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This dissertation studies several aspects of feedback-based communication

with multiple antennas, such as the estimation of the Channel State Information

(CSI), the quantization of the CSI with a finite number of bits to enable its feedback

to the transmitter, as well as the effect of errors in the feedback channel on the

performance of the communication system.

Channel estimation is doubly important in feedback-based communica-

tion because inaccurate CSI affects not only the receiver performance, but also re-

sults in sub-optimal transmission. In this context, Multiple Input Multiple Output

(MIMO) flat-fading channel estimation when the transmitter employs Maximum

Ratio Transmission (MRT) is studied. Two competing schemes for estimating the

transmit and receive beamforming vectors of the channel matrix are analyzed: a

training based conventional least squares estimation (CLSE) scheme and a closed-

form semi-blind (CFSB) scheme that employs training followed by information-

bearing spectrally white data symbols. Employing matrix perturbation theory,

expressions for the mean squared error (MSE) in the beamforming vector, the

average received SNR and the symbol error rate (SER) performance of both the

semi-blind and the conventional schemes are derived.
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Another important issue in beamforming-based communication with mul-

tiple antennas is the feedback of CSI. Hence, the design and analysis of quantizers

for Equal Gain Transmission (EGT) systems with finite rate feedback-based com-

munication in flat-fading Multiple Input Single Output (MISO) systems is con-

sidered. Two popular approaches for quantizing the phase angles are contrasted:

vector quantization (VQ) and scalar quantization (SQ). Closed-form expressions

are derived for the performance of quantized feedback in terms of capacity loss and

outage probability in the case of i.i.d. Rayleigh flat-fading channels.

In the work described above, the feedback channel is assumed to be free

of delay and noise. With the view to understand the effect of errors on quanti-

zation, this dissertation considers the more general problem of characterizing the

high-rate performance of source coding for noisy discrete symmetric channels with

random index assignment. Theoretical expressions for the performance of source

coding for noisy channels are derived for a large class of distortion measures. The

theoretical expressions are used to derive new results for two specific applications.

The first is the quantization of the CSI for MISO systems with beamforming at

the transmitter. The second application is in the wideband speech compression

problem, i.e., that of quantizing the linear predictive coding parameters in speech

coding systems with the log spectral distortion as performance metric.
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1 Introduction

In the past decade, Multiple-Input, Multiple-Output (MIMO) systems

have enjoyed a renewed interest both in academics (starting from the seminal

works of Winters [1], Foschini [2], Telatar [3] and others) and in the industry

(wireless communication standards such as 802.11 and 802.16 for local area net-

works, and CDMA 2000 (3GPP) and WCDMA (3GPP2) for cellular telephony).

Although antenna array communication has been known since the 1930s, the re-

newed interest in the past decade or so has primarily to do with the dramatic

increase in center-frequency of signal transmission. Physically, it is known that

when antenna elements are placed about 10 wavelengths apart, the channel gains,

or fade-values, from a single common source in a rich-scattering environment are

uncorrelated. Therefore, in classical radio frequency (RF) communication, the

antenna separation needed to attain decorrelation of the channel gains between

different antennas would be of the order of several meters. However, current wire-

less communication standards operate in the Giga-Hertz range, which allows the

channel gains to be decorrelated with an antenna separation of just a few centime-

ters, making it possible to fit multiple antennas even on small hand-held devices.

In addition, it was recognized that having independent fade-values between anten-

nas is a means to achieve diversity or multiplexing benefits. For example, if one

of the transmit-receive antenna pairs is in a deep fade, perhaps another pair has

a good channel condition, thus enabling a significantly more reliable communica-

tion. Also, if there are several independent channels from the transmitter to the

receiver, it allows for the possibility of sending independent data on the different

1
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paths or beams, thereby increasing the total data rate. Finally, the availability of

cheaper hardware has made it feasible to implement complicated DSP algorithms

economically. Due to these reasons, there has been an explosion of research and

development in MIMO systems.

1.1 Preliminaries

Figure 1.1: A simple MIMO system model.

A simple model of a point-to-point, narrowband MIMO wireless commu-

nication system with t transmit antennas and r receive antennas is shown in Fig.

1.1. Under the block flat-fading model, the multiple-antenna channel is repre-

sented by the channel matrix H ∈ Cr×t which remains constant for the duration

of a block, and changes independently according to some statistical distribution

from block to block. For simplicity of notation, therefore, the time index can be

omitted and the relationship between the channel input x ∈ Ct and the channel

output y ∈ Cr can be expressed as

y = Hx + n (1.1)

where n ∈ Cr is the Additive White Gaussian Noise (AWGN) at the receiver. x is
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typically obtained by preprocessing the source symbol to prepare it for transmission

across the channel with maximum reliability and data rate.

1.1.1 Role of the Availability of Channel State Information

It is known that the capacity of the above MIMO wireless link depends on

the availability of accurate Channel State Information (CSI) at the transmitter and

the receiver. More specifically, the capacity (and how to achieve the capacity) of a

MIMO system with with perfect CSI at the receiver and no CSI at the transmitter,

as well as with perfect CSI at both transmitter and receiver are well known [3].

Several problems remain to be solved in order to achieve the higher ca-

pacity promised by MIMO systems, some of which are addressed in this thesis.

First, the channel needs to be estimated at the receiver. Then, for systems that

require the CSI at the transmitter, the CSI needs to be quantized with a finite

number of bits, since typically there is a bandwidth constraint on the feedback

link. There may be a delay in the feedback link, in which case, the transmitter

would have an outdated copy of the CSI. Also, there may be errors in the feedback

link. For wideband communication, the channel becomes a tapped-delay line filter

(in the discrete-time representation), which further complicates the problem. With

multi-user communication, new problems associated with multi-user diversity and

optimum signalling schemes arise. In addition, there are a multitude of issues such

as synchronization, multipath, jitter and so on, which need to be addressed in any

practical system. Recently, several papers have appeared quantifying the effects of

the partial CSI at the transmitter coupled with these impairments.

Channel feedback is also under consideration in 3rd generational mobile

and wireless LAN standards, for example in the closed-loop mode specification in

3GPP High Speed Downlink Packet Access (HSDPA) [4] and in the eigenbeam-

forming mode specification in IEEE 802.11 [5] and IEEE 802.16 [6].
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Transmit-Receive Beamforming

Beamforming is an attractive technique for data transmission and re-

ception when using multiple antennas, wherein the transmitted vector x is given

by x = vs, where v ∈ Ct is a beamforming vector and s is the data symbol to

be transmitted. Typically, to ensure that the data power is not amplified, there

exists a 2-norm constraint on v. At the receiver, a receive beamforming vector

z ∈ C
r is used to compute zHy, from which the transmitted symbol s is recovered.

Beamforming is the optimum method (in terms of maximizing the capacity) of

transmission when the transmitter has perfect CSI and there is only one receive

antenna, or at low transmit powers with multiple receive antennas.

Two popular beamforming methods are Maximum Ratio Transmission

(MRT) [7] and Equal Gain Transmission (EGT) [8]. When beamforming is em-

ployed at the transmitter, MRT maximizes the channel capacity when a constraint

is imposed on the total power from all the transmit antennas. In general, an MRT

beamforming vector is denoted v ∈ Ct, where t is the number of transmit anten-

nas, and the constant total power constraint can be expressed as ‖v‖2
2 = t, where

‖v‖2 denotes Euclidean norm (or L2-norm) of v. It can be shown that the MRT

beamforming vector contains t complex parameters and two real constraints, i.e,

it can be completely described by (t − 1) complex parameters, which need to be

made available at the transmitter to enable optimum MRT.

EGT (see, e.g., [8] and the references therein), on the other hand, is

the optimum beamforming vector for maximizing the capacity of beamforming-

based flat fading systems with an equal power per-antenna constraint. A per-

antenna power constraint, rather than a total power constraint, is more prac-

tically meaningful in the design of transmit beamforming vectors multiple an-

tenna systems as they impose much less fidelity requirements on the the trans-

mit RF power amplifiers. In general, an EGT beamforming vector is given by

w = [1, exp(jθ2), exp(jθ3), . . . , exp(jθt)]
T , where θi denotes the phase rotation ap-

plied at antenna element i. Thus, the EGT vector contains exactly (t − 1) real
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parameters that need to be made available at the transmitter to enable optimum

EGT, which is half the number of parameters needed to enable optimum MRT.

1.1.2 Channel Estimation for Feedback-based Communication

In order for feedback-based beamforming schemes such as MRT or EGT

to work well, it is necessary for the receiver to first have an accurate estimate of the

channel matrix H . One standard technique to estimate the channel is to trans-

mit a sequence of training symbols (also called pilot symbols) at the beginning

of each frame. This training symbol sequence is known at the receiver, and thus

the channel is estimated from the measured outputs to training symbols. Training

based schemes usually have very low complexity making them ideally suited for im-

plementation in systems (e.g., mobile stations) where the available computational

capacity is limited. However, such training based schemes are transmission scheme

agnostic. Semi-blind techniques, on the other hand, can be tailored to enhance the

accuracy of channel estimation by efficiently utilizing not only the known training

symbols but also the unknown data symbols to specifically estimate the parameters

of interest. Hence, they can be used to reduce the amount of training data required

to achieve the desired system performance, or equivalently, achieve better accu-

racy of estimation for a given number of training symbols, thereby improving the

spectral efficiency and channel throughput. Work on semi-blind techniques for the

design of fractional semi-blind equalizers in multi-path channels has been reported

earlier by Pal in [9, 10], and in [11, 12], error bounds and asymptotic properties of

blind and semi-blind techniques are analyzed.

1.1.3 Channel State Information Feedback Models

Two of the popular models for studying the effect of partial CSI at the

transmitter are statistical feedback and instantaneous feedback. In the statistical

feedback approach, it is assumed that the channel coherence time is too small to

feedback every channel instantiation. However, the channel statistics vary suffi-
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ciently slowly, so that the mean and/or the covariance of the channel can be made

available to the transmitter accurately. The channel is then modeled as Gaussian

distributed with the given mean and covariance, and the system performance is

optimized with respect to the input distribution and analytically characterized.

Examples of works that employ statistical feedback include [13] - [19].

In the instantaneous feedback approach, which is the feedback model

employed in this thesis, the receiver attempts to convey to the transmitter the

current channel instantiation, typically through a bandwidth-constrained feedback

link. That is, given B bits of feedback, the receiver maps the current channel in-

stantiation H to one of N = 2B integer indices, with each index corresponding to

a particular mode of the channel. The transmitter has knowledge of the N -mode

codebook, and therefore, it is able to optimize its transmission strategy based on

the feedback information. Thus, it is a challenging problem to design optimal quan-

tization schemes and the associated transmission strategies for multiple-antenna

systems with finite rate feedback. The design and analysis of the optimum quan-

tizer that takes advantage of both the underlying channel distribution as well as the

performance metric (received SNR, outage probability, mutual information rate,

bit error rate, etc) has received much attention in the past few years, notably in

[20] - [33]. An overview of recent work in this area is provided in [34].

1.1.4 Channel Quantization for Feedback

Another aspect of instantaneous feedback with MRT and EGT is that

in practical communication systems, due to feedback channel bit rate constraints,

the beamforming vector has to be quantized with a finite number of bits, and only

the quantized version can be made available to the transmitter. The problem of

quantizing the MRT beamforming vector in a vector quantization (VQ) framework

has been considered in [35]. Several results quantifying the performance of finite-

rate feedback systems with MRT have also appeared in [20] - [36]. Other works

on the performance of quantized-feedback based multiple antenna systems include
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[32] and [33], where the authors use quantized CSI obtained from a feedback link

to determine a weighting matrix or precoding matrix to improve the performance

of an orthogonal space-time block (OSTB) code. The problem of quantizing the

EGT beamforming vector was proposed in [37]. In [8], the authors considered the

problem of designing quantized EGT beamforming vectors for the case of i.i.d.

Rayleigh fading channels and proposed a design criterion based on Grassmannian

beamforming. Another recent work that considers per-antenna power constrained

transmission is [38], where the authors derive an random search based algorithm

to design equal gain codebooks. In [39], the authors employ the minimum value of

the maximum magnitude of the inner product between any two code vectors as the

performance metric, and derive several nontrivial families of codebooks for which,

imposing the per-antenna power constraint rather than the total power constraint

results in no performance loss. Finally, one simple method of reducing the feedback

overhead and the hardware cost is antenna selection, discussed in [40], where the

idea is to have more antenna elements than the transmit and receive chains, and

select a subset of antennas that yields the best performance based on the current

channel instantiation.

1.2 Outline of the Thesis

Chapter 2 of this dissertation is a comparative study of training-based

and semi-blind MIMO flat-fading channel estimation schemes when the transmitter

employs Maximum Ratio Transmission (MRT). Two competing schemes for esti-

mating the transmit and receive beamforming vectors of the channel matrix are

presented: a training based conventional least squares estimation (CLSE) scheme

and a closed-form semi-blind (CFSB) scheme that employs training followed by

information-bearing spectrally white data symbols. Employing matrix perturba-

tion theory, expressions for the mean squared error (MSE) in the beamforming

vector, the average received SNR and the symbol error rate (SER) performance
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of both the semi-blind and the conventional schemes are derived. A weighted

linear combiner of the CFSB and CLSE estimates for additional improvement in

performance is also proposed.

In the third chapter, the design and analysis of quantizers for EGT sys-

tems with finite rate feedback-based communication in flat-fading Multiple-Input,

Single-Output (MISO) systems is considered. Two popular approaches for quan-

tizing the phase angles are contrasted: vector quantization (VQ) and scalar quan-

tization (SQ). On the VQ side, using the capacity loss with respect to EGT with

perfect CSI at transmitter as performance metric, a criterion for designing the

beamforming codebook for quantized EGT (Q-EGT) is developed. An iterative

algorithm based on the well-known generalized Lloyd algorithm is proposed for

computing the beamforming vector codebook. On the analytical side, closed-form

expressions are derived for the performance of quantized feedback in terms of ca-

pacity loss and outage probability in the case of i.i.d. Rayleigh flat-fading channels.

In the preceding work, the feedback channel is assumed to be free of delay

and noise. Errors in the feedback channel can adversely affect the performance of a

quantized-feedback based transmission scheme. With the view to understand the

effect of errors on channel quantization, the fourth chapter considers the more gen-

eral problem of characterizing the high-rate performance of source coding for noisy

discrete symmetric channels with random index assignment. Theoretical expres-

sions for the performance of source coding are derived for a large class of distortion

measures. It is shown that when the point density is continuous, the high-rate dis-

tortion can be approximately expressed as the sum of the source quantization

distortion and the channel-error induced distortion, result known previously only

for the case of the mean-squared error distortion. Optimization of the point density

is also considered. For general distortion functions, assuming that the point den-

sity is continuous, expressions are derived for the point density that minimizes the

expected distortion. For the mean squared error distortion, an upper bound on the

asymptotic (i.e., high-rate) distortion is derived by assuming a certain structure
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on the codebook. This structure enables the extension of the analysis to source

coders with singular point densities. It shown that, for channels with small errors,

the point density that minimizes the upper bound is continuous, while as the error

rate increases, the point density becomes singular, and the extent of the singularity

can be analytically characterized.

In the fifth chapter of the thesis, new results on the performance of the

high-rate vector quantization of random sources when the quantized index is trans-

mitted over a noisy channel are derived for two specific applications. The first is

the quantization of the CSI for MISO systems with beamforming at the transmit-

ter. Here, it is assumed that there exists a per-antenna power constraint at the

transmitter, hence, the EGT beamforming vector is quantized and sent from the

receiver to the transmitter over a noisy discrete symmetric channel with random

index assignment. The loss in received SNR is analytically characterized, and it

is shown that at high rates, the overall distortion can be expressed as the sum

of the quantization-induced distortion and the channel error-induced distortion.

The optimum density of codepoints (also known as the point density) that min-

imizes the overall distortion subject to a boundedness constraint is shown to be

the uniform density. Also, it is found that the high-rate performance depends on

the behavior of the noisy feedback channel as the number of codepoints gets large.

The binary symmetric channel with random index assignment is a special case of

the analysis, and it is shown that as the number of quantized bits gets large, the

distortion approaches that obtained with random beamforming, i.e., feedback is

useless if no error control coding is employed. The second application is in the

wideband speech compression problem, i.e., that of quantizing the linear predic-

tive coding parameters in speech coding systems with the log spectral distortion

as performance metric. It is shown that the theory is able to correctly predict the

channel error rate that is permissible for operation at a particular distortion level.



2 Training-Based and

Semi-Blind Channel Estimation

for MIMO Systems with

Maximum Ratio Transmission

2.1 Introduction

MIMO and smart antenna systems have gained popularity due to the

promise of a linear increase in achievable data rate with the number of antennas,

and because they inherently benefit from effects such as channel fading. Maximum

Ratio Transmission (MRT) is a particularly attractive beamforming scheme for

MIMO communication systems because of its low implementation complexity. It

is also known that MRT coupled with maximum ratio combining (MRC) leads to

SNR maximization at the receiver and achieves a performance close to capacity

in low SNR scenarios. However, in order to realize these benefits, an accurate

estimate of the channel is necessary. One standard technique to estimate the

channel is to transmit a sequence of training symbols (also called pilot symbols) at

the beginning of each frame. This training symbol sequence is known at the receiver

and thus the channel is estimated from the measured outputs to training symbols.

Training based schemes usually have very low complexity making them ideally

suited for implementation in systems (e.g., mobile stations) where the available

10
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computational capacity is limited.

However, the above training-based technique for channel estimation in

MRT based MIMO systems is transmission scheme agnostic. For example, channel

estimation algorithms when MRT is employed at the transmitter only need to

estimate v1 and u1, where v1 and u1 are the dominant eigenvectors of HHH

and HHH respectively, H is the r × t channel transfer matrix, and r / t are the

number of receive / transmit antennas. Hence, techniques that estimate the entire

H matrix from a set of training symbols and use the estimated H to compute v1

and u1 may be inefficient, compared to techniques designed to use the training

data specifically for estimating the beamforming vectors. Moreover, as r increases,

the mean squared error (MSE) in estimation of v1 ∈ C
t remains constant since

the number of unknown parameters in v1 does not change with r, while that of H

increases since the number of elements, rt, grows linearly with r. Added to this, the

complexity of reliably estimating the channel increases with its dimensionality. The

channel estimation problem is further complicated in MIMO systems because the

SNR per bit required to achieve a given system throughput performance decreases

as the number of antennas is increased. Such low SNR environments call for more

training symbols, lowering the effective data rate.

For the above reasons, semi-blind techniques can enhance the accuracy

of channel estimation by efficiently utilizing not only the known training sym-

bols but also the unknown data symbols. Hence, they can be used to reduce the

amount of training data required to achieve the desired system performance, or

equivalently, achieve better accuracy of estimation for a given number of training

symbols, thereby improving the spectral efficiency and channel throughput. Work

on semi-blind techniques for the design of fractional semi-blind equalizers in multi-

path channels has been reported earlier by Pal in [9, 10]. In [11, 12] error bounds

and asymptotic properties of blind and semi-blind techniques are analyzed. In

[41–43], an orthogonal pilot based maximum likelihood (OPML) semi-blind esti-

mation scheme is proposed, where the channel matrix H is factored into the prod-
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uct of a whitening matrix W and a unitary rotation matrix Q. W is estimated

from the data using a blind algorithm, while Q is estimated exclusively from the

training data using the OPML algorithm. However, feedback-based transmission

schemes such as MRT pose new challenges for semi-blind estimation, because em-

ployment of the precoder (beamforming vector) corresponding to an erroneous

channel estimate precludes the use of the received data symbols to improve the

channel estimate. This necessitates the development of new transmission schemes

to enable implementation of semi-blind estimation, as shown in Section 2.2-2.2.3.

Furthermore, the proposed techniques specifically estimate the MRT beamforming

vector and hence can potentially achieve better estimation accuracy compared to

techniques that are independent of the transmission scheme.

The contributions of this chapter are as follows. We describe the training-

only based conventional least squares estimation (CLSE) algorithm, and derive an-

alytical expressions for the MSE in the beamforming vector, the mean received SNR

and the symbol error rate (SER) performance. For improved spectral efficiency (re-

duced training overhead), we propose a closed-form semi-blind (CFSB) algorithm

that estimates u1 from the data using a blind algorithm, and estimates v1 exclu-

sively from the training. This necessitates the introduction of a new signal trans-

mission scheme that involves transmission of information-bearing spectrally white

data symbols to enable semi-blind estimation of the beamforming vectors. Expres-

sions are derived for the performance of the proposed CFSB scheme. We show that

given perfect knowledge of u1 (which can be achieved when there are a large num-

ber of white data symbols), the error in estimating v1 using the semi-blind scheme

asymptotically achieves the theoretical Cramer-Rao lower bound (CRB), and thus

the CFSB scheme outperforms the CLSE scheme. However, there is a trade-off in

transmission of white data symbols in semi-blind estimation, since the SER for the

white data is frequently greater than that for the beamformed data. Thus, we show

that there exist scenarios where for a reasonable number of white data symbols,

the gains from beamformed data for this improved estimate in CFSB outweigh
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the loss in performance due to transmission of white data. As a more general

estimation method when a given number of blind data symbols are available, we

propose a new scheme that judiciously combines the above described CFSB and

CLSE estimates based on a heuristic criterion. Through Monte-Carlo simulations,

we demonstrate that this proposed linearly-combined semi-blind (LCSB) scheme

outperforms the CLSE and CFSB scheme in terms of both estimation accuracy as

well as SER and thus achieves good performance.

The rest of this chapter is organized as follows. In Section 2.2, we present

the problem setup and notation. We also present both the CFSB and CLSE

schemes in detail. The MSE and the received SNR performance of the CLSE

scheme are derived using a first order perturbation analysis in Section 2.3 and the

performance of the CFSB scheme is analyzed in Section 2.4. In Section 2.5, to

conduct an end-to-end system comparison, we derive the performance of Alamouti

space-time coded data with training-based channel estimation, and present the

proposed LCSB algorithm. We compare the different schemes through Monte-

Carlo simulations in Section 2.6 and present our conclusions in Section 2.7.

2.2 Preliminaries

2.2.1 System Model and Notation

Fig. 2.1 shows the MIMO system model with beamforming at the trans-

mitter and the receiver. We model a flat-fading channel by a complex-valued

channel matrix H ∈ Cr×t. We assume that H is quasi-static and constant over

the period of one transmission block. We denote the singular value decompo-

sition (SVD) of H by H = UΣV H , and Σ ∈ Rr×t contains singular values

σ1 ≥ σ2 ≥ . . . ≥ σm > 0, along the diagonal, where m = rank(H). Let v1

and u1 denote the first columns of V and U , respectively.

The channel input-output relation at time instant k is

yk = Hxk + nk, (2.1)
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Figure 2.1: MIMO system model, with beamforming at the transmitter and re-

ceiver.

where xk ∈ Ct is the channel input, yk ∈ Cr is the channel output, and nk ∈ Cr

is the spatially and temporally white noise vector with i.i.d. zero mean circularly

symmetric complex Gaussian (ZMCSCG) entries. The input xk could denote either

be data or training symbols. Also, we let the noise power in each receive antenna

be unity, that is, E
{
nkn

H
k

}
= Ir, where E {·} denotes the expectation operation,

and Ir is the r × r identity matrix.

Let L training symbol vectors be transmitted at an average power PT per

vector (T stands for ‘training’). The training symbols are stacked together to form

a training symbol matrix Xp ∈ Ct×L as Xp = [x1,x2, . . . ,xL] (p stands for ‘pilot’).

We employ orthogonal training sequences because of their optimality properties in

channel estimation [44]. That is, XpX
H
p = γpIt, where γp , LPT /t, thus maintain-

ing the training power of PT . The data symbols xk could either be spatially-white

(i.e., E
{
xkx

H
k

}
= (PD/t) It), or it could be the result of using beamforming at the

transmitter with unit-norm weight vector w ∈ C
t×1

(
i.e., E{xkxHk } = PDwwH

)
,

where the data transmit power is E
{
xHk xk

}
= PD (D stands for ‘data’). We let

N denote the number of spatially-white data symbols transmitted, that is, a total

of N + L symbols are transmitted prior to transmitting beamformed-data. Note

that the N white data symbols carry (unknown) information bits, and hence are

not a waste of available bandwidth.

In this chapter, we restrict our attention to the case where the transmitter

employs MRT to send data, that is, a single data stream is transmitted over t
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transmit antennas after passing through a beamformer w. Given the channel

matrix H , the optimum choice of w is v1 [7]. Thus, MRT only needs an accurate

estimate of v1 to be fed-back to the transmitter. We assume that t ≥ 2, since

when t = 1, estimation of the beamforming vector has no relevance. Finally,

we will compare the performance of different estimation techniques using several

different measures, namely, the MSE in the estimate of v1, the gain (rather, the

power amplification/attenuation), and the symbol error rate (SER) of the one-

dimensional channel resulting from beamforming with the estimated vector v̂1

assuming uncoded M-ary QAM transmission. The performance of a practical

communication would also be affected by factors such as quantization error in v̂1,

errors in the feedback channel, feedback delay in time-varying environments, etc.,

and a detailed study of these factors warrant separate treatment.

2.2.2 Conventional Least Squares Estimation (CLSE)

Here, an ML estimate of the channel matrix, Ĥc, is first obtained from

the training data as the solution to the following least squares problem:

Ĥc = arg min
G∈ Cr×t

‖Yp −GXp‖2
F , (2.2)

where ‖·‖F represents the Frobenius norm, Yp is the r×Lmatrix of received symbols

given by Yp = HXp + ηp, where ηp ∈ C
r×L is the set of AWGN (spatially and

temporally white) vectors. From [45], the solution to this least squares estimation

problem can be shown to be Ĥc = YpX
†
p, whereX†

p is the Moore-Penrose generalized

inverse of Xp. Since orthogonal training sequences are employed, we have X†
p =

1
γp
XH
p , and consequently

Ĥc =
1

γp
YpX

H
p . (2.3)

The ML estimate of v1 and u1, denoted v̂c and ûc respectively, is now obtained

via an SVD of the estimated channel matrix Ĥc. Since Ĥc is the ML estimate of

H , from properties of ML estimation of principal components [46], the v̂c obtained

by this technique is also the ML estimate of v1 given only the training data.
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2.2.3 Semi-Blind Estimation

In the scenario that the transmitted data symbols are spatially-white, the

ML estimate of u1 is the dominant eigenvector of the output correlation matrix

R̂y, which is estimated as R̂y =
∑N

i=1 yiy
H
i . Now, the estimate of u1 is obtained

by computing the following SVD

ÛΣ̃2ÛH = R̂y. (2.4)

Note that it is possible to use the entire received data to compute R̂y in (2.4)

rather than just the data symbols, in this case, N should be changed to N + L.

The estimate of u1, denoted ûs (the subscript ‘s’ stands for semi-blind), is thus

computed blind from the received data as the first column of Û . As N grows, a

near perfect estimate of u1 can be obtained.

In order to estimate u1 as described above, it is necessary that the trans-

mitted symbols be spatially-white. If the transmitter uses any (single) beamform-

ing vector w, the expected value of the correlation at the receiver is Hw(Hw)H =

HwwHHH 6= HHH, and hence, the estimated eigenvector will be a vector pro-

portional to Hw instead of u1. Fig. 2.2 shows a schematic representation of the

CLSE and the CFSB schemes. Thus, the CFSB scheme involves a two-phase

data transmission: spatially-white data followed by beamformed data. White data

transmission could lead to a loss of performance relative to beamformed data, but

this performance loss can be compensated for by the gain obtained from the im-

proved estimate of the MRT beamforming vector. Thus, the semi-blind scheme can

have an overall better performance than the CLSE scheme. Section 2.5 presents

an overall SER comparison in a practical scenario, after accounting for the perfor-

mance of the white data as well as for the beamformed data.

Having obtained the estimate of u1 from the white data, the training

symbols are now exclusively used to estimate v1. Since the vector v1 has fewer

real parameters (2t−1) than the channel matrix H (2rt), it is expected to achieve a

greater accuracy of estimation for the same number of training symbols, compared
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Conventional
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Beamformed Data

Beamformed Data
Est v 1

1Est. u  , v 1

1 Est. u

Figure 2.2: Comparison of the transmission scheme for conventional least squares

(CLSE) and closed-form semi-blind (CFSB) estimation.

to the CLSE technique which requires an accurate estimate of the full H matrix in

order to estimate v1 accurately. If u1 is estimated perfectly from the blind data,

the received training symbols can be filtered by u1
H to obtain

u1
HYp = σ1v1

HXp + u1
Hηp. (2.5)

Since ‖u1‖ = 1, (here ‖ · ‖ represents the 2-norm) the statistics of the Gaussian

noise ηp are unchanged by the above operation. We seek the estimate of v1 as the

solution to the following least squares problem

v̂s = arg min
v∈ Ct, ‖v‖=1

‖u1
HYp − vHXpσ1‖2, (2.6)

where v̂s denotes the semi-blind estimate of v1. The following lemma establishes

the solution.

Lemma 1. If Xp satisfies XpX
H
p = γpIt, the least squares estimate of v1 (under

‖v1‖ = 1) given perfect knowledge of u1 is

v̂s =
XpY

H
p u1

‖XpY H
p u1‖

. (2.7)

Proof. See Appendix 2.8.1.

Closed-Form Semi-Blind Estimation Algorithm (CFSB)

Based on the above observations, the proposed CFSB algorithm is as

follows. First, we obtain ûs, the estimate of u1, from (2.4). Then, we estimate v1
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from the L training symbols by substituting ûs for u1 in (2.7). This requires L+N

symbols to actually estimate v1, however, N of these symbols are data symbols.

Hence, we can potentially achieve the desired accuracy of estimation of v1 using

fewer training symbols compared to the CLSE technique.

An alternative to employing û1 at the receiver is employ maximum ratio

combining (MRC), i.e., to use an estimate of Hv̂1/‖Hv̂1‖ (which can be accurately

estimated as the dominant eigenvector of the sample covariance matrix of the

beamformed data). The performance of such a scheme can be derived using the

same techniques presented in this chapter.

In the next section, we present a theoretical analysis of the MSE in v̂s

and the received SNR with both the CLSE and the CFSB techniques, which will

give us insight into the trade-offs involved in implementing the two methods, and

suggest strategies to further improve the CFSB algorithm.

