that with LB,τ = 1,

indicating that LB,τ = 1 is the optimal choice, i.e., it is optimal to train for a single

symbol duration in the reverse channel. The curves obtained from orthogonal RCT

saturate as the training power is increased, corresponding to the finite diversity order

achieved with orthogonal training [3]. As the training power is increased, the proposed

RCT scheme significantly outperforms orthogonal RCT. The exact SNR at which the

curves cross would be lower than the value seen in the graph, because the upper bound

derived here is being compared with the lower bound on the outage probability with

orthogonal RCT derived in [3]. Thus, the proposed power-controlled training and data

transmission scheme offers a significantly better DMT performance compared to the

orthogonal RCT scheme.

3.7 Conclusions

In this chapter, we proposed a channel-dependent PCRCT and a data power control

scheme in a TDD-SIMO system with perfect CSIB, and analyzed its DMT performance.

We showed that the proposed scheme achieves an infinite diversity order for 0 ≤ gm <

α min(γ, 1). Also, at high SNR, the derived upper bound on the outage probability goes

to zero approximately as exp(−P̄ (γ− gm
α

)), where γ > 0 is the exponent of the RCT power.
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Figure 3.2: Upper bound on the outage probability versus data power for different
values of γ, with r = 3, gm = 0.9, Lc = 10, and LB,τ = 1.

We also showed that there exists an uncoded data transmission scheme for which the

probability of error exhibits an infinite diversity order for 0 ≤ gm < α min(γ, 1). The

proposed scheme can thus achieve a significantly better DMT performance compared

to fixed-power, channel-agnostic orthogonal RCT schemes and the RCT scheme of the

previous chapter. The next chapter presents a fixed-power RCT sequence design for

general MIMO-BF systems with a lower bound on the capacity as the performance

metric.



Chapter 3. 47

10 15 20 25 30 35 40 45 50 55 60
10

0

10
1

10
2

10
3

Training power in dB

lo
g 

(1
/P

ou
t

u
)

 

 

Proposed: L
B,τ =1 and g

m
 =0.3

Proposed: L
B,τ =3 and g

m
 =0.3

Proposed: L
B,τ =1 and g

m
 =0.6

Proposed: L
B,τ =3 and g

m
 =0.6

Orthogonal: L
B,τ =3 and g

m
 =0.3

Orthogonal: L
B,τ =3 and g

m
 =0.6

Figure 3.3: A plot of − log (P u
out) in (3.9) versus training power with r = 3, γ = 1 and

Lc = 100 for different values of gm and LB,τ . The curves labeled orthogonal refer
to the lower bound on the outage probability with channel-agnostic orthogonal RCT
in [3], which requires a minimum training duration of r = 3 symbols.
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Channel Training Signal Design for

Reciprocal Multiple Antenna Systems

with Beamforming

4.1 Introduction

In mobile and vehicular communications, fast and reliable acquisition of Channel State

Information (CSI) at the Transmitter (CSIT) and Receiver (CSIR) is key to realizing the

professed diversity benefits of multiple antenna transmission techniques such as max-

imal ratio transmission Beamforming (BF) [6]. Typically, CSIR is acquired by sending a

known training signal from the transmitter to the receiver [8]. CSIT, on the other hand,

can be obtained using feedback of quantized CSI from the receiver to the transmitter

when the former has CSI [39–41]; training in the reverse-link, also called Reverse Channel

Training (RCT) [5]; or a combination of the two [42]. The quantized feedback approach

assumes that the reverse-link is a fixed-rate channel, independent of the forward-link.

This chapter focuses on the RCT approach, which relies on channel reciprocity, i.e., that

48
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the forward and reverse channels are the same.1 The reciprocal channel is a good model

for the reverse-link, for example, in Time Division Duplex (TDD) systems.

In this chapter, we consider two communicating nodes, node A and node B, with nA

and nB antennas, respectively; and with data being transmitted from node A to node B

using BF over the dominant mode of the channel. In conventional channel training,

one employs a known, orthogonal training signal in the forward and reverse directions

successively to convey the CSI to node A (CSIA) and node B (CSIB), respectively, prior to

data transmission. This requires a minimum of nA (and nB) symbols for acquiring CSIB

(and CSIA). The time overhead for channel estimation could be significant, especially in

mobile communications when the channel is fast-varying, since longer training reduces

the time available for data transmission, leading to a reduction in the average data rate.

One option that has not been explored much in the literature for TDD BF-based sys-

tems is to exploit the CSI obtained from the initial training in one direction, to design

the training signal in the opposite direction and thereby improve the efficiency and

accuracy of estimation at the other node. At first glance, it would appear that using

a CSI-dependent training signal is not feasible: training-based channel estimation re-

quires that the training signal be known at both ends. In the case of BF-based data trans-

mission, the transmitter needs to estimate only the transmit BF vector, rather than the

entire channel matrix. Due to this, it turns out that using a simple channel-dependent

BF-based RCT scheme, it is possible to efficiently estimate the transmit BF vector with

a significantly lower time overhead in training. In [30], we had proposed the idea of

using CSIB as a side information in designing the RCT signal; this is explored in depth

1Channel reciprocity requires well-calibrated transmit and receive RF chains at both ends, which is
assumed here.
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in this chapter.

We start with a survey of related literature. It is shown in [8] that for a MIMO Spa-

tial Multiplexing (SM) system with no CSI at the transmitter and with a total energy

constraint on the data and training signals, orthogonal training of duration equal to nA

symbols is optimal with respect to a lower bound on the forward-link capacity. The

idea of using fixed, orthogonal signals for acquiring CSIA is considered in [4, 5, 43, 44];

while RCT sequences that exploit CSI have appeared in [31,45–49]. In [44], the authors

propose a channel-dependent training sequence in the form of analog feedback of the

received pilot symbols, for a multiuser MIMO system that helps users acquire the rel-

evant CSI using minimal training overhead. In [45] and [46], the reverse-link training

signal is a scaled version of the received training signal in the forward-link. Although

it is shown that this outperforms orthogonal training in the reverse-link, it has the dis-

advantage that the transmitter estimates the entire channel, which is not required for

certain types of data transmission such as BF. The authors in [47–49] propose methods

for directly estimating the dominant singular vectors blindly without estimating the

entire TDD MIMO channel matrix. However, they require several rounds of commu-

nication, reasonably high data SNR, and the channel to be relatively slowly varying,

in order to converge and track the dominant mode of the channel. In [31], Zhou et al.

consider a Multiple-Input Single-Output (MISO) two-way communication system, and

design the forward and reverse training and data powers subject to a total constraint on

the available resources to approximately minimize the SER. The diversity multiplexing

gain trade-off analysis with imperfect CSIA and CSIB has also been considered, e.g.,

in [24]. However, none of the aforementioned works design the RCT signal specifically
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to enable the transmitter to directly estimate the BF vector to be used for data transmis-

sion, nor do they consider the optimization of the training duration from an average

data rate perspective, which is the focus of this chapter. We consider a Multiple-Input

Multiple-Output (MIMO) communication system with the achievable data rate as our

performance metric, and address the following issues:

CSIA acquisition given perfect CSIB: Assuming perfect CSI is available at node B, we

propose a channel-dependent RCT signal that enables node A to directly estimate the BF

vector with a minimum training duration of only one symbol, an nB factor reduction in

the training overhead compared to orthogonal RCT (e.g., [4, 5]).

For our proposed RCT scheme, we derive a tight approximate lower bound on the

capacity with the estimated CSIA, and use it to obtain a closed-form, near-optimal so-

lution for the reverse training duration. Through numerical simulations, we illustrate

the tightness of the approximate capacity lower bound, and also show that the pro-

posed RCT scheme significantly outperforms the existing orthogonal RCT methods.

We next consider the optimal sharing of resources (both the power and duration) for

training and data transmission when the two nodes have a joint power constraint. The

analysis yields interesting insights into the tradeoff between RCT and the forward data

rate; similar studies have been considered in the past literature (e.g., [31]) also. We show

that when the total energy available for communication is constrained, regardless of the

specific value of the available energy, it is optimal in terms of the approximate capacity

lower bound to employ a single RCT symbol, and that the fractional power that should

be spent on data transmission is

√
2(Lc−1)√

2(Lc−1)+1
, where Lc is the channel coherence time.

(See Sec. 4.3)
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CSIB acquisition given perfect CSIA: We propose an analogous scheme for acquiring

CSIB when node A has perfect CSI. We again derive an approximate capacity lower

bound with our proposed training scheme, and maximize it with respect to the training

and data powers and durations. We show that about half the total available power

should be spent on the forward training, and that the optimal training duration is 1

symbol, at low data SNR. (See Sec. 4.4)

We also consider the question of whether to initiate the training at node A or at node

B. With the proposed scheme, node A (similarly, node B) initiated training incurs a mini-

mum total overhead of nA +1 (similarly, nB +1) training symbols. We show that node A

initiated training (i.e., perfect CSIB) along with the proposed channel-dependent RCT

scheme outperforms node B initiated training (i.e., perfect CSIA) if Lc > max(nA, nB)+2

and Lc ≥ 2nA − nB + 1, which is typically the case in practice. (See Sec. 4.5)

We corroborate our theoretical results through Monte Carlo simulations in Sec. 4.6,

and offer concluding remarks in Sec. 4.7. Proofs of the theorems and some detailed

derivations are relegated to the Appendix. Finally, note that, although we derive our

results for a single-user system, they can be directly applied in a multiuser setting with

user selection and orthogonal access schemes, since the results are derived on a per

channel instantiation basis.

Notation: In addition to the notation we have employed thus far, we write f(x) =

O(g(x)) to mean that lim supx→∞

∣
∣
∣
f(x)
g(x)

∣
∣
∣ < ∞. All logarithms in the sequel are base-e.
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4.2 System Model

The system model considered in this chapter consists of two nodes, node A and node

B, with nA and nB antennas, respectively. The wireless channel from node A to node B,

denoted by H ∈ CnB×nA , is modeled as a quasi-static flat fading channel with coherence

time Lc. That is, the channel is assumed to remain constant for a frame of duration

Lc, and evolve in an i.i.d. fashion from frame to frame. Let H = UΣV H be the Sin-

gular Value Decomposition (SVD) of H . The diagonal entries of Σ ∈ RnB×nA , denoted

σ1, . . . , σn, are the singular values of H ; with n , rank(H). The columns of unitary

matrices U ∈ CnB×nB and V ∈ CnA×nA are the eigenvectors of HHH and HHH , respec-

tively. Assuming a TDD system with perfect reciprocity, and considering the complex

conjugate of the transmitted and received signals as the channel input and output, re-

spectively, the channel from node B to node A is HH . The equations corresponding to

training and data transmission in either direction are given by

Forward-link training: yB,τ = HxA,τ + wB,τ , (4.1)

Reverse-link training: yA,τ = HHxB,τ + wA,τ , (4.2)

Forward-link data: yB,d = HxA,d + wB,d, (4.3)

where xi,τ (and xi,d) ∈ Cni and yj,τ (and yj,d) ∈ Cnj are the transmitted and received

training (and data) signals at nodes i and j, respectively. The signal xA,d consists of a

CN (0, 1) distributed data symbol multiplied by a BF vector. The entries of the noise

vectors wB,τ ,wA,τ and wB,d are assumed CN (0, 1) distributed. The training signals are
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assumed to be transmitted at a fixed-power. Power controlled training, where the train-

ing power is varied with the channel state, significantly changes the problem, and is

explored in [12].

In this chapter, we consider a MIMO-TDD BF system with perfect CSI at one of the

nodes. Such an assumption has been made in past literature in both reciprocal MIMO

systems (e.g., [3, 24]) and quantized-feedback based MIMO systems (e.g., [39, 40]). We

refer to the scheme where node B (similarly, node A) has perfect CSI as node A (simi-

larly, node B) initiated training, corresponding to an initial high power training signal

sent from the respective node. The perfect CSIB (CSIA) assumption makes the analysis

tractable, and isolates the effect of reverse (forward) channel training on the achievable

data rate performance. Another reason for considering the perfect CSI assumption is

that the capacity of a fading channel with mismatched CSIT and CSIR is not known in

closed form [1, 34]. Moreover, in a TDD setup, when (say) node B uses an imperfect

channel estimate to transmit a channel-dependent training sequence to node A, the ef-

fective noise in the reverse training signal at node A is no longer Gaussian, due to which,

even lower bounding the capacity is not straightforward [37]. Therefore, extending this

work to allow for imperfect CSI at both nodes requires one to consider other perfor-

mance metrics such as the outage probability; the interested reader is referred to an

analysis from a Diversity-Multiplexing Gain Tradeoff (DMT) perspective described in

Chapter 2 [11]. In the next section, we present the proposed RCT signal and analyze its

average data rate performance.
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4.3 RCT Signal Design With Perfect CSIB

In this section, we consider a MIMO-TDD BF system with node A initiated training, i.e.,

with perfect CSIB. For BF, it suffices for node A to acquire knowledge of v1, the dominant

right singular vector of H . Node A then uses its estimate of v1 to send beamformed data

to node B. The transmission protocol is shown in Fig. 4.1. It consists of an RCT phase of

duration LB,τ symbols, followed by a forward-link BF-based data transmission phase

of LA,d = Lc − LB,τ symbols.

Now, since node B has perfect CSI, unlike conventional channel-agnostic training, we

propose the following training signal that exploits the CSI at node B:

xB,τ =
√

PB,τLB,τu1, (4.4)

where PB,τ and LB,τ are training power and training duration at node B, which is known

at both nodes, while the left dominant singular vector of the channel, u1, is adapted at

node B based on the CSIB. Note that, strictly speaking, xB,τ =
√

PB,τu1 is transmitted

repeatedly LB,τ times; this is mathematically equivalent to using xB,τ =
√

PB,τLB,τu1

for a duration of one symbol. Also, in practical fixed-point implementations, the quan-

tization process would introduce errors in the BF vectors employed for transmission.

Incorporating this effect in our present model is difficult, as it makes the analysis math-

ematically intractable. However, in Sec. 4.6, we show through simulations that the

proposed schemes are robust to quantization errors. Now, the training signal in (4.4)

satisfies an instantaneous power constraint of PB,τLB,τ , since ‖xB,τ‖2
2 = PB,τLB,τ . The
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Figure 4.1: Node A initiated training.

corresponding received training signal at node A is given by

yA,τ =
√

PB,τLB,τσ1v1 + wA,τ . (4.5)

Using (4.5), node A estimates v1 as

v̂1 =
yA,τ

‖yA,τ‖2

. (4.6)

Note that, in the noiseless case, (4.6) results in v̂1 = v1. Moreover, conditioned on σ1,

it asymptotically achieves a Constrained Cramér-Rao Lower Bound (CCRLB), a result

that is stated and proved as Theorem 14 in Appendix C.0.7.

Using v̂1 in (4.6) for BF data transmission, from (4.3), the received data signal at node

B is

yB,d =
√

PA,dHv̂1xA,d + wB,d, (4.7)

where the data symbol xA,d ∈ C is CN (0, 1) distributed and hence satisfies E|xA,d|2 = 1,
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which ensures that the average power constraint of PA,d is satisfied. Now, since node B

has perfect CSI, pre-multiplying (4.7) by uH
1 , we get

ỹB,d , uH
1 yB,d

=
√

PA,dσ1xA,d −
√

PA,dσ1v
H
1 ṽ1xA,d + uH

1 wB,d,

=
√

PA,dσ1(1 − vH
1 E{ṽ1|H})xA,d + w̃eff, (4.8)

where ṽ1 , v1 − v̂1, and for notational convenience, we define

w̃eff ,
√

PA,dσ1v
H
1 (E{ṽ1|H} − ṽ1)xA,d + uH

1 wB,d. (4.9)

Note that the first term in (4.8) is a deterministic function of H , and that the effective

noise is uncorrelated with the data given the channel, i.e., E{w̃effx
∗
A,d|H} = 0. Thus,

for the system in (4.8), an application of the worst case noise theorem [8] results in the

following capacity lower bound:

CBA,L , αEH log

(

1 + PA,d
σ2

1 |a1|2

1 + PA,dσ2
1E|a2|2

)

, (4.10)

where α ,
Lc−LB,τ

Lc
, a1 , 1 − vH

1 E{ṽ1|H}, a2 , vH
1 (ṽ1 − E{ṽ1|H}). Note that the expec-

tation inside the bracket is with respect to the noise in the received training symbols,

and EH denotes the expectation with respect to the channel statistics. The above ex-

pression uses the fact that E{v1|H} = v1. Note that, (4.10) is valid regardless of the

method of estimating the BF vector at node A. In particular, it is also valid for conven-

tional orthogonal training. Now, we would like to solve the following optimization
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problem:

max
LB,τ :1≤LB,τ≤Lc

CBA,L. (4.11)

The above problem can be numerically solved using an off-line search algorithm. How-

ever, in order to find a tractable and closed form solution, in the following, we derive

an approximate expression for the capacity lower bound CBA,L in (4.10), and use it to

optimize the training power and duration.

4.3.1 Approximate Capacity Lower Bound

We have the following tight approximation for CBA,L in (4.10). The accuracy of the

approximation is captured in Lemma 3; and will be illustrated through simulations in

Sec. 4.6. The approximate capacity lower bound is as follows:

CBA,L ≈ CB,A,approx , αE log



1 +
PA,dσ

2
1

1 +
PA,d

2PB,τ LB,τ



 , (4.12)

where the expectation is taken with respect to the distribution of σ1. The derivation of

(4.12) is provided in Appendix C.0.8. The right hand side above succinctly captures the

effect of training duration: as LB,τ is increased, α captures the data rate loss due to the

time overhead in training, while the expectation term captures the data rate improve-

ment due to the increased accuracy of BF vector estimation.