2.3 Conventional Least Squares Estimation (CLSE)

2.3.1 Perturbation of Eigenvectors

We recapitulate a result from matrix perturbation theory [47] that we

will use frequently in the sequel. Consider a first order perturbation of a hermitian

symmetric matrix R by an error matrix ∆R to get R̂, that is, R̂ = R+∆R. Then,

if the eigenvalues of R are distinct, for small perturbations, the eigenvectors ŝk of

R̂ can be approximately expressed in terms of the eigenvectors sk of R as

ŝk = sk +

n∑

r=1

r 6=k

sHr ∆Rsk
λk − λr

sr, (2.8)

where n is the rank of R, λk is the k-th eigenvalue of R, and λk 6= λj , k 6= j.

When k = 1, we have ŝ1 = Sď, where S = [s1, s2, . . . , sn] is the matrix

of eigenvectors and ď = [1,
sH
2 ∆Rs1

λ1−λ2
, . . . , sH

n ∆Rs1
λ1−λn

]T . One could scale the vector ŝ1 to

construct a unit-norm vector as s̃1 = ŝ1/‖ŝ1‖. Then, s̃1 = Sd, where d = ď/‖ď‖ =

[1 + ∆d1,∆d2, . . . ,∆dn]
T . Following an approach similar to [48], if ∆di are small,
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since ‖d‖ = 1, the components ∆di are approximately given by

∆di ≃ sHi ∆Rs1

λ1 − λi
, i = 2, . . . , n

∆d1 ≃ −1

2

n∑

i=1

|∆di|2 . (2.9)

Note that ∆d1 is real, and is a higher-order term compared to ∆di, i ≥ 2.

We will use this fact in our first-order approximations to ignore terms such as

|∆d1|2 , |∆d1|3 , . . . and |∆di|3 , |∆di|4 , . . . , i ≥ 2. In the sequel, we assume that

the dominant singular value of H is distinct, so the conditions required for the

above result are valid.

2.3.2 MSE in v̂c

To compute the MSE in v̂c, we use (2.3) to write the matrix ĤH
c Ĥc as a

perturbation of HHH and use the above matrix perturbation result to derive the

desired expressions.

ĤH
c Ĥc = VΣ2V H + Et, (2.10)

where Et ≈
[
VΣUHEp + Ep

HUΣV H
]

with Ep = 1
γp
ηpX

H
p . Here, we have ignored

the Ep
HEp term in writing the expression for Et, since it is a second order term due

to the 1
γp

factor in Ep. Now, we can regard Et as a perturbation of the matrixHHH .

As seen in Section 2.2(2.2.2), v̂c is estimated from the SVD of Ĥc. Since the basis

vectors V span Ct, we can let v̂c = V d, and write d = [1 + ∆d1,∆d2, . . . ,∆dt]
T

as a perturbation of [1, 0, . . . , 0]T .

For i ≥ 2, ∆di is obtained from (2.9) as

∆di =
vi
HEtv1

σ2
1 − σ2

i

=
σiu

H
i Epv1 + σ1v

H
i Ep

Hu1

σ2
1 − σ2

i

. (2.11)

Note that, if r < t, we have σi = 0, i > r, hence, ∆di = vHi Ep
Hu1/σ1, for i > r.

Therefore, to simplify notation, we can define ui , 0r×1 and vj , 0t×1, for i > r

and j > t respectively. The following result is used to find E
{
|∆di|2

}
.
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Lemma 2. Let µ1, µ2 ∈ C be fixed complex numbers. Let σ2
p = 1

γp
denote the

variance of one of the elements of Ep. Then,

E
{∣
∣µ1ui

HEpvj + µ2vi
HEp

Huj
∣
∣
2
}

= σ2
p

(
|µ1|2 + |µ2|2

)
,

for any 1 ≤ i ≤ r, 1 ≤ j ≤ t.

Proof. Let a , ui
HEpvj and b , vi

HEp
Huj . Then, from lemma 6 in Section

2.8.5 of the Appendix, a and b are circularly symmetric random variables. Since

Ep is circularly symmetric (E {Ep (i, j)Ep (k, l)} = 0, ∀ i, j, k, l) and a and b∗ are

both linear combinations of elements of Ep, we have E {ab∗} = 0. Finally, since

‖ui‖ = ‖vj‖ = 1, the variance of a and b are equal, and σ2
a = σ2

b = σ2
p . Substituting,

E
{∣
∣µ1ui

HEpvj + µ2vi
HEp

Huj
∣
∣
2
}

= |µ1|2 σ2
a + |µ2|2 σ2

b

= σ2
p

(
|µ1|2 + |µ2|2

)
.

Using the above lemma with µ1 = σi, µ2 = σ1 and j = 1, for i ≥ 2,

E
{
|∆di|2

}
= σ2

p

σ2
1 + σ2

i

(σ2
1 − σ2

i )
2 , (2.12)

where the expectation is taken with respect to the AWGN term ηp. The following

lemma helps simplify the expression further.

Lemma 3. If v̂c = V d, then

‖v̂c − v1‖2 = 2 (1 − Re(d1)) = − (∆d1 + ∆d∗1) , (2.13)

where d1 = 1 + ∆d1 is the first element of d.

Using (2.12) in (2.9) and substituting into in (2.13), the final estimation error is

E
{
‖v̂c − v1‖2

}
=

1

γp

t∑

i=2

σ2
1 + σ2

i

(σ2
1 − σ2

i )
2 . (2.14)
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2.3.3 Received SNR and Symbol Error Rate (SER)

In this section, we derive the expression for the received SNR when beam-

forming using v̂c at the transmitter and filtering using ûc at the receiver. Since

the unitary matrices V and U span Ct and Cr, v̂c and ûc can be expressed as

ûc = Uc and v̂c = V d respectively. Borrowing notation from Section 2.3-2.3.2, let

c = [1 + ∆c1,∆c2, . . . ,∆cr]
T ∈ Cr and d = [1 + ∆d1,∆d2, . . . ,∆dt]

T ∈ Ct respec-

tively. Then, c can be derived by a perturbation analysis on ĤcĤ
H
c analogous to

that in (2.10) in Section 2.3-2.3.2. We obtain

∆ci =
σiv

H
i Ep

Hu1 + σ1u
H
i Epv1

σ2
1 − σ2

i

,

where, as before, we define σi = 0, and ui , 0r×1, vj , 0t×1, for i > r and j > t

respectively, so that ∆ci = 0; i > r, as expected. The channel gain is given by

ûHc Hv̂c = cHΣd = σ1(1 + ∆d1)(1 + ∆c∗1) +

t∑

i=2

σi∆c
∗
i∆di.

Ignoring higher order terms (cf. Section 2.2(2.3.1)), the power amplification ρc ,

E
{∣
∣ûHc Hv̂c

∣
∣
2
}

is

ρc ≈ σ2
1E
{

1 + (∆d1 + ∆d∗1) + (∆c1 + ∆c∗1)

+
t∑

i=2

σi
σ1

(∆ci∆d
∗
i + ∆c∗i∆di)

}

. (2.15)

From (2.9) and (2.12), we have

E {∆d1 + ∆d∗1} = − 1

γp

t∑

i=2

σ2
1 + σ2

i

(σ2
1 − σ2

i )
2 ;

E {∆c1 + ∆c∗1} = − 1

γp

r∑

i=2

σ2
1 + σ2

i

(σ2
1 − σ2

i )
2 .
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Now, ∆ci∆d
∗
i can be written as

E{ ∆ci ∆d∗i } = E

{(
σiv

H
i Ep

Hu1 + σ1u
H
i Epv1

σ2
1 − σ2

i

)

(
σiv1

HEp
Hui + σ1u1

HEpvi
σ2

1 − σ2
i

)}

,

= E







σ1σi

(∣
∣uHi Epv1

∣
∣2 +

∣
∣vHi Ep

Hu1

∣
∣
2
)

(σ2
1 − σ2

i )
2






,

=
2σ2

pσ1σi

(σ2
1 − σ2

i )
2 =

2σ1σi

γp (σ2
1 − σ2

i )
2 .

And likewise for ∆c∗i∆di. Denoting m , rank(H), the power amplification is

ρc = σ2
1

(

1 − 1

γp

t∑

i=2

σ2
1 + σ2

i

(σ2
1 − σ2

i )
2 − 1

γp

r∑

i=2

σ2
1 + σ2

i

(σ2
1 − σ2

i )
2

+
4

γp

m∑

i=2

σ2
i

(σ2
1 − σ2

i )
2

)

,

= σ2
1 −

2

γp

m∑

i=2

σ2
1

σ2
1 − σ2

i

− 1

γp
(r + t− 2m) . (2.16)

In obtaining (2.16), we have used the fact that σi = 0 for i > m, where m =

rank(H). Finally, the received SNR is

SNR = ρcPD, (2.17)

where PD is the power per data symbol. The power amplification with perfect

knowledge of H at the transmitter and the receiver is ρp , σ2
1 . As γp = LPT/t

increases, ρc approaches ρp. Note that, when r = 1, the above expression simplifies

to ρc = ρp− 1
γp

(t−1). Also,
∑m

i=2
σ2
1

σ2
1
−σ2

i

≥ (m−1) since σ1 ≥ σi. Hence, if r = t, the

CLSE performs best when the channel is spatially single dimensional (for example,

in keyhole channels or highly correlated channels), that is, σi = 0, i ≥ 2. In this

case, we have ρc = ρp − 2
γp

(t− 1). At the other extreme, if the dominant singular

values are very close to each other such that (σ2
1 − σ2

2) < 2/γp, the analysis is

incorrect because it requires that the dominant singular values of H be sufficiently

separated. For Rayleigh fading channels, i.e., H has i.i.d. ZMCSCG entries of unit
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variance, we can numerically evaluate the probability Pr{σ2
1 − σ2

2 < 2/γp} to be

approximately 1.7 × 10−4, with r = t = 4 and a typical value of γp = 10dB. Thus,

the above analysis is valid for most channel instantiations.

Having determined the expected received SNR for a given channel instan-

tiation, assuming uncoded M-ary QAM transmission, the corresponding SER PM

is given as [49]

P√
M (ρc) = 2

[

1 − 1√
M

]

Q

(√

3ρcPT
M − 1

)

(2.18)

PM (ρc) = 1 −
(
1 − P√

M (ρc)
)2
, (2.19)

where Q(·) is the Gaussian Q-function, and ρc is given by (2.16). The above

expression can now be averaged over the probability density function of σ2
i through

numerical integration.

2.4 Closed-Form Semi-Blind estimation (CFSB)

First, recall that the first order Taylor expansion of a function of two

variables g(x, y) is given by

g(x+ ∆x, y + ∆y) − g(x, y) =
∂g(x, y)

∂x
∆x+

∂g(x, y)

∂y
∆y

+O
(
∆x2

)
+O

(
∆y2

)

≈ [g (x+ ∆x, y) − g (x, y)] + [g (x, y + ∆y) − g (x, y)] .

Now, in CFSB, the error in v1 (or loss in SNR) occurs due to two reasons: first,

the noise in the received training symbols, and second, the use of an imperfect

estimate of u1 (from the noise in the data symbols and availability of only a finite

number N of unknown white data). More precisely, let the estimator of v1 be

expressed as a function v̂s = f(Yp, ûs) of the two variables Yp and ûs. Using the

above expansion, we have

f (Yp, ûs) − f (HXp,u1) ≈ [f (Yp,u1) − f (HXp,u1)]

+ [f (HXp, ûs) − f (HXp,u1)] (2.20)
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where v̂s = f (Yp, ûs) and from (2.7), v1 = f (HXp,u1). Since the training noise

ηp and the error in the estimate ûs are mutually independent, we get

E
{
‖v̂s − v1‖2

}
≈ E

{
‖f(Yp,u1) − f(HXp,u1)‖2

}

︸ ︷︷ ︸

T1

+E
{
‖f(HXp, ûs) − f(HXp,u1)‖2

}

︸ ︷︷ ︸

T2

. (2.21)

Note that the term T1 represents the MSE in v̂s as if the receiver had perfect

knowledge of ûs (i.e., ûs = u1), and the term T2 represents the MSE in v̂s when

the training symbols are noise-free (i.e., Yp = HXp). Hence, the error in v̂s can

be thought of as the sum of two terms: the first one being the error due to the

noise in the white (unknown) data, and the second being the error due to the noise

in the training data. A similar decomposition can be used to express the loss in

channel gain (relative to σ1).

2.4.1 MSE in v̂s with Perfect ûs

In this section we consider the error arising exclusively from the training

noise, by setting ûs = u1. Let ṽs be defined as ṽs , XpY H
p u1

σ1γp
. Then, from (2.5)

ṽs = v1 +
Ep

Hu1

σ1
,

where, Ep , ηpX
H
p /γp, as before. Recall from (2.7) that v̂s = ṽs

‖ṽs‖ . Now, ‖ṽs‖ can

be simplified as ‖ṽs‖2 ≃ 1 +
(
u1

HEpv1 + v1
HEp

Hu1

)
/σ1, whence we get

v̂s ≃
(

v1 +
Ep

Hu1

σ1

)[

1 − 1

2σ1

(
u1

HEpv1 + v1
HEp

Hu1

)
]

Ignoring terms of order Ep
HEp and simplifying, the MSE in v̂s is

v̂s − v1 ≃
Ep

Hu1

σ1
− 1

2σ1

(
u1

HEpv1 + v1
HEp

Hu1

)
v1

‖v̂s − v1‖2 =
‖EpHu1‖2

σ2
1

− 1

4σ2
1

∣
∣u1

HEpv1 + v1
HEp

Hu1

∣
∣
2

(2.22)
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Taking expectation and simplifying the above expression using lemma 2, we get

E
{
‖v̂s − v1‖2

}
=

1

2γpσ
2
1

(2t− 1) . (2.23)

Interestingly, the above expression is the Cramer-Rao lower bound (CRB) for the

estimation of v1 assuming perfect knowledge of u1, as shown below.

Theorem 1. The error given in (2.23) is the CRB for the estimation of v1 under

perfect knowledge of u1.

Proof. From (2.35), the effective SNR for estimation of v1 is γs = γpσ
2
1. From the

results derived for the CRB with constrained parameters [42, 50], since X̃pX̃p
H

=

It/γp, the estimation error in v1 is proportional to the number of parameters,

which equals 2t − 1 as v1 is a t-dimensional complex vector with one constraint

(‖v1‖ = 1). The estimation error is given by

E
{
‖v̂s − v1‖2

}
=

1

2γs
{Num. Parameters}

=
1

2γpσ2
1

(2t− 1) , (2.24)

which agrees with the ML error derived in (2.23).

2.4.2 Received SNR with Perfect ûs

We start with the expression for the channel gain when using ûs and v̂s as

the transmit and receive beamforming vectors. When we have perfect knowledge

of u1 at the receiver, ûs = u1 and v̂s = ṽs/‖ṽs‖, where ṽs = v1 + Euu1 and

Eu , Ep
H/σ1. The power amplification with perfect knowledge of u1, denoted by

ρu , E
{∣
∣u1

HHv̂s
∣
∣2
}

= E

{

|u1
HHṽs|2
‖ṽs‖2

}

. As shown in the Appendix 2.8.2, this can

be simplified to

ρu = σ2
1 −

t− 1

γp
. (2.25)

Finally, the received SNR is given by PDρu, as before. Comparing the above

expression with the power amplification with CLSE (2.16), we see that when r = t,

even in the best case of a spatially single-dimensional channel ρc = ρp− 2
γp

(t−1) <
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ρu. Next, when r = 1, CLSE and CFSB techniques perform exactly the same:

ρc = ρu = σ2
1 − t−1

γp
since u1 = 1 (that is, no receive beamforming is needed).

Thus, if perfect knowledge of u1 is available at the receiver, CFSB is guaranteed

to perform as well as CLSE, regardless of the training symbol SNR.

2.4.3 MSE in v̂s with Noise-Free Training

We now present analysis to compute the second term in (2.21), the MSE

in v̂s solely due to the use of the erroneous vector ûs in (2.7), and hence let ηp = 0,

or Yp = HXp. As in Section 2.3-2.3.3, we can express ûs as a linear combination c

of the columns of U as ûs = Uc. We slightly abuse notation from Section 2.4-2.4.1

and redefine ṽs as ṽs , XpY
H
p ûs/γp = V Σc. Hence,

‖ṽs‖2 = cHΣ2c.

Thus, from (2.7), we have, v̂s = V c̃, where c̃ = Σc√
cHΣ2c

. From lemma (3),

‖v̂s − v1‖2 = 2 (1 − Re(c̃1)) . (2.26)

Let c = [1 + ∆c1,∆c2, . . . ,∆cr]
T . Then, as shown in the Appendix 2.8.3, c̃1, the

first element of c̃, is given by

c̃1 ≃ 1 − 1

2

r∑

i=2

σ2
i

σ2
1

|∆ci|2 , (2.27)

and hence ‖v̂s − v1‖2 =
∑r

i=2
σ2

i

σ2
1

|∆ci|2. Let γd be defined as γd , NPD/t. Then,

from Appendix 2.8.3, E
{
|∆ci|2

}
is given by

E
{
|∆ci|2

}
=

1

(σ2
1 − σ2

i )
2

(
σ2

1σ
2
i

N
+
σ2
i + σ2

1

γd
+
N

γ2
d

)

. (2.28)

Substituting, we get the final expression for the MSE as

E
{
‖v̂s − v1‖2

}
=

r∑

i=2

σ2
i

σ2
1 (σ2

1 − σ2
i )

2

(
σ2

1σ
2
i

N
+
σ2
i + σ2

1

γd
+
N

γ2
d

)

. (2.29)

Note that the above expression decreases as O(1/N) since γd depends linearly on

N , and therefore the MSE asymptotically approaches the bound in (2.23).
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2.4.4 Received SNR with Noise-Free Training

The power amplification with noise-free training, denoted ρw, is given by

ρw =
∣
∣ûHs Hv̂s

∣
∣2. We also have ûs = Uc and v̂s = V c̃, where c̃ = Σc√

cHΣ2c
. Then,

ûHs Hv̂s = cHΣc̃ =
√

cHΣ2c, and thus

ρw = cHΣ2c = σ2
1 (1 + ∆c∗1) (1 + ∆c1) +

r∑

i=2

σ2
i∆c

∗
i∆ci

≃ σ2
1 (1 + ∆c1 + ∆c∗1) +

r∑

i=2

σ2
i |∆ci|2 .

Substituting for ∆c1 from (2.9) and ∆ci from (2.28), we obtain the power ampli-

fication with noise-free training as

ρw = σ2
1 −

r∑

i=2

1

(σ2
1 − σ2

i )

(
σ2

1σ
2
i

N
+
σ2

1 + σ2
i

γd
+
N

γ2
d

)

. (2.30)

As before, the received SNR is given by PDρw. Note that ρw approaches ρp = σ2
1

for large values of length N and SNR γd.

2.4.5 Semi-blind Estimation: Summary

Recall that γp = LPT /t and γd = NPD/t. The final expressions for the

MSE in v̂s and the power amplification, from (2.21), are:

E
{
‖v1 − v̂s‖2

}
=

(2t− 1)

2γpσ2
1

+

r∑

i=2

σ2
i

σ2
1 (σ2

1 − σ2
i )

2

(
σ2

1σ
2
i

N
+
σ2
i + σ2

1

γd
+
N

γ2
d

)

, (2.31)

ρs = σ2
1 −

t− 1

γp

−
r∑

i=2

1

(σ2
1 − σ2

i )

(
σ2

1σ
2
i

N
+
σ2

1 + σ2
i

γd
+
N

γ2
d

)

. (2.32)

The SER with semi-blind estimation is given by PM (ρs), with PM (·) as in (2.18).



28

2.5 Comparison of CLSE and Semi-blind Schemes

In order to compare the CFSB and CLSE techniques, one needs to ac-

count for the performance of the white data versus beamformed data, an issue

we address now. Generic comparison of the semi-blind and conventional schemes

for any arbitrary system configuration is difficult, so we consider an example to

illustrate the trade-offs involved. We consider the 2× 2 system with the Alamouti

scheme [51] employed for white data transmission, and with uncoded 4-QAM sym-

bol transmission. The choice of the Alamouti scheme enables us to present a fair

comparison of the two estimation algorithms since it has an effective data rate of 1

bit per channel use, the same as that of MRT. Additionally, it is possible to employ

a simple receiver structure, which makes the performance analysis tractable.

Let the beamformed data and the white data be statistically independent,

and a zero-forcing receiver based on the conventional estimate of the channel (2.3)

be used to detect the white data symbols. In Appendix 2.8.4, we derive the average

SNR of this system as

ρw =

(

‖H‖4
F +

‖H‖2
F

γp

)

Px

‖H‖2
F

γp
Px + ‖H‖2

F + 2r
γp

, (2.33)

where ‖ · ‖F is the Frobenius norm, Px is the per-symbol transmit power and

γp = LPT /t as defined before. From (2.33), we can also obtain the symbol error

rate performance of the Alamouti coded white data by using (2.18) with ρcPD

replaced by ρw. The resulting expression can be numerically averaged over the pdf

of ‖H‖2
F , which is Gamma distributed with 2rt degrees of freedom, to obtain the

SER. The analysis of the beamformed data with the CFSB estimation when the

Alamouti scheme is employed to transmit spatially white data remains largely the

same as that presented in the previous section, where we had assumed that Xd

satisfies E
{
XdX

H
d

}
= γdIt. With Alamouti white-data transmission, we have that

XdX
H
d = γdIt, which causes the Eχ term to drop out in (2.39) of Appendix 2.8.3.
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2.5.1 Performance of a 2 × 2 System with CLSE and CFSB

In order to get a more concrete feel for the expressions obtained in the

preceding, let us consider a 2 × 2 system with L = 2, N = 8, PD = 6dB and

110 total symbols per frame, i.e., 2 training symbols, 8 white data symbols and

100 beamformed data symbols in the semi-blind case, and 2 training symbols and

108 beamformed data symbols in the conventional case. The average channel

power gain ρ versus training symbol SNR (PT ), obtained under different CSI and

signal transmission conditions are shown in Fig. 2.3. When the receiver has

perfect channel knowledge (labelled perfect u1, v1), the average power gain ρ is

E {σ2
1} = 5.5dB, independent of the training symbol SNR. The ρ with CLSE as

well as the semi-blind techniques asymptotically tend to this gain of 5.5dB as the

SNR becomes large, since the loss due to estimation error becomes negligible. The

channel power gain with only white (Alamouti) data transmission asymptotically

approaches 3dB (the gain per symbol of the 2×2 system with Alamouti encoding).

The channel power gain at any PT is given by (2.33), which is validated

in Fig. 2.3 through simulation. Observe that at a given training SNR, there is

a loss of approximately Pa = −3dB in terms of the channel gain performance for

the Alamouti scheme compared to the beamforming with conventional estimation.

The results of the channel power gain obtained by employing the CFSB technique

with N = 8 Alamouti-coded data symbols are shown in Fig. 2.3, and show the

improved performance of CFSB. By transmitting a few (N = 8) Alamouti-coded

symbols, the CFSB scheme obtains a better estimate of v1, thereby gaining about

Psb = 0.8dB per symbol over the CLSE scheme, at a training SNR of 2dB.

If the frame length is 110 symbols, we have Ld =100 beamformed data

symbols in the semi-blind case and Ld + N = 108 beamformed data symbols in

the conventional case. Using the beamforming vectors estimated by the CFSB

algorithm, we then have a net power gain ρg given by ρg = Ld+N
Ld/Psb+N/Pa

, or about

0.4dB per frame. Thus, this simple example shows that CFSB estimation can
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Figure 2.3: Average channel gain of a t = r = 2 MIMO channel with L = 2,

N = 8 and PD = 6dB, for the CLSE and beamforming, CFSB and beamforming

(with and without knowledge of u1), CLSE and white data (Alamouti-coded), and

perfect beamforming at transmitter and receiver. Also plotted is the theoretical

result for the performance of Alamouti-coded data with channel estimation error

.

potentially offer an overall better performance compared to the CLSE. Although

we have considered uncoded modulation here, in more practical situations a chan-

nel code will be used with interleaving both between the white and beamformed

symbols as well as across multiple frames. In this case, burst errors can be avoided

and the errors in the white data symbols corrected. Furthermore, the performance

of the white data symbols can also be improved by employing an MMSE receiver

or other more advanced multi-user detectors rather than the zero-forcing receiver,

leading to additional improvements in the CFSB technique.



31

2.5.2 Discussion

We are now in a position to discuss the merits of the conventional es-

timation and the semi-blind estimation. Clearly, the CLSE enjoys the advan-

tages of being simple and easy to implement. As with any semi-blind technique,

CFSB being a second-order method requires the channel to be relatively slowly

time-varying. If not, the CLSE can still estimate the channel quickly from a few

training symbols, whereas the CFSB may not be able to converge to an accurate

estimate of u1 from the second order statistics computed using just a few received

vectors. Another disadvantage of the CFSB is that it requires the implementation

of two separate receivers, one for detecting the white data and the other for the

beamformed data. However, the CFSB estimation could outperform the CLSE in

channels where the loss due to the transmission of spatially-white data is not too

great, i.e., in full column-rank channels. Given the parameters N , L, PT and PD,

the theory developed in this chapter can be used to decide if the CFSB technique

would offer any performance benefits versus the CLSE technique. If the CFSB

technique is to perform comparably or better than the CLSE, two things need to

be satisfied:

1. The estimation performance of CLSE and CFSB should be comparable, i.e.,

the number of white data symbols N and the data power PD should be large

enough to ensure that the estimate ûs is accurate, so that the resulting v̂s

can perform comparably to the conventional estimate. For example, since

the channel gain with semi-blind estimation is given by (2.31), N should be

chosen to be of the same order as γd; and both N and γd should be of the

order higher than γp. With such a choice, the (t− 1)/γp term will dominate

the SNR loss in the CFSB, thus enabling the beamformed data with CFSB

estimation to outperform the beamformed data with CLSE.

2. The block length should be sufficiently long to ensure that after sending L+N

symbols, there is sufficient room to send as many beamformed symbols as is
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necessary for the CFSB technique to be able to make up for the performance

lost during the white data transmission. In the above example, after having

obtained the appropriate value of N , one can use (2.33) to determine the

loss due to the white data symbols (for the t = 2 case), and then finally

determine whether the block length is long enough for the CFSB to be able

to outperform the CLSE method.

In Section 2.6, we demonstrate through additional simulations that the CFSB tech-

nique does offer performance benefits relative to the CLSE, for an appropriately

designed system.

2.5.3 Semi-blind Estimation: Limitations and Alternative Solutions

The CFSB algorithm requires a sufficiently large number of spatially-

white data (N) to guarantee a near perfect estimate of u1 and this error cannot

be overcome by increasing the white-data SNR. It is therefore desirable to find

an estimation scheme that performs at least as well as the CLSE algorithm, re-

gardless of the value of N and L. Formal fusion of the estimates obtained from

the CLSE and CFSB techniques is difficult, hence we adopt an intuitive approach

and consider a simple weighted linear combination of the estimated beamforming

vectors as follows:

û1 =
βuγpûc + γdûs

‖βuγpûc + γdûs‖2
, v̂1 =

βvγpv̂c + γdv̂s
‖βvγpv̂c + γdv̂s‖2

. (2.34)

The above estimates will be referred to as the linear combination semi-blind (LCSB)

estimates. The weights γp = LPT/t and γd = NPD/t are a measure of the accu-

racy of the vectors estimated from the CLSE and CFSB schemes respectively. The

scaling factor of βu and βv is introduced because ûc obtained from known training

symbols is more reliable than the blind estimate ûs when L = N and γp = γd. In

our simulations, for t = r = 4, the choice βu = βv = 4 was found to perform well.

Analysis of the impact of βu and βv is a topic for future research.
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2.6 Simulation Results

In this section, we present simulation results to illustrate the performance

of the different estimation schemes. The simulation setup consists of a Rayleigh

flat fading channel with 4 transmit antennas and 4 receive antennas (t = r = 4).

The data (and training) are drawn from a 16-QAM constellation. 10,000 random

instantiations of the channel were used in the averaging.

Measuring the error between singular vectors

In the simulations, v1 and v̂1 are obtained by computing the SVD of

two different matrices H and Ĥ respectively. However, the SVD involves an

unknown phase factor, that is, if v1 is a singular vector, so is v1e
jφ for any

φ ∈ (−π, π] . Hence, for computational consistency in measuring the MSE in v1, we

use the following dephased norm in our simulations, similar to [8]: ‖v1 − v̂1‖2
DN

,

2
(
1 −

∣
∣v1

H v̂1

∣
∣
)
; which satisfies ‖v1 − v̂1‖2

DN
= minφ∈(−π,π] ‖v1 − v̂1e

jφ‖2. The

norm considered in our analysis is implicitly consistent with the above dephased

norm. For example, the norm in (2.13) is the same as the dephased norm, since

the perturbation term ∆d1 is real (as noted in Section 2.3-2.3.1). Also, for small

additive perturbations, it can easily be shown that (for example) in (2.22), the

dephased norm reduces to the Euclidean norm.

Experiment 1

In this experiment, we compute the MSE of conventional estimation and

the MSE of the semi-blind estimation with perfect u1, which serves as a benchmark

for the performance of the proposed semi-blind scheme. Fig.2.4 shows the MSE

in v̂1 versus L, for two different values of pilot SNR (or γp), with perfect u1.

CFSB performs better than the CLSE technique by about 6dB, in terms of the

training symbol SNR for achieving the same MSE in v̂1. The experimental curves

agree well with the theoretical curves from (2.14), (2.23). Also, the results for
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the performance of the semi-blind OPML technique proposed in [43] are plotted

in Fig. 2.4. In the OPML technique, the channel matrix H is factored into the

product of a whitening matrix W (= UΣ) and a unitary rotation matrix Q. A

blind algorithm is used to estimate W , while the training data is used exclusively

to estimate Q. Thus, the OPML technique outperforms the CFSB because it

assumes perfect knowledge of the entire U and Σ matrices (and is computationally

more expensive). The CFSB technique, on the other hand, only needs an accurate

estimate of u1 from the spatially-white data.

10 20 30 40 50 60
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M
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E
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CLSE−Theory
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CFSB, perfect u
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OPML − perfect U
pilot SNR = 2dB 

pilot SNR = 10dB 

Figure 2.4: MSE in v1 vs training data length L, for a t = r = 4 MIMO system.