The following Lemma asserts that the expression in (4.12) becomes exact in the limit

of large data and training powers, when their ratio is kept fixed. Its proof is straight-

forward, and is omitted. Further discussion on the tightness of (4.12) is relegated to

Sec. 4.6.
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Lemma 3. If limPA,d,PB,τ→∞
PA,d

PB,τ
= µd,τ < ∞, then

lim
PA,d,PB,τ→∞

∣
∣
∣
∣
∣
∣

CBA,L − αE log



1 +
PA,dσ

2
1

1 +
PA,d

2PB,τ LB,τ





∣
∣
∣
∣
∣
∣

= 0. (4.13)

4.3.2 Optimal Training Duration

In this subsection, given PA,d and PB,τ , we wish to solve the following optimization

problem:

max
1≤LB,τ≤Lc

CB,A,approx. (4.14)

It will be shown through simulation results in Sec. 4.6 that the solution to (4.14) matches

with that obtained by numerically optimizing (4.10) for a wide range of parameters,

due to the tightness of the lower bound. Now, the above problem can be solved using

a simple line search in the finite interval [1, Lc − 1]. However, one can get a closed form

solution for the optimum training duration using the following expression:

f(LB,τ ) ,

(
Lc − LB,τ

Lc

)
PA,dEσ2

1

1 +
PA,d

2PB,τ LB,τ

. (4.15)

The above is an approximation of CB,A,approx at low data SNR, i.e., when PA,d ≪ 1. In

Sec. 4.6, we show through simulations that the optimum LB,τ obtained by optimizing

f(LB,τ ) closely matches with that obtained by numerically optimizing (4.12) (as well as

(4.10)), at low data SNR. Hence, we solve the following optimization problem:

max
1≤LB,τ≤Lc

f(LB,τ ). (4.16)
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Note that f(LB,τ ) is a concave function of LB,τ . Therefore, it is easy to show that the

optimal solution is given by

L∗
B,τ = max

{

1,−β +
√

β2 + βLc

}

, (4.17)

where β ,
PA,d

2PB,τ
. If L∗

B,τ is not an integer, we choose ⌈L∗
B,τ⌉ as the solution if f(⌈L∗

B,τ⌉) >

f(⌊L∗
B,τ⌋); otherwise, ⌊L∗

B,τ⌋ is the solution. Note that, since β > 0, −β +
√

β2 + βLc <

Lc.

Now, since f(LB,τ ) is unimodal, comparing f(1) with f(2), it can be shown that L∗
B,τ >

1 if and only if β > 2
Lc−3

, i.e., for PB,τ <
PA,d(Lc−3)

4
. In other words, using a single RCT

symbol is optimal in terms of the approximate capacity lower bound only when the

RCT power is at least one fourth of the total power in all the forward-link data symbols

sent within the channel coherence time put together. At lower RCT powers, using more

than one RCT symbol is preferable.

Next, when β < 1 is some fixed, small value, and Lc is large compared to β, it can

be seen that L∗
B,τ ≈ √

βLc, i.e., the time that should be allocated for training increases

as the square-root of the channel coherence time. More precisely, the optimal training

duration scales as an integer close to
√

βLc that maximizes f(LB,τ ). Numerical results

and further insights into the solution are provided in Sec. 4.6.

4.3.3 Optimal Sharing of Resources

In this subsection, we consider the RCT design when the overall energy efficiency of the

communication system is taken into account, including the training and data phases.

We study the optimal energy and time allocation between data transmission at node A
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and reverse training at node B, for a given total energy budget of ρLc, where ρ is the av-

erage power. Although nodes do not share a power source, the study presented here

gives insights on the impact of RCT on the forward data transmission, by providing a

mechanism for tying the energy spent in RCT into the energy cost associated with the

forward-link communication. For example, it will turn out that given a constraint on

the total available energy for communication, it is optimal to train for the minimum

possible duration and allot a fraction 1/(
√

2(Lc − 1) + 1) of the total available energy

for training.

The energy efficient design is pertinent when one considers a scenario where node B

also has data to send to node A. In this case, the energy spent by node B in sending

training to node A is also energy lost from transmitting its own data. Using a total en-

ergy constraint is an indirect way of ensuring fairness in the utilization of energy and

improving the efficiency of the two-way data communication. Moreover, the result pre-

sented here facilitates the comparison of node A initiated training versus node B initiated

training on a level-playing field (see Sec. 4.5). A similar analysis, albeit in a different

context of the MISO channel, with the SER as the performance metric, was considered

in [31]. Here, we consider the data rate as our performance measure in a MIMO-BF

system, and solve the following problem:

max
PB,τ ,PA,d≥0,LB,τ ,LA,d≥1

αE log



1 +
PA,dσ

2
1

1 +
PA,d

2PB,τ LB,τ



 , (4.18)

subject to the total energy constraint PB,τLB,τ + PA,dLA,d = ρLc, and with the data

transmit duration LA,d satisfying LB,τ + LA,d = Lc.

Intuitively, one would expect that the larger the ρ, the smaller the optimal LB,τ and the
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larger the optimal fractional energy used for the data signal. Surprisingly, it turns out

that both the optimal training duration (L∗
B,τ ) and the optimal fraction of the total en-

ergy used for data depend only on Lc, and are independent of ρ, as shown below. Now,

since PB,τ and PA,d enter into the capacity lower bound only inside the log() function,

without loss of optimality, we first optimize PA,d and PB,τ for a given data duration,

substitute the result into the objective function, and then optimize LB,τ and LA,d. The

solution is given in Theorems 5 and 6.

Theorem 5. For a given data duration 1 ≤ LA,d ≤ Lc and with LB,τ = Lc −LA,d, the optimal

values of PB,τ and PA,d that solve (4.18) are given by

P ∗
A,d =

1

LA,d
α∗ρLc, and P ∗

B,τ =
1

Lc − LA,d
(1 − α∗)ρLc, (4.19)

where α∗ ,

√
2LA,d√

2LA,d+1
. The corresponding capacity lower bound is

CB,A,approx =
LA,d

Lc
E log

(

1 +
2ρLcσ

2
1

(
√

2LA,d + 1)2

)

. (4.20)

Proof: See Appendix C.0.9. �

Now, it remains to find the optimal value of LA,d that maximizes CB,A,approx in (4.20),

which is the essence of the following Theorem.

Theorem 6. The optimal data duration is given by L∗
A,d = Lc − 1, i.e., L∗

B,τ = 1. The corre-

sponding optimal capacity lower bound expression is

C∗
B,A,approx =

Lc − 1

Lc

E log
(
1 + ρeffσ

2
1

)
, (4.21)

where ρeff ,
2ρLc

(
√

2(Lc−1)+1)2
.
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Proof: See Appendix C.0.10. �

Remark: Theorems 5 and 6 suggest that given a constraint on the total energy available

for communication, it is optimal to allocate the minimum possible time duration of one

symbol for training. It is interesting to note that, as Lc gets large, the optimal data

and training energy per symbol in (4.19) approach ρ and ρ
√

Lc/2, respectively. In the

previous subsection, we had shown that the optimal reverse training duration scales

with the coherence time as
√

βLc. Here, we see that, for the energy efficient design, the

optimal training duration remains fixed at one symbol, but the optimal training energy

scales as
√

Lc. This is a consequence of the total energy constraint imposed under this

design.

4.4 Forward-Link Training With Perfect CSIA

In this section, assuming perfect CSI at node A (i.e., node B initiated training), we con-

sider node A transmitting both training and data to node B. In particular, node A transmits

data along the dominant mode of the channel [6]. This requires the knowledge of σ1u1

at node B for data detection, which is conveyed via a training scheme similar to the one

proposed in Sec. 4.3.1. The transmission protocol is shown in Fig. 4.2. It consists of

a forward-link training phase of duration LA,τ symbols followed by BF data transmis-

sion of duration LA,d = Lc − LA,τ symbols. In this scenario, since resources such as the

duration and power for training and data transmission are all allocated at node A, an

optimal sharing of the same is necessary. Towards this, we derive a tractable, approxi-

mate lower bound on the capacity of the system with the proposed channel-dependent
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1

nA

1

nB

H
H

H

Estimated

Perfect CSI

Node BNode A

σ1u1

1) Proposed Training (LA,τ )

2) Beamforming Data (LA,d)

Figure 4.2: Node B initiated training.

training scheme. We then find the optimal sharing of resources that maximizes the ap-

proximate capacity lower bound. Note that the model here is different from that in

Sec. 4.3, where we had assumed perfect CSI at node B and studied the implications of

our proposed training from node B to node A on the data transmission from node A to

node B.

Estimation at Node B

Since node A has perfect CSI, it uses BF along the vector v1 to transmit the training signal

to node B. From the received training signal

yB,τ =
√

PA,τLA,τσ1u1 + wB,τ ,

node B computes an MMSE estimate of b = σ1u1, denoted by b̂mmse. We use the MMSE

estimate because it facilitates the use of the worst case noise theorem in [8] to obtain a
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capacity lower bound. Let

b = b̂mmse + b̃mmse,

where b̃mmse is the estimation error.

Data Transmission from Node A to Node B

Since node A has perfect CSI, it transmits data using BF along the dominant mode of the

channel as

xA,d ,
√

PA,dv1xA,d.

The corresponding received data signal is given by

yB,d =
√

PA,dσ1u1xA,d + wB,d, (4.22)

=
√

PA,db̂mmsexA,d + neff. (4.23)

where neff ,
√

PA,db̃mmsexA,d + wB,d. Note that E‖xA,d‖2
2 = PA,d since E|xA,d|2 = 1.

By the orthogonality property of MMSE estimation, E{x∗
A,dneff|yB,τ} = 0, and hence,

premultiplying (4.23) by b̂H
mmse

‖b̂mmse‖
2

and using the worst case noise theorem [8], we get the

following lower bound on the capacity:

CAB,L ,
Lc − LA,τ

Lc

E log (1 + SNReff) , (4.24)

where

SNReff ,

PA,d

∥
∥
∥b̂mmse

∥
∥
∥

2

2

PA,d

nB
E

{∥
∥
∥b̃mmse

∥
∥
∥

2

2

∣
∣
∣
∣
yB,τ

}

+ 1

,

and the expectation in (4.24) is taken with respect to the distribution of yB,τ . Now, the

goal is to find the optimal training power and duration to maximize the capacity lower
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bound in (4.24), subject to the transmit power constraint at node A. However, the distri-

bution of the vector b , σ1u1 is complicated in the general MIMO case, due to which,

a closed form expression for b̂mmse is hard to find. This, in turn, makes it difficult to

directly optimize the capacity lower bound. Therefore, we consider a similar approx-

imation to the capacity lower bound as in [31] to obtain the following performance

metric:

CAB,L ≈ CA,B,approx ,
Lc − LA,τ

Lc
[Eσ2

1 ]
2SNRL, (4.25)

where

SNRL ,
PA,τLA,τPA,d

(PA,d + PA,τLA,τ )Eσ2
1 + nB

. (4.26)

The derivation of the above is detailed in Appendix C.0.11. The approximation facili-

tates the optimization of the training and data powers in closed form in the following

subsection.

Optimal Training Power and Duration Allocation

Let ρ be the average power constraint at node A. Here, we solve the following optimiza-

tion problem:

max
PA,d,PA,τ ,LA,τ ,LA,d

Lc − LA,τ

Lc

SNRL, (4.27)

subject to PA,dLA,d + PA,τLA,τ = ρLc and LA,d + LA,τ = Lc.

As in the previous section, without loss of global optimality, we first maximize SNRL

with respect to PA,d and PA,τ since it enters into the expression in (4.27) only through

SNRL. Theorems 7 and 8 present the solution for the optimal training power and train-

ing duration, respectively.
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Theorem 7. For a given training duration, the optimal training and data powers that solve the

problem in (4.27) are PA,dLA,d = α∗ρLc and PA,τLA,τ = (1 − α∗)ρLc, where

α∗ =







θ −
√

θ(θ − 1) if LA,d > 1,

0.5 if LA,d = 1,
(4.28)

and

θ ,
LA,d

LA,d − 1
+

nBLA,d

Eσ2
1ρLc(LA,d − 1)

. (4.29)

Also, the corresponding expression for optimal CA,B,approx, denoted C∗
A,B,approx, becomes

C∗
A,B,approx ,







ρEσ2
1LA,d

(LA,d−1)

(√
θ −

√
θ − 1

)2

if LA,d > 1,

E(σ2
1)2

4Lc

(ρLc)2

nB+Eσ2
1ρLc

if LA,d = 1.
(4.30)

Proof : See Appendix C.0.12. �

We now solve for the optimal LA,d that maximizes the objective function in (4.30) in

the following Theorem.

Theorem 8. The data duration that maximizes C∗
A,B,approx in (4.30) subject to 1 < LA,d ≤ Lc−1

is LA,d = Lc − 1.

Proof : See Appendix C.0.13. �

Remark: At low SNR, i.e., as ρ → 0, , α → 1
2

and C∗
A,B,approx is quadratic in ρ. Thus,

at low SNR, it is optimal to use just one training symbol, but expend half the total

available power on training. It is interesting to note that this result coincides with that

obtained at low SNR with SM of data and no CSIT (see [8], Corollary 1).
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4.5 Node A Initiated Training Versus Node B Initiated Train-

ing

The goal of this section is to compare the schemes in Secs. 4.3 and 4.4 in terms of the

approximate capacity lower bound, at low data SNR. We wish to determine whether is

it better to have perfect CSI at node A, that would allow it to perform ideal transmit beam-

forming, but with node B using an estimated beamforming vector to receive and decode

the data signal; or to have perfect CSI at node B, that would allow it to perform ideal

receive beamforming, but with node A transmitting data using an estimated beamforming

vector.

At first glance, it appears that having perfect CSI at node A is beneficial as it allows

node A to exploit the CSI to accurately transmit the beamformed data and optimize the

capacity lower bound. However, acquiring the perfect CSI using orthogonal training

inherently involves a minimum time overhead that depends on the number of antennas

at the nodes. If node B has a significantly larger number of antennas than node A, the

time overhead of initiating training at node B could offset the potential gains one could

obtain by exploiting CSI at node A, and vice versa. Moreover, an error in the transmit

beamforming vector has a different effect compared to an error in the receive beam-

forming vector on the achievable data rate. Loosely speaking, this is because, in the

former case, the error in the transmit beamforming vector does not change the noise

statistics at the receiver, while in the latter case, the error in the receive beamforming

vector multiplies both the data and noise components of the received signal. The anal-

ysis presented below determines which of the two options offers a better performance.
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4.5.1 Node A Initiated Training

Consider the node A initiated training and data transmission scheme proposed in Sec. 4.3,

and as depicted in Fig. 4.1. Let the average per-symbol power constraint be ρ units.

Since acquisition of perfect CSIB inherently requires nA initial training symbols from

node A, the time remaining for RCT and data transmission is Lc − nA symbols, and the

total available power is ρ(Lc −nA). We use ρeffEσ2
1 in (4.21), scaled by the fraction of the

time spent for data transmission, as the performance metric. This corresponds to a low

SNR approximation of C∗
B,A,approx in (4.21). The performance metric is given by

SA ,
2(Lc − nA − 1)

(
√

2(Lc − nA − 1) + 1)2
ρEσ2

1 , (4.31)

where we have used LA,d = Lc − nA − 1.

4.5.2 Node B Initiated Training

Consider the training and data transmission scheme proposed in Sec. 4.4, and as de-

picted in Fig. 4.2. In this case, using (4.30), the approximate capacity lower bound

C∗
A,B,approx scaled by the fraction of the time spent for data transmission is

SB , ρEσ2
1

LA,d

(LA,d − 1)

(√
θ −

√
θ − 1

)2

, (4.32)

where LA,d = Lc − nB − 1 and θ is as defined in (4.29), with Lc replaced by Lc − nB to

factor the initial node B to node A training overhead of nB symbols into (4.32).

Now, we compare the two schemes using (4.31) and (4.32). Node A initiated training

outperforms node B initiated training if SA > SB and vice versa. Assume that Lc >

max(nA, nB)+ 2, which ensures that the Lc −nB − 2 term in the denominator of (4.32) is
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positive. Since θ >
LA,d

LA,d−1
, (
√

θ −
√

θ − 1)2 <

√
LA,d−1√
LA,d+1

. Substituting this in (4.32), it can

be shown that node A initiated training outperforms node B initiated training if

2(Lc − nA − 1)(
√

Lc − nB − 1 + 1)2

(
√

2(Lc − nA − 1) + 1)2(Lc − nB − 1)
≥ 1. (4.33)

The above implies that node A initiated training is better if Lc ≥ 2nA − nB + 1.

As ρ → 0, it can be shown that SB in (4.32) is proportional to ρ2, while that SA in

(4.31) is proportional to ρ. Hence, node A initiated training outperforms node B initiated

training if Lc > max(nA, nB) + 2. In practice, the channel coherence time will be much

larger than nA and nB , and hence, the conditions Lc > max(nA, nB) + 2 and Lc ≥ 2nA −

nB + 1 will typically be satisfied. Hence, in cases of practical interest, node A initiated

training outperforms node B initiated training.

4.6 Simulation Results and Discussion

In this section, we present numerical results to validate the theoretical expressions and

illustrate the performance benefits offered by the proposed training scheme. The simu-

lation set up consists of a Rayleigh flat fading channel whose coefficients are assumed

to be i.i.d. and drawn from CN (0, 1), and an AWGN noise that is also modeled as i.i.d.

CN (0, 1). Throughout this section, except for Sec. 4.6.3, we assume a 3 × 3 TDD-MIMO

system with Lc = 100. The parameter values are chosen to illustrate the various trade-

offs involved in RCT; in general, the performance advantage of the proposed scheme

over orthogonal training is larger for smaller Lc.
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4.6.1 Node A Initiated Training

In this subsection, we use the exact lower bound on the capacity in (4.10) to evaluate

the performance of various schemes.