Curves for CLSE, CFSB and OPML with perfect u1 are plotted. The top five

curves correspond to a training symbol SNR of 2dB, and the bottom five curves

10dB.

Experiment 2

Next, we relax the perfect u1 assumption. Fig.2.5 shows the SER per-

formance of the CLSE, OPML and the CFSB schemes at two different values of
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N , as well as the N = ∞ (perfect knowledge of U) case. At N = 50 white data

symbols, the CLSE technique outperforms the CFSB for L ≥ 24, as the error in u1

dominates the error in the semi-blind technique. As white data length increases,

the CFSB performs progressively better than the CLSE. Also, in the presence of

a finite number (N) of white data, the CFSB marginally outperforms the OPML

scheme as CFSB only requires an accurate estimate of the dominant eigenvector

u1 from the white data. In Fig. 2.6, we plot both the theoretical and experimental

curves for the CFSB scheme when N = 100, as well as the simulation result for

the LCSB scheme defined in Section 2.5-2.5.3. The LCSB outperforms the CLSE

and the CFSB technique at both N = 50 and N = 100. Thus, the theory devel-

oped in this chapter can be used to compare the performance of CFSB and CLSE

techniques for any choice of N and L.
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Figure 2.5: SER of beamformed-data vs number of training symbols L, t = r = 4

system, for two different values of white-data length N , and data and training

symbol SNR fixed at PT = PD = 6dB. The two competing semi-blind techniques,

OPML and CFSB, are plotted. CFSB marginally outperforms OPML for N = 50,

as it only requires an accurate estimate of u1 from the blind data.
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Figure 2.6: SER vs L, t = r = 4 system, for two different values of N , and data and

training symbol SNR fixed at PT = PD = 6dB. The theoretical and experimental

curves are plotted for the CFSB estimation technique. Also, the LCSB technique

outperforms both the conventional (CLSE) and semi-blind (CFSB) techniques.

Experiment 3

Finally, as an example of overall performance comparison, Fig. 2.7 shows

the SER performance versus the data SNR of the different estimation schemes for a

2×2 system, with uncoded 4-QAM transmission, L = 2 training symbols, N = 16

white data symbols (for the semi-blind technique) and a frame size Ld = 500

symbols. The parameter values are chosen for illustrative purposes, and as L and

PT increase, the gap between the CLSE and CFSB reduces. From the graph, it is

clear that the LCSB scheme outperforms the CLSE scheme in terms of its SER

performance, including the effect of white data transmission.

2.7 Conclusion

In this chapter, we have investigated training-only and semi-blind channel

estimation for MIMO flat-fading channels with MRT, in terms of the MSE in the
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Figure 2.7: SER versus data SNR for the t = r = 2 system, with L = 2, N =

16, γp = 2dB. ‘CLSE-Alamouti’ refers to the performance of the spatially-white

data with conventional estimation, ‘CLSE-bf’ is the performance of the beam-

formed data with v̂c, ‘CFSB’ and ‘LCSB’ refer to the performance of the corre-

sponding techniques after accounting for the loss due to the white data. ‘CFSB-u1’

is the performance of CFSB with perfect-u1, and ‘Perf-bf’ is the performance with

the perfect u1 and v1 assumption.

beamforming vector v1, received SNR and the SER with uncoded M-ary QAM

modulation. The CFSB scheme is proposed as a closed-form semi-blind solution

for estimating the optimum transmit beamforming vector v1, and is shown to

achieve the CRB with the perfect u1 assumption. Analytical expressions for the

MSE, the channel power gain and the SER performance of both the CLSE and

the CFSB estimation schemes are developed, which can be used to compare their

performance. A novel LCSB algorithm is proposed, which is shown to outperform

both the CFSB and the CLSE schemes over a wide range of training lengths and
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SNRs. We have also presented Monte-Carlo simulation results to illustrate the

relative performance of the different techniques.

2.8 Appendix

2.8.1 Proof of Lemma 1:

Let Ỹp , u1
HYp

σ1γp
, X̃p , Xp

γp
, and ñ , u1

Hηp

σ1γp
. Then, since the training

sequence is orthogonal, XpX̃p
H

= It holds. Substituting into (2.5), we have

Ỹp = v1
HX̃p + ñ. (2.35)

Thus, we seek the estimate of v1 as the solution to the following least squares

problem

v̂s = arg min
v∈ Ct, ‖v‖=1

‖Ỹp − vHX̃p‖2. (2.36)

Note that

arg min
v1: ‖v1‖=1

‖Ỹp − v1
HX̃p‖2 =

arg min
v1: ‖v1‖=1

(

ỸpỸp
H

+
‖v1‖2

γp
− ỸpX̃p

H
v1 − v1

HX̃pỸp
H
)

=arg max
v1: ‖v1‖=1

(

ỸpX̃p
H
v1 + v1

HX̃pỸp
H
)

.

The v1 that maximizes the above expression is readily found to be

v̂1 = X̃pỸp
H
/‖X̃pỸp

H‖. Substituting for X̃p and Ỹp, the desired result is obtained.

2.8.2 Received SNR with perfect ûs

Here, we derive the expression in (2.25). For notational simplicity, define

x , v1
HEuu1 and y , u1

HEH
u Euu1. Then, we have

ρu = E

{
σ2

1 (1 + x) (1 + x∗)

1 + x+ x∗ + y

}

≃ σ2
1E {(1 + x) (1 + x∗)

(
1 − (x+ x∗ + y) + (x+ x∗ + y)2

)}

≃ σ2
1 (1 + E {xx∗ − y}) , (2.37)
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where x∗ is the complex conjugate of x. Also, E {xx∗} =
σ2

p

σ2
1

= 1
γpσ2

1

, and E {y} =

E
{
u1

HEH
u Euu1

}
= t

γpσ2
1

. Thus, the power amplification for perfect u1 is given by

ρu = σ2
1 − t−1

γp
.

2.8.3 Proof for equations (2.27) and (2.28)

In order to derive an expression for c̃1, we write c = [1 + ∆c1,∆c2, . . . ,∆ct]
T

as a perturbation of [1, 0, . . . , 0]T . Since c̃ = Σc√
cHΣ2c

, equating components, we have

c̃1 =
σ1 (1 + ∆c1)

√

σ2
1 |1 + ∆c1|2 +

∑r
i=2 σ

2
i |∆ci|2

≃ (1 + ∆c1)

[

1 − 1

2

(

2∆c1 +

r∑

i=2

σ2
i

σ2
1

|∆ci|2
)]

≃ 1 − 1

2

r∑

i=2

σ2
i

σ2
1

|∆ci|2 .

Substituting in (2.26), we get

‖v1 − v̂s‖2 =
r∑

i=2

σ2
i

σ2
1

|∆ci|2 . (2.38)

It now remains to compute ∆ci. Recall that ûs is computed from the SVD in (2.4).

Stacking the transmitted and received data vectors into matrices Xd ∈ C
t×N and

Yd ∈ Cr×N and the noise vectors into ηd ∈ Cr×N , with appropriate scaling we can

rewrite (2.4) as

Û Σ̂2ÛH = HHH + Es,

where,

Es , HEχH
H +HEχη + EH

χηH
H + Eη,

and Eχ , 1
γd

(
XdX

H
d − γdIt

)
, Eχη , Xdη

H
d

γd
, Eη , 1

γd

(
ηdη

H
d −NIr

)
, and finally

γd = NPD

t
, as before.

Observe that, since the white data Xd and AWGN are mutually inde-

pendent, the elements of Eχ, Eχη and Eη are pairwise uncorrelated. Also,
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E
{
|Eχ(i, j)|2

}
=
(
PD

t

)2
/
(

N
(
PD

t

)2
)

= 1/N ,

E
{
|Eχη(i, j)|2

}
=
(
PD

t

)
/
(

N
(
PD

t

)2
)

= 1/γd, and

E
{
|Eη(i, j)|2

}
= 1/

(

N
(
PD

t

)2
)

= N/γ2
d.

Thus, from the first order perturbation analysis (2.8), ∆ci =
uH

i Esu1

σ2
1
−σ2

i

, and therefore

E
{
|∆ci|2

}
=

1

(σ2
1 − σ2

i )
2

(

E
{∣
∣uHi HEχH

Hu1

∣
∣
2
}

+E
{∣
∣uHi HEχηu1

∣
∣
2
}

+ E
{∣
∣uHi E

H
χηH

Hu1

∣
∣
2
}

+ E
{∣
∣uHi Eηu1

∣
∣
2
})

. (2.39)

Simplifying the different components in the above expression, we have

E
{∣
∣uHi HEχH

Hu1

∣
∣2
}

= σ2
1σ

2
i /N , E

{∣
∣uHi Eηu1

∣
∣2
}

= N/γ2
d and

E
{∣
∣uHi HEχηu1

∣
∣
2
}

= σ2
i /γd. Substituting into (2.39), we get (2.28).

2.8.4 Performance of Alamouti Space-Time Coded Data with Con-

ventional Estimation

In this section, we determine the performance of Alamouti space-time

coded data for a general r × 2 matrix channel with estimation error and a zero-

forcing receiver. Similar results for other specific cases can be found in [52], [53].

Denote the r× 2 channel matrix H in terms of its columns as H = [h1, h2]. Also,

let the 2×L orthogonal training symbol matrix Xp be defined in terms of its rows

as XT
p = [XT

p1, X
T
p2]

T . Thus, from (2.3), the channel is estimated conventionally as

Ĥc =
1

γp

[
YpX

H
p1, YpX

H
p2

]

[

ĥ1, ĥ2

]

=

[

h1 +
ηpX

H
p1

γp
,h2 +

ηpX
H
p2

γp

]

(2.40)

The effective channel with Alamouti-coded data transmission can be represented

by stacking two consecutively received r×1 vectors y1 and y∗
2 vertically as follows




y1

y∗
2



 =




h1 h2

−h∗
2 h∗

1








x1

x∗2



+




nw1

n∗
w2



 , (2.41)
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where nwi, i = 1, 2 is the AWGN affecting the white data symbols. When a zero-

forcing receiver based on the estimated channel is employed, the received vectors

are decoded using
[

ĥ1, ĥ2

]

as




x̂1

x̂∗2



 =




ĥH1 −ĥT2

ĥH2 ĥT1








y1

y∗
2



 . (2.42)

It is clear from symmetry that the performance of x̂1 and x̂2 will be the same; hence,

we can focus on determining the SER performance of x̂1. Now, x̂1 contains three

components, the signal component coming from x1, and a leakage term coming

from the symbol x2 and the noise term coming from the white noise term nw as

follows

x̂1 =
(

ĥH1 h1 + hH2 ĥ2

)

︸ ︷︷ ︸

ξx1

x1 +
(

ĥH1 h2 − hH1 ĥ2

)

︸ ︷︷ ︸

ξx2

x∗2

+ ĥH1 nw1 − nHw2ĥ2
︸ ︷︷ ︸

ξn

(2.43)

The coefficient of the x1 term, denoted ξx1 is

ξx1 =

(

h1 +
ηpX

H
p1

γp

)H

h1 + hH2

(

h2 +
ηpX

H
p2

γp

)

,

= ‖H‖2
F +

Xp1η
H
p h1 + hH2 ηpX

H
p2

γp
. (2.44)

From the above equation, it is clear that the performance of the x1 symbol is

dependent on the training noise instantiation ηp. However, we can consider the

average power gain, averaged over the training noise, as follows

E
{
|ξx1|2

}
= ‖H‖4

F +
1

γ2
p

E
{
Xp1η

H
p h1h

H
1 ηpX

H
p1

+ hH2 ηpX
H
p2Xp2η

H
p h2

}
, (2.45)

= ‖H‖4
F +

1

γ2
p

(
γp‖h1‖2 + γp‖h2‖2

)
,

= ‖H‖4
F +

‖H‖2
F

γp
, (2.46)
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where, in (2.45), the cross terms disappear since the noise ηp is zero-mean and due

to the orthogonality of the training Xp. Similarly, the coefficient of the x∗2 term,

denoted ξx2, can be simplified as

ξx2 =
Xp1η

H
p h2 − hH1 ηpX

H
p2

γp
. (2.47)

We will assume for simplicity that the x2 term is an additive white Gaussian noise

impairing the estimation of x1, i.e., we do not perform joint detection. This noise

term is independent of the AWGN component nw. Similar to the coefficient of

x1, we can consider the average power gain of the x2 term, which can be obtained

after a little manipulation as

E
{
|ξx2|2

}
=

‖H‖2
F

γp
. (2.48)

Finally, the noise term, denoted ξn, is

ξn = hH1 nw1 − nHw2h2

+
Xp1η

H
p nw1 − nHw2ηpX

H
p2

γp
, (2.49)

from which we can obtain the noise power as

E
{
|ξn|2

}
= ‖H‖2

F +
2r

γp
. (2.50)

Thus, the SNR for detection of a white data symbol is given by

ρw =

(

‖H‖4
F +

‖H‖2
F

γp

)

Px

‖H‖2
F

γp
Px + ‖H‖2

F + 2r
γp

. (2.51)

2.8.5 Other Useful Lemmas:

In this section, we present three useful lemmas without proof.

Lemma 4. Let Xp ∈ Ct×L be an orthogonal set of vectors (i.e., XpX
H
p = γpIt),

and let ηp ∈ Cr×L contain i.i.d. ZMCSCG entries with mean µ = 0 and variance

σ2
n = 1. Then, the elements of Ep = Xpη

H
p are uncorrelated, and the variance of

each element of Ep is σ2
p = γp.
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Lemma 5. A transformation of Ep (defined in lemma 4) by any orthogonal matrix

V ∈ Ct×t (i.e., V V H = V HV = It) to get Ê = V Ep, leaves the second order

statistics of Ep unaltered, that is,

E {E(i, j)} = E
{

Ê(i, j)
}

= 0

E {E(i, j)E∗(k, l)} = E
{

Ê(i, j)Ê∗(k, l)
}

= σ2
pδ (i− k, j − l) , ∀ i, j, k, l,

where δ (p, q) = 1 when p = q = 0, and 0 otherwise.

Lemma 6. If the random vector Xp ∈ C
t×L has zero-mean circularly symmetric

i.i.d. entries, then so does vHXp, where v ∈ Ct×1. Further, if v satisfies ‖v‖ = 1,

then the variance of an element of Xp is the same as that of vHXp.
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3 Quantization Methods for

Equal Gain Transmission With

Finite Rate Feedback

3.1 Introduction

Per-antenna power constraints, rather than total power constraints, are

more practically meaningful in the design of transmit beamforming vectors in mul-

tiple input, single output (MISO) systems as they impose much less fidelity require-

ments on the the transmit RF power amplifiers. The performance achievable by

multiple antenna systems is dependent on the channel state information available

at the transmitter (CSIT). When the channel state information (CSI) is known

perfectly at the transmitter, beamforming is the optimum method of transmission

to maximize the channel capacity under a per-antenna power constraint as well

as under a total power constraint [7], [8]. Additionally, CSIT-based transmission

such as beamforming offers the benefits of lower complexity receivers and better

system throughput in a multiuser environment. However, in practical communi-

cation systems, due to feedback channel bit rate constraints, the CSI has to be

quantized with a finite number of bits, and only the quantized CSI can be made

available to the transmitter.

Maximum ratio transmission (MRT) [7] is the optimum beamforming vec-

tor for maximizing the capacity with a total power constraint. In general, an MRT

44



45

beamforming vector is denoted v ∈ Ct, where t is the number of transmit anten-

nas, and the constant total power constraint can be expressed as ‖v‖2
2 = t, where

‖v‖2 denotes Euclidean norm (or L2-norm) of v. It can be shown that if v is an

optimum MRT vector, so is v exp(jθ) for any angle θ [25]. Hence, we can further

constrain (for example) the first element of v to be real without loss of perfor-

mance. Therefore, the MRT beamforming vector contains t complex parameters

and two real constraints, i.e, it can be completely described by (t − 1) complex

parameters, which need to be made available at the transmitter to enable optimum

MRT. The problem of quantizing the MRT beamforming vector in a vector quan-

tization (VQ) framework has been considered in [35]. Several results quantifying

the performance of finite-rate feedback systems with MRT have also appeared in

[20] - [36]. Other works on the performance of quantized-feedback based multi-

ple antenna systems include [32] and [33], where the authors use quantized CSI

obtained from a feedback link to determine a weighting matrix or precoding ma-

trix to improve the performance of an orthogonal space-time block (OSTB) code.

The effect of imperfect CSI feedback has also been addressed in [13] - [19] where

the authors consider transmit optimization with either channel mean feedback or

covariance feedback.

Equal gain transmission (EGT) (see, e.g., [8] and the references therein),

the subject of this chapter, is the optimum beamforming vector for maximizing

the capacity of MISO flat fading systems with an equal power per-antenna con-

straint. This choice of beamforming vector also maximizes the expected received

SNR given the constraints. In general, an EGT beamforming vector is given by

w = [1, exp(jθ2), exp(jθ3), . . . , exp(jθt)]
T , where θi denotes the phase rotation ap-

plied at antenna element i. Thus, the EGT vector contains exactly (t − 1) real

parameters that need to be made available at the transmitter to enable optimum

EGT, which is half the number of parameters needed to enable optimum MRT.

The quantization of these phase angles is the main focus of this chapter. We use

some of the analytical tools first developed in [27] and extend the results to the
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case of beamforming under a per-antenna power constraint.

The problem of quantizing the EGT beamforming vector was proposed in

[37]. The solution proposed there uniformly quantized the phase angles, i.e., scalar

quantization (SQ). This method has low complexity, but is sub-optimal compared

to VQ based techniques, even in the case of i.i.d. Rayleigh fading channels. One

of the goals of this chapter, therefore, is to quantify the performance difference

between SQ and VQ for the case of i.i.d. Rayleigh fading channels. In [8], the

authors considered the problem of designing quantized EGT beamforming vec-

tors for the case of i.i.d. Rayleigh fading channels and proposed a design criterion

based on Grassmannian beamforming. While the proposed criterion guarantees full

diversity order, specific algorithms to generate the codebook based on the Grass-

mannian beamforming criterion were not developed, and it is not clear whether

the codebook of quantized beamforming vectors is optimum in terms of channel

capacity. Another recent work is [38], where the authors derive an random search

based algorithm to design equal gain codebooks. In [39], the authors employ the

minimum value of the maximum magnitude of the inner product between any two

code vectors as the performance metric, and derive several families of codebooks

for which, imposing the per-antenna power constraint rather than the total power

constraint results in no loss.

In this chapter, we first consider VQ, and develop an algorithm based

on the generalized Lloyd algorithm that converges to an optimum codebook1 that

maximizes the capacity, while imposing no restrictions on the channel statistics,

in Section 3.3. We analyze the performance of this algorithm for the case of i.i.d.

Rayleigh fading channels, and show that the capacity loss with quantized EGT (Q-

EGT) drops off with the number of feedback bits B as 2(t−1)
t+1

2−
2B
t−1 , in Section 3.4

and 3.5. The generality of the analytical tools developed is further demonstrated

by deriving an expression for the outage probability with VQ-based feedback in

1The Lloyd algorithm is a standard algorithm in source coding literature, and it only guarantees local
optimality of the codebook. Therefore, by ‘optimum codebook’, we strictly mean that the codebook is
locally optimum, although we will not always make this distinction.
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Section 3.6. Next, we consider the performance of SQ in Section 3.7 for the case of

i.i.d. Rayleigh fading channels, and obtain analytical expressions for the capacity

loss performance. The theoretical expressions are “high-rate results”, i.e., they

progressively become more accurate as the number of feedback bits B gets large.

We compare the performance of SQ with VQ and see that while both achieve the

same rate of convergence to the capacity with perfect feedback, a finite gap exists.

This gap is seen to converge to a constant in terms of bits per dimension, as the

number of transmit antennas t is increased. Monte-Carlo simulations confirm the

accuracy of the analysis in Section 3.8.

We use the following notation. Matrices are denoted by capital letters

such as R and vectors by bold-face letters such as h. AH denotes the conjugate

transpose of A. The i-th component of a vector h is denoted hi. ‖v‖p denotes the

Lp-norm of the vector v. The vector formed by the phase angles of h is denoted

∠h. The expectation operator is denoted as E {·}. Finally, 1 and 0 are vectors of

ones and zeros respectively, and the dimension will be clear from the context.

3.2 Preliminaries

Consider a MISO system with t antennas at the transmitter. Under the

block flat-fading model, the multiple-antenna channel is represented by the channel

vector h ∈ Ct which remains constant for the duration of a block, and changes

independently according to some statistical distribution from block to block. For

simplicity of notation, therefore, we can omit the time index and express the

relationship between the channel input x ∈ Ct and the channel output y ∈ C as

y = hHx + η, (3.1)

where η ∈ C is the zero mean Gaussian noise at the receiver. The CSI h is

assumed to be known perfectly at the receiver, and partially at the transmitter

through a limited-rate feedback channel. When beamforming is employed at the

transmitter, the data symbol s ∈ C is multiplied by a beamforming vector w to get
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x as x = ws. Throughout this chapter, we will assume that w satisfies a constant

2-norm constraint ‖w‖2
2 ≤ t, to ensure that the total transmitted power in the

symbol s, given by Ps , E
{
|s|2
}
, is not amplified. A quantized beamforming

vector codebook C , {w1,w2, . . . ,wN} is known to both the receiver and the

transmitter, where N = 2B. Based on the knowledge of h, the receiver selects

the best beamforming vector wi ∈ C and sends the corresponding index i to the

transmitter through the feedback channel. We assume that the feedback channel

has no delay and is error free, in order to focus on the effect of quantizing the CSI.

Given the channel instantiation h and the beamforming vector w em-

ployed at the transmitter, the mutual information is given by

I (h,w, Ps) , log
(

1 +
∣
∣hHw

∣
∣
2
Ps

)

(3.2)

Therefore, given a channel instantiation h and with perfect CSIT, the optimization

criterion for choosing w is given by

wo = arg max
w∈S

∣
∣hHw

∣
∣
2
, (3.3)

where S denotes the constraint set to which w belongs. If w has a total power

constraint, the constraint set is given by ST , {w : ‖w‖2 =
√
t} and with a per-

antenna power constraint, the constraint set is given by SP , {w : ‖w‖∞ ≤ 1}.
When we have an equal power constraint (i.e., EGT), we have S = {w : w =

[exp(jθ1), exp(jθ2), . . . , exp(jθt)]
T}. Since the objective function

∣
∣wHh

∣
∣
2

is un-

changed by an multiplying w by an overall phase exp(jθ), without loss of general-

ity we can assume θ1 = 0, and consider

SE , {w : w = [1, exp(jθ2), exp(jθ3), . . . , exp(jθt)]
T}. It is shown in Lemma 8

of the Appendix 3.9.1 that the solution to (3.3) with S = SP is the same as the

solution with the smaller constraint set S = SE .

3.3 Vector Quantization: Codebook Design

It is well known that with perfect knowledge of h at the transmitter,

the optimum EGT vector is wo = exp(j∠h), and the corresponding power gain is
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∣
∣hHw

∣
∣2 = ‖h‖2

1 [8]. In this chapter, we use the capacity loss, i.e., the difference

between the capacity with beamforming using wo and the capacity with beam-

forming using the Q-EGT vector w ∈ C. The mutual information with quantized

feedback (i.e., w), is given by (3.2); and with perfect feedback (i.e., wo) it is

I(h,wo, Ps) = log(1 + ‖h‖2
1Ps), (3.4)

and note that since wo = exp(j∠h), the right hand side of the above equation does

not explicitly depend on wo. Thus, the loss in mutual information, IL(h,w) ,

I(h,wo, Ps)− I(h,w, Ps) can be simplified to obtain (for notational simplicity, we

drop the dependence of IL on Ps)

IL(h,w) = − log

(

1 − ‖h‖2
1Ps

1 + ‖h‖2
1Ps

(

1 −
∣
∣hHw

∣
∣
2

‖h‖2
1

))

(3.5)

Note that w is implicitly a function of h since it is the vector in the codebook C
that minimizes the loss in mutual information for every instantiation of h. The

goal of the quantizer is thus to minimize the loss in mutual information averaged

over the channel statistics.

Using the first order approximation − log(1−x) ≃ x for the logarithm in

(3.5), which is valid when Ps ≪ 1, or when the number of feedback bits B is large,

we see that a good criterion for designing the beamforming vector codebook is a

maximum mean-squared weighted inner product (MSwIP) criterion:

max
Q(·)

E

{

‖h‖2
1Ps

1 + ‖h‖2
1Ps

∣
∣hHw

∣
∣2

‖h‖2
1

}

, (3.6)

where w = Q(h) is the quantized beamforming vector from the codebook C. This is

different from the criteria derived for the quantized MRT case [27] in that we have

the one-norm ‖h‖1 instead of the two-norm ‖h‖2 and Ps is the transmit power per

antenna instead of the total transmit power. Therefore, the VQ codebook design

algorithm is considerably different, as we describe in the following.

The generalized Lloyd algorithm [54] can be used to generate codebooks

that maximize the MSwIP, and consists of the following two steps:
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• Nearest neighborhood condition (NNC): Given the code vectors {wi; i =

1, . . . , N}, the optimum partition region (Voronoi cell) Ri of the code vector

indexed by i satisfies

Ri = {h :
∣
∣ςhHwi

∣
∣
2 ≥

∣
∣ςhHwj

∣
∣
2
, ∀ j 6= i}, (3.7)

where ς ,
√

Ps

1+‖h‖2
1
Ps

. Note that ς does not impact the partitioning.

• Centroid condition (CC): Given the partition regions {Ri; i = 1, . . . , N}, the

optimum code-vectors wi are chosen to satisfy, for i = 1, . . . , N ,

wi = arg max
w∈SE

E
{∣
∣ςhHw

∣
∣
2 |h ∈ Ri

}

(3.8)

= arg max
w∈SE

wHE
{
ς2hhH |h ∈ Ri

}
w (3.9)

= (principal EGT vector of) E
{
ς2hhH |h ∈ Ri

}
(3.10)

The above two conditions are iterated till the MSwIP converges. In general, this

would be implemented by using a sufficiently large number of channel realizations,

and replacing the statistical correlation matrix E
{
ς2hhH |h ∈ Ri

}
by the sample

average correlation matrix. In the CC step, given the quantization regions, we set

the centroid to be the principal EGT vector of the conditional correlation matrix,

i.e., a vector whose entries are of unit magnitude, that maximizes the expected

MSwIP for that region. For computing wi, it is convenient to solve (3.9) over

the larger region SP instead of SE (Lemma 8, Appendix 3.9.1). This to reduces

the computational complexity to that of a standard convex optimization problem,

since SP is a convex space and wHE
{
ς2hhH |h ∈ Ri

}
w is a quadratic (convex)

function. The principal EGT vector can now be computed using any off-the-shelf

gradient-based optimization routine (such as a Newton search). It is particularly

efficient to regard the problem as an unconstrained optimization problem over the

the phase angles θi of w. In the Appendix 3.9.2 we derive expressions for the

gradient and Hessian needed for the Newton algorithm. Moreover, the optimum

solution is unique up to multiplication by a constant phase angle.
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Note that the above VQ design algorithm depends on the transmitted

power per antenna Ps due to the presence of the factor ς2 in the CC step. This

implies that the VQ design algorithm must be repeated and a new codebook gen-

erated every time the transmit power changes. This can be avoided by considering

one of two simpler design methods. In the high-SNR regime, i.e., when Ps is large,

the factor ς2 can be approximated by ‖h‖−2
1 , and hence Ps drops out of the algo-

rithm. In the low-SNR regime, i.e., when Ps is small, Ps‖h‖2
1 in the denominator

is small compared to 1, and hence ς2 ≃ Ps, therefore, the factor Ps is simply an

overall scaling on the conditional correlation matrix of (3.9), which can be dropped

without affecting the algorithm. These two algorithms will be referred to the high-

SNR VQ and the low-SNR VQ, and are identical to the algorithm described above

except that ς2 is replaced by ‖h‖−2
1 and 1, respectively.

Beamforming Vector Selection (Encoding): For a given codebook C =

{w1,w2, . . . ,wN}, regardless of the performance metric used, it is easy to see that

the receiver encodes as follows:

ŵ = Q(h) = arg max
wi∈C

∣
∣hHwi

∣
∣ (3.11)

Note that the ς2 and ‖h‖2
1 terms in (3.6) are in fact superfluous to the encoding, and

have been dropped. By this encoding scheme, the space of channel instantiations

{h : h ∈ Ct} is partitioned into {R̄i, i = 1, . . . , N}, where

R̄i = {h ∈ C
t :
∣
∣hHwi

∣
∣ ≥

∣
∣hHwj

∣
∣ , ∀ j 6= i} (3.12)

3.4 Capacity Loss with VQ-Based Feedback

In this section, we will derive analytical expressions for the performance

of Q-EGT for the case of an i.i.d. Rayleigh flat-fading channel with zero mean unit

variance complex Gaussian distributed entries. Specifically, we want to analyti-

cally characterize the capacity loss incurred due to the quantization of the EGT

beamforming vector by a finite number of bits.
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Recall from the previous section that Q(h) = wi ∀ h ∈ R̄i. Define

α ,
√

‖h‖2
1
Ps

1+‖h‖2
1
Ps

, and ξi , 1− |hHwi|2
‖h‖2

1

. Then, the expectation of (3.5), which is the

capacity loss, can be expressed as

CL =
N∑

i=1

Prob
(
h ∈ R̄i

)
Eh∈R̄i

{
− log

(
1 − α2ξi

)}
, (3.13)

Deriving a closed-form expression of the above capacity loss is difficult for several

reasons. First, the conditional density of ξi given h ∈ R̄i, from the optimum

encoding in (3.11), is difficult to obtain since the quantization cells defined by

(3.12) for 1 ≤ i ≤ N have complicated boundaries defined by neighboring code

vectors and could have all different shapes. This geometrical complexity makes

analytical expressions for the density of ξi intractable. Another factor adding to

the intractability of the problem is the dependence of the random variables α and

ξi, which is difficult to characterize. Using suitable approximations, we now show

how to obtain closed-form expressions that closely approximate the capacity loss.

Let us initially consider the high-SNR case, i.e., Ps is large, and hence

α ≃ 1 holds in (3.13). Under the high-resolution approximation, i.e., when B

is large, ξi is close to 0, and we can use the first-order Taylor series expansion

− log(1 − x) ≃ x to get

CL ≃
N∑

i=1

Prob
(
h ∈ R̄i

)
Eh∈R̄i

{ξi} (3.14)

To evaluate the capacity loss, we still need to find the conditional distribution

fξi(x|h ∈ R̄i) of ξi = 1− |hHwi|2
‖h‖2

1

given h ∈ R̄i = {h ∈ Ct :
∣
∣hHwi

∣
∣ ≥

∣
∣hHwj

∣
∣ ∀ j 6=

i}. To do this, we consider the following approximation to the quantization cell.

R̄i = {h ∈ C
t : ξi ≤ ξj ∀ j 6= i}

≃ R̂i ,
{
h ∈ C

t : ξi ≤ δ
}

; ∀ 1 ≤ i ≤ N, (3.15)

where δ > 0 is a constant chosen such that Prob(h ∈ R̂i) = 1/N . Although the

approximate quantization cells R̂i do not form a set of non-intersecting regions that

cover the Ct space (unlike R̄i), the shape and dimensions of R̂i will asymptotically
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approach those of R̄i as B increases. Geometrically, (15) corresponds to saying

that when N is large, the quantization cell R̄i is approximately a “ball” centered

at ŵi, with the “distance” from the center measured as 1 − |hHwi|2
‖h‖2

1

. That is, we

expect that the most of the channel instantiations that lie in the quantization

region R̄i will satisfy ξi ≤ δ for a fixed δ independent of i. This is similar to [23],

where the authors approximate the Voronoi regions by spherical caps centered at

the code points to obtain the outage probability of quantized MRT systems. Thus,

we now need to evaluate fξi(x|h ∈ R̂i) = fξi(x|ξi ≤ δ), which is given by

fξi

(

x|h ∈ R̂i

)

=
fξi(x)1[0,δ)(x)

Prob(h ∈ R̂i)
=
fξi(x)1[0,δ)(x)
∫ δ

y=0
fξi(y)dy

, (3.16)

for 1 ≤ i ≤ N , where 1A(x) is the indicator function with value 1 if x ∈ A and 0

otherwise, and fξi(x) is the unconditional distribution of ξi for a fixed beamforming

vector wi ∈ SE . Due to the left invariance property of h, fξi(x) is independent

of wi, i.e., we can use fξi(x) = fξ0(x), where ξ0 , 1 − |hHw0|2
‖h‖2

1

, and w0 , 1 =

[1, 1, . . . , 1]T , without loss of generality.

Since Prob(h ∈ R̂i) = 1/N independent of i, this implies that δ solves

Prob(h ∈ R̂i) = Prob(ξi ≤ δ) =

∫ δ

0

fξ0(x)dx =
1

N
. (3.17)

Thus, we can find fξi(x|h ∈ R̄i), the conditional distribution required to compute

the capacity loss in (3.14), approximately as fξi(x|h ∈ R̂i), which is a function

independent of i given by

fξi

(

x|h ∈ R̂i

)

= 2Bfξ0(x)1[0,δ)(x), 1 ≤ i ≤ N. (3.18)

Since the regions R̂i have identical shape and equal probability 1/N , we can focus

on any one quantization cell in determining the capacity loss (3.14), as follows

CL ≃ Eh∈R̂1
{ξ1} =

∫ δ

0

xfξ1(x|h ∈ R̂1)dx, (3.19)

where fξ1(x|h ∈ R̂1), the probability density function (PDF) of ξ1 given h ∈ R̂1, is

given by (3.18), which in turn requires us to find fξ0(x). We postpone determining

fξ0(x) in (3.18) till a later subsection; we first show that the above approximations

lead to a lower bound on the capacity loss.
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3.4.1 Performance Bound Using the Quantization Cell Approximation

The following lemma and theorem first establish a relationship between

fξi(x|h ∈ R̄i) and fξi(x|h ∈ R̂i) when the codebook satisfies Prob(h ∈ R̄i) = 1/N

and then state that the approximate capacity loss is a lower bound on the actual

capacity loss. We omit the proofs as they are similar to that of an analogous lemma

and theorem for the quantized MRT case [55].

Lemma 7. For 0 ≤ x ≤ δ, we have fξi(x|h ∈ R̄i) ≤ fξi(x|h ∈ R̂i).

Theorem 2. Consider the capacity loss in (3.13) when the codebook satisfies

Prob(h ∈ R̄i) = 1/N :

CL = Eh∈R̄i

{
− log

(
1 − α2ξi

)}
. (3.20)

The capacity loss ĈL obtained by applying the quantization cell approximation R̄i ≃
R̂i to the above equation is a lower bound on the actual capacity loss CL. That is,

if we denote

ĈL = Eh∈R̂i

{
− log

(
1 − α2ξi

)}
, (3.21)

then we have

ĈL ≤ CL. (3.22)

3.4.2 Distribution of ξ0

The only step remaining in obtaining a closed-form expression for the

capacity loss of (3.19) is to determine the density function fξ0(x) in (3.18), of the

random variable ξ0 , 1 − |hHw0|2
‖h‖2

1

for any fixed vector w0, which we address next.

We have been able to obtain a closed-form expression for the distribution only for

the t = 2 case. For general t, we consider a natural extension of the expression

for t = 2, and show through simulation that it works extremely well for small ξ0

(which is the region of interest).
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The t = 2 Case

For the special case of 2 transmit antennas, the cumulative distribution

function (CDF) of ξ0 has a surprisingly simple form, given by

Fξ0(x) =

√
x

2 − x
; 0 ≤ x ≤ 1. (3.23)

The derivation of this result is provided in Appendix 3.9.3.

General t Case

For a general t, when N is reasonably large, we can look for approximate

expressions for the CDF of ξ0 that closely match the actual CDF when ξ0 is close

to 0. It is found that the probability distribution function is well approximated by

Fξ0(x) ≃
(

x

2 − x

) t−1

2

; 0 ≤ x ≤ 1. (3.24)

Fig. 3.1 shows the plot of the above expression for the CDF of ξ0 along with results

obtained through computer simulation, which shows that the approximation error

is in fact small, especially for small ξ0. We will therefore use the above expression

for the CDF of ξ0 in deriving the capacity loss expression.

3.5 Evaluating the Capacity Loss With VQ

We are now in a position to compute the capacity loss performance using

the above approximations. Recall that the capacity loss is given by (3.13). Under

the high resolution approximation, we have

CL ≃
N∑

i=1

Prob
(
h ∈ R̄i

)
Eh∈R̄i

{
α2ξi

}
. (3.25)

Here, we do not make the high-SNR assumption α2 ≃ 1 in order to

get a more general expression for the capacity loss, however, we will make the

approximation that α2 and ξi are uncorrelated. Although not strictly true, in

practice it turns out that the error due to this approximation is small, as will
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Figure 3.1: Cumulative distribution of ξ0 for different values of t. Here, ‘theory’

refers to equation (3.24)

be shown through simulations. Recall that the quantization region R̄i does not

depend on ‖h‖2
1, hence conditioning on the region does not change its mean, i.e.,

we have Eh∈R̄i
{α2} = E {α2}. Substituting into the above equation and using the

quantization cell approximation in (3.15), we have

CL ≃ E
{
α2
}

Eh∈R̂1
{ξ1} . (3.26)

Thus, we need to find E {α2} and Eh∈R̂1
{ξ1}, which we address next.

3.5.1 Evaluating the Expectation of α2

In order to find the expectation of α2 , Ps‖h‖2
1

1+Ps‖h‖2
1

, we need to know the

distribution of ‖h‖2
1. Unfortunately, this distribution is not known in closed-form,

except for the t = 2 transmit antenna case [56]. In this chapter, we employ the

moment matching method to approximate the distribution of ‖h‖2
1 by a Gamma

distribution, drawing our intuition from the fact that ‖h‖2
2 is Gamma distributed
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with 2t degrees of freedom. This technique has the advantage of being both simple

and sufficiently accurate for our purposes, as will be demonstrated through numer-

ical examples. By direct computation, since |hi| are i.i.d. Rayleigh distributed,

E
{
‖h‖2

1

}
= ψ(t) , t

(

1 +
π

4
(t− 1)

)

,

E
{
‖h‖4

1

}
= φ(t) , 2t+

3(π + 2)

2
t(t− 1) +

3π

2
t(t− 1)(t− 2)

+
π2

16
t(t− 1)(t− 2)(t− 3).

Matching the moments, we get the PDF of ‖h‖2
1 as

f‖h‖2
1
(x) ≃ xν−1 exp(−x/β)

βνΓ(ν)
, x ≥ 0, (3.27)

where the scaling and location parameters ν and β are given by

ν ,
ψ2(t)

φ(t) − ψ2(t)
,

β ,
φ(t)

ψ(t)
− ψ(t).

We can now obtain the expectation of α2 , Ps‖h‖2
1

1+Ps‖h‖2
1

as

E
{
α2
}
≃ 1

βνΓ(ν)

∫ ∞

0

xν exp(−x/β)
1
Ps

+ x
dx, (3.28)

which can be evaluated using several formulas from [57] as

E
{
α2
}
≃ ν

(βPs)
ν

[

Γ(−ν) 1F1

(

1 + ν; 1 + ν;
1

βPs

)

+
(βPs)

ν

ν
1F1

(

1; 1 − ν;
1

βPs

)]

,

(3.29)

where 1F1(·; ·; ·) is the confluent hypergeometric function defined in [57]. Note

that Γ(−ν) is well-defined because ν is not an integer. Fig. 3.2 shows the plot of

the above expression for the mean of α2, as well as the results obtained through

computer simulation. It is clear that the theory agrees well with the simulations.

Note also that (3.27) is not the only possible approximation for the PDF of ‖h‖2
1,

other approximations have been used in the context of finding the performance of

coherent equal gain combining receivers in multipath fading channels. For exam-

ple, Nakagami [58] approximated the sum of t χ-distributed random variables by
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Figure 3.2: Expectation of α2 as a function of Ps, for different values of t. Here,

‘theory’ refers to equation (3.29)

another χ random variable to obtain an expression for the PDF of ‖h‖1. Using

the transformation y = x2, we obtain the PDF of ‖h‖2
1 as the Gamma distribution

f‖h‖2
1
(x) ≃ xν−1 exp(−x/β)

βνΓ(ν)
, x ≥ 0, (3.30)

where the scaling and location parameters ν and β are now given by

ν , t, β , 1 + (t− 1)
π

4
.

Closed-form expressions for the performance of quantized feedback can be derived

using (3.30) also, and the expressions are in fact slightly simpler because ν = t

is an integer, but in practice we have found that the performance obtained from

approximation (3.27) is marginally better than that obtained by (3.30) and other

similar approximations, and hence, we present the theoretical expressions obtained

using the approximate density given by (3.27) only.
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3.5.2 Evaluating the Expectation of ξ1

We now evaluate the second term of (3.26), i.e., Eh∈R̂1
{ξ1}. Note that

ĈL , Eh∈R̂1
{ξ1} is the capacity loss (3.26) when α2 ≃ 1, i.e., under the high-

SNR, high-resolution approximation. To specify fξ1(x) in (3.18), we first need to

determine the value of δ from (3.17) by setting Fξ0(δ) = 1/N . Substituting for

Fξ0(δ) from (3.24) and rearranging, we obtain

δ =
2

1 +N
2

t−1

. (3.31)

We can now compute ĈL as

ĈL =

∫ δ

0

xfξ1(x)dx = δ −N

∫ δ

0

(
x

2 − x

) t−1

2

dx. (3.32)

Note that, for 0 ≤ x ≤ δ,

(x

2

) t−1

2 ≤
(

x

2 − x

) t−1

2

≤
(

x

2 − δ

) t−1

2

. (3.33)

Using the two limits, ĈL is bounded by

δ − N

(2 − δ)
t−1

2

δ
t+1

2

(t+ 1)/2
≤ ĈL ≤ δ − N

2
t−1

2

δ
t+1

2

(t+ 1)/2
(3.34)

2

(
t− 1

t+ 1

)[
1

1 +N
2

t−1

]

≤ ĈL ≤
(

2

1 +N
2

t−1

)[

1 − 2

t+ 1

(

1 +N− 2

t−1

)− t−1

2

]

.

In particular, when N is large, both the upper and lower bounds are approximately

equal and

ĈL ≃ 2

(
t− 1

t+ 1

)[
1

1 +N2/(t−1)

]

≃ 2

(
t− 1

t+ 1

)

2−
2B
t−1 . (3.35)

3.5.3 Summary and Discussion

Substituting (3.35) in (3.26), the capacity loss for Q-EGT under the high-

resolution approximation is given by

CL ≃ E
{
α2
}

2

(
t− 1

t+ 1

)

2−
2B
t−1 , (3.36)
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where E {α2} is given by (3.29), and is ≃ 1 in the high-SNR regime. In Section

3.8, we plot the capacity loss versus the number of feedback bits B in Fig. 3.5 and

versus the Ps in Fig. 3.6 with vector quantization for an i.i.d. Rayleigh flat fading

channel, which shows that the approximation error in the above expression is in

fact small.

In [27], the expression for the capacity loss with quantized MRT (Q-MRT)

under the high-SNR, high-resolution approximation was obtained as

CL ≃
(
t− 1

t

)

2−
B

t−1 . (3.37)

Comparing with (3.35), we see that Q-EGT requires roughly half the number of

bits to achieve the same capacity loss as Q-MRT. This observation is intuitively

satisfying, since the EGT beamforming vector has t−1 real parameters, as opposed

to the MRT beamforming vector which has 2(t−1) real parameters. Also, it should

be noted that the CL in (3.35) is the capacity loss w.r.t perfect EGT while the

CL in (3.37) is the capacity loss w.r.t perfect MRT. Hence, the above equations

should not be construed to mean that Q-EGT might offer a larger capacity than

Q-MRT. Finally, there exist certain combinations of N and t for which there is

negligible performance loss in imposing the per-antenna power constraint over the

less restrictive total power constraint [39], for i.i.d. fading channels.

3.6 Outage Probability with VQ-Based Feedback

The analytical tools developed thus far in this chapter are in fact quite

general, although the generalized Lloyd algorithm generates a codebook that specif-

ically maximizes the MSwIP. Using a procedure similar to the one described above,

analytical expressions for the outage probability can also be derived. Here, we

outline the procedure and present only the final result, as the actual details are

straightforward. The outage probability is given by

Pout (R,Ps) = Prob
(

γ
∣
∣wHŵ

∣
∣
2 ≤ τ

)

, (3.38)
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where γ , ‖h‖2
1, w , h/‖h‖1, τ , (2R−1)/Ps, and R is the target data rate. Now,

assuming that
∣
∣wHŵ

∣
∣2 and γ are approximately independent when B is large, and

using the development in the previous section, we get

Pout (R,Ps) = Eγ

{

Prob

(
∣
∣wHŵ

∣
∣
2 ≤ τ

γ

∣
∣
∣
∣
γ

)}

≃ Eγ {1 − Fξi (1 − τ/γ)} , P̂out (R,Ps), (3.39)

where w , h/‖h‖1 and τ , (2R − 1)/Ps, and R is the target data rate, as before.

Also, Fξi(x) is the CDF of ξi, which is obtained from (3.18) and (3.24) as

Fξi(x) =







0 x < 0,

N
(

x
2−x
)κ

0 ≤ x ≤ δ,

1 x > δ,

(3.40)

where δ = 2

1+N
1
κ
, and κ , t−1

2
. After substituting and simplifying, we get the final

expression for the outage probability as

Pout ≈ Fγ

(
τ

1 − δ

)

−N

(

Fγ

(
τ

1 − δ

)

− Fγ (τ)

)(

1 +
2(1 − δ)

δ
log

(
2 − 2δ

2 − δ

))

,

(3.41)

where Fγ(x) is the CDF of γ. Exact expressions for the outage probability can be

obtained by employing the characteristic function approach derived in [56]. In the

sequel, for simplicity, we will use an empirical distribution for γ, obtained through

Monte Carlo simulations. In Sec. 3.8, we plot the outage probability versus the

total transmit power for B = 2, 3, 4 with t = 3 transmit antennas in Fig. 3.8, and

the results show that the theoretical results agree well with the simulations.

3.7 Scalar Quantization of Parameters

Scalar quantization is a low complexity alternative to VQ, when the com-

putational resources required to run the Lloyd algorithm and to do the quantization

are scarce. Here, we present the performance of SQ for the case of i.i.d. Rayleigh

fading channels. Let ri , |hi| and φi , ∠hi − ∠h1, for 1 ≤ i ≤ t. Also, let
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θ1 , ∠h1, φ , [φ2, . . . , φt], r , [r1, . . . rt]
T , and sr ,

∑t
i=1 ri = ‖h‖1. Thus, h can

be rewritten as

h = exp(jθ1)diag([1 exp(jφ)])r. (3.42)

Note that φ1 = 0, and as we have already observed earlier, we only need to quantize

the t − 1 phase angle differences given by the entries of φ. With SQ, the t − 1

phase angles are quantized independently of each other to get φ̂ , [φ̂2, . . . , φ̂t], an

approach followed in [37], although the focus there was on the t = 2 case. In this

section, we will consider the case of i.i.d. Rayleigh fading channels, and derive an

upper bound for the expected MSwIP (approximate capacity loss) performance of

SQ. When the channel h is i.i.d. Rayleigh fading, it is clear that the phase angles

φ are i.i.d. uniformly distributed on [−π, π), and independent of the gains r. Also,

the gains r are i.i.d. χ-distributed. The capacity loss (3.25) can be written as

CL ≃ E

{

α2

(

1 −
∣
∣ŵHh

∣
∣2

‖h‖2
1

)}

, (3.43)

where, α2 =
Ps‖h‖2

1

1+Ps‖h‖2
1

as before, and ŵ is the quantized beamforming vector corre-

sponding to h. Note that the right hand side is the expected MSwIP with Q-EGT.

Now, ŵ is given by ŵ = [1 exp(jφ̂)]T . The above capacity loss can be expressed

as CL = Er {CL,r}, where the expectation is taken over the joint distribution of r;

and CL,r, the capacity loss conditioned on the gains r, is

CL,r ≃ Eφ







α2




1 −

∣
∣
∣[1 exp(−jφ̂)] exp(jθ1)diag([1 exp(jφ)])r

∣
∣
∣

2

s2
r












= Eφ







α2




1 −

∣
∣
∣[1 exp(j(φ− φ̂))]r

∣
∣
∣

2

s2
r












= α2

(

1 − 1

s2
r

rTAψr

)

, (3.44)
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where Eφ {} is the expectation over the joint distribution of phase angles φ. We

have also defined ψ , φ− φ̂, and Aψ as

Aψ , Eφ










1

exp(jψ)



 [1 exp(−jψ)]






. (3.45)

Then, we have,

CL = Er {CL,r} = Er

{
α2
}
− Er

{
α2

s2
r

rTAψr

}

= Er

{
α2
}
− Er

{

tr
(

AψAr

)}

, (3.46)

where Ar , Er

{
α2rrT/s2

r

}
. Note that Ar is a real symmetric positive definite

matrix with a1 , Er {α2r2
i /s

2
r} along the diagonal, and a2 , Er {α2rirj/s

2
r} , i 6= j

as its off-diagonal entries. Note that a1 and a2 do not depend on the specific indices

i and j, but only on whether i = j or i 6= j, since r has i.i.d entries. Substituting

for Aψ from (3.45) and simplifying, we have

CL = Er

{
α2
}
−Eφ

{
Q(ψ)

}
, (3.47)

where Q(ψ) is defined as

Q(ψ) , Eφ






[1 exp(−jψ)]Ar




1

exp(jψ)










. (3.48)

Now, if the total number of feedback bits B is large, we can assume that the

individual phase angle errors ψi = φi − φ̂i are small, and therefore, Q(ψ) can be

approximated by its second-order Taylor series expansion

Q(ψ) ≃ Q(0) + ψT∇ψQ(0) +
1

2
ψT∇2

ψQ(0)ψ, (3.49)

where, Q(0) is given by

Q(0) = 1TAr1 = Er

{
α2

s2
r

1T rrT1

}

= Er

{
α2
}
. (3.50)

Also, from the Appendix 3.9.2, it is readily verified the Gradient and Hessian of

Q(ψ) at ψ = 0 are given by ∇ψQ(0) = 0, and ∇2
ψQ(0) = 2a2

(
−tIt−1 + 11T

)
,
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with a2 , Er {α2rirj/s
2
r} , i 6= j, as before. Substituting (3.49) in (3.47), and

simplifying a little, we get

CL ≃ a2Eφ

{
ψT
(
tIt−1 − 11T

)
ψ
}
, (3.51)

The approximate capacity loss given above is upper bounded by the case where a

uniform quantizer in conjunction with an equal bit allocation (Bi = B/(t− 1)) is

used to quantize each angle φi. This choice is reasonable, since the phase angles

are i.i.d. uniformly distributed, the capacity loss is a monotonically increasing

convex function of the phase angle error, and it is isotropic, i.e., it is invariant

to exchanging (say) index i and j. Hence, we can expect the upper bound to

in fact be very close to the actual performance. Under the assumption of uni-

form independent quantization, we have the classical result from source coding

[59] Eφ {ψiψj} = ∆2δ(i− j)/12, where ∆ , (2π)2−Bi = (2π)2−B/(t−1) is the quan-

tization bin-width, and δk is the Kronecker delta function. Substituting, we get,

CL ≤ a2(t− 1)2Eφ

{
ψ2
i

}
=
π2(t− 1)2a2

3
2−

2B
t−1 . (3.52)

Now, the factor a2 , Er {α2rirj/s
2
r} , i 6= j can be easily computed through

simulation since ri are i.i.d. χ-distributed. We reiterate that the above upper

bound is tight, since the uniform bit allocation and uniform quantization is in fact

very likely to be the optimum scalar quantizer when B is a multiple of (t− 1). In

Sec. 3.8, we plot the capacity loss versus the number of feedback bits B in Fig.

3.5 with scalar quantization for an i.i.d. Rayleigh flat fading channel, which shows

that the above expression is in fact accurate.

3.7.1 Discussion

We can now immediately compare SQ (3.52) with VQ (3.36) in the high

SNR regime (α2 ≃ 1), reproduced here for convenience:

CV Q
L ≈ c12

− 2B
t−1

CSQ
L ≈ c22

− 2B
t−1 (3.53)
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where c1 , 2
(
t−1
t+1

)
, c2 , π2(t−1)2a2

3
, and a2 , Er

{

r1r2

(
Pt

i=1 ri)
2

}

. We see that both SQ

and VQ achieve the same convergence rate as B increases, and only differ in the

coefficient term. This agrees with classical results from source coding literature

for r-th power distortion functions (see, for example, [60]). In table 3.1, we have

compared SQ and VQ for different values of t. The second and third columns are

the coefficients in the capacity loss expression in (3.53). The fourth column is the

excess number of bits necessary to achieve the same capacity loss with SQ as with

VQ, which is given by ∆B , t−1
2

log2 (c2/c1), and the last column is the excess

bits per dimension. Note that the SQ apparently requires 0.0419 bits more than

VQ to achieve the same capacity loss performance in the t = 2 case. When t = 2,

there is only one parameter, φ2 , ∠h2 − ∠h1, that needs to be quantized, and φ2

is uniformly distributed. Therefore, we would expect that VQ would default to

SQ in this case, and they should perform the same. The discrepancy arises from

the quantization cell approximation of (3.15), as a result of which, the capacity

loss computed for the VQ case is in fact a lower bound, as given by Theorem 2.

Another interesting observation is that the gap between the SQ and VQ appears to

converge a constant of 0.357 bits per dimension. This can been seen by taking the

limit of ∆B as t becomes large. It is easy to show that ∆B/(t− 1) approximately

converges to log2

(
π2

6

)

/2 ≈ 0.359.

3.8 Numerical Results

In this section, we present simulation results to illustrate the performance

of codebooks designed using the MSwIP criterion, and to validate the theoretical

expressions obtained in the previous sections. For the simulations, we assumed

a Rayleigh flat-fading channel with t transmit antennas and 1 receive antenna.

10,000 random channel instantiations were used in the averaging.

Fig. 3.3 shows the experimental results for capacity loss obtained by

using the Lloyd algorithm to generate the quantized beamforming vectors. We use
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Table 3.1: Comparison of SQ and VQ methods for equal gain transmission.

t c1 , 2
(
t−1
t+1

)
c2 , π2(t−1)2a2

3
∆B , t−1

2
log2 (c2/c1) ∆B/(t− 1)

2 0.6667 0.7065 0.0419 0.0419
3 1 1.3265 0.4076 0.2038
4 1.2 1.7281 0.7892 0.2631
5 1.3333 1.9854 1.1488 0.2872
6 1.4286 2.1807 1.525 0.3051
8 1.5556 2.4339 2.260 0.3229
16 1.7647 2.8298 5.109 0.3406
32 1.8788 3.0672 10.96 0.3535
64 1.9385 3.1781 22.467 0.3566

the correlated Rayleigh fading channel model in [61] with the antenna elements

separated by d/λ = 0.5. Also plotted are the performance of the simpler high-SNR

and low-SNR codebooks, and as expected, the codebooks perform nearly optimally

in their respective SNR regimes. Therefore, a two-codebook strategy appears to be

reasonable for practical implementation, and one would choose between the high-

and low-SNR codebooks, depending on the SNR operating point.

For the remainder of this section, we assume that the channel h is i.i.d.

Rayleigh distributed. Fig. 3.4 shows the capacity loss performance of Q-EGT

with t = 2, 3, 4 as a function of B, with both SQ as well as VQ. Also plotted is the

performance of the codebook obtained by using the Grassmannian beamforming

criterion proposed by Love et. al. in [8]. For generating the latter codebook, a

computer search over 10,000 random code vectors was used, as suggested by the

authors. The results indicate that while the Grassmannian codebook performs

reasonably well at low feedback rates, there are significant losses in performance

at higher feedback rates. This is because the Grassmannian beamforming criterion

is in fact a min-max (worst-case) design criterion, whereas the MSwIP criterion

directly attempts to minimize the average capacity loss. Also, note that curves

corresponding to SQ and VQ are parallel, in agreement with the result of (3.53).

In Fig. 3.5, we validate the high-SNR, high-resolution approximation
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Figure 3.3: Ergodic capacity of the correlated MISO channel with Q-EGT for

different quantizer design methods (t = 3 and B = 1, 2, 3 from the bottom). The

capacities are normalized to the capacity of the perfect feedback system.

results for the capacity loss as given by (3.53). The curves for SQ and VQ coincide

when t = 2, since there is only one parameter (φ2 = ∠h2 − ∠h1) that needs

to be quantized. The theoretical expressions obtained closely match the results

obtained from simulation. Fig. 3.6 plots the capacity loss of a t = 3 transmit

antenna system versus the total transmit power (or SNR, since the noise power is

unity). This illustrates that the combined error due to approximating the densities

of α2 and ξ1 as well as assuming that they are uncorrelated is in fact small.

In Fig. 3.7, we compare the performance of the capacity achieved with

four systems: a quantized MRT system, a quantized EGT system, a system that

employs the identity transmit covariance matrix (which requires no feedback),

and a system that employs a fixed beamforming vector (which also requires no

feedback), for a fixed transmit power of Ps = 15dB. In the latter two cases, the
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capacity expressions are given by [3]

Cno fb = E
{
log2

(
It + PshhH

)}
= E

{
log2

(
1 + Ps‖h‖2

2

)}
,

Cfix = E
{

log2

(

1 + Ps
∣
∣hH1

∣
∣
2
)}

.

The figure shows that the capacity of Q-MRT is always greater than or equal to

that of Q-EGT for the same number of feedback bits, which is as expected since

the Q-EGT is a more constrained system than the Q-MRT system. However, note

that Q-MRT and Q-EGT perform almost the same in two cases (t = 3, B = 3) and

(t = 4, B = 3). This is because these are close to (t = 3, N = 7) and (t = 4, N = 7),

for which, it is known [39] that, with the minimum value for the maximum cross-

correlation amplitude between any two code vectors as performance metric, the

codebook designed under a total power constraint also satisfies a per-antenna power

constraint. For these combinations of N and t, it is likely that the Q-MRT and Q-

EGT have the same performance in terms of the capacity as well, when the channel

is i.i.d. Rayleigh fading. Also, while the capacity of the system that employs the

identity covariance matrix is higher than that obtained using a fixed beamforming

vector, since the MISO channel is spatially single dimensional, even with one or

two bits of feedback, the Q-MRT/Q-EGT system outperforms the system with

the identity covariance matrix, when the receiver has perfect CSI and the feedback

link is noiseless and has no delay. Analysis of the optimality of beamforming under

quantized feedback can be found in [62], [63].

Fig. 3.8 shows the outage probability with t = 3 antennas at the trans-

mitter as a function of the transmitted power Ps. Both the theoretical result of

(3.41) and the simulation result obtained by using the MSwIP codebook are plot-

ted. It is clear from the graph that the theoretical expressions agree well with the

experimental results.
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Figure 3.4: Capacity loss performance of Q-EGT, t = 2, 3, 4, Ps = 10 dB, and with

SQ, VQ and Grassmannian beamforming.

3.9 Conclusion

We have investigated the problem associated with quantizing the per-

antenna power constrained beamforming vector for MISO systems with finite-rate

feedback. We have proposed a new design criterion, namely, maximizing the mean-

square weighted inner-product (MSwIP), and developed a Lloyd-type VQ design

algorithm, which can be used to design the codebook for flat-fading channels with

any distribution. For practical implementation, we have proposed two sub-optimal

low-SNR and high-SNR design algorithms as well. On the analytical side, we

considered the i.i.d. Rayleigh fading case and derived theoretical expressions for

the capacity loss and outage probability with both VQ as well as SQ. We see

that quantized EGT requires half the number of parameters to be conveyed to

the transmitter, and requires roughly half the number of feedback bits to achieve

the same capacity loss (in bits), when compared to MRT. We also contrast the
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Figure 3.5: Capacity loss performance of Q-EGT, t = 2, 3, 4, 5. Here, ‘theory’

refers to equation (3.53).

performance of SQ and VQ, and see that both offer the same rate of convergence

to the capacity with perfect feedback as B increases. However, there exists a

constant gap between the two, with the VQ scheme requiring fewer bits to achieve

a given level of capacity loss. For large number of transmit antennas, this gap

is observed to approach a constant of 0.357 bits per dimension regardless of the

number of transmit antennas. The accuracy of the theoretical expressions obtained

are illustrated through Monte-Carlo simulations.