To illustrate that the minimum training duration of one symbol is not always optimal,

we plot the exact capacity lower bound versus data and training powers in Figs. 4.3

and 4.4, respectively. It can be seen from the two figures that LB,τ = 1 performs poorly

compared to the low SNR optimal solution derived in (4.17) whenever the RCT power

is small compared to the data power. This is because, when β , PA,d/2PB,τ is large,

the term in the denominator of (4.12) has a dominant effect on the data rate compared

to the (Lc − LB,τ )/Lc term. Hence, in order to improve the data rate, LB,τ has to be

increased, and the optimal LB,τ is greater than 1. Next, to capture the effect of errors

introduced due to quantization of the beamforming vectors in a fixed-point arithmetic

implementation, in Fig. 4.4, we plot the capacity lower bound in (4.10) when the BF

vectors at node A and node B are quantized. We consider a uniform scalar quantizer,

with B = 4 and 6 bits of quantization per real dimension of the BF vector. We see that

although there is a degradation in the data rate when B = 4 bits, this performance

loss becomes insignificant when B = 6 bits. Further, the degradation in the data rate

increases with the training power. This is expected, because at high training power, the

residual error due to quantization dominates, and the error due to noise in the training

phase becomes insignificant.

The training length can be optimized in three ways: (i) numerically optimizing the ex-

act lower bound in (4.10), (ii) numerically optimizing the approximate capacity lower

bound in (4.12), and (iii) the low SNR optimal LB,τ in (4.17). We compare these three
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Figure 4.3: Capacity lower bound in (4.10) versus data power for PB,τ = 14 and 6dB.
Here, we have used a 3 × 3 MIMO system with Lc = 100. The figure demonstrates that
the optimal LB,τ is not always equal to one.

solutions for various values of PA,d, with PB,τ = 2PA,d, in Table 4.1. At low PA,d, all three

cases coincide, and for PA,d ≥ 4dB, the low SNR optimal solution deviates from the op-

timal LB,τ since the low SNR assumption is no longer valid. However, it is interesting

to note that for all PA,d considered, the training duration obtained by optimizing the

approximate capacity lower bound in (4.12) coincides with the optimal solution. This

further justifies the use of the approximate lower bound derived in this chapter. More-

over, as can be seen from Fig. 4.5, the data rate obtained from the low SNR optimal LB,τ
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Figure 4.4: Capacity lower bound in (4.10) versus training power with PA,d = 4dB
for a 3 × 3 MIMO system, and Lc = 100. The figure demonstrates that LB,τ = 1 is
not always optimal. It also illustrates that quantization of the BF vectors in a fixed-
point implementation has a negligible effect on the performance for B ≥ 6 bits per real
dimension.

in (4.17) approximates that obtained by numerically optimizing the exact lower bound

in (4.10) very well, despite the differences in the value of LB,τ .

The conventional orthogonal training scheme (e.g., [4, 5]) is compared with the pro-

posed training scheme in Fig. 4.6, where the capacity lower bound versus data power

(equal to the training power) is plotted. For fair comparison, we have used the same
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Table 4.1: Optimum training duration for a 3 × 3 MIMO system with Lc = 100 and
PB,τ = 2PA,d.

Data power PA,d 2dB 4dB 6dB 8dB 10dB 12dB

LB,τ using (4.10) 5 3 3 3 3 2

LB,τ using (4.12) 5 3 3 3 3 2

LB,τ in (4.17) 5 5 5 5 5 5

training duration values of 3 and 9 symbols for both the proposed and the orthogo-

nal training schemes. The proposed scheme outperforms the orthogonal scheme by

over 7dB at all SNRs. This gain is because the proposed scheme directly estimates the

dominant mode of the channel, resulting in a significantly improved estimation accu-

racy compared to the orthogonal scheme. Also, note that the approximate lower bound

derived in (4.12) is tight at all data powers.

For a fixed training duration of one symbol, Fig. 4.7 shows a plot of the capacity

lower bound (exact and approximate) versus the average power per symbol (ρ) for the

energy efficient scheme for sharing of resources between node A and node B described

in Sec. 4.3.3. This figure also illustrates the performance loss from setting a suboptimal

value of α, the fraction of the total power used for data transmission. For the sake of

comparison, we use the following four different values of α: (i) the optimal value of

α∗ =

√
2LA,d√

2LA,d+1
= 0.9336 for LA,d = Lc − 1 = 99, (ii) α = Lc−1

Lc
= 0.99 (i.e., PB,τ = PA,d),

(iii) α = 0.5 (i.e., PA,dLA,d = PB,τLB,τ ), and (iv) α = 0.1. It is clear from the figure that

the optimal α = 0.9336 from Theorem 5 results in a significant improvement in the data
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B,τ  from (4.17)
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B,τ  from (4.17)

Figure 4.5: Capacity lower bound versus data power for a 3 × 3 MIMO system with
Lc = 100 and PB,τ = 2PA,d. Using the low SNR optimal LB,τ is nearly optimal for a
wide range of training/data powers. Also, the loss in the data rate due to using the low
SNR approximation is negligible.

rate compared to other values of α. Note that the approximate lower bound is tight for

almost all cases except for the case of α = 0.99 where the gap is approximately 0.3 nats

at 0dB. This is because the ratio PA,d/PB,τ = 1, and due to this, the higher order terms

ignored in the approximation makes the proposed lower bound loose.
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4.6.2 Node B Initiated Training

Figure 4.8 shows a plot of C∗
A,B,approx in (4.25) versus ρ, the total training power for

node B initiated training described in Sec. 4.4. We compare the performance for the

following different values of α: (i) the optimal α∗ = 0.93 from (4.28), (ii) α = 0.99 (i.e.,

PA,τ = PA,d), (iii) α = 0.5 (i.e., PA,dLA,d = PA,τLA,τ ), and (iv) α = 0.2 (very less power for

data transmission). The superior performance of the optimal α compared to the other

values of α is clear from the graph.

4.6.3 Node A Initiated Training Vs. Node B Initiated Training

Figure 4.9 plots SA and SB in (4.31) and (4.32), corresponding to node A initiated training

and node B initiated training, scaled by ρEσ2
1 , versus the coherence time for an average

power of ρ = 0dB and 10dB. Due to the scaling, the performance of node A initiated

training at ρ = 0dB and 10dB are nearly the same, making the curves easy to visualize

on a single plot. Here, we have used an nA = 8 and nB = 5 MIMO system. From Sec. 4.5,

node A initiated training is better than node B initiated training if Lc ≥ 2nA − nB +1, i.e.,

when Lc ≥ 12. Also, at low SNR, node A initiated training outperforms node B initiated

training for Lc > max(nA, nB) + 2, i.e., when Lc > 10. In the figure, it can be seen

that at both ρ = 0dB and 10dB, node A initiated training outperforms node B initiated

training for Lc ≥ 12. At ρ = 0dB, node A initiated training outperforms node B initiated

training for Lc = 11 also. Thus, the figure corroborates our theoretical predictions on

the conditions for node A initiated training to outperform node B initiated training.
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4.7 Conclusions

In this chapter, we considered the design and analysis of a channel-dependent training

signal for a TDD-MIMO system with two nodes, node A and node B, and with data trans-

mission over the dominant mode of the channel from node A to node B. We assumed that

one of the nodes has perfect channel knowledge, and proposed a scheme for estimat-

ing the dominant singular vector at the other node. We derived a lower bound on the

forward-link capacity and used it to optimize the training power and duration. When

node B has perfect CSI, with independent power constraints at node A and node B, it is

optimal to spend the minimum possible time for training (i.e., LB,τ = 1), provided the

training power is of the order of one quarter of the total data transmit power. Other-

wise, the optimal LB,τ > 1. From an energy efficiency perspective, regardless of the

available energy, LB,τ = 1 is optimal, and the fractional power spent on data trans-

mission is

√
2(Lc−1)√

2(Lc−1)+1
, where Lc is the channel coherence time. Also, when node A has

perfect CSI, at low SNR, LA,τ = 1 is optimal. We showed that if Lc ≥ 2nA − nB + 1,

which is typically the case in practical systems, initiating training at node A is better

than initiating training at node B in terms of an approximate capacity lower bound.

Monte Carlo simulations validated the theoretical expressions and illustrated the per-

formance benefits offered by the proposed channel-dependent training scheme com-

pared to conventional channel-agnostic orthogonal RCT. In the following chapter, we

extend the fixed-power RCT scheme presented in this chapter to a PCRCT scheme for

TDD-MIMO multiuser spatial multiplexing systems.
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Figure 4.6: Capacity lower bound (exact and approximate) versus data power for a 3×3
MIMO system with training power PB,τ = PA,d, and Lc = 100. The figure illustrates
the performance gain offered by the proposed training method over the conventional
orthogonal training scheme (e.g., [4, 5]), and shows that the approximate lower bound
is tight at all data powers.



Chapter 4. 79

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ρ in dB

C
ap

ac
ity

 lo
w

er
 b

ou
nd

 (
na

ts
/c

ha
nn

el
 u

se
)

 

 
Exact lower bound in (4.10): optimal α
Approx. lower bound in (4.21)
Approx. lower bound in (4.12): α = (L

c
 − 1)/L

c
 

Exact lower bound in (4.10): α = (L
c
 − 1)/L

c

Exact lower bound in (4.10): α = 0.5

Approx. lower bound in (4.12): α = 0.5

Exact lower bound in (4.10): α = 0.1 

Approx. lower bound in (4.12): α = 0.1

Figure 4.7: Exact and approximate capacity lower bound versus the average power (ρ)
for the energy efficient resource sharing scheme analyzed in Sec. 4.3.3, with LB,τ = 1.
The figure illustrates the tightness approximate bound and that the sharing of powers
derived in Theorem 7 is optimal.
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training and node B initiated training scaled by ρEσ2

1 versus the coherence time (Lc) for
an nA = 8, nB = 5 MIMO system with ρ = 0dB and 10dB.
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Reverse Channel Training in a

Multi-User TDD-MIMO Spatial

Multiplexing System

In the recent years, the use of multiple antennas has emerged as one of the promising

technologies for wide band multiuser communication (e.g., IEEE 802.16a, IEEE 802.20

and 4G protocol candidates) as it offers a significant improvement compared to single

antenna systems, in terms of reliability and throughput. However, these benefits are

realizable only when both the transmitter (Base Station (BS)) and receivers (users) have

accurate and up-to-date Channel State Information (CSI). Thus, one of the important

problems in designing multiple antenna systems is the fast and accurate acquisition of

CSI both at the transmitter (BS) and receivers (users). CSI can be obtained at the users

simultaneously by sending a known training sequence in the forward-link from the

transmitter (BS). In Time Division Duplex (TDD) systems, exploiting the reciprocity of

the channel, CSI at the Transmitter (CSIT), i.e., at the BS, can be acquired by sending

a known training signal in the reverse-link, also known as Reverse Channel Training

82
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(RCT). However, as the number of transmit antennas and/or the number of users be-

come large, the overhead due to training can become prohibitive, especially in vehic-

ular or mobile communications, where the channel is relatively fast varying, since the

training duration is proportional to the product of number of antennas at each user

terminal and the number of users. When CSI is available at the Receiver (CSIR), one

can potentially exploit it to design the RCT sequence and selectively feedback only the

required part of the CSI to the BS. This could result in faster and/or more accurate

acquisition of the CSI at the BS, leading to an improvement in the effective data rate

and/or a reduction in the power required for data transmission; this is the focus of this

chapter.

The main body of the existing literature on CSIT acquisition in single and multiuser

TDD systems focuses on orthogonal RCT [3–5,44,50], where an orthogonal training se-

quence such as the scaled identity matrix is employed. The method employed in [45]

and [46] to acquire CSIT is to feedback a scaled version of the received forward-link

training signal, from which the transmitter estimates the entire channel matrix. Al-

though this outperforms orthogonal RCT, it has the disadvantage that the transmit-

ter estimates the entire channel matrix, which is not required for certain types of data

transmission schemes such as Beamforming (BF) or Spatial Multiplexing (SM) along

the dominant modes of the channel. Data-aided blind estimation of the dominant BF

vector is proposed in [47, 48, 51]. Reference [42] proposes a two stage protocol consist-

ing of conventional RCT followed by quantized CSI transmission in the reverse-link.

A channel-dependent RCT scheme was independently explored in [31], in the context
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of a Single-Input Multiple-Output (SIMO) channel, and the sharing of energy spent be-

tween training and data was optimized with respect to an approximate expression for

the forward-link data SNR.

In this chapter, we consider an SM system with equal power allocation across the m

dominant modes of the channel during data transmission with perfect CSIR and noisy

CSIT obtained via RCT. Equal power allocation across modes is known to be nearly

optimal for all but low data SNR [52]. The perfect CSIR assumption helps simplify

the analysis and isolates the effect of estimation errors in the RCT on the performance.

This assumption is common in studies that focus on the achievable data rate or outage

probability [4, 24, 39, 50, 53, 54]. Also, we note that the perfect CSIR is required for

the analysis to be tractable; however, our proposed RCT scheme is applicable even

when the CSI at the receiver is not perfect. Now, SM-based data transmission over

m < nA dominant modes of the channel only requires knowledge of the m dominant

right singular vectors of the forward-link channel at the transmitter, and not the entire

channel matrix, where nA is the number of antennas at the BS/transmitter. Motivated

by this, in this chapter, we explore a novel, channel-dependent, power-controlled RCT

scheme that enables the BS to estimate only the part of the channel that is required for

data transmission. The structure of the RCT scheme we consider here is different from

the RCT schemes considered in previous chapters, and it allows for both spatial and

temporal allocation of the training power. Due to this, the design considerations and

the corresponding performance analysis are completely different. The following are

our main contributions:

• Proposed RCT: We propose an RCT that allows the transmitter to directly estimate
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the dominant eigenmodes of the channel required for data transmission. Further,

the proposed RCT allows one to allot the power both spatially (across modes) and

temporally (across time), while satisfying an average training power constraint.

Both the spatial power allocation matrix D and the temporal power control pa-

rameter φc > 0 are optimized using the following two performance metrics: (i)

the Mean Square Error (MSE) in the estimated precoding matrix at node A, and (ii)

a Capacity Lower Bound (CLB) on the downlink data transmission.

• Optimal RCT with approximate MSE as a metric: With the approximate MSE in the

estimated singular vectors as the performance metric, we obtain an analytical so-

lution for the optimal spatial power allocation matrix D and the optimal temporal

power control φc, as a function of the channel singular values. We show, using

simulations, that the optimal D achieves a lower MSE compared to using equal

power allocation across the eigenmodes. On the other hand, temporal power allo-

cation across channel instantiations results in only a marginal benefit in the MSE

compared to constant power training over time. For example, in a 3 × 4 MIMO

system, the proposed training scheme offers an improvement of over 15dB in the

training power required to achieve the same MSE, compared to the orthogonal

RCT.

• Optimal RCT with approximate CLB as a metric: Here, we analytically optimize

spatio-temporal power allocation of the RCT scheme to maximize the approxi-

mate CLB. In the 3 × 4 example mentioned above, using the optimal D outper-

forms using equal spatial power allocation by approximately 1 bit/channel use at

around 16dB of training and data power, while temporal power allocation offers
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only a marginal improvement in the data rate over equal temporal power alloca-

tion. We also illustrate that using a larger number of modes is not always optimal

when the overhead due to training is taken into account.

• Multiuser case: We extend the proposed channel-dependent RCT to a multiuser

downlink scenario with M user terminals. We use the approximate CLB derived

in this chapter as the metric for user scheduling. In the case of BF with m =

1 mode, we derive an upper bound on the sum data rate with CSIT obtained

using the proposed channel-dependent RCT, and show that it scales with M as

Lc−LB,τ

Lc
log2 log M , where Lc and LB,τ are the coherence time of the channel and the

training duration, respectively. Through simulations, we illustrate the benefits of

the proposed scheme over conventional orthogonal RCT.

We note that our study of power-controlled, channel-dependent RCT is fundamen-

tally different from past work on reverse-link training for MIMO SM systems, which is

based on constant-power, channel-agnostic orthogonal RCT. Our proposed RCT scheme

can lead to significant performance improvements over orthogonal RCT both in terms

of the achievable data rate as well as the MSE in BF vector estimation, especially when

the channel is fast varying. Moreover, from a system designer’s point of view, it is

useful to know that spatial allocation of the available training power is much more

beneficial than temporal allocation.

The rest of this chapter is organized as follows. The system model is described in

Sec. 5.1. The proposed training scheme and channel estimation procedure are explained

in Sec. 5.2. The training sequence is optimized in Sec. 5.2.3. The performance of the

RCT in the multiuser scenario is presented in Sec. 5.3. Simulation results are provided



Chapter 5. 87

in Sec. 5.4, and Sec. 5.5 concludes the chapter.

We use the following notation. We use E|H [·] to denote the expected value of [·] con-

ditioned on H . Im×n, with n ≤ m, represents the first n columns of the m × m identity

matrix. We use x = O(y), x,y ∈ Rn to mean that the entries of x are less than the

corresponding entries of cy for some 0 < c < ∞.

5.1 System Model

The system model consists of a single cell multiuser system with a base station denoted

BS and M active user terminals, denoted UT1, . . . , UTM . The BS has nA antennas and

each UT has nB antennas. Denote the MIMO channel from the BS to UTk by Hk ∈

CnB×nA . Let Hk = U (k)Σ(k)(V (k))H be the SVD of Hk, where the diagonal entries of Σ(k) ∈

RnB×nA , denoted σ1,k, . . . , σn,k, are the singular values of Hk, with n , rank(Hk), which

equals min(nA, nB) almost surely. Moreover, U (k) ∈ C
nB×nB and V (k) ∈ C

nA×nA are

unitary matrices whose columns are the eigenvectors of HkH
H
k and HH

k Hk, respectively.

The channel is assumed to remain constant for a frame of duration equal to the channel

coherence time Lc, and evolve in an i.i.d. fashion from frame to frame. We assume a

TDD mode of operation with perfect reciprocity [47, 55–57], and thus, without loss of

generality, the reverse-link channel of the kth user is HH
k (see [47]). The transmission

protocol consists of the following three phases.