Appendix

3.9.1 Equivalence of Two Optimization Problems

Lemma 8. The optimization problem (3.3) with S = SP is equivalent to the equal

gain transmission (EGT) problem, recapitulated here for convenience:

wo = arg max
w∈SE

∣
∣hHw

∣
∣
2
, (3.54)



71

−10 −5 0 5 10 15 20
10

−2

10
−1

10
0

Pt, dB

C
ap

ac
ity

 lo
ss

 (
na

ts
)

sim, B=2

theory, B=2

sim, B=3

theory, B=3

sim, B=4

theory, B=4

Figure 3.6: Capacity loss performance Q-EGT versus total transmit power, t = 3,

Ps = 10dB, with vector quantization. Here, ‘theory’ refers to equation (3.36).

where SE , {w : w = [1, exp(jθ2), exp(jθ3), . . . , exp(jθt)]
T}. The problems are

equivalent in the sense that they have the same solution.

Proof. We wish to maximize
∣
∣hHw

∣
∣
2
, a convex function, over the convex set

‖w‖∞ ≤ 1. From [64] (theorem 3, page 181), we have that the maximum oc-

curs at an extreme point. It is easy to show from the definition of an extreme

point, that any w ∈ SP is not an extreme point unless it satisfies

w = [exp(jθ1), exp(jθ2), . . . , exp(jθt)]
T . However, as already observed, an overall

phase (say, θ1) is immaterial to the above maximization problem, and we can set

θ1 = 0 without loss of generality, which proves the desired result.

Although we have stated the above result for r = 1, it is valid for

r > 1 as well, i.e., if H ∈ Cr×t, and we wish to solve the optimization problem

maxw∈S ‖Hw‖2
2, then the solution with S = SP is the same as that with S = SE .

Likewise, if A ∈ Ct×t is a hermitian symmetric positive semi-definite matrix and
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Figure 3.7: Capacity performance MRT, EGT (with perfect feedback), identity co-

variance matrix (no feedback), Q-MRT and Q-EGT versus the number of feedback
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2 bits of feedback, Q-EGT/Q-MRT perform better than the identity covariance

case, which requires no feedback.

we wish to solve maxw∈S wHAw, then the solution with S = SP is the same as

that with S = SE .

3.9.2 Gradient and Hessian of Q(w) , wHAw

In order to perform the Newton step to find the w that solves the con-

strained optimization problem given by (3.9), we need the gradient and Hes-

sian of Q(w) , wHAw, where A is an arbitrary Hermitian symmetric matrix.

The constrained optimization problem is best solved as an unconstrained op-

timization over the ϑ space, where ϑ , [θ2, θ3, . . . , θt]
T . Write w = z1 (ϑ) ,
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[1, exp jθ2, exp jθ3, . . . , exp jθt]
T . Also, let z2 (ϑ) , z∗1(ϑ). Now,

Q (w) = wHAw

⇒ Q (ϑ) = z2 (ϑ)T Az1 (ϑ) (3.55)

It is straightforward to obtain gradient as

∇ϑQ = (∇z1 (ϑ))AT z2 (ϑ) + (∇z2 (ϑ))Az1 (ϑ) , (3.56)

where, ∇z1 (ϑ) and ∇z2 (ϑ) are given by

∇z1 (ϑ) = j








0 exp jθ2 · · ·
0 0

. . .

0 · · · exp jθt








(3.57)

∇z2 (ϑ) = (∇z1 (ϑ))∗ (3.58)
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Also, the Hessian is obtained as

∇2
ϑQ = (∇z2 (ϑ))A (∇z1 (ϑ))T + j (∇z1 (ϑ)) diag

(
AT z2 (ϑ)

)

+ (∇z1 (ϑ))AT (∇z2 (ϑ))T − j (∇z2 (ϑ)) diag (Az1 (ϑ)) (3.59)

3.9.3 Distribution of ξ0 for 2 Transmit Antennas

First, note that we can consider w0 = [1, 1]T without loss of generality

due to the left-rotational invariance of the density of h. Next, if we write the

vector h with i.i.d entries as h = exp(jφ) × [α1, α2 exp(jθ)]T , then α1, α2, φ and

θ are independent, and α2
i are exponentially distributed, and φ and θ are uni-

formly distributed on [0, 2π). Note that ξ0 is independent of the overall phase

φ, and therefore, without loss of generality, we can assume that h is of the form

[α1, α2 exp(jθ)]T . Then, we can write ξ0 as

ξ0 =

{

1 −
∣
∣hH1

∣
∣2

‖h‖2
1

}

=
2α1α2 (1 − cos(θ))

α2
1 + α2

2 + 2α1α2
(3.60)

Thus, the CDF Fξ0(x) = Prob(ξ0 ≤ x) is given by

Fξ0(x) =
1

2π

∫ 2π

0

Prob(ξ0 ≤ x|θ)dθ, (3.61)

where Prob(ξ0 ≤ x|θ) is the CDF of ξ0 conditioned on θ, given by

Prob(ξ0 ≤ x|θ) = Prob

(
α2

1

α2
2

+
α2

2

α2
1

≥ z

)

, where

z , 4

(
1 − cos θ

x
− 1

)2

− 2.

Using the fact that α2
i , i = {1, 2} are exponentially distributed with PDF fα2

i
(x) =

exp(−x), we can evaluate the above probability in closed-form as

Prob(ξ0 ≤ x|θ) =







1 z < 2

2 · Prob (α2
1 ≤ y1α

2
2) z ≥ 2

=







1 z < 2

2y1
1+y1

z ≥ 2,
(3.62)
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where y1 is the smaller root that satisfies y1 + 1/y1 = z. Note that the condition

z ≤ 2 implies cos(θ) ≥ 1 − 2x, and thus Fξ0(x) can be simplified as

Fξ0(x) =
1

π

∫ cos−1(1−2x)

0

dθ +
1

π

∫ π

cos−1(1−2x)

2y1

1 + y1
dθ

= 1 − 1

π

∫ π

cos−1(1−2x)

1 − y1

1 + y1

dθ (3.63)

Since

1 − y1

1 + y1
=

(
z − 2

z + 2

) 1

2

=

√
(

1−cos θ
x

) (
1−cos θ

x
− 2
)

1−cos θ
x

− 1
, (3.64)

we can make the substitution v , −(1+cos θ)
2(1−x) in (3.63) to get

Fξ0(x) = 1 − 2(1 − x)

π

∫ 1

0

√
1 − v

((2 − x) − 2(1 − x)v)
√
v
dv (3.65)

And again substitute sin2 θ = v to get

Fξ0(x) = 1 − 4(1 − x)

π

∫ π/2

0

cos2 θ

(2 − x) − 2(1 − x) sin2 θ
dθ (3.66)

Using formula 3.615.1 from [57],

∫ π/2

0

cos 2nxdx

1 − a2 sin2 x
=

(−1)nπ

2
√

1 − a2

(
1 −

√
1 − a2

a

)2n

,
[
a2 < 1

]
, (3.67)

we get
∫ π/2

0

cos2 θ

(2 − x) − 2(1 − x) sin2 θ
dθ =

1

2(2 − x)

[
∫ π

2

0

dθ

1 − 2(1−x)
2−x sin2 θ

+

∫ π
2

0

cos 2θdθ

1 − 2(1−x)
2−x sin2 θ

]

=
π

2
√

x(2 − x)




1 −




1 −

√

1 − 2(1−x)
2−x

√
2(1−x)
2−x





2





=
π
(√

x(2 − x) − x
)

4(1 − x)
√

x(2 − x)
(3.68)

Substituting into (3.66), we finally get Fξ0(x) as

Fξ0(x) = 1 − 1
√

x(2 − x)

(√

x(2 − x) − x
)

=

√
x

2 − x
; 0 ≤ x ≤ 1. (3.69)
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Differentiating, we get the PDF of ξ0 as

fξ0(x) =
1

(2 − x)
√

x (2 − x)
; 0 ≤ x ≤ 1. (3.70)

3.9.4 Distribution of the parameter

Recall that α = |v|, where v , h/‖h‖2. Let x , Re (v), y , Imag (v)

and θ , ∠v. Then, we have x = α cos θ and y = α sin θ. The Jacobian of the

transformation is

J =
∂ (x,y)

∂ (α, θ)
=

















cos θ1 0 . . . −α1 sin θ1 0 . . .

0
. . .

. . .

. . . cos θt 0 . . . −αt sin θt
sin θ1 0 . . . α1 cos θ1 0 . . .

0
. . .

. . .

. . . sin θt 0 . . . αt cos θt

















(3.71)

It is easy to show that the determinant of the Jacobian is

det [J ] = α1α2 . . . αt (3.72)

Thus, we have

fα,θ(α, θ) = α1 . . . αtfx,y(α cos θ, α sin θ) (3.73)

But we know that fx,y(·) is a constant since v is uniformly distributed on the unit

circle. The value of the constant is the inverse of the surface area of the 2(t − 1)

dimensional unit sphere, given by 2πκ2t−2. Thus, we wan to evaluate

fα(α) =

∫

fα,θ(α, θ)dθ

= (2πκ2t−2)
−1 α1 . . . αt

∫

dθ

= (2πκ2t−2)
−1 α1 . . . αt (2π)t (3.74)

And note that fα(α) = 0 whenever αTα 6= 1.
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4 High-Rate VQ for Noisy

Channels With Random Index

Assignment: Part 1: Theory

4.1 Introduction

It is well known that the performance source quantization can be very

sensitive to errors introduced when the codepoint index is transmitted over a noisy

channel. For example, speech is typically compressed using a highly efficient vector

quantization (VQ) scheme prior to transmission over a noisy channel, and the

resulting indices could be very sensitive to errors in the channel over which they

are transmitted. Hence, the performance of VQ when the index is sent over a noisy

channel is pertinent to practical communication systems.

The effect of channel errors on VQ can be modeled as an index error,

that is, the index i corresponding to the current source instantiation is received as

a possibly different index j. Classical source coding has devoted much effort to the

problem of source compression for noisy channels in the past couple of decades,

and two dominant approaches have emerged. The first is channel-optimized VQ,

i.e., to replace the distortion measure used for optimizing the quantizer with the

expected distortion over the noisy channel [65] - [68]. The second approach involves

index assignment, i.e., to design the quantizer without considering channel errors

and then map codewords to indices in such a way that codewords resulting in

78
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small inter-codepoint distortions are mapped to index pairs that correspond to

channel symbols with large transition probability and vice versa [69] - [72]. Other

recent works on source quantization for noisy channels include [73] - [75]. Most of

the works in the literature employ Mean Squared Error (MSE) as the distortion

function. However, more general distortion measures are considered here (such as

Log Spectral Distortion (LSD) in wideband speech spectrum quantization) and the

performance of source compression under channel errors is examined. Furthermore,

in this work, it is assumed that the index assignment is random. Random indexing

results in a so-called simplex error channel, i.e., the probability of receiving an

index j when an index i is sent only depends on whether or not i and j are

different. Thus, in this chapter, based on classical results from the source coding

literature [59] - [78], new results are derived analyzing the effect of errors on the

performance of source coding with arbitrary distortion measures for simplex error

channels.

Clearly, it would be convenient if the overall distortion could be decom-

posed as the sum the distortion due to the source encoder and the distortion

induced by channel errors. It is shown in Sec. 4.4 that while this decomposition

is possible when the distortion is measured as the MSE, in general there is an

interdependence between the source and channel errors. The interdependence is

characterized for the case of discrete symmetric channels with random index as-

signment. The rest of this chapter is organized as follows. In Section 4.2, the

system model is described, and in 4.3, the noisy channel model and some of its

properties are indicated. In Section 4.4, the expected distortion of source coding

for noisy channels with random index assignment is derived. Section 4.5 presents

several extensions to the analysis, including optimization of the point density to

minimize the expected distortion. Simulation results to verify the accuracy of the

analysis are presented in Section 4.6, and concluding remarks are offered in Section

4.7.
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Figure 4.1: Block diagram of the vector quantizer and the noisy channel

4.2 Preliminaries

The block diagram of the system under consideration is shown in Fig. 4.1.

Let the n-dimensional real vector x ∈ Dx ⊂ Rn be the random source with a

continuous pdf fx(x), where Dx is the domain of x. For convenience, many of

the results derived in this chapter will assume that Dx is compact, although the

results are generalizable with some effort. The vector quantization encoder and

decoder are described by N partition regions R̄i, 1 ≤ i ≤ N that tile Dx, and an

associated codebook of representation or reconstruction vectors C = {x̂i, 1 ≤ i ≤
N}, respectively. That is, whenever x ∈ R̄i, the encoder outputs the index i,

and whenever the decoder receives index j, it outputs the vector x̂j . Let d(x, x̂)

represent the distortion incurred in representing a source instantiation x by x̂. The

distortion function is assumed to be non-negative, twice continuously differentiable

and bounded, and with d(x,x) = 0, ∀x.

Given the code book, two encoder structures are well-known: first, when

the transmitter does not account for possible channel errors, the partition regions

of the transmit-unoptimized quantizer are given by the well-known nearest neighbor
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condition (NNC):

R̄i = {x : Q(x) = x̂i} = {x : d(x, x̂i) < d(x, x̂j) ∀ j 6= i} . (4.1)

Note that, by definition, the code book at the transmitter satisfies x̂i ∈ R̄i. Also,

the encoder operation can now be stated simply as Q(x) = x̂i whenever x ∈ R̄i.

The vectors in the code book x̂i can still be chosen to minimize the distortion

while accounting for the channel characteristics, therefore, use of the NNC does

not preclude optimizing the code book for noisy channels.

The probability of x lying in the region R̄i is Pi =
∫

R̄i
fx(x)dx, and the

cell diameter is defined as

δN , max
1≤i≤N

diam
(
R̄i ∩ Dx

)
, (4.2)

where diam is the Euclidean distance between two points that are furthest away

in R̄i. A sequence of quantizers is said to have diminishing cell diameters if

limN→∞ δN = 0. One of the consequences of having diminishing cell diameters and

a continuous density fx(x) is that Pmax(N) , max1≤i≤N Pi → 0 as N → ∞.

Second, given x, the transmit-optimized quantizer chooses the index i

that minimizes the expected distortion after accounting for possible channel errors,

denoted dc(x, ŷi):

dc(x, ŷi) ,
N∑

k=1

d(x, ŷk)Pk|i. (4.3)

Therefore, the quantization region, now denoted S̄i, is given by the weighted

nearest-neighbor condition:

S̄i = {x : dc(x, ŷi) < dc(x, ŷj), ∀ j 6= i} (4.4)

where Pj|i is the index transition probability, i.e., the conditional probability that

the transmitted index i is received as index j. In this chapter, it will be assumed

that the quantization regions are defined by either (4.1) or (4.4), i.e., the encoder

is optimized either for an error-free channel or for the noisy channel.
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Similarly, given the quantization regions at the encoder (R̄i or S̄i), there

exist two possibilities for designing the codebook at the receiver. The first option,

called the centroid condition, is stated as

ŷj = arg min
ŷ

E {d(x, ŷ)|Q(x) = x̂j} , (4.5)

where the expectation is taken over the set of x that are quantized to index j. Note

that the quantizer functionQ(·) could either be the transmit-unoptimized quantizer

described by (4.1) or the transmit-optimized quantizer described by (4.4). As the

receiver does not account for the channel characteristics, this approach is called

the receive-unoptimized. In contrast, the weighted centroid condition, which used

in the receive-optimized approach, is described by

ŷj = arg min
ŷ

N∑

i=1

Pj|iE {d(x, ŷ)|Q(x) = x̂i} , (4.6)

where the right hand side of the above expression is the expectation of the distor-

tion over all possible quantized indices at the transmitter i, given that the received

index is j. Note that the generalized Lloyd algorithm can be used to generate a

codebook of channel optimized vectors in the case of MSE distortion, as described

in [66]. In this chapter, it will be assumed that in the channel optimized case,

the codebook is generated using the techniques available in the literature, and

the focus will be on the theoretical analysis of such (locally) optimum codebooks.

Note that a sub-optimal codebook, such as a product codebook or a structured

codebook, does not, in general, satisfy either (4.5) or (4.6). To allow for the de-

velopment of a more general result, this work does not assume that the centroid

or weighted centroid condition is satisfied, i.e., the codebook may be sub-optimal.

Next, the simple channel model considered in this chapter is described, and then

the performance of VQ when the index is transmitted over such noisy channels is

analyzed.
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4.3 Discrete Symmetric Channels

The channel model considered in this chapter is the Discrete Symmetric

Channel (DSC), whose transition probability matrix, which is an N × N matrix

with (i, j)-th element being the transition probability Pj|i that index j is received

given that index i was sent, has the property that every row is a permutation of the

first row, and every column is the permutation of the first column [79]. The DSC

has the additional property that Pi|i is independent of i, a fact that will be used in

the derivations to follow. It is also reasonable to assume that Pi|i ≥ Pj|i, ∀j 6= i,

i.e., when index i is transmitted, the most likely index to be received is i itself,

which implies Pi|i ≥ 1/N . Finally, the average of the probabilities of all possible

index errors is denoted as

ǫ(N) ,
1

N(N − 1)

N∑

i,j=1,

j 6=i

Pj|i. (4.7)

ǫ(N) could depend on N , and satisfies 0 ≤ ǫ(N) ≤ 1/N , since Pi|i ≥ 1/N .

Note that with a DSC, the performance generally depends on the assign-

ment of indices to code points. The number of possible index assignments is N !,

and problem of finding the optimum index assignment is known to be NP com-

plete [80], hence, random search-based techniques are employed in practice. In this

chapter, however,the index assignment problem is circumvented by assuming that

it is chosen randomly and uniformly from the N ! possible assignments, indepen-

dent of the encoder. When a random index assignment is employed, the equivalent

channel has a transition probability given by

Pj|i =







ǫ(N), j 6= i

1 − (N − 1)ǫ(N), j = i
, (4.8)

i.e., it is the transition probability obtained after averaging over all possible permu-

tations. The above transition probability could also arise, for example, when the

indices are transmitted over the channel using any orthogonal modulation scheme.
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For convenience, a channel with the index transition probability given above will

be referred to as a simplex error channel (SEC).

There are several reasons why a random index assignment is pertinent.

Theoretically, it makes the analysis tractable, and closed-form expressions for the

expected distortion for source coding for noisy channels can be derived. More-

over, the random index assignment approach provides an analytic upper bound

on the performance of the best possible index assignment, and a lower bound on

the performance of the worst index assignment, as pointed out in [68]. Also, in

many practical systems, the quantizer output index is encoded using a fairly pow-

erful channel code before its transmission over a noisy channel. This makes the

computation of the pairwise index transition probability intractable; however, one

can experimentally (or theoretically) often find the probability of an index error.

Then, with random indexing, the channel can be modeled as a simplex error chan-

nel with the given probability of correct index reception, and the results presented

in this chapter apply. However, this should not be construed to mean that little

gains can be obtained from index assignment, but rather that if the number of

quantization levels is large, finding the best (or even a good) index assignment can

be computationally expensive. In particular, for applications such as wideband

speech spectrum compression where the number of code-points is huge, the index

assignment as well as the pairwise index transition probabilities could be com-

putationally infeasible. In such cases, it is pertinent to consider a random index

assignment for practical implementations, where the randomness could be achieved

by employing different index assignments over time in a pre-specified pattern.

The discrete symmetric channel with random index assignment has the

following interesting properties.

Property 1: When random index assignment is employed, the transmit-

optimized quantizer of (4.4) is equivalent to employing the same codebook at the

transmitter and the receiver. Let ŷi, 1 ≤ i ≤ N be the set of reconstruction vectors

at the receiver. Then, the Voronoi regions corresponding to the transmit-optimized
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quantizer is given by

S̄i =

{

x :

N∑

k=1

d(x, ŷk)Pk|i <

N∑

l=1

d(x, ŷl)Pl|j, ∀ j 6= i

}

=







x : (1 − (N − 1)ǫ(N)) d(x, ŷi) + ǫ(N)d(x, ŷj) + ǫ(N)

N∑

k=1

k 6=i,j

d(x, ŷk)

< (1 − (N − 1)ǫ(N)) d(x, ŷj) + ǫ(N)d(x, ŷi) + ǫ(N)

N∑

l=1

l 6=i,j

d(x, ŷl), ∀ j 6= i







= {x : (1 −Nǫ(N)) d(x, ŷi) < (1 −Nǫ(N)) d(x, ŷj), ∀ j 6= i}

= {x : d(x, ŷi) < d(x, ŷj), ∀ j 6= i} ,

where the last equality follows because ǫ(N) < 1
N

. Note that since the index

assignment is random and independent of the encoding operation, the transition

probability of the equivalent channel obtained by averaging over all possible permu-

tations is used for Pj|i above. Thus, the transmitter employs the same code-points

{ŷi, 1 ≤ i ≤ N} as the receiver. Following the steps backwards, it is clear that

if the same code-book is employed at the transmitter and the receiver, no further

optimization is possible at the transmitter, i.e., the resulting quantizer is transmit-

optimized. Due to this property, in the sequel, it is assumed that the encoder and

the decoder share a common codebook {x̂i, 1 ≤ i ≤ N}.
Property 2: With random index assignment, both the transmit unop-

timized quantizer of (4.1) as well as the transmit optimized quantizer of (4.4) are

guaranteed to be regular 1. The regularity of the transmit-unoptimized quantizer

follows from its definition, while that of the transmit-optimized quantizer is a direct

consequence of the above property.

Note that there exists an upper bound on the distortion for noisy channels

that is independent of the channel behavior and N , as follows. If x̄d is defined as

1a quantizer is said to be regular if each encoding cell S̄i is convex and contains the code-vector
ŷi = Q(S̄i)
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the centroid of x under d(x,y), i.e.,

x̄d , arg min
x̂

∫

x

d(x, x̂)fx(x)dx, (4.9)

then, for the optimum quantizer, the expected distortion is upper bounded by

Ed ≤
∫

x

d(x, x̄d)fx(x)dx. (4.10)

This is because the distortion can always be upper-bounded by the case where

the codebook consists of the single vector x̄d. In this case, channel errors have

no effect on the performance, since the decoder always outputs x̄d irrespective of

which index is received, and the expected distortion is simply given by (4.10).

In the above, one could also include the situation where the receiver

outputs (say) index 0 to declare an erasure; in this case, it is equivalent to having

one additional vector at the receiver compared to that at the transmitter. The

analysis of such a system can also be carried out along the lines presented in

this chapter, with straightforward modifications. Note that under this set-up,

Pi|i = 1 − (N − 1)ǫ(N) is the probability of correct reception. This implicitly

assumes that as N is increased, more (or less) energy is used to transmit the

symbol in order to maintain the probability of correct reception given above. For

example, one simple model is obtained by assuming that as N is increased, the

per-index transmit power is increased to maintain a constant probability of correct

index reception, that is, ǫ(N) = ρ/(N−1). In this case, Pi|i = 1−ρ is independent

of N . Another example is when the index is mapped to a L , log2(N) bit symbol,

and each bit is transmitted over a Binary Symmetric Channel (BSC) with cross-

over probability q. In this case, the probability of correct reception Pi|i = (1− q)L,

and thus ǫ(N) =
(

1 − (1 − q)L
)

/ (N − 1).

4.4 High-Rate Performance of Vector Quantization

In this section, the high-rate performance of vector quantization for the

case of discrete symmetric channels with random index assignment is derived. The
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development in this section is as follows. First, the expected distortion performance

is characterized, where the expectation is taken over the source statistics, the

channel statistics as well as the random index assignment. To do this, a particular

structure is assumed for the codebook, which leads to an upper bound on the

performance with an optimum unstructured codebook. Specifically, it is assumed

that some fraction of the codepoints are merged into the centroid x̄d, while the

remaining codepoints are distinct. Next, since the index assignment is random, the

expected distortion is a random variable depending on the index assignment. When

the fraction of merged codepoints goes to zero, an upper bound on the variance of

the distortion is derived. From the upper bound, it is seen that when the number

of dimensions n ≥ 4, the variance of the distortion goes to zero faster than the

expected distortion as N gets large. Practically, this implies that a vast majority

of the index assignments are equally good (or equally bad), hence, random search

based techniques would be computationally inefficient in finding the best index

assignment as N gets large.

4.4.1 Codebook Structure

Fig. 4.2 shows the channel-optimized codepoints obtained using the

generalized Lloyd algorithm described in [66], for 16-level quantization of a 2-

dimensional i.i.d. Gaussian source. The Fig. 4.2(a) shows the conventional code-

book, i.e., one that is optimized for an error-free channel. In Fig. 4.2(b), the

channel is a BSC with bit cross-over probability q = 0.02, and random index as-

signment. Since the encoder is unaware of the particular index assignment, the

codebook is designed for the equivalent SEC described in the previous section. No-

tice that the codepoints are now closer to the origin (i.e., the source centroid), as

expected. Fig. 4.2(c) corresponds to q = 0.05, and here two codepoints are starting

to merge at the origin. Loosely speaking, the generalized Lloyd algorithm attempts

to perform joint source-channel coding by mapping multiple indices to the same

vector (at the centroid). Finally, 4.2(d) shows the codepoints with q = 0.1, and it
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(a) VQ codebook, noiseless channel
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(b) COVQ codebook, BSC, q = 0.02
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(c) COVQ codebook, BSC, q = 0.05
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q = 0.1, dim = 2, N = 16

(d) COVQ codebook, BSC, q = 0.1

Figure 4.2: VQ codepoints for N = 16 level quantization of a n = 2 dimensional

i.i.d. zero mean unit variance Gaussian source. The codebooks were generated

using the channel-optimized version of the generalized Lloyd algorithm.
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is clear that 5 out of the 16 codepoints are merged at the centroid. Thus, as the

channel deteriorates, more and more codepoints get merged at the origin, until,

for a completely degenerate channel (i.e., one for which Pj|i = 1/N for all i and j),

the codebook contains just one distinct codepoint at x̄d.

The above example motivates the particular structure assumed for the

Channel Optimized Vector Quantizer (COVQ) codebook in the sequel. In classi-

cal source coding, when the channel is noiseless, it is known that the distribution

of codepoints often approximates a continuous point density. However, when the

channel has errors, the codepoints of the optimum codebook initially shrink closer

towards the centroid of the source distribution, and eventually, some of the code-

points collapse together and the point density becomes singular. A singular point

density can be thought of as the sum of a continuous point density and one or

more singular points. In this section, an upper bound on the expected distortion

is obtained by assuming that the optimum point density consists of a continuous

part, and a delta function at the centroid x̄d given by (4.9). Then, of the total N

code points, αN distinct points are drawn from a continuous density (it is assumed

that αN is a large integer for large enough N), while the remaining (1−α)N points

are at the centroid x̄d, where 0 ≤ α ≤ N−1
N

. Note that α can itself be a function

of N and the channel transition probability, which then corresponds to tuning the

quantizer to the channel at each specific N . Also note that when α = (N − 1)/N ,

the point density is continuous (for large N) as no codepoints are merged, whereas

when α = 0, there is only one code point at the centroid, and therefore the ex-

pected distortion is given by (4.10). Under this assumption, the code book can be

equivalently represented as having αN+1 points {x̂1, . . . , x̂αN , x̄d}. The equivalent

index transition probability matrix Pj|i can then be expressed more compactly by
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the (Nα + 1) × (Nα + 1) matrix

P =











1 − (N − 1)ǫ(N) ǫ(N) . . . ǫ(N) N(1 − α)ǫ(N)

ǫ(N) 1 − (N − 1)ǫ(N)
. . . N(1 − α)ǫ(N)

...
...

ǫ(N) . . . ǫ(N) 1 − αNǫ(N)











.

(4.11)

Notice that the above equivalent index transition probability is no longer simplex,

because the point x̄d actually consists of N(1−α) codepoints, and when the source

x lies in the quantization region for the point x̄d (denoted R̄x̄d
), one of the N(1−α)

indices corresponding to x̄d is randomly picked and sent across the channel. Since

there are N(1 − α) indices that can be received without making additional error

due to the channel, with random index assignment, the probability that when one

of the indices corresponding to the point x̄d is sent is received as any one of the

indices corresponding to the same point x̄d is 1−αNǫ(N). This is larger than the

probability of correct index reception given by 1 − (N − 1)ǫ(N) for all the other

indices that have distinct corresponding codepoints.

4.4.2 Assumptions and Approximations

Recall that in the system model employed here, the transmitter and the

receiver share a common codebook and the quantization regions are given by (4.1).

With random index assignment, this implies that the quantization regions are

also transmit optimized. The assumptions and approximations necessary for the

development are as follows:

1. From Bennett [59]

Assumption 1. The number of distinct codepoints αN + 1 is large, such

that the volumes V (R̄i) of the bounded cells are very small.

Assumption 2. The source density function fx(x) is smooth, so that Rie-

mann sums approach Riemann integrals, and the mean value theorem of cal-

culus applies.
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Assumption 3. The total overload distortion is negligible. For example, all

the probability is on a bounded set.

2. From Lloyd [77]

Assumption 4. The specific point density (to be defined later) approaches

a smooth point density function λ(x) and N increases.

3. From Gardner and Rao [78]

Assumption 5. The quantization cell R̄i is well approximated by a corre-

sponding n-dimensional hyper-ellipsoid with the same volume as the quanti-

zation cell, whose shape is determined by the local sensitivity (Hessian) of

the distortion function at x̂i.

For simplicity of presentation, the detailed derivation is relegated to the Appen-

dices and the high-rate result is simply stated here.

4.4.3 Expected Distortion

The expected distortion is obtained by taking a triple expectation over the

source distribution, the channel transition probabilities and the index assignments,

as follows

Ed =
1

N !