• Phase I: This phase consists of a downlink training followed by user scheduling.

The downlink training is performed by sending a known pilot sequence from the

BS to all the UTs. Using this, each user terminal computes an estimate of their

respective channels. Here, we assume that the resulting estimate is error-free, as
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in, for example, [53, 54]. This facilitates the derivation of a capacity lower bound,

and its analytically tractable tight approximation in closed-form, with respect to

which the RCT can be optimized. We consider a scheduling scheme where each

user computes a metric (see Sec. 5.3) as a function of its CSI. The user with the

highest metric is scheduled for data transmission by the BS. The selection of the

user with the highest metric can be efficiently implemented using decentralized

algorithms such as splitting [58, 59] and timer-based schemes [60], which incurs

very low overhead1 in terms of power and delay. We assume that one of these

schemes is used to pick the best user, and we ignore the overhead involved in

user selection. In this setting, we focus on the problem of RCT sequence design to

convey the CSI of the selected user to the BS.

• Phase II: In this phase, the scheduled user terminal, say UTk, transmits a training

sequence X
(k)
B,τ in the uplink direction. The baseband equivalent of the received

training signal at the BS, denoted YA,τ , is given by

Reverse-link training: YA,τ = HH
k X

(k)
B,τ + WA,τ . (5.1)

The entries of the noise WA,τ are assumed to be i.i.d. complex circularly symmetric

standard Gaussian distributed, denoted CN (0, 1). From YA,τ , the BS computes an

estimate of V
(k)
m , the first m columns of the matrix V (k), which is subsequently used

for data transmission over the dominant modes of the channel in the downlink,

as explained next. Denote the estimate of V
(k)
m by V̂

(k)
m .

1In fact, the time overhead in best user selection is bounded irrespective of the number of users [60].
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• Phase III: This phase consists of data transmission from the BS to the scheduled

user. For the data transmission scheme, we assume SM of data with equal power

allocation. Here, the BS sends m ≥ 1 i.i.d. data streams, x
(k)
A,d ∈ Cm, multiplied

by the estimate of the m dominant right singular vectors of Hk obtained in Phase

II [7, 39]. The corresponding received signal at UTk, denoted y
(k)
B,d ∈ CnB×1, is

given by

Forward-link data: y
(k)
B,d =

√

PA,d

m
HkV̂

(k)
m x

(k)
A,d + w

(k)
B,d. (5.2)

In the above, E

[

x
(k)
A,d(x

(k)
A,d)

H
]

= Im and (V̂
(k)
m )H(V̂

(k)
m ) = Im ensure that the data

signal satisfies an average power constraint of PA,d. The entries of the noise vec-

tor w
(k)
B,d ∈ CnB are assumed to be i.i.d. CN (0, 1). Note that, when m = 1, this

corresponds to pure BF based data transmission using the estimated dominant

right singular vector of the channel. Thus, the scheme considered in this chapter

encompasses BF as a special case.

For the above transmission and scheduling scheme, we consider the problem of de-

signing XB,τ , with the following two performance metrics: (i) MSE in V̂
(k)
m , and (ii)

an achievable downlink data rate. In the following section, we present our proposed

channel-dependent training sequence for the scheduled user in the reverse-link, along

with a method for estimating the dominant singular vectors at the BS.
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Figure 5.1: The MIMO nB ×nA SM system, showing the RCT and the forward-link data
transmission.

5.2 Design and Optimization of RCT for the Scheduled

User

In this section, we assume that the best user has been scheduled for data transmission

using the procedure in Phase I of the protocol described in the previous section, and

focus on the design of the RCT sequence to efficiently convey the CSI of the selected

user to the BS (also see Fig. 5.1). Since the index of the scheduled user does not directly

enter the expressions, for the ease of presentation, in this section, we drop the user

index.2 For SM with equal power allocation, the BS requires the knowledge of Vm ,

[v1,v2, . . . ,vm], the first m columns of the right singular matrix V of the channel H . We

propose the following channel-dependent, power-controlled RCT sequence that enables the

2For example, instead of writing Hk, X
(k)
B,τ , U (k), we write H , XB,τ , U .
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BS to directly estimate Vm:

XB,τ =
√

PB,τLB,τ

√

φcUD, (5.3)

where PB,τ and LB,τ are the average training power and training duration, respectively.

The temporal power control parameter φc ∈ R+, the unitary matrix U ∈ CnB×nB , and

the spatial power allocation matrix D ∈ RnB×m are adapted at the UT based on the

CSIR. For mathematical tractability, D ∈ R
nB×m is restricted to be a diagonal matrix

with non-negative entries di, i = 1, 2, . . . , m, satisfying ‖D‖2
F ≤ 1. This, along with

Eφc ≤ 1, ensures that the training sequence satisfies the average power constraint

E ‖XB,τ‖2
F ≤ PB,τLB,τ . The RCT scheme in (5.3) has the following desirable features:

(i) for a given channel realization, D allows the UT to selectively allot greater or lesser

power for training the different channel eigenmodes (spatial power allocation), (ii) the

power control parameter φc enables the UT to perform temporal power allocation.

Note that, in the case of BF, i.e., when m = 1, the transmitter requires the knowledge

of only v1. Using the proposed RCT scheme, v1 can be conveyed to node A using only

one training symbol. In contrast, orthogonal RCT requires at least nB training symbols.

Hence, the proposed scheme offers savings in terms of the minimum required training

duration.

Now, from (5.1), the received training signal at the BS, normalized by
√

PB,τLB,τ is

ȲA,τ ,
YA,τ

√
PB,τLB,τ

= V ΣHD
√

φc +
WA,τ

√
PB,τLB,τ

. (5.4)

Denote the kth columns of ȲA,τ and
WA,τ√

PB,τ LB,τ
by ȳk,A,τ and wk,A,τ , respectively. Note

that, in the noiseless case, one can obtain the kth column of Vm by simply normalizing
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ȳk,A,τ . Motivated by this, even in the presence of noise, using ȲA,τ , the BS estimates Vm

as V̂m , [v̂1, v̂2, . . . , v̂m], where

v̂k =
ȳk,A,τ

‖ȳk,A,τ‖2

, 1 ≤ k ≤ m. (5.5)

The choice of the matrix D and the parameter φc determine the allocation of the power

to different modes and realizations of the channel, which can be used to control the

estimation accuracy of V̂m. The design of the RCT sequence involves jointly optimizing

the matrix D and φc. In particular, we wish to solve the following two optimization

problems:

• Minimizing the MSE in the estimate of Vm:

min
φc>0,D∈R

nB×m
E

∥
∥
∥Vm − V̂m

∥
∥
∥

2

F
= min

φc,D
E

m∑

k=1

‖vk − v̂k‖2
2, (5.6)

such that D is diagonal and non-negative, ‖D‖2
F ≤ 1 and Eφc ≤ 1.

• Maximizing the data rate:3

max
LB,τ >0,φc>0,D∈R

nB×m
data rate (5.7)

such that D is diagonal and non-negative, ‖D‖2
F ≤ 1, Eφc ≤ 1 and 1 ≤ LB,τ ≤ Lc.

Note that, in conventional orthogonal RCT, one uses the training sequence

X
(conv)
B,τ =

√

PB,τLB,τ

nB

Q, (5.8)

where Q is any nB × LB,τ matrix with orthonormal rows. Further, the transmitter uses

3We derive an explicit form for the data rate in Sec. 5.2.3.
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the received training signal to estimate the channel matrix Ĥ using either least-squares

or MMSE estimation,4 and then employs the m dominant right singular vectors of the

estimated channel as the BF vectors for SM data transmission.

In the following subsection, we present the solution to (5.6). For analytical tractability,

we first derive a tight approximate expression for E

∥
∥
∥Vm − V̂m

∥
∥
∥

2

F
, and then use it to

optimize the training sequence.

5.2.1 MSE Optimal D and φc

First, we state the following theorem, which presents an approximate expression for

the MSE, E

∥
∥
∥Vm − V̂m

∥
∥
∥

2

F
.

Theorem 9. Let the columns of V̂m be given by (5.5), and suppose φc > 0. Then, there exists a

V̂m,approx , Vm + E ∈ C
nA×m such that

V̂m = V̂m,approx + O
(

1

PB,τLB,τ

)

, (5.9)

with the columns of E , [e1, e2, . . . , em] ∈ C
nA×m defined as follows:

ek ,
−ℜ{vH

k wk,A,τ}
σkdk

√
φc

vk +
1

σkdk

√
φc

wk,A,τ . (5.10)

Further,
∣
∣
∣
∣
E

∥
∥
∥Vm − V̂m

∥
∥
∥

2

F
− E

∥
∥
∥Vm − V̂m,approx

∥
∥
∥

2

F

∣
∣
∣
∣
= O

(
1

(PB,τLB,τ )2

)

, (5.11)

where the expectation in the left hand side is with respect to the channel singular values. Also,

4Note that the estimate of the BF vectors obtained using the least-squares estimate and the MMSE
estimate are the same, as both the estimates are constant multiples of each other.
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an approximate expression for the MSE is given by

E

∥
∥
∥Vm − V̂m,approx

∥
∥
∥

2

F
=

(
2nA − 1

2PB,τLB,τ

)

E

m∑

k=1

1

σ2
kd

2
kφc

. (5.12)

Proof : See Appendix D.0.14. �

Remark 1: The approximate expression for the MSE in (5.12) differs from E

∥
∥
∥Vm − V̂m

∥
∥
∥

2

F

only in the second order terms of the training power and duration, due to the (PB,τLB,τ )
2

term in the denominator of (5.11). In Sec. 5.4, we illustrate the tightness of the approxi-

mate MSE expression at practical training powers.

Remark 2: From the above, when dk = 1/
√

m and φc = 1, i.e., with equal spatio-

temporal power allocation, we have

E

∥
∥
∥Vm − V̂m,approx

∥
∥
∥

2

F
=

m(2nA − 1)

2PB,τLB,τ
E

(
m∑

i=1

σ−2
i

)

. (5.13)

Using (5.12), our optimization problem becomes

min
φc>0,di≥0

(
2nA − 1

2PB,τLB,τ

)

E

m∑

k=1

1

σ2
kd

2
kφc

such that
m∑

i=1

d2
i ≤ 1, Eφc ≤ 1. (5.14)

The solution is given by the following Lemma.

Lemma 4. The optimal D and φc that solve (5.14) are given by

dk =

√

σ−1
k

∑m
i=1 σ−1

i

and φc =

∑m
i=1 σ−1

i

E
∑m

i=1 σ−1
i

. (5.15)

The approximate MSE with φc = 1 and optimal D is

E

∥
∥
∥Vm − V̂m,approx

∥
∥
∥

2

F
=

2nA − 1

2PB,τLB,τ
E

(
m∑

i=1

σ−1
i

)2

. (5.16)
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The approximate MSE with the jointly optimal D and φc is

E

∥
∥
∥Vm − V̂m,approx

∥
∥
∥

2

F
=

2nA − 1

2PB,τLB,τ

(

E

m∑

i=1

σ−1
i

)2

. (5.17)

Proof : See Appendix D.0.15. �

Comparing the MSE with constant power training (φc = 1) in (5.16) and the MSE with

power-controlled training in (5.17), it is clear that the power-controlled training out-

performs the constant power training, since
(
E
∑m

i=1 σ−1
i

)2 ≤ E
(∑m

i=1 σ−1
i

)2
by Jensen’s

inequality. Thus, spatio-temporal power allocation during training improves the accu-

racy of the estimate. Note that, the above solution is valid if E
∑m

i=1 σ−1
i < ∞, which is

true, for example, when the channel is Rayleigh fading, and nA 6= nB , since [61]

Eσ−1
i ≤

√

Eσ−2
i <

√
√
√
√E

n∑

i=1

σ−2
i =

√

ETrace{(HHH)−1} =

√
nB

|nA − nB|
< ∞. (5.18)

Remark 3: For a given channel instantiation, the MSE in estimating the dominant BF

vector is small, compared to the modes with smaller gain. Hence, using the inverse of

the channel singular values to fix the power allocation, as given by (5.15), is intuitively

satisfying. Similarly, since across time, it is reasonable to allot power proportional to

∑m
i=1 σ−1

i , which, roughly speaking, measures the “goodness” of the channel.

In the above, we optimized the power allocated across space and time with the MSE

as the performance metric. In the following, we optimize the RCT with the data rate as

the performance metric.
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5.2.2 Data Transmission and Capacity Lower Bound

As mentioned earlier, in Phase III, the data xA,d ∈ Cm×1 is pre-multiplied by V̂m ∈ CnA×m

obtained from (5.5), and transmitted to the UT. Since the UT has perfect CSI, it pre-

multiplies the received data signal by UH
m , where Um ∈ CnB×m is the first m columns of

the matrix U . From (5.2), the corresponding received data signal is:

yB,d =

√

PA,d

m
ΣmV H V̂mxA,d + UH

m wB,d, (5.19)

where Σm ∈ Rm×nA is the first m rows of the matrix Σ ∈ RnB×nA . Note that the distri-

bution of the entries of w̃B,d , UH
mwB,d is the same as the entries of wB,d, since UH

m has

orthonormal columns. We rewrite (5.19) as

yB,d =

√

PA,d

m
GxA,d + w̃eff, (5.20)

where G , Σm,m − ΣmV HE|H{Ve}, Ve , Vm − V̂m, and

w̃eff ,

√

PA,d

m
ΣmV H

E|H{Ve}xA,d −
√

PA,d

m
ΣmV HVexA,d + w̃B,d. (5.21)

In the above, we have used E|H{X} to mean the expected value of X conditioned on

H . Here, Σm,m ∈ Rm×m is the m × m principal submatrix of Σ, and (5.20) is obtained

by adding and subtracting the first term in (5.21). Note that G in the first term in (5.20)

is a deterministic function of H , and it is easy to see that the effective noise term w̃eff

is uncorrelated with the data given the channel, i.e., E|H{w̃effx
H
A,d} = 0. Hence, for the

system in (5.20), the worst case noise theorem [8] is applicable, which results in the
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following lower bound CLB on the channel capacity:

CLB , αEH log2

∣
∣
∣
∣
∣
Im + PA,d

GGH

E|H{‖w̃eff‖2
F}

∣
∣
∣
∣
∣
, (5.22)

where α ,
Lc−LB,τ

Lc
. Here, EH{·} outside the log function denotes the expectation with

respect to H , and E|H{·} in the denominator term of (5.22) and in the definition of G

denotes the expectation with respect to the distribution of the additive noise in the

training and data phases given H .

Note that the derivation of the capacity lower bound in (5.22) is independent of the

specific training scheme used to estimate the dominant BF vectors. Thus, it is valid for

the orthogonal RCT scheme also.

Now, it turns out that directly optimizing the training sequence to maximize the above

CLB is analytically intractable due to E|H{Ve} term in (5.22), which is hard to analyze.

Hence, we derive an approximate expression for the CLB in the following theorem,

and use it optimize the training sequence. The solution obtained by optimizing the

approximate CLB becomes accurate asymptotically as the data and training powers

become large.

Theorem 10. Let

CLB,a , αE log2

∣
∣
∣
∣
∣
Im +

PA,d

m

Σm,mΣH
m,m

1 + σ2
eff

∣
∣
∣
∣
∣

(5.23)

with

σ2
eff ,

PA,d

PB,τLB,τm2

m∑

i=1

βi

d2
i φc

, and βi ,
1

2
+

∑m
j=1,j 6=i σ

2
j

σ2
i

. (5.24)
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Then, CLB is an approximation to the capacity lower bound given by (5.22), in the sense

|CLB − CLB,a| → 0 as PA,d, PB,τ → ∞ such that
PA,d

PB,τ

≤ µ, µ > 0.

Proof : See Appendix D.0.16.

Note that the effect of channel estimation errors on the data rate is captured via σ2
eff

in the denominator of the approximate expression in (5.23). When the training power

is large, the loss in the data rate is small, as expected. The effect of the spatio-temporal

power allocation parameters of the training sequence on the data rate is also captured

through the σ2
eff term.

In the next subsection, we optimize the training sequence to maximize (5.23).

5.2.3 Capacity Lower Bound Optimal D, φc and LB,τ

We want to find the maximum of CLB,a given by (5.23) subject to ‖D‖2
F ≤ 1 and Eφc ≤ 1,

which is equivalent to first optimizing over D for a given φc, and then finding the

optimal functional φc, as follows:

P1 : max
φc

max
D

CLB,a (5.25)

such that ‖D‖2
F ≤ 1, and Eφc ≤ 1.

The solution to the above problem is given in the following theorem.

Theorem 11. For a given LB,τ , the optimal (d1, d2, . . . , dm) that solves P1 in (5.25) is given

by

di =

√ √
βi

∑m
j=1

√
βj

, 1 ≤ i ≤ m, (5.26)
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where βi is as defined in (5.24). Also, the optimal temporal power allocation φ∗
c satisfies

λ = H(φ∗
c) ,

(
1

τ + φ∗
c

) m∑

k=1

PA,dσ
2
kτ

(PA,dσ
2
k + m)φ∗

c + mτ
, (5.27)

where τ ,
PA,d

PB,τ LB,τ m2

(∑m
k=1

√
βk

)2
, and λ is a Lagrange multiplier, chosen such that Eφ∗

c = 1,

where the expectation is over the distribution of (σ2
1, σ

2
2, . . . , σ

2
m).

Proof : See Appendix D.0.17. �

Note that, the optimal power control is available only implicitly, as given by (5.27).

The value of λ has to be numerically computed. A procedure for finding λ is described

in Sec. 5.4.

In the special case of pure BF, i.e., when m = 1, we have the following simple closed-

form solution for the power control policy, and the resulting capacity lower bound.