∑

π

N∑

i=1

∫

x∈R̄i

N∑

j=1

Pπ(j)|π(i)d(x, x̂j)fx(x)dx. (4.12)

As pointed out earlier, the random index assignment converts any discrete mem-

oryless channel into an equivalent SEC given by (4.8). Therefore, the expected

distortion after averaging over the random index assignment is

Ed =
N∑

i=1

∫

x∈R̄i

N∑

j=1

Pj|id(x, x̂j)fx(x)dx, (4.13)

where, the transition probability Pj|i is given by (4.8). Let ϕ(α,N) , αN + 1, and

note that 1 ≤ ϕ(α,N) ≤ N . It is shown in the Appendix 4.8.1 that

Ed =

∫

x

Ed,xfx(x)dx (4.14)
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where, Ed,x, the expected distortion conditioned on the source instantiation x, is

Ed,x ≈ ϕ(α,N)ǫ(N)

∫

d(x,y)λ(y)dy

+(N − ϕ(α,N))ǫ(N)d(x, x̄d)

+
ϕ(α,N)ǫ(N)

2(n+ 2)

(

|D(x,x)|
ϕ2

(α,N)λ
2(x)κ2

n

) 1

n

tr

(

D−1(x,x)

∫

D(x,y)λ(y)dy

)

+
n(1 −Nǫ(N))

2(n+ 2)

(

|D(x,x)|
ϕ2

(α,N)λ
2(x)κ2

n

) 1

n

+

(
N − ϕ(α,N)

)
ǫ(N)

2(n+ 2)

(

|D(x,x)|
ϕ2

(α,N)λ
2(x)κ2

n

) 1

n

tr
(
D−1(x,x)D(x, x̄d)

)
(4.15)

In the above equation, κn is the volume of an n-dimensional unit sphere, D(x̂, ŷ)

is an n× n dimensional matrix with j, k-th element defined by

Dk,j(x̂, ŷ) =
∂2d(x, ŷ)

∂xj∂xk

∣
∣
∣
x=x̂

, (4.16)

and λ(x) is the so-called fractional point density, and is defined as follows. The

specific point density [76] is given by

λN(x) ,
1

NV (S̄i)
, if x ∈ S̄i, for i = 1, 2, . . . , N. (4.17)

Then, for large N , under Assumption 4, λN(x) approximates a continuous non-

negative density function λ(x) having a unit integral.

The expected distortion in (4.15) is the sum of five terms. The first term

represents the expected distortion when the source is quantized to one of the first

αN distinct points in the codebook and there is an error in the channel, but the

received codepoint is also one of the first αN codepoints. The second term is

the distortion when the source is quantized to one of the first αN codepoints and

there is no error in the channel. The third term is the distortion when the source is

quantized to one of the first αN points in the codebook, but due to channel error

it is received as x̄d. The fourth term is the distortion when the source is quantized

to x̄d but due to channel errors the received index corresponds to one of the first



93

αN codepoints. The last term is the distortion when the source is quantized to

x̄d, and the received index (with possible errors) corresponds to x̄d as well.

Note that when ǫ(N) = 0, all but the fourth term in (4.15) drop out,

and it is clear that that ϕ(α,N) = N minimizes the distortion, i.e., for an error-free

channel, no codepoints are merged, which agrees with conventional wisdom. With

ǫ(N) = 0 and ϕ(α,N) = N , (4.15) reduces to the classical high-rate distortion result

in [78]. Also, one caveat in using (4.15) is that it is derived under the assumption

that ϕ(α,N) is large (a good rule of thumb is 2 or 3 bits per dimension). As seen

earlier, as ϕ(α,N) → 1, the distortion should approach the source distortion given by

(4.10). However, the above expression does not reduce to (4.10) when ϕ(α,N) → 1,

as the assumption of ϕ(α,N) being large is violated.

4.4.4 Variance of the Distortion over Index Assignments

When the index assignment is random, taking the expectation of the

distortion over the source and channel statistics keeping the index assignment

fixed yields a random variable that depends on the index assignment. Here, for

simplicity, it is assumed that the point density is continuous, i.e., ϕ(α,N) = N , and

the the rate at which the variance of the average distortion decreases as the number

of quantization levels N becomes large is analyzed. A continuous point density

would be optimal, for example, at low channel error rates or when the codebook

employed is one designed for an ideal (i.e., error-free) channel. Define d̂ij as

d̂ij ,
∫

x∈R̄i

d(x, x̂j)fx(x)dx, (4.18)

and note that d̂ij is bounded since the distortion was assumed to be a bounded

function. Then, conditioned on the index assignment, the expected distortion can

be written as

Ed|π =

N∑

i,j=1

Pπ(j)|π(i)d̂ij

=
∑

i6=j
Pπ(j)|π(i)d̂ij +

∑

i

Pπ(i)|π(i)d̂ii. (4.19)
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One of the properties of a discrete symmetric channel is that Pπ(i)|π(i) = (1− (N −
1)ǫ(N)) independent of i, and therefore, the second term above does not depend on

the index assignment. Therefore, one can focus on the first term, which is denoted

by Ẽd|π. It is shown in the Appendix 4.8.4 that

Var(Ẽd|π) = O(1/N) +O(Pmax(N)), (4.20)

where Pmax(N) , max1≤i≤N Pi, and Pi is the probability that x ∈ R̄i.

In other words, the variance of the distortion decreases at least as fast as

either 1
N

or Pmax(N). If one assumes that the cell volumes decrease linearly with

N , it is reasonable to expect that Pmax(N) decreases as 1/N . Then Var(Ẽd|π) is

upper bounded by O(1/N), and since the expected distortion with random index

assignment is at best given by O(N
−2

n ), it is clear that at least for n ≥ 4, the

standard deviation of the average distortion goes to zero faster than the mean, i.e.,

most of the index assignments are asymptotically bad (or good). This also implies

that random search based techniques would be inefficient in finding the best index

assignment for large N .

4.5 Special Cases: ϕ(α,N) = N and the MSE Distortion

The remainder of this chapter will be primarily concerned with the behav-

ior of the expected distortion with random index assignment. Therefore, without

loss of generality, consideration is restricted to the simplex error channel with tran-

sition probability given by (4.8). The high-rate distortion formula given by (4.15)

is hard to directly interpret and optimize, hence, the development in this section

is in two parts. For the first part, it is assumed that ϕ(α,N) = N , i.e., that no

codepoints are merged at the centroid. In this case, it will be seen that at high

rates, the expected distortion can be approximately expressed as the sum of the

source quantization distortion and the channel error-induced distortion. In the

second part, the assumption on ϕ(α,N) is relaxed, but the distortion measure is as-

sumed to be the MSE distortion. Again, it will be seen that the overall distortion
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splits in two terms. Also, the point density is optimized to minimize the expected

distortion for a wide range of channel error probabilities.

4.5.1 The ϕ(α,N) = N Case

In this subsection, it is assumed that the point density has no singularity,

i.e., ϕ(α,N) = N , and the distortion function is arbitrary. Then, (4.15) becomes

Ed,x ≈ Nǫ(N)

{
∫

y

d(x,y)λ(y)dy +
N

−2

n κ
−2

n
n

2(n+ 2)
λ

−2

n (x) |D(x,x)|
1

n

· tr

(

D−1(x,x)

[∫

y

(D(x,y) −D(x,x))λ(y)dy

])}

+
nN

−2

n κ
−2

n
n

2(n+ 2)
λ

−2

n (x) |D(x,x)|
1

n , (4.21)

where the last term is now the asymptotic distortion in the absence of channel

errors (i.e., when ǫ(N) = 0).

Asymptotic Performance

As N gets large, it is clear that the second term in (4.21) is always

dominated by the first term, due to the presence of the N
−2

n term. Therefore, this

term can always be neglected in comparison to the first term as N gets large, and

the high-rate distortion can be expressed as

Ed,x ≈ Nǫ(N)

∫

y

d(x,y)λ(y)dy +
nN

−2

n κ
−2

n
n

2(n+ 2)
λ

−2

n (x) |D(x,x)|
1

n , (4.22)

where the first term is now the high-rate distortion purely due to channel errors

whereas the second term is the high-rate distortion purely due to the quanti-

zation error. Thus, for symmetric error channels, the asymptotic distortion can

be expressed as the sum of the channel-error induced distortion and the source-

quantization induced distortion for the class of bounded, twice differentiable distor-

tion measures. It is important to note, however, that this result does not imply the

independence of the two sources of error in x, namely, the error vector introduced
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by the quantization and that introduced by channel errors. While this result is

known for MSE distortion [81], to the best of the authors’ knowledge, this is the

first time that such a result has been shown for more general distortion measures.

The above expression reduces to an expression in [68] for the case of a BSC with

random index assignment and the MSE distortion.

Another important inference that can be drawn from (4.22) pertains to

the trade off between the source code rate and the channel code rate. As N gets

large, the quantization error decreases according to N
−2

n . Now, the behavior of

Nǫ(N) depends on that of the sequence of channel codes used to transmit the

index for each N . If Nǫ(N) decreases slower than N
−2

n , it implies that the channel

code is inadequate in the sense that the overall distortion will eventually decrease

according to the slower Nǫ(N) term, i.e., the distortion caused due to channel

errors dominates the performance. On the other hand, if Nǫ(N) decreases faster

than N
−2

n , it implies that the channel code is needlessly conservative, i.e., the

transmitter can potentially save power by employing a slightly lower rate code.

Thus, a sequence of channel codes is said to be balanced with the source code if

Nǫ(N) decreases at a rate proportional to N
−2

n for large N , because in this case

the overall distortion also decreases at the rate N
−2

n as N gets large.

Sensitivity of Conventional Source Coding to Channel Errors

With conventional source coding (i.e., source coding with no channel er-

rors), the point density is chosen to minimize the second term in (4.22) subject to

the constraint that
∫

x∈Dx

λ(x)dx = 1. The optimum point density can be found

by applying Hölder’s inequality as [54]

λconv(x) =

(

|D(x,x)|
1

n fx(x)
) n

n+2

∫

x∈Dx

(

|D(x,x)|
1

n fx(x)
) n

n+2

dx

. (4.23)

Substituting the above λconv(x) into (4.22), the expected distortion can be com-

puted. The following two simple examples illustrate this for MSE distortion, i.e.,
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d(x,y) = ‖x− y‖2. One property of the MSE distortion is that D(x̂, ŷ) = 2In for

any (x̂, ŷ); therefore, the second term in (4.21) equals zero and drops out.

Example 1: The source vector x is n-dimensional i.i.d. Gaussian dis-

tributed with zero mean and unit variance. Then, the mean and variance of x are

given by mx = 0 and σ2
x = n respectively. Also, it can be verified that λconv(x) is

an n-dimensional i.i.d. Gaussian density with zero mean and variance (n + 2)/n

per dimension. Then, the expected distortion can be shown to be

Ed
.
= 2(n+ 1)Nǫ(N) + 2πN

−2

n κ
−2

n
n

(
n+ 2

n

)n
2

(4.24)

Example 2: The source vector x is n-dimensional i.i.d. uniformly dis-

tributed with each entry uniformly distributed on [0, 1]. Then, mx = 0.5 1 where 1

is a vector of ones, and σ2
x = n/12. It can be verified that λconv(x) is n-dimensional

with i.i.d. entries uniformly distributed on [0, 1]. Then, the expected distortion is

Ed
.
=
nNǫ(N)

6
+
nN

−2

n κ
−2

n
n

n+ 2
(4.25)

Optimization of the Point Density

Now consider optimization of the point density λ(x) in (4.22), i.e., the

problem of determining the λ(x) that minimizes the expected distortion. With a

slight abuse of notation, label the first and second terms of (4.22) as E
(1)
d and E

(3)
d

respectively. From (4.22), using standard variational calculus [82], if a continuous

point density exists, it is given by

λopt(x) =

[

N− 2

nκ
− 2

n
n |D(x,x)|

1

n fx(x)

(n + 2)
(
Nǫ(N)

∫
d(x,y)fx(y)dy + µ

)

] n
n+2

, (4.26)

with µ > 0 being a normalization constant. This optimum point density is valid for

large N and is dependent on N , which is different from the classical notion of the

point density. The above integral is clearly a monotonically decreasing function

of µ, therefore, a continuous point density will not exist if, with µ = 0, λopt(x)
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integrates to a value less than 1. That is, a continuous point density exists if and

only if,
∫
[

N− 2

nκ
− 2

n
n |D(x,x)|

1

n fx(x)

(n + 2)
(
Nǫ(N)

∫
d(x,y)fx(y)dy

)

] n
n+2

dx > 1. (4.27)

If we define I∗ as

I∗ ,





∫
(

κ
− 2

n
n |D(x,x)|

1

n fx(x)

(n + 2)
(∫

d(x,y)fx(y)dy
)

) n
n+2

dx





n+2

n

(4.28)

then a continuous point density does exists, provided

N
n+2

n ǫ(N) < I∗. (4.29)

Thus, the existence of a continuous point density depends on the relative rates

of at which Nǫ(N) and N−2/n decrease with N as N gets large.There are three

possibilities, assuming that Nǫ(N) is well-behaved as N gets large:

1. If Nǫ(N) = o
(

N
−2

n

)

, the error is dominated by the E
(3)
d term, i.e., channel

errors play an insignificant role in the asymptotic distortion. In this case,

asymptotically, the optimum point density is given by λconv(x), and the dis-

tortion is given by the second term of (4.22), i.e.,

Ed ≈
nN

−2

n κ
−2

n
n

n + 2

(∫

x∈Dx

(

|D(x,x)|
1

n fx(x)
) n

n+2

dx

)n+2

n

. (4.30)

2. If N
−2

n = o (Nǫ(N)), the error is dominated by the channel errors (i.e.,

the E
(1)
d term above). Then, as N gets large, the optimum point density

approaches a delta function at the centroid of the source x̄d given by (4.9),

and the distortion is given by

Ed ≈ Nǫ(N)

∫

x

d(x, x̄d)fx(x)dx. (4.31)

Note that in this case, since channel errors dominate the performance, the op-

timum quantizer avoids incurring additional distortion due to channel errors

by collapsing all the codepoints onto x̄d.
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For example, with MSE distortion, when the index is mapped to a L ,

log2(N) bit word and transmitted over a BSC with cross-over probability

q, ǫ(N) =
(

1 − (1 − q)L
)

/ (N − 1), and hence Nǫ(N) → 1 as N increases.

Thus, the asymptotic distortion Ed ≈ σ2
x for large N , i.e., BSC with random

index assignment is asymptotically “bad”, as the distortion approaches the

source variance, a fact that is in agreement with findings in [83].

3. If the approximation Nǫ(N) ≈ cnN
−2

n is valid for large N with cn < I∗ given

by (4.28), the optimum point density of (4.26) reduces to

λopt(x, cn) =
κ

−2

n+2

n |D(x,x)|
1

n+2 f
n

n+2

x (x)
(
cn (n+ 2)

∫
d(y,x)fx(y)dy + µ

) n
n+2

, (4.32)

where the normalization constant µ is chosen such that
∫
λopt(x, cn)dx = 1.

Additionally, if c∗n can be chosen such that c∗n = I∗, then the optimum point

density can be written more simply as

λ∗opt(x) =

[

α |D(x,x)|
1

n fx(x)
∫
d(y,x)fx(y)dy

] n
n+2

, (4.33)

where α is a normalization constant. Comparing with (4.23), the optimum

point density is matched to a “virtual” source with density

fvirt
x (x) =

βfx(x)
∫
d(y,x)fx(y)dy

, (4.34)

where β is a normalization constant. This is intuitively satisfying because

the optimum quantizer compresses the points closer to the centroid of the

source under d(x,y).

4.5.2 Mean-Squared Error Distortion

In this subsection, it is assumed that the distortion function is the MSE,

and point density can potentially have a singularity, i.e., ϕ(α,N) ≤ N . When

d(x,y) = ‖x− y‖2 is the MSE function, D(x,y) = 2In regardless of x and y, and
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therefore the expected distortion given by (4.15) simplifies to

Ed ≈ ϕ(α,N)ǫ(N)

∫ ∫

‖x − y‖2λ(y)fx(x)dydx

+(N − ϕ(α,N))ǫ(N)

∫

‖x − x̄d‖2fx(x)dx

+
n

n + 2

(
κnϕ(α,N)

)− 2

n

∫

λ−
2

n (x)fx(x)dx, (4.35)

which can in turn be simplified to

Ed ≈ Nǫ(N)σ2
x + ϕ(α,N)ǫ(N)

(
σ2

y + ‖mx −my‖2
)

+
n

n+ 2
ϕ
− 2

n

(α,N)κ
− 2

n
n

∫

λ−
2

n (x)fx(x)dx, (4.36)

where ϕ(α,N) , αN + 1 as before, and mx =
∫

xfx(x)dx and my =
∫

yλ(y)dy are

the means of the source and the code-point locations respectively, and σ2
x and σ2

y

are the variances of the source and the code-point distributions, respectively. The

fact that, with the MSE distortion, x̄d = mx, has also been used to obtain the

above expression. When n = 1 (scalar quantization) and ϕ(α,N) = N , the above

expression reduces to similar expressions in [73, 81].

4.5.3 Optimization of the Point Density

A First Look at the Problem

Without loss of generality, one can let mx = 0 to express the expected

distortion as

Ed ≈ Nǫ(N)σ2
x + (αN + 1) ǫ(N)

(
σ2

y + ‖my‖2
)

+
n

n+ 2
(αN + 1)−

2

n κ
− 2

n
n

∫

λ−
2

n (x)fx(x)dx. (4.37)

Notice that the first term is independent of both the point density and α, and thus

the expected distortion with the codebook structure assumed here is lower-bounded

by Nǫ(N)σ2
x for simplex error channels (or for discrete memoryless channels with

random index assignment). The last term in the above expression is minimized by

the conventional point density (4.23). However, it is possible to reduce the overall
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distortion by choosing a point density that has a smaller second moment than

the conventional point density, as that would lead to a reduction in the second

term. The above expression also shows the effect of choosing different values of

0 ≤ α ≤ (N − 1)/N . A small value of α implies that the overall point density is

highly singular. In this case, the second term, which involves the second moment

of the point density, is small, but the third term, that depends on a negative

power of αN + 1, is relatively large. On the other hand, if we choose α close to

(N −1)/N , the last term is small; however, the second term is large. The choice of

α = (N − 1)/N is therefore likely to be optimal only in the case where the second

term is small, i.e., when ǫ(N) is small. Clearly, when ǫ(N) = 0, α = (N − 1)/N is

optimum, which corresponds to employing a point density with no singularity at

the origin. As the channel gets worse, ǫ(N) gets larger, and therefore the second

term starts dominating the performance. In this case, α = (N − 1)/N is no longer

optimal, and one must employ a smaller value of α to balance the second and the

third terms.

Optimum Point Density with MSE Distortion

While the qualitative arguments in the preceding subsection provide an

intuitive feel for the relative importance of the different terms, the following anal-

ysis shows how to optimize the point density as well as how to optimally choose

the value of α depending on the channel condition. Note that σ2
y + ‖my‖2 =

∫
yTyλ(y)dy, and for simplicity of notation let ϕ , αN+1 and gn , nκ

− 2

n
n /(n+2),

and write the high-rate distortion as

Ed ≈ gnϕ
− 2

n

∫

λ−
2

n (x)fx(x)dx + ϕǫ(N)

∫

yTyλ(y)dy +Nǫ(N)σ2
x. (4.38)

Note that 1 ≤ ϕ ≤ N , and that ϕ is actually an integer. However, for the purposes

of optimization, when N is large, ϕ can be considered to be a continuous variable,

and since the function Ed is a continuous function of ϕ, it is reasonable to expect

that the optimum discrete value of ϕ would be one of the nearby integers. Thus,
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taking the partial derivative with respect to ϕ and equating to zero,

−2

n
gnϕ

−n+2

n

∫

λ−
2

n (x)fx(x)dx + ǫ(N)σ2
y = 0 (4.39)

which yields

ϕopt =

[

2gn
∫
λ−

2

n (x)fx(x)dx

nǫ(N)σ2
y

] n
n+2

(4.40)

It is easily verified the second partial derivative is positive, i.e., ϕopt given above

is indeed a local minimizer. Note that the above equation is valid provided 1 ≤
ϕopt ≤ N . Otherwise, the optimum value of ϕ is likely to be one of the end-points,

either 1 or N . When ϕopt is given by (4.40), the expected distortion becomes

Ed ≈ n+ 2

2

(
2gn
n

) n
n+2

ǫ
2

n+2 (N)

(∫

yTyλ(y)dy

) 2

n+2
(∫

λ−
2

n (x)fx(x)dx

) n
n+2

+Nǫ(N)σ2
x (4.41)

From the above expression, the point density that minimizes the overall distortion

must find the right trade-off between minimizing the second moment of the point

density (the first integral) and being matched to the source density fx(x) (i.e.,

minimizing the second integral). The point density that minimizes the second

moment is a delta-function, whereas the point density that minimizes the second

integral is the conventional point density. Therefore, provided ϕopt in (4.40) satis-

fies 1 < ϕopt < N , the optimum point density is independent of N and the channel

behavior ǫ(N) for large N . As N increases, however, the value of ϕ and therefore

α would change, allowing the overall point density to have a larger or smaller frac-

tion of the total codepoints at the centroid. Now, finding the point density that

minimizes (4.41) directly is hard, so an indirect method is adopted here. Using the

calculus of variations, the optimum point density λ(x) subject to the constraints

(positive, and integrates to unity) can be shown to be given by

λopt(x) =




2gnfx(x)

n
(

ϕ
n+2

n ǫ(N)xTx + µϕ
2

n

)





n
n+2

(4.42)
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where the normalization constant µ is chosen such that λopt(x) integrates to 1.

Again, it is easily verified that since the second partial derivative is positive, the

above λopt(x) is indeed a local minimizer. Now, from the analysis above, provided

1 < ϕopt < N , the optimum point density is a function independent of N and

ǫ(N). This is possible only if the value of ϕ varies with N such that

nϕ
n+2

n ǫ(N)

2gn
= K, (4.43)

where K is a constant independent of N . Then, the term M , nµϕ
2

n/2gn can be

considered to be a new normalization constant, the λopt(x) is independent of N .

To summarize, provided 1 < ϕopt < N , the minimum expected MSE is

Emin
d = gnϕ

− 2

n

[∫

λ
− 2

n

opt (x)fx(x)dx +K

∫

yTyλopt(y)dy

]

+Nǫ(N)σ2
x. (4.44)

The optimum point density λopt(x) is given by

λopt(x) =

[
fx(x)

KxTx +M

] n
n+2

, (4.45)

with M being a normalization constant. Surprisingly, it will be shown that M = 0

yields the optimum density, and that the value of K is chosen independent of

N and ǫ(N) such that the term inside the square braces of (4.44) is minimized.

Although K is independent of N or ǫ(N), both N and ǫ(N) affect the actual value

of the overall distortion, as they should.

Discussion

Consider what happens as N is held fixed, and ǫ(N) starts at 0 and

increases to its maximum possible value of 1/N . When ǫ(N) = 0, the second term

in (4.38) drops out, and therefore the conventional point density given by (4.23)

minimizes the overall distortion.

Let ϕconv denote the value of ϕ obtained from (4.40) by substituting

λ(x) = λconv(x). Note that ϕopt obtained from (4.40) with the optimum point

density necessarily satisfies ϕopt ≥ ϕconv, since the λconv(x) minimizes the numer-

ator in (4.40), while the λopt(x) allows the numerator to increase slightly while
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reducing the denominator in order to minimize the expected distortion. There-

fore, for small values of ǫ(N), if ϕconv ≥ N , it is clear that ϕopt will remain fixed

at its upper limit of N , i.e., no codepoints are merged at the centroid. For this

range of ǫ(N), λopt(x) is directly given by (4.42) with ϕ = N , which does depend

on ǫ(N) and N . Thus, one critical value of ǫ(N) is when ϕconv = N , i.e.,

ǫcrit,1 = N−n+2

n

[

2gn
∫
λ
− 2

n
conv(x)fx(x)dx

n
∫

xTxλconv(x)dx

]

, (4.46)

and for 0 ≤ ǫ(N) ≤ ǫcrit,1, ϕopt = N is satisfied.

Another critical value for ǫ(N) is when the normalization constant µ = 0

in (4.42) with ϕ = N . This implies

ǫcrit,2 = N−n+2

n

[
∫ (

2gnfx(x)

nxTx

) n
n+2

dx

]n+2

n

, (4.47)

and the optimum point density is given by

λopt(x) =

(
fx(x)

KxTx

) n
n+2

, (4.48)

where K is the normalization constant:

K =

[
∫ (

fx(x)

xTx

) n
n+2

dx

]n+2

n

. (4.49)

It can be verified that at this critical value of ǫcrit,2, λ(x) given by (4.48) and ϕ = N

satisfy (4.40) and (4.42), i.e., the local optimality conditions are all satisfied. Since

the critical value of ǫcrit,2 in (4.47) is of the order N−(n+2)/n, for sufficiently large N

it will be smaller than 1/N , the upper bound on ǫ(N). For ǫcrit,2 ≤ 1/N to hold,

it is necessary that

N ≥
[
∫ (

2gnfx(x)

nxTx

) n
n+2

dx

]n+2

2

(4.50)

Thus, if ǫcrit,2 ≤ ǫ(N) ≤ 1/N , even with µ = 0, the point density function

given by (4.42) integrates to a value less than 1. Then, it is necessary to make

ϕ < N in order to for λopt(x) to be a valid point density. However, as already
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observed, when 1 < ϕ < N , the optimum point density is independent of N and

ǫ(N). This implies that for this range of ǫ(N), the optimum point density is given

by (4.48), and the optimum value of ϕ is obtained from (4.43) as

ϕopt =

[
2Kgn
nǫ(N)

] n
n+2

(4.51)

It can be verified that this value of ϕopt and λopt(x) satisfy (4.40) as well, thereby

showing that the point density and ϕ obtained here are indeed the local minimizers.

This leaves the case ǫcrit,1 < ǫ(N) < ǫcrit,2. Since ϕopt = N for ǫ(N) =

ǫcrit,1 as well as for ǫ(N) = ǫcrit,2, it is likely that ϕopt = N in the range ǫcrit,1 <

ǫ(N) < ǫcrit,2. The optimality conditions (4.40) and (4.42) can be jointly solved

numerically by simply sweeping ϕ over the range 1 ≤ ϕ ≤ N , and for each value

of ϕ, computing the normalization constant µ in (4.42), and substituting λopt(x)

in the overall distortion expression in (??), and finding the ϕ that attains the

minimum distortion. It has been found that for the cases considered in this chapter,

the minimum distortion is always attained when ϕ = N . Note that both ǫcrit,1 and

ǫcrit,2 are of the order N−n+2

n , i.e., they correspond to the case where the source

and channel code rates are balanced.

One caveat is that as ǫ(N) gets closer to 1/N , the value of ϕopt given

by (4.51) becomes small, i.e., the assumption that ϕ is large no longer holds,

since the number of free codepoints is no longer large. Then, the expression in

(??) which is based on the high-rate assumption becomes inaccurate, however, the

distortion with channel optimized quantization is always upper-bounded by σ2
x,

i.e., the distortion obtained by having only one code point at the source centroid.

4.6 Simulation Results

4.6.1 Sensitivity of Conventional Source Coding to Channel Errors

For simplicity, consider an n-dimensional source x that is i.i.d. and uni-

formly distributed on [−0.5, 0.5), with MSE as the performance metric. The quan-
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tized index is mapped to a B bit word and sent over a BSC with cross-over prob-

ability q, and a random index assignment is employed. To verify the sensitivity of

the performance of VQ to channel errors, the conventionally optimized codebook is

generated using the Lloyd algorithm [77] for different values of n and B in the ab-

sence of channel errors. For training the Lloyd algorithm, as well as for evaluating

the performance, 50,000 independent instantiations of x were employed.

Fig. 4.3 shows the MSE distortion versus the number of quantized bits B

for the uniformly distributed random vector with dimension n = 1, 2, 3 and 4. The

theoretical distortion is given by (4.25), with ǫ(N) =
(

1 − (1 − q)L
)

/ (N − 1), and

q, the bit transition probability, fixed at 10−3. From the bottom curve (n = 1),

notice that as B is increased, the overall distortion initially decreases, and later

starts to increase again. Asymptotically, the distortion would approach the channel

error-induced distortion of 1/6. Fig. 4.4 shows the MSE distortion versus q, with

B = 5, or N = 32 quantization levels. As in the previous figure, the four sets of

curves correspond to n = 1, 2, 3 and 4 from bottom to top. For small values of

q, the distortion with N = 32 is dominated by the source-quantization distortion

term (i.e., the second term), whereas, as q increases, the inter-codepoint distortion

(i.e., the first term) gets larger and the distortion finally approaches n(1− 0.5B)/6

as q → 0. Fig. 4.5 shows the E
(1)
d term only versus B, where E

(1)
d represents the

inter-codepoint distortion caused by channel errors only, i.e.,

E
(1)
d ≈

nN
(

1 − (1 − q)B
)

6 (N − 1)
. (4.52)

Notice that as B increases, the E
(1)
d term approaches the source distortion of n/6.

However, the above equation gives us the rate at which it approaches n/6 for a

given q. Thus, from Fig. 4.6, which shows the E
(1)
d term versus q with B fixed at

5 bits, we see that for large q ≈ 0.5, the distortion approaches n/6. For small q,

when B is large, the above equation is well approximated by E
(1)
d ≈ nBq/6, i.e.,

E
(1)
d increases linearly with q, as is evident from the graph.

It is also interesting to observe the rate B at which the high-rate approx-



107

imations become accurate. The distortion without channel errors is the second

term in (4.25), and a good rule-of-thumb in source coding is that the high-rate

results apply when we have about 2-3 bits per dimension. This can be seen, for

example, from Fig. 4.3, when there are no channel errors. With channel errors,

however, both the first and second terms (respectively, the E
(1)
d and the E

(3)
d terms)

need to converge to their theoretical values as B increases. From Fig. 4.5, a good

rule-of-thumb for the convergence of the E
(1)
d term is about 3-4 bits per dimension,

slightly higher than the corresponding number for the E
(3)
d term. Also, as B gets

large, the E
(1)
d term will dominate the channel behavior. Therefore, the simulation

results show that there is a range of B, for which, high rate results apply, while at

the same time, the E
(1)
d term does not yet completely dominate the performance.

Were this not the case, i.e., if the E
(1)
d term was always an order of magnitude

larger than the E
(3)
d term (or vice-versa), joint analysis of the E

(1)
d term and the

E
(3)
d terms would have been a moot point. The simulation results thus show that

there is a range of B for which the complete analysis can be usefully applied.