Corollary 1. For m = 1, the capacity lower bound with optimal power control policy is given

by

CLB,BF = αE log2

(

1 + PA,d
σ2

1

1 + σ2
eff,BF

)

, (5.28)

where σ2
eff,BF ,

PA,d

2PB,τ LB,τ φ∗
c

with

φ∗
c =

(

−τ2 +
√

τ 2
2 − 4τ1τ3

2τ1

)+

.

In the above, τ1 , 1 + PA,dσ
2
1 , τ2 , 2τ + τPA,dσ

2
1 and τ3 , τ 2 − PA,dσ2

1τ

λbf
. Here, λbf is chosen to

satisfy the average power constraint, and τ is as defined earlier, with m = 1.

Remark 4: The only parameter of the training sequence that remains to be optimized

is the training duration LB,τ . The optimal LB,τ can be obtained using a simple off-line

search over {1, 2, . . . , Lc}. We relegate the details to Sec. 5.4.
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In the above, we found the optimal spatial and temporal power allocation of RCT

sequence that maximizes an approximate CLB. In the following section, we consider

the design of the RCT in a multiuser setting and its effect on the data rate.

5.3 Multiuser Scenario

In this section, we use the previously derived approximate expression for the CLB as

a metric to schedule a single user for data transmission, and analyze the data rate of

the system. If the kth user is scheduled for data transmission, from Theorem 10, with

φc = 1, the approximate data rate achieved by it is given by

Rk , α log2

∣
∣
∣
∣
∣
Im +

PA,d

m

Σk,m,mΣH
k,m,m

1 + σ2
k,eff

∣
∣
∣
∣
∣
, (5.29)

where

σ2
k,eff ,

PA,d

PB,τLB,τm2

(
m∑

i=1

√

βi,k

)2

, βi,k ,
1

2
+

∑m
l=1,l 6=i (σl,k)

2

(σi,k)2
, (5.30)

and Σk,m,m is the m × m principal submatrix of the singular value matrix of Hk. For

simplicity, we assume that the data power, RCT power and RCT duration are the same

for all users. Further, we assume that the channels are i.i.d. across users. The user is

selected for data transmission using max-rate scheduling based on Rk. Since Rk can

be computed locally at each receiver (user), the user with the highest metric can be

efficiently selected using splitting or a timer based scheme, as explained in Sec. 5.1.5

5Note that using the minimum MSE in the estimate of the BF vectors as the criterion for user selection
coincides with max-rate scheduling, when m = 1. Both schemes select the user whose channel matrix
has the largest dominant singular value.
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With max-rate scheduling, the average sum data rate is given by

Ravg , EH1,...,HM
[max{R1, R2, . . . , RM}] , (5.31)

Unfortunately, a closed-form expression for (5.31) is hard to find when m > 1, as it

involves finding the distribution of complicated terms involving βi,k. However, in the

case of pure BF, i.e., when m = 1, a simplified expression involving a single integral can

be found, as shown in the following theorem.

Theorem 12. When m = 1, Ravg is given by

Ravg =

∫ ∞

0

(
1 − (Pr{σ2

1,1 ≤ ω})M
)
dx, (5.32)

where

ω ,
1

PA,d

(
2

x
α − 1

)
(

1 +
PA,d

2PB,τLB,τ

)

,

and

Pr{σ2
1,1 ≤ ω} ,

e−ω

∏nB

k=1(nB − k)!(nA − k)!

nB∑

j=1

(nA+nB)j−2j2
∑

p=nA−nB

cj,pp!

[
p
∑

s=0

(−1)jωp−s

(p − s)!

]

. (5.33)

Here, the constants cj,p are the coefficients of e−jyyp term in the pdf of σ2
1,1, the largest eigenvalue

of HH
1 H1, which can be found using Table I in [62].

Proof : See Appendix D.0.18. �

Now, although the above result provides a simple, easy-to-compute integral using

which one can analyze the performance of the proposed RCT scheme, it is hard to

obtain insight into the system behavior as the number of users, RCT power, data power,

etc. are varied. In the following theorem, we derive an upper bound on Ravg, and show
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that it scales with M as α log2 log M with the number of users M . We illustrate the

tightness of the bound in Sec. 5.4.

Theorem 13. When m = 1, an upper bound on Ravg is given by

Ravg ≤ Ru
avg , α log2

(

1 +
PA,d

1 + σ2
BF,eff

inf
s∈(0,1)

[
log M

s
− nAnB log(1 − s)

s

])

, (5.34)

where σBF,eff ,
PA,d

2PB,τ LB,τ
. Further,

lim
M→∞

Ru
avg

α log2 log M
= 1.

Proof : See Appendix D.0.19.

It is interesting to note that a similar data rate scaling of log2 log M was also observed

in the case of a multiuser MISO down link channel with perfect CSIR and perfect

CSIT [63, 64].

To summarize, we used the previously derived approximate expression for the CLB

as a metric to schedule a single user for data transmission, and showed that the upper

bound on the data rate of the system scales with M as α log2 log M . The proposed RCT

scheme directly leads to an improvement in performance compared to orthogonal RCT,

due to the dependence of the data rate on the factor α, which captures the training

duration overhead.

5.4 Simulation Results

In this section, we illustrate the performance improvement offered by the proposed

RCT scheme and validate our analytical development using Monte Carlo simulations.
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The simulation set up consists of an nB×nA = 3×4 MIMO SM system with PA,d = PB,τ ,

LB,τ = 3 symbols, and Lc = 100 symbols. The MIMO channel is assumed to be Rayleigh

flat fading channel with i.i.d. coefficients drawn from CN (0, 1). The AWGN is also

modeled as having i.i.d. CN (0, 1) components. With conventional orthogonal RCT, we

employ the training sequence in (5.8) as in [5] to obtain an estimate of the channel,

from which dominant BF vectors are computed using the SVD. The resulting error in

the estimated BF vectors is used to compute the MSE, and the CLB is computed using

the expression in (5.22). The computed CLB is used to schedule the user for RCT and

data transmission, and hence, with conventional estimation also, only the selected user

sends the RCT signal. We compare the performance of the proposed RCT scheme with

orthogonal RCT both in terms of the MSE and the CLB, in the following subsections.

5.4.1 Mean Square Error

Figure 5.2 shows the performance of the training scheme proposed in Sec. 5.2.1 in terms

of the MSE in the estimate of Vm versus PB,τ , with m = 3 modes. Since the proposed

RCT scheme has multiple parameters, it is of interest to see the gain offered by op-

timizing each of the components. Towards this, we plot the MSE with the following

settings: (a) XB,τ in (5.3) with D = InB×m and φc = 1 (fixed-power RCT), (b) XB,τ in

(5.3) with optimal D and φc = 1 (RCT with optimal spatial power control), (c) XB,τ

in (5.3) with jointly optimal D and φc (RCT with the optimal spatio-temporal power

control), and (d) Conventional orthogonal training (X
(conv)
B,τ in (5.8)) [5]. From the plot,

we observe that the approximate theoretical expression in (5.17) is tight, and that the
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Figure 5.2: MSE versus training power for a 3 × 4 MIMO system with m = 3.

proposed scheme significantly outperforms orthogonal RCT at all training powers. Us-

ing the optimal spatial power allocation during training offers a gain of approximately

1dB at PB,τ = 15dB compared to using D = InB×m. However, temporal power alloca-

tion does not further significantly improve the performance compared to pure spatial

power allocation.

5.4.2 Data Rate with a Single User

Figure 5.3 shows a plot of the capacity lower bound in (5.22) and its approximate ex-

pression in (5.23) versus the training power. It is clear that the approximate expression
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for the capacity lower bound is tight at all training powers. Further, the data rate cor-

responding to m = 2 outperforms m = 3, i.e., using higher number of modes is not

always optimal when the training overhead for acquiring CSIT is taken into account.

For the optimal spatio-temporal power allocation, the value of the Lagrange multi-

plier λ > 0 in (5.27) is required to plot the CLB. To compute this, we start with some

λ > 0. We generate a large number of channel instantiations, and compute the power

control function φ∗
c for each instantiation by inverting (5.27), as it is a monotone func-

tion of φc. We then compute the average of the values of the φc’s so obtained. Due to

the monotonicity of the function H(φ∗
c), if the average exceeds unity, we increment λ,

otherwise we decrement λ by a small step. Repeating this procedure until the average

value is sufficiently close to one yields the desired λ, and consequently, the optimal

power control function.

Figure 5.4 shows a plot of the exact CLB in (5.22) versus the training power. The

proposed training offers an improvement of about 2 bits/channel use over orthogonal

training. Also, optimal spatial power allocation during training outperforms the pro-

posed scheme with D = InB×m by approximately 1 bit/channel use at PB,τ = 20dB. On

the other hand, temporal power allocation during training only offers a marginal data

rate improvement.

Figure 5.5 shows the capacity lower bound in (5.22) versus training duration with

PA,d = PB,τ = 6dB for the proposed and orthogonal training schemes. The figure

shows that training for the minimum duration of one symbol is not always optimal.

For the proposed training scheme, the optimal training duration is 8 symbols, while for

the orthogonal training scheme, it is 12 symbols. Thus, the analysis presented in this
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chapter can be used to determine the training duration that optimally trades-off the

estimation accuracy with the time overhead due to training.

5.4.3 Data Rate with Multiple Users

Figure 5.6 shows a comparison of the proposed training scheme with the orthogonal

training scheme in terms of the average data rate versus PB,τ for a muti-user system

with max-rate based user scheduling, m = 3 modes, and M = 2 and 6 users. We use

the capacity lower bound expression in (5.22) while evaluating the average data rate in

(5.31). The proposed RCT scheme can lead to a reduction of 2 to 3dB of training power

compared to orthogonal RCT for achieving the same data rate.

Finally, in Fig. 5.7, we study the behavior of the average data rate as a function of

the number of users. We consider a 2 × 2 multiuser BF system with LB,τ = 1, and plot

the normalized data rate, defined as
Ravg

log2 log M
, where Ravg is as in (5.31), versus M . We

see that the approximate expression in (5.32) matches well with the exact expression

in (5.31). Further, the upper bound in (5.34) also captures the log2 log M scaling of the

average data rate very well.

5.5 Conclusions

This chapter considered a multiuser SM based TDD-MIMO system with perfect CSIR.

First, for a single user system, a novel power-controlled Reverse Channel Training (RCT)

scheme that adapts to the time-varying channel was proposed. This was used by the

BS to estimate the dominant beamforming vectors of the channel. The spatial and tem-

poral allocation of the training matrix were optimized using the following two metrics:
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(i) a capacity lower bound, and (ii) Mean Square Error (MSE), subject to an average

power constraint. We then extended the training scheme and the data rate analysis to

a multiuser case. Further, for a BF system, we derived a closed-form expression for the

average sum data rate and its upper bound. We showed that the upper bound scales

as
Lc−LB,τ

Lc
log2 log M with the number of users M , where Lc and LB,τ are the channel

coherence time and the training duration, respectively. Using simulation results, we

demonstrated the significant performance gain offered by the proposed training se-

quence over conventional orthogonal RCT. We also illustrated that the spatial power

allocation during training outperforms its equal power allocation counterpart, while

temporal power allocation only offers a marginal improvement in performance.
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Figure 5.3: The figure demonstrates the tightness of the proposed approximation in
(5.23) for the capacity lower bound in (5.22) for a 3 × 4 MIMO system with the data
power of PA,d = PB,τ , LB,τ = 3 symbols.
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Figure 5.6: Capacity lower bound in (5.22) for a 3 × 4 multiuser MIMO system, versus
training power PB,τ , with the data power PA,d = PB,τ , and for the scheduling scheme
described in Sec. 5.3.
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Conclusions and Future Work

In this thesis, we investigated the problem of designing RCT sequences in reciprocal

MIMO systems that exploit channel knowledge at the receiver to enable fast and effi-

cient channel estimation at the transmitter. The main contributions of this thesis are

summarized below.

6.1 Conclusions

Chapter 2 proposed reverse training and data power control schemes for a TDD-SIMO

system with perfect/imperfect CSIR and investigated its DMT performance. It was

shown that a diversity order of d(gm) = r
(
s + 1 − gm

α

)
is achievable for l ≥ s + 1,

1 ≤ s < r and 0 ≤ gm < α, where α represents the fractional data transmit duration. The

diversity order thus increases monotonically with r at nonzero multiplexing gain. This

is a significant improvement over channel-agnostic orthogonal training schemes, where

the diversity order saturates with the number of receive antennas. The DMT analysis

was extended to a more practical situation where the training is done in both directions.

In this case also, it was shown that the DMT performance can improve quadratically

113
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with the number of receive antennas, and nearly the same DMT can be achieved as that

with perfect CSIR and a genie-aided receiver. For fast varying channels, the proposed

RCT and data transmission scheme can lead to a significant advantage in DMT perfor-

mance, which, at finite SNR, can translate to a large improvement in outage probability

performance compared to orthogonal training schemes.

In chapter 3, we proposed a channel-dependent PCRCT and a data power control

scheme in a TDD-SIMO system with perfect CSIB, and analyzed its DMT performance.

The key ingredient of the RCT sequence presented in chapter 3 that was not present in

the RCT sequence of chapter 2 is that the power in the training sequence was varied

depending on the current CSI such that an average power constraint is satisfied. We

showed that the proposed scheme achieves an infinite diversity order for 0 ≤ gm <

α min(γ, 1). Also, at high SNR, the derived upper bound on the outage probability goes

to zero approximately as exp(−P̄ (γ− gm
α

)), where γ > 0 is the exponent of the RCT power.

We also showed that there exists an uncoded data transmission scheme for which the

probability of error exhibits an infinite diversity order for 0 ≤ gm < α min(γ, 1). The

proposed scheme can thus achieve a significantly better DMT performance compared

to fixed-power, channel-agnostic orthogonal RCT schemes as well as the RCT sequence

of chapter 2.

In chapter 3, the training scheme proposed in chapter 2 was extended to a more gen-

eral MIMO channel. In particular, we considered the design and analysis of a channel-

dependent training signal for a TDD-MIMO system with two nodes, node A and node B,

and with data transmission over the dominant mode of the channel from node A to node

B. We assumed that one of the nodes has perfect channel knowledge, and proposed a



Chapter 6. 115

scheme for estimating the dominant singular vector at the other node. We derived a

lower bound on the forward-link capacity and used it to optimize the training power

and duration. We showed that when node B has perfect CSI, with independent power

constraints at node A and node B, it is optimal to spend the minimum possible time

for training (i.e., LB,τ = 1), provided the training power is at least of the order of one

quarter of the total data transmit power. Otherwise, the optimal LB,τ > 1. From an en-

ergy efficiency perspective, regardless of the available energy, LB,τ = 1 is optimal, and

the fractional power spent on data transmission is

√
2(Lc−1)√

2(Lc−1)+1
, where Lc is the channel

coherence time. Also, when node A has perfect CSI, at low SNR, LA,τ = 1 is optimal.

We showed that if Lc ≥ 2nA − nB + 1, which is typically the case in practical systems,

initiating training at node A is better than initiating training at node B in terms of an

approximate capacity lower bound. Monte Carlo simulations validated the theoretical

expressions and illustrated the significant performance benefits offered by the proposed

channel-dependent training scheme compared to the conventional channel-agnostic or-

thogonal training scheme.

Chapter 5 extended the training scheme proposed in chapter 4 to a general multi-user

Spatial Multiplexing (SM) based TDD-MIMO system with perfect CSIR. First, for a sin-

gle user system, a novel power controlled RCT scheme that adapts to the time-varying

channel was proposed. This was used by the BS to estimate the dominant beamform-

ing vectors of the channel. The singular values of the training matrix were optimized

using the following two metrics: (i) a capacity lower bound, and (ii) Mean Square Error

(MSE). We showed that it is optimal to allocate lesser power to the dominant modes

of the channel. We then extended the training scheme and the data rate analysis to
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a multiuser case. We showed that, in the multiuser case, the proposed scheme of-

fers a significant performance improvement over the conventional orthogonal training

scheme. Further, for a BF system, we derived a closed form expression for the aver-

age sum data rate and its upper bound. Using the upper bound, we showed that the

data rate scales as
Lc−LB,τ

Lc
log log M with the number of users M , where Lc and LB,τ

are the channel coherence time and the training duration, respectively. Using simula-

tion results, we demonstrated the significant performance gain offered by the proposed

training sequence over the conventional orthogonal RCT sequence. We also illustrated

that the spatial power allocation during training outperforms its equal power alloca-

tion counterpart while temporal power allocation only offers a marginal improvement

in performance.

6.2 Future Work

Future work in the design of RCT sequences could include the following issues:

• RCT sequence design proposed in this thesis, for the most part, assumed perfect

CSI at node B. Although we considered the impact of imperfect CSI at node B on

the DMT performance in chapter 2, it would be interesting to conduct a more

detailed study of the impact of imperfect CSIB on the design of RCT sequences.

• In this thesis, the channel was assumed to be perfectly reciprocal. Extending the

RCT design to the case where the forward channel is correlated with the reverse

channel is an interesting challenge.
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• Throughout this thesis, the channel was assumed to be quasi-static, i.e., it is as-

sumed to be evolving in an i.i.d. fashion. It would be useful to analyze the per-

formance of channel-dependent RCT when the channel is correlated across time.

Some initial work in this direction can be found in [51].
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Appendix for Chapter 2

A.0.1 Useful Lemmas

Lemma 5. If the random variable σ2 is a chi-square distributed with 2r degrees of freedom, then

Pr{σ2 < z} ≤ zr

r!
, z ≥ 0.

Proof : The result follows from

Pr{σ2 < z} =
1

(r − 1)!

∫ z

0

e−xxr−1dx (A.1)

≤ 1

(r − 1)!

∫ z

0

xr−1dx (A.2)

=
zr

r!
. � (A.3)

Lemma 6. For the system in (2.3), |σ̂| ≤ σ̂U , where σ̂2
U , (σ + |w̄A,τ |)2, with w̄A,τ ,

ℜ{wA,τ}√
P̄LB,τ

.

Proof : We upper bound the absolute value of (2.3) as follows:

|σ̂|
(a)

≤ σ
∣
∣ℜ{vH v̂}

∣
∣+

∣
∣
∣
∣
∣

ℜ{wA,τ}
√

P̄LB,τ

∣
∣
∣
∣
∣

(A.4)

(b)

≤ σ + |w̄A,τ | , (A.5)

where (a) follows from the triangle inequality and (b) follows since
∣
∣ℜ{vH v̂}

∣
∣ ≤ 1. �
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A.0.2 Proof of Lemma 1

Consider the following constraint on the data power

E[P(σ̂)] =

∫ ∞

−∞
P(σ̂)fσ̂(σ̂; P̄ )dσ̂ = P̄ , (A.6)

where fσ̂(σ̂; P̄ ) is the pdf of σ̂. Substituting (2.10) in (A.6), we get

E[P(σ̂)] = κP̄

[

exp

(
LcRP̄

Lc − LB,τ

)

− 1

]

F (P̄ ) + IP̄ , (A.7)

where RP̄ is the target data rate and the data transmit power is P̄ ,

F (P̄ ) ,

∫ ∞

θP̄

1

x2s
fσ̂(x; P̄ )dx and IP̄ , P̄ l

∫ θP̄

−∞
fσ̂(x; P̄ )dx. (A.8)

The proof is complete by choosing

κP̄ =
(P̄ − IP̄ )

(

exp
(

LcRP̄

Lc−LB,τ

)

− 1
)

F (P̄ )
, (A.9)

and showing that IP̄ < P̄ and that F (P̄ ) is bounded for large P̄ when 0 ≤ l ≤ r + 1 and

n = 1/2. From (A.8), IP̄ = P̄ l Pr{σ + w̄A,τ < θP̄} can be bounded as,

IP̄

(a)

≤ P̄ l

r!
E(θP̄ − w̄A,τ )

2r (A.10)

(b)
=

P̄ l

r!
E

r∑

j=0

θ
2(r−j)

P̄

(
2r

2j

)

w̄2j
A,τ

(c).
= P̄ l max

j∈{0,1,...,r}

1

P̄ 2(r−j)n+j
(A.11)

(d).
=

1

P̄ r−l
, (A.12)
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where (a) follows from Lemma 5 above, and the expectation is with respect to the dis-

tribution of w̄A,τ , (b) follows from the binomial expansion and the fact that Ew̄i
A,τ = 0

when i is odd, (c) follows from θP̄
.
= 1

P̄ n and Ew̄2j
A,τ

.
= 1

P̄ j , and (d) follows by substituting

n = 1/2 in the left hand side. From (A.12), clearly, IP̄ < P̄ for large P̄ if l < r + 1 and

n = 1/2. When l = r+1 and n = 1/2, we have IP̄ � P̄ , and therefore we can ensure that

IP̄ < P̄ for large P̄ by scaling IP̄ by an appropriately chosen constant scaling factor.

Next, we show that F (P̄ ) is bounded. Note that

F (P̄ ) =

∫ 1

θP̄

1

x2s
fσ̂(x; P̄ )dx +

∫ ∞

1

1

x2s
fσ̂(x; P̄ )dx. (A.13)

Now, it is sufficient to show that the first integral in (A.13) is bounded, since the second

integral is clearly < 1. To this end, we need the distribution of σ̂, i.e., Pr (σ + w̄A,τ ≤ x),

where w̄A,τ ∼ N (0, σ2
var), and σ2

var , 1
2P̄LB,τ

. Consider

G(x) , Pr (σ + w̄A,τ ≤ x) (A.14)

=

∫ ∞

0

fσ(y)

∫ x−y

−∞

1√
2πσvar

e−z2/2σ2
vardzdy, (A.15)

where fσ(y) is the pdf of σ, which is chi distributed with 2r degrees of freedom. Taking

the derivative of (A.14) with respect to x, we get

∂G(x)

∂x
=

J√
2πσvar

∫ ∞

0

y2r−1e−
y2

2 e
− (x−y)2

2σ2
var dy (A.16)

=
Je−β3

√
2πσvar

∫ ∞

0

y2r−1e

{

− (y−β1)2

2β2

}

dy, (A.17)

where J is the constant term in the standard chi pdf, β1 , x
1+σ2

var
, β2 ,

σ2
var

1+σ2
var

.
= 1

P̄
and
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β3 , β2x
2/(2σ2

var). Let t = y−β1√
β2

and using the binomial expansion, it can be shown that

∂G(x)

∂x
=

J exp(−β3)√
2πσvar

2r−1∑

j=0

(
2r − 1

j

)

(
√

β2)
2r−j × xj

(1 + σ2
var)

j

∫ ∞

−β1/
√

β2

t2r−1−je−
t2

2 dt.

(A.18)

Now, using exp(−β3) ≤ 1, we can upper bound the first term in (A.13) as

∫ 1

θP̄

1

x2s

∂G(x)

∂x
dx ≤ J√

2πσvar

2r−1∑

j=0

(
2r − 1

j

)

Cj ×
(
√

β2)
2r−j

(1 + σ2
var)

j

∫ 1

θP̄

xj−2sdx, (A.19)

where s < r, and Cj
.
= 1 is some constant that does not scale with P̄ . Now, the behavior

of the terms above with P̄ is governed by

β
r−j/2
2

σvar

∫ 1

θP̄

xj−2sdx
.
=

1

j − 2s + 1

[
1

P̄ a1
− 1

P̄ a2

]

, (A.20)

where a1 , r − j/2 − 1/2, and a2 , (−2s + j + 1)n + r − j/2 − 1/2. The exponent

corresponding to the first term above is r − j/2 − 1/2 ≥ 0 for all 0 ≤ j ≤ 2r − 1. Also,

when n = 1/2, the exponent corresponding to the second term above is r − s > 0 for all

0 ≤ j ≤ 2r − 1, and hence the integral is bounded for 1 ≤ s < r.

Finally, let RP̄ = gm log(P̄ ). Since IP̄ < P̄ and F (P̄ ) are bounded when 0 ≤ l ≤ r + 1,

using
(

exp
(

LcRP̄

Lc−LB,τ

)

− 1
)

.
= P̄

gm
α in (A.9), we get κP̄

.
= 1

P̄
gm
α −1

, where α ,
Lc−LB,τ

Lc
. This

completes the proof of Lemma 1. �
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A.0.3 Proof of Theorem 1

Using the power control in (2.10), the outage probability in (2.8) can be written as

Pout = Pr
{σ̂≤θP̄ }

{
α log(1 + P̄ lσ2) < RP̄

}
(A.21)

+ Pr
{σ̂>θP̄ }

{
α log(1 + κP̄ Φ(σ̂2s)σ2) < RP̄

}

≤ Π1 + Π2, (A.22)

where

Π1 , Pr
{
α log(1 + P̄ lσ2) < RP̄

}
, (A.23)

Π2 , Pr
{
α log(1 + κP̄ Φ(σ̂2s)σ2) < RP̄

}
. (A.24)

In the above, we have used Pr{A}{·} to mean Pr{·⋂{A}}. Using RP̄ = gm log P̄ , we have

Π1 = Pr
{

σ2 < 1

P̄ l−
gm
α

}

for large P̄ and 0 ≤ l ≤ r + 1 from Lemma 1. From Lemma 5 in

Appendix A, we have,

Π1 �
1

P̄ (l− gm
α )r

.

Next, substituting for Φ(σ̂2s) from (2.9), Π2 can be written as, Π2 = Pr {σ2 < σ̂2s/κP̄} .

Using σ̂2 ≤ σ̂2
U , (σ + |w̄A,τ |)2 from Lemma 6 in Appendix A with σ̂2 = σ2, we get

Π2 ≤ Pr

{

σ2 <
1

κP̄

(σ + |w̄A,τ |)2s

}

(A.25)

≤ Pr

{

σ2 <
(2σ)2s

κP̄

⋂

σ2 > |w̄A,τ |2
}

+ Pr

{

σ2 <
(2 |w̄A,τ |)2s

κP̄

⋂

σ2 ≤ |w̄A,τ |2
}

. (A.26)



Appendix A. 123

It is straightforward to show that provided κP̄ is strictly increasing with P̄ , the first term

in the above goes to zero exponentially with P̄ for 1 ≤ s < r. This implies that gm < α,

since κP̄
.
= P̄ (1− gm

α ) from Lemma 1. The second term in (A.26) is upper-bounded as

Pr

{

σ2 <
|w̄A,τ |2s22s

κP̄

}
(a)

≤ 22srE|w̄A,τ |2sr

κr
P̄
r!

(A.27)

(b).
=

1

P̄ r(s+1− gm
α )

, (A.28)

where (a) follows from Lemma 5 in Appendix A, and the
.
= in (b) uses the fact that

κP̄
.
= P̄ (1− gm

α ) and E|w̄A,τ |2sr .
= 1/P̄ sr. Hence, we have

Pr

{

σ2 <
|w̄A,τ |2s22s

κP̄

}

� 1

P̄ r(s+1− gm
α )

, (A.29)

which implies

Π2 �
1

P̄ r(s+1− gm
α )

. (A.30)

Using this and Π1 � 1

P̄ r(l− gm
α ) in (A.22), we have

Pout � max

(
1

P̄ r(l− gm
α )

,
1

P̄ r(s+1− gm
α )

)

(A.31)

=
1

P̄ r(min{l,s+1}− gm
α )

, (A.32)

for 0 ≤ l ≤ r + 1, 1 ≤ s < r and 0 ≤ gm < α. This ends the proof of Theorem 1. �
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A.0.4 Proof of Lemma 2

Note that p̃c can be written as

p̃c = pc − ỹB,τ2 − E{pc − ỹB,τ2 |ỹB,τ2} (A.33)

=
1

√

P̄LA,τ2

[E{wB,τ2 |ỹB,τ2} −wB,τ2 ] . (A.34)

Now,

E‖p̃c‖2z
2 =

1

P̄ zLz
A,τ2

EwB,τ2
,ỹB,τ2

{A} (A.35)

(a)

≤ 1

P̄ zLz
A,τ2

[
EỹB,τ2

{
22z ‖E{wB,τ2 |ỹB,τ2}‖2z

2

}

+ 22z
EwB,τ2

{
‖wB,τ2‖2z

2

}]
(A.36)

(b)

≤ 22z+1

P̄ zLz
A,τ2

E ‖wB,τ2‖2z
2 (A.37)

.
=

1

P̄ z
, (A.38)

where A , ‖E{wB,τ2 |ỹB,τ2} − wB,τ2‖2z
2 . In the above, (a) follows from the triangle in-

equality and using (a + b)n ≤ (2a)n + (2b)n for even n > 0, and (b) follows from the

Jensen’s inequality and the fact that E ‖wB,τ2‖2z
2 < ∞ as P̄ → ∞. The subscripts on

the expectation in the above denote the random variables over which the expectation

is taken; and E{X|y} denotes the expectation of the random variable X conditioned on

the instantiation Y = y. This completes the proof. �
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A.0.5 Proof of Theorem 2

Using the capacity lower bound in (2.17), the outage probability can be upper bounded

as

Pout ≤ Pr {CAB < RP̄} , (A.39)

where RP̄ , gm log P̄ is the target data rate. We choose η < 1, and arbitrarily close to 1.

We split the event in the expression for Pout as

Pout ≤ Pr

{

CAB < RP̄ ∩ E[‖p̃c‖2
2 |ỹB,τ2 ] ≤

1

P̄ η

}

+ Pr

{

CAB < RP̄ ∩ E[‖p̃c‖2
2 |ỹB,τ2 ] >

1

P̄ η

}

(A.40)

(a)

≤ Pr

{

α log

(

1 +
P̄ ‖p̂c‖2

2

P̄ (1−η)

r
+ 1

)

< RP̄

}

+ Pr

{

E[‖p̃c‖2
2 |ỹB,τ2 ] >

1

P̄ η

}

, (A.41)

where (a) follows by substituting 1/P̄ η in place of E[‖p̃c‖2
2 |ỹB,τ2] in the first term, and

removing one of the events in the intersection. Define R̄P̄ ,
(exp{RP̄ /α}−1)

P̄

(
P̄ (1−η)

r
+ 1
)

,

and note that R̄P̄
.
= 1

P̄ (η−
gm
α ) . Then, the first term in (A.41) can be written as:

Pr
{
‖p̂c‖2

2 < R̄P̄

} (a)

≤ Pr

{

| ‖pc‖2 − ‖p̃c‖2 | <

√

R̄P̄

}

(A.42)

≤ Pr
{

E1

⋂

E2

}

+ Pr
{

E1

⋂

Ec
2

}

≤ Pr

{

‖p̃c‖2 >

√

R̄P̄

}

+ Pr
{
‖pc‖2

2 < 4R̄P̄

}
, (A.43)

where E1 , {‖pc‖2 < ‖p̃c‖2+
√

R̄P̄} and E2 , {‖p̃c‖2 >
√

R̄P̄}. In the above, (a) follows

from the reverse triangle inequality, and the last two inequalities follow by ignoring one
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of the events in the intersection. The first term in (A.43) can be written as

Pr
{

‖p̃c‖2δ
2 > R̄δ

P̄

} (a)

≤ E ‖p̃c‖2δ
2

R̄δ
P̄

(A.44)

(b)

� 1

P̄ δ

1

P̄ ( gm
α

−η)δ
, (A.45)

where (a) follows from the Markov inequality and (b) follows from Lemma 2. Letting

δ = r 1
gm
α

−η+1

(
s + 1 − gm

α

)
> 0, we have

Pr

{

‖p̃c‖2 >

√

R̄P̄

}

� 1

P̄ r(s+1− gm
α )

, 1 ≤ s < r. (A.46)

In order to solve for the second term in (A.43), we need to handle two cases of the

singular value estimate at node A separately; the good estimated channel case g , {σ̂ ≥

θP̄} and the bad estimated channel case b , {σ̂ < θP̄ }.

Good Estimated Channel {σ̂ ≥ θP̄}

When σ̂ ≥ θP̄ , substituting for pc ,
√

P(σ̂)h and κP̄
.
= P̄− gm

α , and defining σ̂U ,

(σ + |w̄A,τ |) as the upper bound on σ̂ from Lemma 6 in Appendix A, the second term in

(A.43) leads to:

Pr
{σ̂≥θP̄ }

{E3}
(a)

≤ Pr
{

σ2 < 22(s+1)σ2sR̄P̄

⋂

E4

}

+ Pr
{

σ2 < 22(s+1) |w̄A,τ |2sR̄P̄

⋂

Ec
4

}

≤ Pr

{

σ2(s−1) >
2−2(s+1)

R̄P̄

}

+ Pr
{
σ2 < 22(s+1) |w̄A,τ |2sR̄P̄

}
, (A.47)
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where E3 ,

{

‖h‖2
2

σ̂2s
U

< 4R̄P̄

}

, and E4 , {σ2 > |w̄A,τ |2}. In the above, we have used

Pr{A}{·} to mean Pr{·⋂{A}}, as before; and (a) follows by ignoring the event g. It can

be shown that first term in (A.47) decreases exponentially with P̄
η−gm/α

s−1 , as follows:

Pr {B}
(a).
=

∫ ∞

1/R̄
1/(s−1)

P̄

e−xxr−1dx (A.48)

.
= exp

{

−1/R̄
1/(s−1)

P̄

} r−1∑

k=0

1

(R̄
1/(s−1)

P̄
)r−k−1

(b).
= e−Z , (A.49)

where B , {σ2(s−1) > 1
22(s+1)R̄P̄

}, and Z , P̄
η−gm/α

s−1 . In the above, (a) follows by ignor-

ing the constant factors and substituting for the chi-square pdf of σ2. Since 1/R̄P̄
.
=

P̄ (η−gm/α) when gm < ηα, and since the exponential term outside the summation domi-

nates the polynomial terms inside the summation, we obtain (b). Note that the special

case of s = 1 is trivial, since this corresponds to the probability that R̄P̄ exceeds a con-

stant, which becomes 0 for sufficiently large P̄ . The second term in (A.47) becomes:

Pr
{
σ2 < 22(s+1) |w̄A,τ |2sR̄P̄

}
≤ 22r(s+1)R̄r

P̄
E{|w̄A,τ |2sr}
r!

.
=

1

P̄ (η− gm
α )rP̄ rs

(A.50)

=
1

P̄ r(s+η−gm/α)
(A.51)

for 0 ≤ gm < ηα. In the above, we have used Lemma 5 in Appendix A and E|w̄A,τ |2s =

1
P̄ s . Thus, in the good estimated channel case, we have

Pr
{σ̂≥θP̄ }

{
‖pc‖2

2 ≤ 4R̄P̄

}
� 1

P̄ r(s+η− gm
α )

, 0 ≤ gm < ηα. (A.52)
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Bad Estimated Channel {σ̂ < θP̄}

Recall that when σ̂ < θP̄ , the composite channel is given by pc =
√

P̄ lh. With this, the

second term in (A.43) becomes

Pr
{σ̂<θP̄ }

{
‖pc‖2

2 < 4R̄P̄

}
= Pr

{

‖h‖2
2 <

4R̄P̄

P̄ l

⋂

b

}

≤ Pr

{

σ2 <
4R̄P̄

P̄ l

}

(A.53)

.
=

1

P̄ rl

1

P̄ r(− gm
α

+η)
(A.54)

.
=

1

P̄ r(l+η− gm
α )

, (A.55)

where 0 ≤ l ≤ r. This completes the analysis of the first term in (A.41).