4.6.2 Optimization of the Point Density

For this subsection, the source is assumed to be a 2-dimensional Gaussian

distributed random vector with zero mean and unit variance per dimension. The

channel is modeled as a BSC with bit transition probability q and random index

assignment, as before. The generalized Lloyd algorithm described in [66] is used

to generate a codebook of channel optimized vectors with MSE as the distortion

metric. Figs. 4.7 and 4.8 plot the expected MSE distortion performance versus the

number of quantized bits B and the bit transition probability q, respectively. The

plots show the improvement in MSE performance that can be obtained by using

an optimum codebook (compared with the curves obtained using the conventional

codebook, labeled “unopt-CB”). Also, in Fig. 4.8, the two values of q corresponding

to ǫ(N) = ǫcrit,1 and ǫ(N) = ǫcrit,2 are also plotted, to show that the simulation

results agree with the theory over a wide range of values of q. Also, when q > qcrit,2,
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Figure 4.3: MSE distortion versus number of quantized bits B, for a uniformly

distributed random vector and index sent over the BSC with bit transition proba-

bility q = 10−3. The codebook is generated using the conventional Lloyd algorithm

with 10,000 training vectors. The theoretical curves are generated using (4.25).

the optimum point density is singular, i.e., ϕ < N .

Table 4.1 compares the theoretical and simulation-based values of ϕ for

different BSC bit transition probabilities q and number of codepoints N , which

shows that the theoretical and experimental values of ϕ match closely. For the ex-

perimental results, the ϕ was computed as the difference between the total number

of codepoints N and the number of codepoints whose Voronoi cells were empty in

the Lloyd algorithm. Also shown in the table is the expected MSE distortion. It is

interesting to note that when ϕ is close to N , i.e., when only a few codepoints are
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Figure 4.4: MSE distortion for a uniformly distributed random vector with the

conventional point density, and the number of quantization bits B fixed at 5 bits.

The quantized index is sent over a BSC with bit transition probability q (the

x-axis). The theoretical curves are generated using (4.25).

merged, the performance improves when N is increased with q being kept fixed.

For example, when q = 0.01, the performance improves as N is increased from 32

to 128. On the other hand, at a larger error rate, when a half or more of the code-

points are merged at the centroid, little performance improvement can be achieved

by increasing N . This is seen, for example, when q = 0.05, where the expected

distortion is about 0.81 regardless of the value of N . From (4.47), the critical value

of the bit transition probability qcrit,2 beyond which ϕopt < N can be shown to be

approximately proportional to 2−B/B, and from the table, one can see that this
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Figure 4.5: Inter-codepoint MSE distortion term E
(1)
d for a uniformly distributed

random vector, versus the number of feedback bits B. The index is sent over a

BSC with bit transition probability q = 10−3. The theoretical curves are generated

using (4.52).

critical value is roughly at q = 0.02 when N = 32, at q = 0.01 when N = 64 and

at a value slightly lower than 0.005 when N = 128, in agreement with the theory.

Comparing the distortion when N = 32 and q = 0.02 with that when N = 64 and

q = 0.05 (or when N = 64 and q = 0.01 with that when N = 128 and q = 0.02),

both cases have the same number of effective codepoints, but expected distortion

is larger with the larger N . From this, it is tempting to think that one could lower

the distortion by lowering N when ϕ is of the order N/2 or smaller. However, this

is only true if the q decreases adequately when the power is re-assigned to the fewer
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Figure 4.6: Inter-codepoint MSE distortion term E
(1)
d for a uniformly distributed

random vector, versus the BSC bit transition probability q. The number of quan-

tization bits B is fixed at 5. The theoretical curves are generated using (4.52).

number of bits. For example, if q = 0.05 when N = 64 implies that by dropping

one bit and going down to N = 32, the bit transition probability can improve to

q = 0.02 or better, then it is true that one could improve performance by using

the codebook with smaller N .

Finally, note that although the expressions for the expected distortion

were derived using the general distortion function d(x,y), simulation results have

been provided only for the MSE distortion case. This is mainly because the solution

to the weighted centroid step of the generalized Lloyd algorithm is known in closed

form for the MSE distortion (it is simply a weighted geometric centroid). More
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Table 4.1: Experimental and Theoretical Values of ϕ for different N and q. The

tuples correspond to (ϕexp, ϕtheory), for a 2-dimensional standard Gaussian random

vector. The number below the tuple is Ed. ϕtheory is computed from (4.51).

N\q 0 0.0020 0.0050 0.0100

32
(32, 32)
0.1136

(32, 32)
0.1587

(32, 32)
0.2216

(32, 32)
0.3150

64
(64, 64)
0.0600

(64, 64)
0.1153

(64, 64)
0.1869

(63, 57)
0.2867

128
(128, 128)

0.0309
(128, 128)

0.0941
(114, 107)

0.1674
(82, 76)
0.2670

N\q 0.0200 0.0500 0.1000 0.1200

32
(32, 31)
0.4753

(24, 20)
0.8156

(17, 15)
1.2092

(16, 14)
1.3399

64
(45, 41)
0.4472

(31, 27)
0.8132

(22, 20)
1.2320

(20, 19)
1.3538

128
(60, 52)
0.4337

(37, 36)
0.8169

(27, 27)
1.2547

(22, 25)
1.3849

general distortion functions will be explored in future publications.

4.7 Conclusions

In this chapter, the source quantization problem when the quantized index

is sent over a noisy discrete symmetric error channel before being reproduced at the

receiver was considered. When random index assignment is employed, the channel

transition probability becomes simplex, and in this case, a theoretical analysis of

the asymptotic performance with channel errors and arbitrary distortion functions

was presented. Further, when the distortion is measured as the mean-squared error,

it was demonstrated that the distortion is given by the sum of the distortion due to

inter-codepoint distortion (i.e., purely due to channel errors) and the representation

error in quantizing the source using a finite number of bits. The rate of decay of

the two terms as the number of quantization levels N increases can be different,
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Figure 4.7: MSE distortion versus number of quantized bits B, for a 2-dimensional

standard Gaussian random vector and index sent over the BSC with bit transition

probability q = 0.1.

in which case, one of the two terms will dominate as N gets large. Also, a novel

theoretical analysis of the optimum singular point density that minimizes the

overall distortion was derived, and its MSE performance evaluated. The accuracy

of the theoretical results were illustrated through Monte-Carlo simulations.
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4.8 Appendix

4.8.1 Proof of (4.15)

For ease of presentation, the proof of (4.15) will be presented in two parts.

First, it will be assumed that ϕ = N and that the point density is non-singular.

Next, analysis is extended to arbitrary ϕ , i.e., to a singular point density where

N − ϕ codepoints are merged at the centroid x̄d.

4.8.2 The ϕ = N Case

When ϕ = N , and no particular structure is assumed for the codebook,

the expected distortion is obtained by averaging over the source statistics and the

channel transition probabilities as

Ed =
N∑

i=1

∫

x∈S̄i

N∑

j=1

Pj|id(x, x̂j)fx(x)dx

a≈
N∑

i=1

fx(x̂i)

N∑

j=1

Pj|i

∫

x∈S̄i

d(x, x̂j)dx, (4.53)

where the approximation ‘a’ is valid when Bennett’s Assumptions 1, 2 and 3 hold.

Let x ∈ S̄i be written as x = x̂i + e, and note that for high-rate quantization, e is

a “small” vector since S̄i is regular. From the Taylor series expansion,

d(x, x̂j) = d(x̂i+e, x̂j) = d(x̂i, x̂j)+g(x̂i, x̂j)e+
1

2
eTD(x̂i, x̂j)e+O(‖e‖3), (4.54)

where the gradient g(x̂, ŷ) is an 1 × n vector with j-th element

gj(x̂, ŷ) ,
∂d(x, ŷ)

∂xj

∣
∣
∣
x=x̂

, (4.55)

where xj is the j-th element of x, and D(x̂, ŷ) is the n by n Hessian matrix defined

in (4.16). Note that from the definition of the distortion function, d(x̂, x̂) = 0 for

any x̂, and since ŷ = arg miny d(y, x̂), g(x̂, x̂) = 0 for any x̂ as well. This fact will

be used later to simplify the distortion expressions. Also, when x̂i = x̂j in (4.54),
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it reduces to the Taylor expansion used in [78]. Substituting the Taylor expansion

(4.54) in the expression for Ed in (4.53):

Ed ≈
N∑

i=1

fx(x̂i)

N∑

j=1

Pj|i

·
∫

e∈Ēi

(

d(x̂i, x̂j) + g(x̂i, x̂j)e +
1

2
eTD(x̂i, x̂j)e

)

de (4.56)

where Ēi , {e : e + x̂i ∈ S̄i}, i.e., the Voronoi region corresponding to the i-th

code point, but shifted to the origin. This is valid because the Jacobian of the

transformation e = x − x̂i is the identity matrix.

Consider the first term in (4.56), i.e.,

E
(1)
d ,

N∑

i=1

fx(x̂i)

N∑

j=1

Pj|i

∫

e∈Ēi

d(x̂i, x̂j)de

=

N∑

i=1

fx(x̂i)

N∑

j=1

Pj|i d(x̂i, x̂j)

∫

e∈Ēi

de

=
N∑

i=1

fx(x̂i)
N∑

j=1

Pj|i d(x̂i, x̂j)VĒi
(4.57)

Substituting for Pj|i from (4.8),

E
(1)
d =

N∑

i=1

fx(x̂i)
N∑

j=1

ǫ(N) d(x̂i, x̂j)VĒi
(4.58)

where the fact that d(x̂i, x̂i) = 0 has been implicitly used to simplify the above

expression by including the j = i term in the inner summation. Now, for large N ,

under Assumption 2, the above expression approximates the Riemann integral

E
(1)
d =

∫

x

fx(x)

N∑

j=1

ǫ(N) d(x, x̂j)dx. (4.59)

Next, recall that volume of the region S̄i (or Ēi) is approximately given by

V (Ēi) ≈
1

Nλ(x̂i)
, (4.60)

where λ(x) is the point density. The next proposition relates a summation of a

function of code-point locations to the point density.
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Proposition 1. If the point generating density is λ(x), for any continuous, bounded

function β(x̂i) of the code-point location,

Sβ ,
1

N

N∑

i=1

β(x̂i) ≈
∫

y

β(y)λ(y)dy (4.61)

Proof. First, note that the summation in Sβ is the same as taking the expectation

of the random variable β(x), where x is uniformly distributed over the codebook

{x̂1, x̂2, . . . , x̂N}. From (4.17),

Sβ =

N∑

i=1

β(x̂i)λN(x̂i)V (S̄i)

=
N∑

i=1

β(x̂i)

∫

x∈S̄i

λN(x)dx. (4.62)

Also, note that
∫

y
β(y)λ(y)dy =

∑N
i=1

∫

y∈S̄i
β(y)λ(y)dy. The lemma is now es-

tablished by bounding the absolute value of the difference between the expressions

on either side of (4.61) by an expression that goes to 0 as N → ∞. Assume that

|β(x)| ≤ B for all x ∈ Dx. Thus,

DN ,

∣
∣
∣
∣
∣

N∑

i=1

β(x̂i)

∫

x∈S̄i

λN(x)dx −
N∑

i=1

∫

y∈S̄i

β(y)λ(y)dy

∣
∣
∣
∣
∣

≤
N∑

i=1

∫

x∈S̄i

|β(x̂i)λN(x) − β(x)λ(x)| dx

≤
N∑

i=1

∫

x∈S̄i

[

|β(x̂i) (λN(x) − λ(x))| + |λ(x) (β(x̂i) − β(x))|
]

dx

Since β(x) is bounded and continuous, one can substitute β(x̂i) ≤ B in the first

term, and |β(x̂i) − β(x)| ≤ BδN in the second term, where δN is the cell diameter

defined in (4.2). Thus,

DN ≤ B

N∑

i=1

∫

x∈S̄i

|λN(x) − λ(x)| dx +BδN

N∑

i=1

∫

x∈S̄i

λ(x)dx

≤ B

∫

Dx

|λN(x) − λ(x)| dx +BδN (4.63)

Thus, from the assumption of diminishing cell diameters, δN → 0, and by Scheffé’s

theorem [84],
∫

Dx

|λN(x) − λ(x)| dx → 0; as N → ∞.
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Substituting (4.61) in (4.59), the first term finally reduces to

E
(1)
d = Nǫ(N)

∫

x

∫

y

d(x,y)fx(x)λ(y)dydx. (4.64)

Now, consider the second (g(x̂i, x̂j)e) term:

E
(2)
d =

N∑

i=1

fx(x̂i)

N∑

j=1

Pj|ig(x̂i, x̂j)

∫

e∈Ēi

ede (4.65)

Later, it will be shown that under the quantization cell Approximation 3, the above

term goes to zero. However, to get a more concrete feel for the contribution of E
(2)
d

to the expected distortion, given a convex polytope Ē in Rn, define the normalized

mean vector wĒ as

wĒ ,

∫

Ē ede
[
V (Ē)

]1+1/n
, (4.66)

and note that wĒ depends only on the shape and orientation, but not the volume

of Ē . That is, wαĒ = wĒ holds for α > 0, where the polytope αĒ , {αe : e ∈ Ē}.
Then, (4.65) can be written as

E
(2)
d =

N∑

i=1

fx(x̂i)

N∑

j=1

Pj|ig(x̂i, x̂j)wĒ(x̂i)
[
V (Ēi)

]1/n
V (Ēi)

= ǫ(N)
N∑

i=1

fx(x̂i)
N∑

j=1

g(x̂i, x̂j)wĒ(x̂i)
[
V (Ēi)

]1/n
V (Ēi) (4.67)

where (4.67) is obtained by substituting for Pj|i from (4.8) and recalling that

g(x̂, x̂) = 0. Also, note that the argument x̂i has been included in writing wĒ(x̂i),

since the normalized mean vector depends on the orientation of the Voronoi region

corresponding to x̂i. As N goes to infinity, this can be expected (or rather, hypoth-

esized) to become a smooth function wĒ(x). Substituting (4.60) in the
[
V (Ēi)

]1/n

term of (4.67), and approximating the summations by integrals,

E
(2)
d = Nǫ(N)

∫

x

fx(x)

(∫

y

λ(y)g(x,y)dy

)

wĒ(x)N
−1

n λ
−1

n (x)dx

= N
−1

n Nǫ(N)

(∫

x

∫

y

λ
−1

n (x)λ(y)g(x,y)wĒ(x)fx(x)dydx

)

, (4.68)
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where (4.61) has been used to approximate the inner summation in (4.67) by

the corresponding integral. The above equation is significant because it explicitly

shows the dependence of E
(2)
d on N . Thus, as N increases, the E

(2)
d term decreases

at a higher rate than E
(1)
d which drops off at the rate Nǫ(N). Thus, the E

(2)
d

term can always be neglected compared to E
(1)
d as N gets large. Moreover, it

will be shown that under the quantization cell Approximation 3, the E
(2)
d term in

fact drops out because the approximated regions are symmetric about the origin

(hence, wĒ(x) ≈ 0). Therefore, E
(2)
d will be simply dropped from the analysis.

Finally, consider the third term in (4.56), i.e.,

E
(3)
d ,

N∑

i=1

fx(x̂i)
N∑

j=1

Pj|i

∫

e∈Ēi

1

2
eTD(x̂i, x̂j)e de (4.69)

In order to evaluate the above integral, one needs to know the Voronoi region Ēi,
which is generally complicated. Hence, consider the following quantization cell

approximation, which is standard in source coding literature [78,85]. At high rate,

the quantization cells are well approximated by the n-dimensional hyper-ellipsoid,

Ēi ≈ Êi , T (0,M(x̂i), VĒi
) (4.70)

where, VĒi
is the volume of the i-th Voronoi region, M(x̂i) is as described below,

and the hyper-ellipsoidal region T (x̂,M, v) is defined as

T (x̂,M, v) ,

{

x
∣
∣
∣

(
κn

v2 |M |

)1/n

(x − x̂)T M (x − x̂) ≤ 1

}

(4.71)

and κn is the volume of an n-dimensional unit sphere. Note that this approximation

is “strict”, that is, the approximation error does not go to zero as N goes to

infinity, because the approximated regions cannot form a Dirichlet partition. A

good explanation of this approximation can be found in [85]. Also note that under

the quantization cell approximation, wĒ(x) = 0, i.e., the E
(2)
d term is zero.

The function M(x̂i) is the local sensitivity (Hessian) matrix that arises
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due to the distortion function. The Voronoi region S̄i can be approximated as

S̄i =

{

x : d(x, x̂i) < min
j 6=i

d(x, x̂j)

}

(4.72)

≈
{

x : d(x̂i, x̂i) + g(x̂i, x̂i)e +
1

2
eTD(x̂i, x̂i)e < τ

}

, (4.73)

where τ is a threshold and e , x−x̂i. As noted earlier, d(x̂i, x̂i) = 0 and g(x̂i, x̂i) =

0, thus, the quantization region is approximated by (4.70) with M(x̂i) = D(x̂i, x̂i).

The error in making this approximation is investigated in [86], and it is shown that

the error is under four percent for spaces with dimensions under 5, and becomes

asymptotically tight as the number of dimensions increases. Note also that the

quantization cell approximation holds when the encoder is optimum, i.e., it is

defined using either (4.1) or (4.4) (which are equivalent for an SEC).

The following result from [78] is useful in evaluating the inner integral of (4.69)

under the quantization cell approximation

∫

e∈T
eTD(x̂i,y)e de =

VĒi

n + 2

(

V 2
Ēi
|D(x̂i, x̂i)|
κ2
n

)1/n

tr
(
D−1(x̂i, x̂i)D(x̂i,y)

)
.

(4.74)

It is also easy to show that

∫

e∈T (0,D(x̂i,x̂i),VĒi
)
e de = 0, (4.75)

i.e., under the quantization cell approximation, the normalized mean vector wĒ(x) ≈
0 and thus the E

(2)
d term drops out of the analysis.

Next, using (4.74) in (4.69),

E
(3)
d ≈

N∑

i=1

fx(x̂i)
N∑

j=1

Pj|i
VĒi

2(n+ 2)

(

V 2
Ēi
|D(x̂i, x̂i)|
κ2
n

)1/n

tr
(
D−1(x̂i, x̂i)D(x̂i, x̂j)

)
.

(4.76)

Notice that unlike in the E
(1)
d term, here it is necessary to separately consider the

i = j and i 6= j terms. This is because, the summand of the E
(1)
d term was zero

when i = j, whereas, the summand of E
(3)
d is non-zero. Also, note that when j = i,
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tr (D−1(x̂i, x̂i)D(x̂i, x̂i)) = n. Thus,

E
(3)
d ≈

N∑

i=1

fx(x̂i)

N∑

j=1,j 6=i
ǫ(N)

VĒi

2(n+ 2)

(

V 2
Ēi
|D(x̂i, x̂i)|
κ2
n

)1/n

tr
(
D−1(x̂i, x̂i)D(x̂i, x̂j)

)

+

N∑

i=1

fx(x̂i)(1 − (N − 1)ǫ(N))
nVĒi

2(n+ 2)

(

V 2
Ēi
|D(x̂i, x̂i)|
κ2
n

)1/n

. (4.77)

This can be simplified further by including the i = j term in the first summation

and suitably modifying the second summation to get

E
(3)
d ≈

N∑

i=1

fx(x̂i)

N∑

j=1

ǫ(N)
VĒi

2(n+ 2)

(

V 2
Ēi
|D(x̂i, x̂i)|
κ2
n

)1/n

tr
(
D−1(x̂i, x̂i)D(x̂i, x̂j)

)

+
N∑

i=1

fx(x̂i) (1 −Nǫ(N))
nVĒi

2(n+ 2)

(

V 2
Ēi
|D(x̂i, x̂i)|
κ2
n

)1/n

. (4.78)

This term is now converted into an integral by making the substitution λ(x̂i) ≃
1/(NVĒi

), and replacing x̂i and VĒi
by x and dx respectively to obtain

E
(3)
d ≈ N

−2

n κ
−2

n
n

2(n+ 2)
Nǫ(N)

∫

x

λ
−2

n (x) |D(x,x)|
1

n

·tr
(

D−1(x,x)

[

1

N

N∑

j=1

D(x, x̂j)

])

fx(x) dx

+
nN

−2

n κ
−2

n
n

2(n+ 2)
(1 −Nǫ(N))

∫

x

λ
−2

n (x) |D(x,x)|
1

n fx(x) dx (4.79)

The summation over j can be simplified using (4.61) to get

E
(3)
d ≈ N

−2

n κ
−2

n
n

2(n+ 2)
Nǫ(N)

∫

x

λ
−2

n (x) |D(x,x)|
1

n

·tr
(

D−1(x,x)

[∫

y

D(x,y)λ(y)dy

])

fx(x) dx

+
nN

−2

n κ
−2

n
n

2(n+ 2)
(1 −Nǫ(N))

∫

x

λ
−2

n (x) |D(x,x)|
1

n fx(x) dx (4.80)

In summary, the expected distortion of source quantization in the pres-
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ence of channel errors is given by

Ed ≈ Nǫ(N)

∫

x

∫

y

d(x,y)fx(x)λ(y)dydx

+
N

−2

n κ
−2

n
n

2(n+ 2)
Nǫ(N)

∫

x

λ
−2

n (x) |D(x,x)|
1

n

·tr
(

D−1(x,x)

[∫

y

D(x,y)λ(y)dy

])

fx(x) dx

+
nN

−2

n κ
−2

n
n

2(n+ 2)
(1 −Nǫ(N))

∫

x

λ
−2

n (x) |D(x,x)|
1

n fx(x) dx. (4.81)

4.8.3 Extension to arbitrary ϕ

As pointed out earlier, for an arbitrary ϕ, the expected distortion is given

as the sum of five terms representing mutually exclusive and exhaustive possible

pairs of transmit and receive indices. Thus,

Ed ≈
αN∑

i=1

∫

x∈R̄i

αN∑

j=1,j 6=i
ǫ(N)d(x, x̂j)fx(x)dx

+

αN∑

i=1

∫

x∈R̄i

(1 − (N − 1) ǫ(N)) d(x, x̂i)fx(x)dx

+
αN∑

i=1

∫

x∈R̄i

N(1 − α)ǫ(N)d(x, x̄d)fx(x)dx

+

∫

x∈R̄x̄d

αN∑

i=1

ǫ(N)d(x, x̂j)fx(x)dx

+

∫

x∈R̄x̄d

(1 − αNǫ(N))d(x, x̄d)fx(x)dx (4.82)

where R̄x̄d
is the Voronoi region corresponding to the centroid codepoint x̄d, as

before. Denote by A1, . . . , A5, the five terms in the above summation, respectively.

Define ϕ(α,N) , αN + 1. Using the approximations in the previous subsection,

A1 =
αN∑

i=1

αN∑

j=1,j 6=i
ǫ(N)d(x̂i, x̂j)fx(x̂i)VĒi

+

αN∑

i=1

αN∑

j=1,j 6=i

ǫ(N)fx(x̂i)

2

∫

x∈R̂i

(x − x̂i)
T D(x̂i, x̂j) (x − x̂i) (4.83)
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Then inner summation over j can be converted into the corresponding integral

over the point density, however, since the centroid codepoint x̄d is not included

in the summation, distortion d(x̂i, x̄d) arising due to that codepoint needs to be

subtracted, as follows

A1 ≈ ǫ(N)

αN∑

i=1

[

ϕ(α,N)

∫

d(x̂i,y)λ(y)dy − d(x̂i, x̄d)

]

fx(x̂i)VĒi

+
αN∑

i=1

αN∑

j=1,j 6=i

ǫ(N)fx(x̂i)VĒi

2(n+ 2)

(

V 2
Ēi
|D(x̂i, x̂i)|
κ2
n

) 1

n

tr
(
D−1(x̂i, x̂i)D(x̂i, x̂j)

)

After considerable simplification, it can be shown that

A1 ≈ ϕ(α,N)ǫ(N)

∫ ∫

d(x,y)λ(y)fx(x)dydx

− ϕ(α,N)ǫ(N)

∫

d(x̄d,y)λ(y)dy · fx(x̄d)VĒd

− ǫ(N)

∫

d(x, x̄d)fx(x)dx +
ǫ(N)

2(n+ 2)

∫
(

|D(x,x)|
ϕ2

(α,N)λ
2(x)κ2

n

) 1

n

·tr
(

D−1(x,x)

(

ϕ(α,N)

∫

D(x,y)λ(y)dy

))

fx(x)dx

− nǫ(N)

2(n + 2)

∫
(

|D(x,x)|
ϕ2

(α,N)λ
2(x)κ2

n

) 1

n

fx(x)dx

− ǫ(N)

2(n + 2)

∫
(

|D(x,x)|
ϕ2

(α,N)λ
2(x)κ2

n

) 1

n

tr
(
D−1(x,x)D(x, x̄d)

)
fx(x)dx

− ǫ(N)fx(x̄d)VĒd

2(n+ 2)

(

V 2
Ēd
|D(x̄d, x̄d)|
κ2
n

) 1

n

·tr
(

D−1(x̄d, x̄d)

(

ϕ(α,N)

∫

D(x̄d,y)λ(y)dy

))

+
nǫ(N)fx(x̄d)VĒd

n + 2

(

V 2
Ēd
|D(x̄d, x̄d)|
κ2
n

) 1

n

(4.84)

Next, the A2 term is given by

A2 = (1 − (N − 1)ǫ(N))
αN∑

i=1

∫

x∈R̄i

d(x, x̂i)fx(x)dx

≈ (1 − (N − 1)ǫ(N))

αN∑

i=1

fx(x̂i)

∫

x∈R̄i

1

2
(x − x̂i)

TD(x̂i, x̂i)(x − x̂i)dx



123

Again, it can be shown that A2 reduces to

A2 ≈ n(1 − (N − 1)ǫ(N))

2(n+ 2)





∫
(

|D(x,x)|
ϕ2

(α,N)λ
2(x)κ2

n

) 1

n

fx(x)dx

−fx(x̄d)VĒd

(

V 2
Ēd
|D(x̄d, x̄d)|
κ2
n

) 1

n





Next, the A3 term:

A3 =

αN∑

i=1

∫

x∈R̂i

N(1 − α)ǫ(N)d(x, x̄d)fx(x)dx

≈
αN∑

i=1

N(1 − α)ǫ(N)fx(x̂i)

·
∫

x∈R̂i

(

d(x̂i, x̄d) +
1

2
(x − x̂i)

TD(x̂i, x̄d)(x − x̂i)

)

dx, (4.85)

which reduces to

A3 = N(1 − α)ǫ(N)

∫

d(x, x̄d)fx(x)dx

+
N(1 − α)ǫ(N)

2(n+ 2)

∫
(

|D(x,x)|
ϕ2

(α,N)λ
2(x)κ2

n

) 1

n

tr
(
D−1(x,x)D(x, x̄d)

)
fx(x)dx

−nN(1 − α)ǫ(N)

2(n+ 2)
fx(x̄d)VĒd

(

V 2
Ēd
|D(x̄d, x̄d)|
κ2
n

) 1

n

. (4.86)

And the A4 term:

A4 = ǫ(N)
αN∑

j=1

∫

x∈R̂d

d(x, x̂j)fx(x)dx

≈ ǫ(N)fx(x̄d)
αN∑

j=1

∫

x∈R̂d

d(x̄d, x̂j) +
1

2
(x − x̄d)

TD(x̄d, x̂j)(x − x̄d)dx

≈ ϕ(α,N)ǫ(N)fx(x̄d)VĒd

[∫

d(x̄d,y)λ(y)dy

+
1

2(n+ 2)

(

V 2
Ēd
|D(x̄d, x̄d)|
κ2
n

) 1

n

tr

(

D−1(x̄d, x̄d)

∫

D(x̄d,y)λ(y)dy

)




−ǫ(N)fx(x̄d)VĒd

n

2(n+ 2)

(

V 2
Ēd
|D(x̄d, x̄d)|
κ2
n

) 1

n

(4.87)
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And finally, A5 is given by

A5 ≈ (1 − αNǫ(N))fx(x̄d)VĒd

n

2(n+ 2)

(

V 2
Ēd
|D(x̄d, x̄d)|
κ2
n

) 1

n

(4.88)

Collecting the terms A1 through A5 together and simplifying, all the fx(x̄d)VĒd

terms cancel out, yielding

Ed ≈ ϕ(α,N)ǫ(N)

∫ ∫

d(x,y)λ(y)fx(x)dydx

+(N − ϕ(α,N))ǫ(N)

∫

d(x, x̄d)fx(x)dx

+
ϕ(α,N)ǫ(N)

2(n+ 2)

∫
(

|D(x,x)|
ϕ2

(α,N)λ
2(x)κ2

n

) 1

n

·tr
(

D−1(x,x)

∫

D(x,y)λ(y)dy

)

fx(x)dx

+
n(1 −Nǫ(N))

2(n+ 2)

∫
(

|D(x,x)|
ϕ2

(α,N)λ
2(x)κ2

n

) 1

n

fx(x)dx

+

(
N − ϕ(α,N)

)
ǫ(N)

2(n+ 2)

∫
(

|D(x,x)|
ϕ2

(α,N)λ
2(x)κ2

n

) 1

n

·tr
(
D−1(x,x)D(x, x̄d)

)
fx(x)dx (4.89)

4.8.4 Variance of the expected distortion

The derivation in this section follows along the lines of a related one in

[68], hence, only an outline of the proof is provided here. The variance is given by

Var(Ẽd|π) = E
{

Ẽ2
d|π

}

−E
{

Ẽd|π

}2

. The expectation of Ẽd|π over all possible index

assignments is well approximated by the sum of the first two terms of (4.21), for

large N . Therefore, only E
{

Ẽ2
d|π

}

needs to be evaluated. Since

Ẽ2
d|π =

∑

i6=j

∑

k 6=l
Pπ(j)|π(i)Pπ(l)|π(k)d̂ijd̂kl, (4.90)

the above double summation can be upper bounded by expressing it as the sum

of seven mutually disjoint and exhaustive cases for the indices i, j, k and l, with

corresponding terms E1, . . . E7, as follows.
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Case: i, j, k, l distinct

Using properties of the DSC, it can be shown that

Eπ

{
Pπ(j)|π(i)Pπ(l)|π(k)

}
≤ N(N − 1)

(N − 2)(N − 3)
ǫ2(N), (4.91)

which implies

E1 ,
∑

i,j,k,l distinct

Pπ(j)|π(i)Pπ(l)|π(k)d̂ijd̂kl,

≤ N(N − 1)

(N − 2)(N − 3)

(

ǫ(N)
∑

i,j distinct

d̂ij

)2

,

=
N(N − 1)

(N − 2)(N − 3)
E
{

Ẽd|π

}2

. (4.92)

Thus, E1 − E
{

Ẽd|π

}2

= O(1/N) as N gets large.