Now, the second term in (A.41) can bounded as:

Pr

{

(E[‖p̃c‖2
2 |ỹB,τ2 ])

ζ >
1

P̄ ζη

}
(a)

≤ E(E[‖p̃c‖2
2 |ỹB,τ2 ])

ζP̄ ζη

(b)

≤ E([‖p̃c‖2ζ
2 ])P̄ ζη (A.56)

(c)

� 1

P̄ ζ(1−η)
, (A.57)

where ζ > 0 is an arbitrary number. In the above, (a) and (b) follow from the Markov

inequality and Jensen’s inequality, respectively, and (c) follows from Lemma 2. Since

η < 1, and ζ can be chosen arbitrarily large, the second term in (A.41) goes to zero with

an arbitrarily large exponent as P̄ goes to infinity.

Putting (A.46), (A.52), (A.55) and (A.57) together, a DMT of d(gm) = r
(
min{l, s} + η − gm

α

)

is achievable, for 0 ≤ l ≤ r, 1 ≤ s < r and 0 ≤ gm < ηα. Noting that η is arbitrarily close

to 1 completes the proof of Theorem 2. �
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B.0.6 Proof of Theorem 4

We analyze the probability of error performance for the only real part of (3.4), as the

imaginary part is statistically similar to the real part. Stacking a sequence of Ld ≥

1 consecutive received symbols, from (3.4), the system model for data transmission

becomes

y = βx + neff , (B.1)

where y ∈ R
Ld is the received signal, x , [x1, . . . , xLd

] is the transmitted signal of

length Ld , Lc − LB,τ symbols, β , cP̄

√

P̄ γLB,τ

√

(r − 1)(r − 2)
.
= P̄ 1/2, and neff ,

‖h‖2 cP̄ R{wA,τ}x + w. Here, the noise w ∈ RLd is distributed as N (0, ILd×Ld
/2). Now,

we propose a simple data transmission scheme with a rate of gm

2α
log P̄ per real di-

mension that achieves an infinite diversity order. We partition the interval [0, 1] into

⌈P̄ gm/2α⌉ bins of equal length, i.e., each bin is of length at least P̄−gm/2α. Each com-

ponent of x belongs to the set X whose components are the bin centroids, i.e., X ,

{
2(i−1)+1

2
P̄−gm/2α; i = 1, 2, . . . , ⌈P̄ gm/2α⌉

}

. Now, transmitting x ⊆ X Ld conveys gmLd

2α
log P̄

bits of information, which implies that a multiplexing gain of gm/2α is achieved per

129
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channel use per real dimension, as desired. Also, note that there are roughly 2LdR =

P̄ Ldgm/2α number of codewords, denoted x1, . . . ,xM , M , ⌈P̄ Ldgm/2α⌉. Further, assume

that the codewords (message symbols) are equally likely. Now, we derive an upper

bound on the probability of error.

Probability of Error Analysis

The decoding rule is as follows. Upon receiving y, choose xi as the transmitted code-

word if ‖y − βxi‖2
2 < ‖y − βxj‖2

2 for all j 6= i, j = 1, 2, . . . , M . The pairwise error

probability is defined as

Pe , E Pr
{
‖y − βxi‖2

2 > ‖y − βxj‖2
2 |h,xi,xj

}
, (B.2)

where the expectation is with respect to xi, xj and h. Now, (B.2) can be simplified as

Pe = E Pr

{

−(xi − xj)
Tneff ≥ β ‖xi − xj‖2

2

2

∣
∣
∣
∣
∣
xi,xj ,h

}

. (B.3)

Now, given xi, xj , and h, −(xi − xj)
Tneff is distributed as

N
(

0,
c2
P̄
‖h‖2

2

∣
∣(xi − xj)

Txi

∣
∣
2
+ ‖xi − xj‖2

2

2

)

.

Hence, it can be shown that

Pe = EQ




β ‖xi − xj‖2

2√
2
√

c2
P̄
‖h‖2

2 |(xi − xj)Txi|2 + ‖xi − xj‖2
2



 (B.4)

Using Q(x) ≤ exp(−x2/2), we can upper bound the pairwise error probability as

Pe ≤ E exp

{

−1

4

β2 ‖xi − xj‖2
2

1 + c2
P̄
‖h‖2

2 A

}

, (B.5)
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where A ,
|(xi−xj)

T xi|2
‖xi−xj‖2

2

. Using the Cauchy-Schwarz inequality, we have A ≤ ‖xi‖2
2.

Substituting this in (B.5), we get

Pe ≤ E exp

{

−1

4

β2 ‖xi − xj‖2
2

1 + c2
P̄
‖h‖2

2 ‖xi‖2
2

}

. (B.6)

Now, using the fact that ‖xi − xj‖2
2 ≥ d2

min , P̄−gm/α, and ‖xi‖2
2 ≤ Ld, we get the

following bound:

Pe ≤ E exp

{

−1

4

β2d2
min

1 + c2
P̄
‖h‖2

2 Ld

}

. (B.7)

From the law of total expectation, we can write the above as

Pe ≤ E

[

exp

{

−1

4

β2d2
min

1 + c2
P̄
‖h‖2

2 Ld

}∣
∣
∣
∣
∣
E
]

Pr{E}

+ E

[

exp

{

−1

4

β2d2
min

1 + c2
P̄
‖h‖2

2 Ld

}∣
∣
∣
∣
∣
E c

]

Pr{E c} (B.8)

≤ exp

{

−1

4

β2d2
min

1 + c2
P̄
P̄ θ

}

+ Pr{E c} (B.9)

� exp

{

−1

4

β2d2
min

1 + c2
P̄
P̄ θ

}

+ exp{−P̄ θ}. (B.10)

where E , {‖h‖2
2 ≤ P̄ θ/Ld} for some θ > 0 to be chosen later. By substituting for

d2
min

.
= P̄−gm/α and c2

P̄

.
= P̄ 1−γ , it is easy to see that 1

4

β2d2
min

1+c2
P̄

P̄ θ

.
= P̄ 1−gm/α if θ ≤ γ − 1, else

1
4

β2d2
min

1+c2
P̄

P̄ θ

.
= P̄ γ−θ−gm/α. Using this in (B.10), we get

Pe � exp{−P̄ E(θ)}, (B.11)

where

E(θ) =







min{θ, 1 − gm/α}, if θ ≤ γ − 1

min{θ,
(
γ − gm

α
− θ
)
}, if θ > γ − 1.

(B.12)
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Now, since we are free to choose θ > 0, with a little algebra, it is easy to show that

when γ ≥ 2 − gm/α, setting θ = γ − 1 maximizes E(θ), resulting in E(θ) = 1 − gm/α;

and when γ < 2 − gm/α, setting θ = 1
2

(
γ − gm

α

)
maximizes E(θ), resulting in E(θ) =

1
2

(
γ − gm

α

)
. We also require the exponent of P̄ in the probability of error terms in (B.10)

to be positive, which leads to gm < γα. Since there are 2LdR = P̄ Ldgm/2α codewords,

the upper bound on Pe must be multiplied by P̄ Ldgm/2α to upper bound the average

probability of error. However, this does not change the probability of error exponent

as P̄ Ldgm/2α is polynomial in P̄ while the upper bound on the pairwise error probability

in (B.11) is exponential in P̄ for all Ld ≥ 1. Putting the above together and writing the

constraint in (B.12) in terms of gm leads to (3.14); and this completes the proof. �
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C.0.7 Constrained Cramér-Rao Lower Bound

Theorem 14. The estimate of the dominant singular vector, v̂1 in (4.6), conditioned on σ1,

asymptotically achieves the CCRLB = (2nA−1)
2σ2

1PB,τ LB,τ
as PB,τLB,τ → ∞, and the corresponding

mean square error in the estimate is given by

E
[
‖v1 − v̂1‖2

2 |σ1

]
=

(2nA − 1)

2σ2
1PB,τLB,τ

+ O 3
2
, (C.1)

where Or , O
(

1
(PB,τ LB,τ )r

)

for rational r.

Proof : Using (4.5), for large PB,τLB,τ , v̂1 can be written as

v̂1 =
yA,τ

‖yA,τ‖2

= v1 −
1

σ1

ℜ
{

vH
1 wA,τ

√
PB,τLB,τ

}

v1 +
1

σ1

wA,τ
√

PB,τLB,τ

+ O1.

From the above, conditioned on σ1, the MSE is given by MSE , Eσ1 ‖v1 − v̂1‖2
2. In turn,

this can be simplified as:

MSE =
Eσ1

∥
∥ℜ{vH

1 wA,τ}v1 −wA,τ

∥
∥

2

2

σ2
1PB,τLB,τ

+ O 3
2

(C.2)

=
(2nA − 1)

2σ2
1PB,τLB,τ

+ O 3
2
, (C.3)
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where we have used Eσ1

({

ℜ{vH
1 wA,τ}√

PB,τ LB,τ

}2
)

= 1
2PB,τ LB,τ

and
E(wH

A,τwA,τ )

PB,τ LB,τ
= nA

PB,τ LB,τ
in

obtaining (C.3) from (C.2). Next, we show that the first term in (C.3) coincides with the

CCRLB. Writing (4.5) by stacking real and imaginary parts, we have,

ȳA,τ ,




ℜ{yA,τ}
ℑ{yA,τ}



 = σ1




ℜ{v1}
ℑ{v1}





︸ ︷︷ ︸

v̄1

+




ℜ{wA,τ}
ℑ{wA,τ}





︸ ︷︷ ︸

w̄A

. (C.4)

The unitary constraint equation is f(y) = yTy − 1 = 0, where y ∈ R2nA×1. The

derivative of f(.) is given by ∂f
∂y

= 2y. Define a matrix U1 ∈ R2nA×2nA−1 such that

UT
1 U1 = I2nA−1×2nA−1 and UT

1 y = 0. Since p(ȳA,τ |v̄1, σ1) ∼ N (σ1v̄1,
1

2PB,τ LB,τ
I2nA×2nA

),

it is straightforward to see that

∆ ,
∂ log p(ȳA,τ |v̄1, σ1)

∂v̄1
= 2σ1PB,τLB,τ w̄A. (C.5)

The Fisher information matrix J is given by

J , E(∆∆T ) = 2σ2
1PB,τLB,τI2nA×2nA

.

Now, from Theorem 1 of [65], the CCRLB is given by

E
{
‖v1 − v̂1‖2

F

∣
∣ σ1} ≥ Tr{U1(U

T
1 JU1)

−1UT
1 } (C.6)

=
(2nA − 1)

2σ2
1PB,τLB,τ

, (C.7)

which concludes the proof. �
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C.0.8 Derivation of (4.12)

For a BF system, the estimate of the dominant singular vector can be written as

v̂1 =
yA,τ

‖yA,τ‖2

= v1 −
1

σ1

ℜ{vH
1 wA,τ}

√
PB,τLB,τ

v1 +
1

σ1

wA,τ
√

PB,τLB,τ

+ O
(

1

PB,τLB,τ

)

,

where 1√
1+x

= 1 − x
2

+ O(x2) has been used. Note that at high training powers and/or

duration, the higher order term in (C.8) becomes negligible. Thus, at high training

power, we get

ṽ1 = v1 − v̂1 ≈
1

σ1

ℜ{vH
1 wA,τ}

√
PB,τLB,τ

v1 −
1

σ1

wA,τ
√

PB,τLB,τ

. (C.8)

From the above equation, E{ṽ1|H} ≈ 0, ignoring higher order terms, where the expec-

tation is taken with respect to the distribution of wA,τ . Moreover,

E{
∣
∣vH

1 ṽ1

∣
∣
2} ≈ 1

2σ2
1PB,τLB,τ

. (C.9)

Using (C.9) and E{ṽ1|H} ≈ 0 in (4.10), we get the approximation for the lower bound

on the capacity given by (4.12).

C.0.9 Proof of Theorem 5

Let PA,dLA,d , αρLc, where 0 ≤ α ≤ 1. Then, PB,τLB,τ , (1 − α)ρLc. Clearly, since

CB,A,approx is a monotonic function of ρeff ,
PA,d

1+
PA,d

2PB,τ LB,τ

, maximizing CB,A,approx amounts

to maximizing ρeff with respect to α [8]. Substituting for PA,d, PA,τ , and LB,τ , ρeff can be

written as a function of α as

ρeff =

(
2ρLc

2LA,d − 1

)



α(1 − α)

−α +
2LA,d

2LA,d−1



 . (C.10)
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Since the function inside the square brackets in (C.10) is a concave function in α, dif-

ferentiating it with respect to α, equating it to zero and solving, we get α∗ =

√
2LA,d√

2LA,d+1
.

Substituting this in (C.10) and simplifying, we get the optimal capacity lower bound in

(4.20). Finally, we get the expression in (4.19) by substituting for α∗ in P ∗
A,dLA,d = α∗ρLc

and P ∗
A,τLB,τ = (1 − α∗)ρLc, respectively. �

C.0.10 Proof of Theorem 6

Differentiating (4.20) with respect to LA,d, we get

∂CB,A,approx

∂LA,d
=

1

Lc
E log

(
1 + ρ∗

effσ
2
1

)
+

LA,d

Lc
E

[
σ2

1

1 + σ2
1ρ

∗
eff

∂ρ∗
eff

∂LA,d

]

, (C.11)

(a)
=

1

Lc
E log

(
1 + ρ∗

effσ
2
1

)
− 1

Lc

√
2LA,d

1 +
√

2LA,d

E

[
σ2

1ρ
∗
eff

1 + σ2
1ρ

∗
eff

]

, (C.12)

where ρ∗
eff ,

2ρLc

(
√

2LA,d+1)
2 , and (a) is obtained by substituting for

∂ρ∗eff

∂LA,d
and simplifying.

Since

√
2LA,d

1+
√

2LA,d

< 1,
∂CB,A,approx

∂LA,d
in (C.12) can be lower bounded as follows:

∂CB,A,approx

∂LA,d
>

1

Lc
E log

(
1 + ρ∗

effσ
2
1

)
− 1

Lc
E

[
σ2

1ρ
∗
eff

1 + σ2
1ρ

∗
eff

]

. (C.13)

In the right hand side above, log(1 + y) − y/(1 + y) ≥ 0 for y ≥ 0 and since σ2
1 ≥ 0,

(C.13) implies that CB,A,approx is a monotonically increasing function of LA,d. Hence, the

optimal data duration is L∗
A,d = Lc − 1. �

C.0.11 Derivation of (4.25)

At low data SNR, using log(1 + x) ≈ x, we have CAB,L ≈ Lc−LA,τ

Lc
E (SNReff). Also, using

a first order approximation, E (SNReff) can be written as the ratio of the means of the
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numerator and denominator [31, 66].1 Thus, we get

CAB,L ≈ Lc − LA,τ

Lc

PA,dE

∥
∥
∥b̂mmse

∥
∥
∥

2

2

PA,d

nB
E

∥
∥
∥b̃mmse

∥
∥
∥

2

2
+ 1

, (C.14)

≥ Lc − LA,τ

Lc

PA,d(E
∥
∥
∥b̂lmmse

∥
∥
∥

2

2
)

PA,d

nB
E

∥
∥
∥b̃lmmse

∥
∥
∥

2

2
+ 1

. (C.15)

The inequality in (C.15) is obtained using E

∥
∥
∥b̃mmse

∥
∥
∥

2

2
≤ E

∥
∥
∥b̃lmmse

∥
∥
∥

2

2
, where b̃lmmse is the

error in the Linear MMSE (LMMSE) estimate of b, b̂lmmse is the LMMSE estimate of b,

and

E

∥
∥
∥b̂mmse

∥
∥
∥

2

2
= E‖b‖2

2 − E

∥
∥
∥b̃mmse

∥
∥
∥

2

2
(C.16)

≥ E‖b‖2
2 − E

∥
∥
∥b̃lmmse

∥
∥
∥

2

2
(C.17)

= E

∥
∥
∥b̂lmmse

∥
∥
∥

2

2
. (C.18)

Now, the LMMSE estimate is given by b̂lmmse = ayB,τ , where2

a ,

√
PA,τLA,τEσ2

1

nB + PA,τLA,τEσ2
1

. (C.19)

A simple substitution yields

E

∥
∥
∥b̂lmmse

∥
∥
∥

2

2
=

PA,τLA,τ (Eσ2
1)

2E
{
yH

B,τyB,τ

}

(nB + PA,τLA,τEσ2
1)

2
(C.20)

=
PA,τLA,τ (Eσ2

1)
2

nB + PA,τLA,τEσ2
1

. (C.21)

1The authors in [37] have commented in detail about this approximation. In particular, when b is
Gaussian (e.g., when nA = 1 and the channel undergoes Rayleigh distributed fading), the approximation

error is zero. For non-Gaussian b, it corresponds to replacing the mean of ‖b̃mmse‖2 conditioned on yB,τ

in the denominator of SNReff with its unconditional expectation.
2Note that the estimate above satisfies E{b̂H

lmmseb̃lmmse} = 0.
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where the last equality is obtained using E
{
yH

B,τyB,τ

}
= nB +PA,τLA,τEσ2

1 . Substituting

this in (C.15), we get the expression in (4.25).

C.0.12 Proof of Theorem 7

Let α denote the fraction of the total power allocated to data transmission. We have

PA,dLA,d = αρLc and PA,τLA,τ = (1 − α)ρLc. Using this, when LA,d > 1, the SNRL

defined after (4.25) becomes

SNRL =

αρLc

LA,d
(1 − α)ρLc

Eσ2
1

[
αρLc

LA,d
+ (1 − α)ρLc

]

+ nB

, (C.22)

=
ρLc

(LA,d − 1)Eσ2
1

α(1 − α)

(−α + θ)
, (C.23)

where

θ ,
LA,d

LA,d − 1
+

nBLA,d

Eσ2
1ρLc(LA,d − 1)

> 1. (C.24)

Thus, the problem in (4.27) is equivalent to

max
α: α∈[0,1]

α(1 − α)

−α + θ
. (C.25)

Since the function α(1−α)
θ−α

is concave function of α ∈ [0, 1], differentiating it with respect

to α and setting it equal to zero, and using the fact that θ > 1, we obtain the optimal α

as

α = θ −
√

θ(θ − 1). (C.26)

Substituting the above in the expression for SNRL, we have

SNRL =
ρLc

(LA,d − 1)Eσ2
1

(√
θ −

√
θ − 1

)2

. (C.27)
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When LA,d = 1, it is easy to see from the definition of SNRL that

SNRL =
(ρLc)

2(1 − α)α

Eσ2
1ρLc + nB

. (C.28)

Thus, maximizing 1
Lc

SNRL amounts to maximizing α(1−α); the solution is α = 0.5. The

corresponding lower bound in (4.30) easily follows by substituting for α = 0.5 above

and using the result in (4.25). �

C.0.13 Proof of Theorem 8

We prove this by showing that the derivative
∂C∗

A,B,approx

∂LA,d
> 0 for all LA,d > 1. Taking the

derivative of (4.30) with respect to LA,d, 1
ρEσ2

1

∂C∗

A,B,approx

∂LA,d
can be written as

LA,dX
2

√

θ(θ − 1)(LA,d − 1)3

[

1 +
nB

ρLcEσ2
1

]

− X2

(LA,d − 1)2

=
X2

(LA,d − 1)2




LA,d

(

1 + nB

ρLcEσ2
1

)

√

θ(θ − 1)(LA,d − 1)
− 1



 , (C.29)

where X ,

(√
θ −

√
θ − 1

)

. The above is greater than zero if

(
LA,d

(

1+
nB

ρLcEσ2
1

)

√
θ(θ−1)(LA,d−1)

)

> 1.

Since
√

θ(θ − 1) < θ, we have




LA,d

(

1 + nB

ρLcEσ2
1

)

√

θ(θ − 1)(LA,d − 1)



 >




LA,d

(

1 + nB

ρLcEσ2
1

)

θ(LA,d − 1)



 = 1, (C.30)

where the last equality is obtained by substituting for θ from (4.29). Thus,
∂C∗

A,B,approx

∂LA,d
> 0.

Finally, comparing C∗
A,B,approx with LA,d = 1 and LA,d = 2, we can eliminate the special

case of LA,d = 1 from the solution. Therefore, L∗
A,d = Lc − 1. �
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Appendix for Chapter 5

D.0.14 Proof of Theorem 9

In order to compute an approximate expression for
∑m

k=1 E ‖vk − v̂k‖2
2, we first find the

Taylor series expansion of the estimate v̂k, as follows. Substituting for ȳk,A,τ , the kth

column of ȲA,τ , in (5.4), the estimate of the kth singular vector in (5.5) becomes:

v̂k =
(σkdk

√
φcvk + w̄k,A,τ)

∥
∥(σk

√
φcdkvk + w̄k,A,τ)

∥
∥

2

, (D.1)

=
vk +

w̄k,A,τ

σkdk
√

φc√
1 + x

, (D.2)

= vk −
ℜ{vH

k w̄k,A,τ}vk

σkdk

√
φc

+
w̄k,A,τ

σkdk

√
φc

+ O
(

1

PB,τLB,τ

)

, (D.3)

where the last expression follows by using 1√
1+x

= 1 − x/2 + O (x2), where

x ,
2ℜ{vH

k w̄k,A,τ}
σkdk

√
φc

+
w̄H

k,A,τw̄k,A,τ

σ2
kd

2
kφc

,

and retaining only the terms of the order strictly less than O
(

1

PB,τLB,τ

)

. Thus, V̂m =

V̂m,approx+O
(

1

PB,τLB,τ

)

, with V̂m,approx = Vm+E, where the error matrix E is as defined

in the theorem. Let ek denote the kth column of E. Let v̂k,approx be the kth column of the
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matrix V̂m,approx. From (D.3), we have

E
{
‖vk − v̂k‖2

2

}
= E

∣
∣
∣
∣

∣
∣
∣
∣
ek + O

(
1

PB,τLB,τ

)∣
∣
∣
∣

∣
∣
∣
∣

2

2

, (D.4)

= E

{∥
∥vk − v̂k,approx

∥
∥2

2

}

+ O
(

1

(PB,τLB,τ )2

)

, (D.5)

where O
(

1

(PB,τLB,τ )2

)

follows from the fact that O
(

1

PB,τLB,τ

)

contains random vari-

ables of the form x2, which results in the cross terms E{eH
k x2} = 0 due to the Gaussian

distribution of the noise. Subtracting E

{∥
∥vk − v̂k,approx

∥
∥

2

2

}

on both sides of (D.5), and

summing over k and taking the absolute value, we get

∣
∣
∣
∣
E

∥
∥
∥Vm − V̂m

∥
∥
∥

2

F
− E

∥
∥
∥Vm − V̂approx

∥
∥
∥

2

F

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

m∑

k=1

E
{
‖vk − v̂k‖2

2

}
−

m∑

k=1

E

{∥
∥vk − v̂k,approx

∥
∥2

2

}
∣
∣
∣
∣
∣
,

= O
(

1

(PB,τLB,τ )2

)

. (D.6)

The proof is complete once we evaluate
∑m

k=1 E

{∥
∥vk − v̂k,approx

∥
∥2

2

}

=
∑m

i=1 E ‖ek‖2
2,

which is done as follows:

E ‖ek‖2
2 = E

[

E|σ1,...,σm

{∥
∥
∥
∥

−ℜ{vH
k wk,A,τ}

σkdk

√
φc

vk +
wk,A,τ

σkdk

√
φc

∥
∥
∥
∥

2

2

}]

, (D.7)

= E
1

σ2
kd

2
kφc

[

E ‖wk,A,τ‖2
2 − E

∣
∣ℜ{vH

k wk,A,τ}
∣
∣
2
]

, (D.8)

=
2nA − 1

2PB,τLB,τ

E
1

σ2
kd

2
kφc

. (D.9)

The facts that E
∣
∣ℜ{vH

k wk,A,τ}
∣
∣2 = 1

2PB,τ LB,τ
and E ‖wk,A,τ‖2

2 = nA

PB,τ LB,τ
have been used

to obtain the above. This completes the proof. �
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D.0.15 Proof of Lemma 4

Recall that the approximate MSE E

∥
∥
∥Vm − V̂m,approx

∥
∥
∥

2

F
= 2nA−1

2PB,τ LB,τ
E

[
1
φc

∑m
i=1

1
σ2

i d2
i

]

. Now,

the problem in (5.14) can be rewritten as

min
φc>0, di≥0

E

∥
∥
∥Vm − V̂m,approx

∥
∥
∥

2

F
, such that

m∑

i=1

d2
i = 1, and Eφc = 1. (D.10)

Now, without loss of optimality, we can first optimize di first for a given φc, substitute

the optimal di into the objective function, and then optimize φc subject to the average

power constraint. Using the Lagrange multiplier method, the solution for the optimal

di is given by

di =

√

σ−1
i

∑m
k=1 σ−1

k

, (D.11)

and the corresponding approximate MSE is given by 2nA−1
2PB,τ LB,τ

E

(∑m
i=1 σ−1

i√
φc

)2

. Note that,

when φc = 1, this corresponds to the MSE for temporally-constant power training.

Now, we solve the following problem:

min
φc:Eφc≤1

E

{(∑m
i=1 σ−1

i

)2

φc

}

. (D.12)

Due to the convexity of the problem, using variational calculus [67], the solution is

φc =

∑m
i=1 σ−1

i

E
∑m

i=1 σ−1
i

, (D.13)

and the corresponding approximate MSE is given by

E

∥
∥
∥Vm − V̂m,approx

∥
∥
∥

2

F
=

2nA − 1

2PB,τLB,τ

(

E

m∑

i=1

σ−1
i

)2

. � (D.14)
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D.0.16 Proof of Theorem 10

We need to show that as PB,τ , PA,d → ∞ with
PA,d

PB,τ
= µ, |CLB − CLB,a| → 0, where CLB

and CLB,a are as defined in (5.22) and (5.23), respectively. From (5.22), we have

1

m
E|H

{
‖w̃eff‖2

F

}
= 1 +

PA,d

m2
E|H

{∥
∥ΣmV H

E|H{Ve} − ΣmV HVe

∥
∥

2

F

}

. (D.15)

Using the above and the definition of G , Σm,m − ΣmV HE|H{Ve}, after some algebraic

manipulation, Cf ,
CLB

α
can be written as

Cf = C1 − mE log2

(

1 +
PA,d

m2
E|H

{∥
∥ΣmV H

E|H{Ve} − ΣmV HVe

∥
∥

2

F

})

, (D.16)

where

C1 , E log2 |Im + X| + E log2

∣
∣Im + (Im + X)−1 Γ

∣
∣ . (D.17)

In the above, for the ease of presentation, we have defined

Γ ,
PA,d

m

{
−2ℜ

[
Σm,mE|H{V H

e }V ΣH
m

]
+ ΣmV H

E|H{Ve}E|H{V H
e }V ΣH

m

}
(D.18)

and

X ,
PA,d

m2
E|H

{∥
∥ΣmV H

E|H{Ve} − ΣmV HVe

∥
∥

2

F

}

Im +
PA,d

m
Σm,mΣH

m,m, (D.19)
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where E|H{·} denotes the expectation conditioned on the channel H . Using (D.17) in

(D.16), we get

Cf = E log2

∣
∣
∣
∣
∣
Im +

PA,d

m
Σm,mΣH

m,m

1 +
PA,d

m2 E|H
∥
∥ΣmV HE|H{Ve} − ΣmV HVe

∥
∥2

F

∣
∣
∣
∣
∣

+E log2

∣
∣Im + (Im + X)−1 Γ

∣
∣ . (D.20)

Now, the proof would be complete, if we could establish that:

Claim 1:
PA,d

m2
E|H

∥
∥ΣmV H

E|H{Ve} − ΣmV HVe

∥
∥

2

F
→ σ2

eff (D.21)

as PA,d, PB,τ → ∞, with
PA,d

PB,τ
= µ > 0.

Claim 2: E log2

∣
∣Im + (Im + X)−1 Γ

∣
∣→ 0 (D.22)

as PA,d, PB,τ → ∞ with
PA,d

PB,τ
= µ > 0.

Proof of Claim 1

Recall from (5.9) of Theorem 9 that Ve , Vm− V̂m = E +O
(

1

PB,τLB,τ

)

. Since E|H {E} =

0, we have E|H{Ve} = O
(

1

PB,τLB,τ

)

. Using this in the expression in Claim 1, we get,

PA,d

m2
E|H

∥
∥ΣmV H

E|H{Ve} − ΣmV HVe

∥
∥

2

F
=

PA,d

m2
E|H ‖∆‖2

F +
PA,d

m2
O
(

1

(PB,τLB,τ )3/2

)

,

where ∆ , ΣmV HE ∈ Cm×m. First, we compute an expression for
PA,d

m2 E|H
{
‖∆‖2

F

}
as

follows. The (i, j)th entry of ∆ is ∆ij = σiv
H
i ej, with ej representing the jth column of

E defined in Theorem 9. Using this, it can be shown that the (i, j)th element of ∆ can
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be written as

∆ij =







1
di
√

φc

√
−1ℑ{vH

i wi,A,τ} i = j, 1 ≤ i, j ≤ m,

σi

σjdj
√

φc
vH

i wj,A,τ i 6= j, 1 ≤ i, j ≤ m.
(D.23)

From (D.23),

E|H
{
|∆ij |2

}
=







1
2PB,τ LB,τ d2

jφc
i = j, 1 ≤ i, j ≤ m,

1
PB,τ LB,τ

σ2
i

σ2
j d2

jφc
i 6= j, 1 ≤ i, j ≤ m.

(D.24)

From the above, it follows that
PA,d

m2
E|H

{
‖∆‖2

F

}
= σ2

eff. Since

PA,d

m
O
(

1

(PB,τLB,τ )3/2

)

= O
(

µ
√

PB,τL
3/2
B,τ

)

→ 0

as PA,d, PB,τ → ∞ such that
PA,d

PB,τ
= µ > 0, we get

PA,d

m2
E|H

{∥
∥−ΣmV H

E|H{Ve} + ΣmV HVe

∥
∥

2

F

}

→ σ2
eff =

µ

LB,τm2

m∑

i=1

βi

d2
i φc

,

which proves Claim 1.

Proof of Claim 2

First, note that Γ converges to a finite constant as PA,d, PB,τ → ∞ such that
PA,d

PB,τ
= µ > 0

since E|H{Ve} = O
(

1

PB,τLB,τ

)

. From Claim 1, and from the definition of X , it is clear

that (Im + X)−1 → 0, as PA,d, PB,τ → ∞. Thus, we have (Im + X)−1Γ → 0 at the rate of

1
PA,d

. Since log2 | · | is continuous, from (D.20), we have,

∣
∣
∣
∣
∣
Cf − E log2

∣
∣
∣
∣
∣
Im +

PA,d

m

Σm,mΣH
m,m

1 + σ2
eff

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
→ 0 (D.25)

as PA,d, PB,τ → ∞, with
PA,d

PB,τ
= µ > 0, which completes the proof. �
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D.0.17 Proof of Theorem 11

Maximizing CLB,a given in Theorem 10 with respect to D is equivalent to solving the

following optimization problem:

min
di≥0:

∑m
i=1 d2

i ≤1

m∑

i=1

βi

d2
i

. (D.26)

The solution in (5.26) now follows directly by noting that the above objective function

is convex in (d1, . . . , dm), and using the Lagrangian multiplier method. The resulting

expression for CLB,a is given by

CLB,a =
Lc − LB,τ

Lc

m∑

i=1

E log2

(

1 +
PA,d

m

σ2
i φc

τ + φc

)

, (D.27)

where τ ,
PA,d

PB,τ LB,τ m2

(∑m
k=1

√
βk

)2
. Since the objective functional in (D.27) is concave in

φc, and the constraint is convex, we get the necessary and sufficient condition in (5.27)

by differentiating the Lagrangian and equating it to zero, and solving for λ. �

D.0.18 Proof of Theorem 12

Substituting for R1 to RM from (5.29) with m = 1, E max{R1, . . . , RM} can be written as

E max{R1, . . . , RM} =

∫ ∞

0

Pr

{

α log2

(

1 +
PA,d

1 + σ2
eff

max
1≤i≤M

σ2
1,i

)

> x

}

dx (D.28)

=

∫ ∞

0

Pr

{

max
1≤i≤M

σ2
1,i > ω

}

dx (D.29)

=

∫ ∞

0

(
1 − (Pr

{
σ2

1,1 ≤ ω
}
)M
)
dx, (D.30)

where ω is as defined in Theorem 12, and the last equality follows since the singular

values are i.i.d. across users. Now, we need to find an expression for Pr
{
σ2

1,1 ≤ ω
}

.
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From [62], the pdf of σ2
1,1, denoted fσ2

1,1
(y), is given by

fσ2
1,1

(y) =
1

∏nB

k=1(nB − k)!(nA − k)!

nB∑

j=1

(nA+nB)j−2j2
∑

p=nA−nB

cj,pp!e−jyyp, (D.31)

where the coefficients cj,p are as described in [62]. Using the identity [68]

∫

eaxxqdx = eax

q
∑

l=0

(−1)l q!xq−l

(q − l)!al+1
, (D.32)

we get the desired result. �

D.0.19 Proof of Theorem 13

Substituting for Rk from (5.29), and with m = 1, E max{R1, . . . , RM} can be written as

E max{R1, . . . , RM} = αE log2

(

1 +
PA,d

1 + σ2
eff

max{σ2
1,1, . . . , σ

2
1,M}

)

(D.33)

≤ α log2

(

1 +
PA,d

1 + σ2
eff

E max{σ2
1,1, . . . , σ

2
1,M}

)

, (D.34)

where σ2
eff is as defined in (5.30), and (D.34) follows from the Jensen’s inequality. Now,

we find an upper bound on E max{σ2
1,1, . . . , σ

2
1,M} as follows. Pick s > 0, and consider

exp

{

sE max
1≤i≤M

σ2
1,i

}
(a)

≤ E exp

{

s max
1≤i≤M

σ2
1,i

}

(D.35)

=

∫ ∞

0

Pr

{

exp

{

s max
1≤i≤M

σ2
1,i

}

> x

}

dx (D.36)

(b)

≤
∫ ∞

0

M∑

k=1

Pr
{
exp

{
sσ2

1,k

}
> x

}
dx (D.37)

(c)
= M

∫ ∞

0

Pr
{
exp

{
sσ2

1,1

}
> x

}
dx (D.38)

≤ ME
{
exp

{
sσ2

1,1

}}
(D.39)

(d)

≤ ME
{
exp

{
s ‖H1‖2

F

}}
. (D.40)
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In the above, (a) follows from the Jensen’s inequality, (b) follows from the union bound,

(c) follows from the fact that σ1,i’s are i.i.d., and finally (d) follows from the fact that

σ2
1,1 ≤ ‖H1‖2

F . Now, we evaluate E
{
exp

{
s ‖H1‖2

F

}}
. Using the fact that ‖H‖2

2 is a chi-

square random variable with 2nAnB degrees of freedom, we have

E
{
exp

{
s ‖H1‖2

F

}}
=

1

(nAnB − 1)!

∫ ∞

0

xnBnB−1e−(1−s)xdx (D.41)

=
1

(1 − s)nAnB
, s ∈ (0, 1) (D.42)

Using the above in (D.40), and taking the logarithm on both sides, we get

E max
1≤i≤M

σ2
1,i ≤ inf

s∈(0,1)

[
log M

s
− nAnB log(1 − s)

s

]

. (D.43)

Substituting the above in (D.34), we get (5.34). Choosing s = 1
2

in (5.34), we get

Ravg ≤ Ru
avg , α log2

(

1 +
PA,d

1 + σ2
eff

[2 log M + 2nAnB log 2]

)

. (D.44)

For large M , it is easy to see that limM→∞
Ru

avg

α log2 log M
= 1. This completes the proof.
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