Case: i = k and j = l

It can be shown that

Eπ

{
Pπ(j)|π(i)Pπ(l)|π(k)

}
≤ (1 − (N − 1) ǫ(N)) ǫ(N), (4.93)

which implies

E2 ≤ (N − 1)ǫ(N) (1 − (N − 1) ǫ(N)) d2
maxPmax(N) = O(Pmax(N)) (4.94)

where dmax , supx,y∈Dx

d(x,y) <∞ since the distortion is bounded, and Pmax(N) ,

max1≤i≤N Pi → 0 as N → ∞ because of the diminishing cell diameters.

Case: l = i and j = k

In this case also, it can be shown that

Eπ

{
Pπ(j)|π(i)Pπ(l)|π(k)

}
≤ (1 − (N − 1) ǫ(N)) ǫ(N), (4.95)

from which, after some simplification, we get

E3 ≤ ǫ(N) (1 − (N − 1) ǫ(N)) d2
max = O(1/N). (4.96)
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Case: i = k and j 6= l

In this case, it can be shown that

Eπ

{
Pπ(j)|π(i)Pπ(l)|π(k)

}
≤ 1

(N − 1)(N − 2)
, (4.97)

and therefore,

E4 ≤ d2
maxPmax(N) = O(Pmax(N)). (4.98)

Case: j = l and i 6= k

Here, we have

Eπ

{
Pπ(j)|π(i)Pπ(l)|π(k)

}
≤ (N − 1)ǫ2(N)

(N − 2)
, (4.99)

from which, it can be shown that

E5 ≤ (N − 1)ǫ2(N)d2
max = O(1/N). (4.100)

Case: j = k and i 6= l

Again, it can be shown that for discrete symmetric channels,

Eπ

{
Pπ(j)|π(i)Pπ(l)|π(k)

}
≤ 1

(N − 1)(N − 2)
, (4.101)

and thus

E6 ≤
d2

max

N − 1
= O(1/N). (4.102)

Case: i = l and k 6= j

Finally, it can be shown that in this case,

Eπ

{
Pπ(j)|π(i)Pπ(l)|π(k)

}
≤ 1

(N − 1)(N − 2)
, (4.103)

and thus

E7 ≤
d2

max

N − 1
= O(1/N). (4.104)

Putting it all together, at high rates,

Var(Ẽd|π) = O(1/N) +O(Pmax(N)). (4.105)
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Figure 4.8: MSE distortion for a 2-dimensional standard Gaussian random vector

with the conventional point density, and the number of quantization bits B fixed

at 6 bits. The quantized index is sent over a BSC with bit transition probability

q (the x-axis). The two vertical lines show the values of q corresponding to ǫcrit,1

and ǫcrit,2, the two critical values of ǫ(N), respectively.



5 High-Rate Vector

Quantization for Noisy Channels

With Random Index Assignment,

Part 2: Applications

5.1 Introduction

In this chapter, the results presented in the Chap. 4 are used to derive the

performance of high-rate vector quantization for Simplex Error Channels (SEC)

in two specific applications. The first application is in feedback-based transmis-

sion on multiple input, single output (MISO) communication systems. In practice,

per-antenna transmit power constraints are more meaningful than total transmit

power constraints, as they impose less stringent fidelity requirements on the trans-

mit RF power amplifiers. When the CSI is known perfectly at the transmitter,

beamforming is the optimum method of transmission in MISO systems to maxi-

mize the channel capacity both under a per-antenna power constraint as well as

under a total power constraint [7], [8]. However, due to feedback channel bit rate

constraints, only a quantized version of the CSI can be made available to the trans-

mitter. Quantized channel feedback is also under consideration in 3rd generation

mobile and wireless LAN standards, for example in the closed-loop mode spec-

ification in 3GPP High Speed Downlink Packet Access (HSDPA) [4] and in the

129
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eigenbeamforming mode specification in IEEE 802.11 [5] and IEEE 802.16 [6]. Re-

cent overviews of work quantifying the performance of finite-rate feedback systems

with beamforming at the transmitter can be found in [34] and [87]. All of the pre-

vious works assume that the feedback channel is noiseless. Errors in the feedback

channel can adversely affect the accuracy of the CSI available at the transmitter,

thereby lowering the performance of the communication system.

In this chapter, the sensitivity of quantized Equal Gain Transmission

(EGT) [8] systems to errors in the feedback channel is analyzed. An EGT beam-

forming vector is given by w = [1, exp(jθ2), exp(jθ3), . . . , exp(jθt)]
T , where θi de-

notes the phase rotation applied at antenna element i. In Chapter 3, Vector

Quantization (VQ) of the parameters was considered, and it was shown that the

capacity loss with quantized EGT (Q-EGT) drops off with the number of feedback

bits B approximately as 2(t−1)
t+1

2−
2B
t−1 bits, when the feedback channel is noiseless. A

VQ based approach was employed to design the codebook for per-antenna power

constrained beamforming and a modified Lloyd codebook generation algorithm

was derived with the capacity loss as the performance metric. Other papers that

consider the design of per-antenna power constrained transmission schemes include

[32], [33], [38], [39] and [88].

There is an inherent similarity between classical source coding and chan-

nel quantization, since the channel instantiation can be thought of as a random

source that needs to be compressed. This similarity is exploited to study the per-

formance of quantized EGT systems when the feedback channel is noisy, with the

loss in SNR relative to perfect feedback as performance measure. The extension to

quantized feedback based beamforming systems is non-trivial because of two main

reasons: (1) the source (channel instantiation) and the quantized vector (phase

angles of the beamforming vector) lie in different manifolds and (2) the source has

several extra random parameters (the real-valued antenna gains) that do not need

to be quantized, but that can be used as side information at the encoder.

The second application of the theory developed in this chapter is in the
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area of quantizing the Linear Predictive Coding (LPC) filter coefficients for speech

compression. Here, the with the Log Spectral Distortion (LSD) as performance

metric, the sensitivity of speech compression to SEC is analyzed. Monte Carlo

methods have to be employed to evaluate some of the integrals, as a closed-form

expression is not available. For verifying the results, a structured quantizer has

to be employed in practice, as the number of code points is immense (about 50

bits must be used for high quality compression). This makes it impractical to im-

plement unconstrained, full-search VQ, hence structured quantizers that offer low,

rate independent complexity, such as that proposed in [89] have to be employed.

It is shown that the theory can correctly predict the maximum error rate that can

be tolerated, given an acceptable level (1dB2) of distortion.

This chapter is organized as follows. In Section 5.2, the system model

is set down and the noisy channel model is described. In Section 5.3, the main

result that will be used to analyze the performance of the systems of interest is

reiterated. The high rate result is applied to quantized EGT systems in Section

5.4. In Section 5.5, the performance of wideband speech spectrum compression

with the log spectral distortion measure is derived. Simulation results to verify

the accuracy of the analysis are presented in Section 5.6, and some concluding

remarks are offered in Section 5.7.

5.2 Source and Channel Model

Let x ∈ Dx ⊂ R
n be a random source with a continuous pdf fx(x), where

Dx is the domain of x. The vector quantization encoder is described by N partition

regions R̄i, 1 ≤ i ≤ N that tile Dx. Associated with each partition region R̄i is a

code-vector x̂i. In the case of centroid quantizers considered here, x̂i is the centroid

of the random vector x conditioned on x ∈ R̄i under the distortion measure of

interest. Now, whenever x ∈ R̄i, the quantizer outputs index i, which is mapped

to a point in some constellation and sent over a noisy channel. At the receiver,



132

the index i is received as a possibly different index j with probability Pj|i, upon

which it outputs x̂j as its estimate of x. Finally, let d(x, x̂) represent the distortion

incurred in representing a source instantiation x by x̂. The distortion function is

assumed to be non-negative, twice continuously differentiable and bounded, and

with d(x,x) = 0 regardless of x.

5.2.1 Discrete Symmetric Channels

As in the previous chapter, the noisy channel is modeled as a Discrete

Symmetric Channel (DSC) with random index assignment, which can be repre-

sented by the equivalent Symmetric Error Channel (SEC)

Pj|i =







ǫ(N), j 6= i

1 − (N − 1)ǫ(N), j = i
, (5.1)

where ǫ(N) is the index error probability with N points in the codebook. De-

tailed explanation and justification of this channel model has been provided in the

previous chapter.

Note that set-up assumes that as N increases, more (or less) energy is

used to transmit the index in order to maintain the probability of correct reception

Pi|i = 1 − (N − 1)ǫ(N). For example, one simple model is obtained by assuming

that as N is increased, the per-index transmit power is increased to maintain

a constant probability of correct index reception, that is, ǫ(N) = ρ/(N − 1).

In this case, Pi|i = 1 − ρ is independent of N . Another example is when the

index is mapped to a L , log2(N) bit symbol, and each bit is transmitted over a

binary symmetric channel with cross-over probability q. In this case, with random

index assignment, the probability of correct reception Pi|i = (1 − q)L, and thus

ǫ(N) =
(

1 − (1 − q)L
)

/ (N − 1).
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5.3 High-Rate Performance of Vector Quantization

In this section, the high-rate performance of vector quantization for the

case of discrete symmetric channels with random index assignment is stated, and

is applied to the two specific cases of interest in the following two sections.

The expected distortion performance is obtained by taking a triple ex-

pectation of the distortion over the n-dimensional source distribution, the channel

transition probabilities Pj|i and the index assignments π(·), as follows

Ed =
1

N !

∑

π

N∑

i=1

∫

x∈R̄i

N∑

j=1

Pπ(j)|π(i)d(x, x̂j)fx(x)dx. (5.2)

It has been shown in the previous chapter that the expected distortion is given by

Ed =

∫

x

Ed,xfx(x)dx (5.3)

where, Ed,x, the expected distortion conditioned on the source instantiation x,

Ed,x ≈ Nǫ(N)

∫

y

d(x,y)λ(y)dy

+
N

−2

n κ
−2

n
n

2(n+ 2)
Nǫ(N)λ

−2

n (x) |D(x,x)|
1

n tr

(

D−1(x,x)

[∫

y

D(x,y)λ(y)dy

])

+
nN

−2

n κ
−2

n
n

2(n+ 2)
(1 −Nǫ(N)) λ

−2

n (x) |D(x,x)|
1

n . (5.4)

In the above equation, κn is the volume of an n-dimensional unit sphere, D(x̂, ŷ)

is an n by n dimensional matrix with j, k-th element defined by

Dk,j(x̂, ŷ) =
∂2d(x, ŷ)

∂xj∂xk

∣
∣
∣
x=x̂

, (5.5)

and λ(x) is the so-called fractional point density, and is defined as follows. The

specific point density [76] is given by

λN(x) ,
1

NV (S̄i)
, if x ∈ S̄i, for i = 1, 2, . . . , N. (5.6)

Then, when N is very large, λN(x) approximates a continuous nonnegative density

function λ(x) having a unit integral [77]. Note that the distortion expression (5.4)
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can be rewritten as

Ed,x ≈ Nǫ(N)

{∫

y

d(x,y)λ(y)dy

+
N

−2

n κ
−2

n
n

2(n+ 2)
λ

−2

n (x) |D(x,x)|
1

n

·tr
(

D−1(x,x)

[∫

y

(D(x,y) −D(x,x))λ(y)dy

])}

+
nN

−2

n κ
−2

n
n

2(n + 2)
λ

−2

n (x) |D(x,x)|
1

n , (5.7)

where the last term is now the asymptotic distortion in the absence of channel

errors (i.e., when ǫ(N) = 0). The expected distortion is thus the sum of three

terms. The first term represents the distortion incurred as a result of channel

errors, the second term is an interdependence term, and the last term is the source

quantization-induced distortion.

5.4 Multiple Antenna Systems with Finite-Rate Feedback

5.4.1 System Model

In this section, a multiple input, single output (MISO) system with t

antennas at the transmitter is considered, as represented by Fig. 5.1. The multiple

antenna flat-fading channel is modelled by the channel vector h ∈ C
t. Then, the

channel input x ∈ Ct and the channel output y ∈ C have the relationship

y = hHx + η, (5.8)

where η ∈ C is the zero mean, unit variance complex Gaussian noise at the receiver.

The CSI h is assumed to be known perfectly at the receiver, and partially at the

transmitter through a limited-rate noisy feedback channel. Note that under the

block fading assumption, the time index is unimportant to the derivations, hence,

the dependence on time is not explicitly shown. Now, the transmitted vector x is

obtained by multiplying the data symbol s ∈ C by a beamforming vector w to get
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Figure 5.1: Schematic representation of a MISO system with beamforming at the

transmitter.

x = ws. The power in the data symbol is denoted Ps , E
{
|s|2
}
. A quantized

beamforming-vector codebook C , {w1,w2, . . . ,wN} is known to both the receiver

and the transmitter, where N = 2B. Based on the knowledge of h, the receiver

selects the best beamforming vector wi ∈ C and sends the corresponding index i to

the transmitter through the noisy feedback channel. The transition probability of

receiving index j given that the transmitted index is i, is given by (5.1). When the

transmitter receives index j, it employs beamforming vector wj for transmission.

The transmitter is assumed to employ EGT beamforming [8]. In general,

an EGT beamforming vector has the form w = [1, exp jθ2, exp jθ3, . . . , exp jθt]
T .

Thus, the EGT vector contains n = t− 1 real-valued phase parameters that need

to be made available to the transmitter to enable EGT.

5.4.2 Distortion Measure

It is well known that the received SNR with perfect feedback (i.e., h

known at the transmitter) and optimum EGT is given by Ps‖h‖2
1 where Ps is

the per-antenna power constraint. Also, the received SNR when the beamforming

vector ŵ is employed at the transmitter is given by Ps
∣
∣hHw

∣
∣2. Thus, the loss in
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received SNR relative to the received SNR with perfect feedback, which will be

the distortion function of interest, is given by

d(h, ŵ) =

(

1 −
∣
∣hHŵ

∣
∣2

‖h‖2
1

)

, (5.9)

which can be simplified using the above notation as

d(h, ŵ) = d1(x, x̂; r) =

(

1 − |[1 exp (j (x̂ − x))] r|2
s2
r

)

, (5.10)

since the distortion function is independent of θ1, the phase of h1. It can be shown

that the above expression closely approximates the ergodic capacity loss incurred

by using ŵ as the beamforming vector at the transmitter instead of wo, when the

transmit power Ps and the number of quantization levels N are large [88].

5.4.3 High-Rate Performance Analysis

In this subsection, the result in Sec. 5.3 is used to derive analytical

expressions for the performance of QEGT in the case of an i.i.d. Rayleigh flat-

fading channel with unit-variance complex Gaussian entries, when the quantizer

output (index) is sent to the transmitter over a DSC with random index assign-

ment. Specifically, the relative loss in SNR (or capacity loss under the high-SNR

assumption) [88] incurred due to the quantization of the EGT beamforming vec-

tor by a finite number of bits is analytically characterized. Let ri , |hi| and

xi , ∠hi−∠h1, for 1 ≤ i ≤ t. Also, let θ1 , ∠h1, x , [x2, . . . , xt], r , [r1, . . . rt]
T ,

and sr ,
∑t

i=1 ri = ‖h‖1. Thus, h can be rewritten as

h = exp(jθ1)diag([1 exp(jx)])r. (5.11)

Note that x1 = 0, and as observed earlier, only the t − 1 phase angle differences

given by the entries of x need to be quantized. Therefore, the codebook can be

equivalently descibed by N = 2B vectors {x̂1, . . . x̂N}, with x̂i ∈ Rt−1.

When the channel h is i.i.d. Rayleigh distributed, the gain vector r con-

tains i.i.d. standard Chi-distributed entries, and the phase vector x contains i.i.d.
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entries that are uniformly distributed on [−π, π), and the gain vector and the phase

vector are statistically independent. Then, it can be shown that the conventionally

optimized point density (i.e., optimum when there are no feedback channel errors)

is uniform, i.e., λ(x) = 1/(2π)t−1. In this subsection, the relative SNR loss perfor-

mance of multiple antenna systems with EGT due the noisy feedback channel is

derived by evaluating each of the three terms in (5.4). For convenience, define the

notation Ed ≈ E
(1)
d + E

(3)
d,1 + E

(3)
d,2 , where the three terms are

E
(1)
d = Nǫ(N)

∫

r

∫

x

∫

y

d1(x,y; r)fx(x)λ(y)fr(r)dydxdr. (5.12)

E
(3)
d,1 =

N
−2

t−1κ
−2

t−1

t−1

2(t+ 1)
Nǫ(N)

∫

r

∫

x

λ
−2

t−1 (x) |D1(x,x; r)|
1

t−1

tr

(

D−1
1 (x,x; r)

[∫

y

D1(x,y; r)λ(y)dy

])

fx(x)fr(r) dxdr (5.13)

E
(3)
d,2 =

(t− 1)N
−2

t−1κ
−2

t−1

t−1

2(t+ 1)
(1 −Nǫ(N))

·
∫

r

∫

x

λ
−2

t−1 (x) |D1(x,x; r)|
1

t−1 fx(x)fr(r) dxdr. (5.14)

Since the phase angles are i.i.d. and uniformly distributed on [−π, π), hence,

fx(x) = 1/(2π)(t−1) for xi ∈ [−π, π). Also, with the uniform point generating

density, λ(x) = 1/(2π)(t−1). Thus,

E
(1)
d =

Nǫ(N)

(2π)2(t−1)

∫

r

∫

xi,yi

(

1 − |[1 exp (j (x − y))] r|2
s2
r

)

fr(r)dydxdr,(5.15)

where the inner integral is over the range xi, yi ∈ [−π, π). After simplification, the

above expression reduces to

E
(1)
d = Nǫ(N) (1 − Lt) , (5.16)

where the constant Lt is defined as

Lt ,
∫

r

∑t
i=1 r

2
i

(∑t
i=1 ri

)2fr(r) dr. (5.17)
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The integral in the above expression can be easily evaluated by numerical inte-

gration for different values of t, since r is a t-dimensional i.i.d. standard Chi-

distributed random vector, and is listed in Table 5.1 for several values of t.

Next, to simplify the E
(3)
d,1 term, given by (5.13), the (t−1)×(t−1) Hessian

matrixD1(x,y; r) needs to be evaluated. Define z(v) , [0 diag(v)] where v ∈ Ct−1

and 0 is a (t− 1) × 1 vector of zeros, and u(x; r) , [1 exp(jx)]r ∈ C1 and finally

rs = [r2, . . . , rt]
T , then, through straightforward albeit tedious differentiation it

can be shown that

D1(x,y; r) =
z(exp(j(x − y)))z (u (x − y; r) rs)

T

s2
r

− z(exp(j(x − y)))rrTz(exp(j(y − x)))T

s2
r

+
z(exp(j(y − x)))z (u (y − x; r) rs)

T

s2
r

− z(exp(j(y − x)))rrTz(exp(j(x − y)))T

s2
r

From the above expression, it is can be shown that
∫

y

D1(x,y; r)λ(y)dy = 0 (5.18)

where 0 here is a (t − 1) × (t − 1) matrix of zeros. Thus, the E
(3)
d,1 term given by

(5.13) is equal to zero. It remains to find the E
(3)
d,2 term given by (5.14). Since

D1(x,y; r) depends only on x − y, D1(x,x; r) = D1(0, 0, r) , D2(r), where

D2(r) = 2

(
srdiag(rs) − rsr

T
s

s2
r

)

, (5.19)

where rs , [r2, . . . , rt]
T , as before. From this, it can be shown that

|D2(r)|
1

t−1 = 2

(
t∏

i=1

ri
sr

) 1

t−1

(5.20)

Substituting in (5.14),

E
(3)
d,2 =

(t− 1)N
−2

t−1κ
−2

t−1

t−1

2(t+ 1)
(1 −Nǫ(N))

[∫

r

|D2(r)|
1

t−1 dr

] ∫

x

λ
−2

t−1 (x)fx(x) dx

=
(2π)2 (t− 1)N

−2

t−1κ
−2

t−1

t−1Mt

(t+ 1)
(1 −Nǫ(N)) , (5.21)
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where Mt is defined as

Mt ,
∫

r

(
t∏

i=1

ri
sr

) 1

t−1

fr(r) dr (5.22)

and can be evaluated using numerical integration without difficulty, and is tabu-

lated in Table 5.1 for several values of t. In summary, the relative loss in SNR with

of quantized EGT with feedback over an SEC is given by

Ed ≈ Nǫ(N) (1 − Lt) +N
−2

t−1 (1 −Nǫ(N))




(2π)2 (t− 1)κ

−2

t−1

t−1Mt

(t+ 1)



 , (5.23)

where the constants Lt and Mt are determined by numerical integration,and are

listed in Table 5.1 for a few values of t.

When ǫ(N) = 0, i.e., for a noiseless feedback channel, the above equation

yields the distortion due to the source quantization only, as follows

Ed ≈ N
−2

t−1




(2π)2 (t− 1)κ

−2

t−1

t−1Mt

(t+ 1)



 . (5.24)

This is an alternative expression for the high-rate result compared to that in Chap-

ter 3, where the high-rate distortion is derived using an entirely different approx-

imation for the quantization cell (as an ellipsoidal cap in the w-space), and is

reproduced here for convenience

Ed,old ≈ N
−2

t−1

(
2(t− 1)

t+ 1

)

. (5.25)

Although the expressions in (5.24) and (5.25) look different, they yield similar

values. If the ratio of Ed to Ed,old is defined as Ut , 2π2κ
−2

t−1

t−1Mt, clearly, if Ut ≈ 1,

the two expressions above would yield approximately the same value. Table 5.1

lists the value of Ut for a few values of t, and it is seen that the error is less than 2%

for t ≤ 32, although the two expressions were obtained using completely different

approximations.

Notice from (5.23) that the overall distortion is not exactly described

by the sum of the distortions incurred due to the channel errors (inter-codepoint
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distortion) and that incurred due to quantization errors (intra-codepoint distor-

tion), due to the ǫ(N) factor in the second term. This is unlike the case when

mean-squared error is used as performance metric [81].

Table 5.1: Values of Lt, Mt and Ut for different values of t. Lt and Mt are coeffi-

cients that determine the high-rate performance of the VQ, and Ut ≈ 1 shows that

the expression in this chapter is in agreement with the one in Chapter 3.

t 2 3 4 5 6 8 16 32
Lt 0.5708 0.3964 0.3028 0.2448 0.2055 0.1553 0.0787 0.0396
Mt 0.2148 0.1638 0.1336 0.1134 0.0986 0.0787 0.0439 0.0236
Ut 1.0599 1.0290 1.0155 1.0072 1.0021 0.9961 0.9857 0.9817

5.4.4 Asymptotic Behavior

From the previous subsection, as N increases, the overall distortion (5.23)

is dominated by the behavior of Nǫ(N) relative to N
−2

t−1 . That is,

1. If Nǫ(N) = o
(

N
−2

t−1

)

, the error is dominated by the second term in (5.23),

i.e., channel errors play an insignificant role in the asymptotic distortion, and

the high-rate distortion is given by (5.24).

2. If N
−2

t−1 = o (Nǫ(N)), the error is dominated by the channel errors (i.e., the

first term in (5.23)).

For example, if a constant probability of index reception is maintained as N

increases, Pi|i = 1 − ρ, then ǫ(N) = ρ/(N − 1). In this case, it is interesting

to note that for large N the error is approximately given by Ed ≈ ρ (1 − Lt),

and it can be seen from (5.15) by substituting for any continuous λ(x) in-

stead of the uniform point density, that the point density does not affect the

asymptotic performance, as long as it is continuous.

As another example, when the feedback channel is a BSC, as seen ear-

lier, a(N) =
(

1 − (1 − q)B
)

/ (N − 1) after averaging the performance over
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all possible index assignments. It can be readily verified that as N gets

large, Nǫ(N) is O(1). Thus, the distortion is asymptotically given by Ed ≈
(1 − Lt). This distortion is in fact exactly that obtained if the transmitter

were to ignore the feedback information and employ a single, fixed beam-

forming vector. Indeed, the distortion with fixed beamforming is given by

Efix
d = E

{

1 −
∣
∣1Th

∣
∣
2

‖h‖2
1

}

,

= 1 − 1

(2π)(t−1)

∫

r

∫

x

(∣
∣1Tdiag ([1 exp (jx)]) r

∣
∣2

s2
r

)

fr(r)dxdr,

where without loss of generality, the fixed beamforming vector has been

chosen to be all-ones vector 1 (due to the left rotational invariance property of

the density of h, the choice of the fixed beamforming vector does not matter).

The expression for h in (5.11) was used to obtain the last expression above.

Integrating over x and simplifying,

Efix
d = 1 −

∫

r

(∑t
i=1 r

2
i

s2
r

)

fr(r)dr,

= 1 − Lt, (5.26)

where Lt is defined as in (5.17). Thus, the performance of quantized EGT

systems when the index is sent over a BSC with cross-over probability q >

0 and random index assignment asymptotically approaches that achieved

by using a fixed beamforming vector at the transmitter, i.e., feedback is

useless when N is large, if no channel coding is employed. The reason for

this behavior is because as N increases, the probability of successful index

reception, (1 − q)B, becomes small. Then, it is no longer optimum to use

a uniformly distributed point density; i.e., it is more efficient to trade off

quantization error for a better channel coding gain, i.e., the uniform (or

continuous) point density is inefficient for large N when the feedback is sent

over a BSC. This is in agreement with a related result derived in [83] in

the source coding context, where the authors show that for mean squared
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error distortion, with a BSC and random index assignment, the distortion

asymptotically approaches the source variance.

3. Finally, if Nǫ(N) = Θ
(

N
−2

t−1

)

, then both terms decrease at the same rate

N
−2

t−1 as N increases.

Interestingly, the above observations imply that asymptotically, the overall distor-

tion can in fact be tightly bounded by the sum of the distortion due to channel

errors and the distortion due to quantization errors, as follows

Ed ≈ Nǫ(N) (1 − Lt) +N
−2

t−1 (1 −Nǫ(N))Ht

/ Nǫ(N) (1 − Lt) +N
−2

t−1Ht, (5.27)

where Ht ,

(

(2π)2(t−1)κ
−2
t−1

t−1
Mt

(t+1)

)

. The upper bound is tight because, as N gets large,

N
−2

t−1Nǫ(N) will always be dominated by either Nǫ(N) or N
−2

t−1 . For the case of

the BSC, the upper bound can be used to determine the value of N that minimizes

the overall distortion. Indeed, when q is small,

Nǫ(N) =
N
(

1 − (1 − q)B
)

N − 1
≈ qB, (5.28)

and thus, Ed ≈ q log2(N) (1 − Lt) + N
−2

t−1Ht. Differentiating with respect to N

and setting equal to zero, it can be shown that

Nopt =

(
2Ht log 2

q(t− 1)(1 − Lt)

) t−1

2

, (5.29)

and the optimum number of bits per dimension is Bopt = log2(Nopt)/(t − 1), as

there are t − 1 free dimensions per vector. Table 5.2 shows the value of Bopt for

different values of t and q. As the bit error probability and the number of transmit

antennas get large, channel quantization and feedback result in no performance

improvement due to the channel errors, hence employing a fixed beamforming

vector irrespective of the channel state achieves lowest distortion. Finally, it is

also interesting to note that in the case where the probability of an index error is
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Table 5.2: The optimum number of bits per dimension to minimize the overall

distortion, for a BSC with different values of the cross-over probability q.

Bopt t = 2 3 4 5 6 8 16 32 48 64
q = 10−5 9 8 8 8 8 8 7 7 6 6

10−4 7 7 7 6 6 6 5 5 5 4
10−3 6 5 5 5 5 4 4 3 3 3
10−2 4 3 3 3 3 3 2 2 1 1
10−1 2 2 2 1 1 1 1 0 0 0

kept fixed as N increases, i.e., Nǫ(N) ≈ ρ independent of N , the overall distortion

is approximately given by

Ed ≈ ρ (1 − Lt) +N
−2

t−1 (1 − ρ)Ht, (5.30)

from which it is clear that the asymptotic distortion decreases monotonically as N

increases, and approaches ρ(1 − Lt).

5.5 Wideband Speech Spectrum Compression

In this section, the high-rate vector quantization results from Sec. 5.3 are

applied to the quantization the LPC parameters of speech systems for noisy SEC.

For LPC quantization, the LSD is often cited [90] as a measure that correlates well

with speech quality. Hence, in this section, the distortion is measured as the LSD,

and the sensitivity matrices with respect to the LSD measure are computed. Here,

a very brief overview of the LPC quantization is provided, and interested readers

are referred to [91] for complete motivations and theoretical details. Let the set

of filter taps corresponding to a v-th order LPC filter be denoted by the vector

x = [x1, x2, . . . , xv]
T . Note that the zeroth tap, normally constrained to be equal

to unity, is not included in x. The filter taps are obtained in a straightforward

manner from the autocorrelation of the speech samples; the details are omitted
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here. Then, the LSD in dB2 incurred by quantizing the vector x to x̂ is given by

L(x, x̂) ,
β

2π

∫ π

−π

[

log

(
xTB(ω)x

x̂TB(ω)x̂

)]2

dω, (5.31)

where β = (10/ log (10))2 and the v×v matrix B(ω) has cos(ω(i−j)) as its (i, j)-th

element.

5.5.1 Sensitivity Matrices for LPC Coefficients

Let X(z) denote the z-transform of the discrete-time filter with tap coef-

ficients given by x, and let h(n) denote the impulse response of the discrete-time

filter 1/X(z). In [78], it is shown that

Dk,l(x̂, x̂) ,
∂2L(x, x̂)

∂xk∂xl

∣
∣
∣
∣
x=x̂

= 4βRX(k − l), (5.32)

where RX(k) is the autocorrelation function of the impulse response h(n), i.e.,

RX(k) =

∞∑

n=0

h(n)h(n+ k). (5.33)

However, in order to apply the results from the previous section, in addition to

D(x,x), the cross-sensitivity matrix D(x,y) with k, l-th element defined by

Dk,l(x,y) =
∂2L(x̂,y)

∂x̂k∂x̂l

∣
∣
∣
∣
x̂=x

(5.34)

needs to be computed. In the Appendix 5.8.1, it is shown that,

D(x,y) = D(x,x) +
β

2π

∫ π

−π

B(ω)

xTB(ω)x
log

(
xTB(ω)x

yTB(ω)y

)

dω (5.35)

Substituting this into (5.3) and (5.7), the distortion with channel errors is obtained.

However, since the source density is unknown, the expectations in (5.3) and (5.7)

must be evaluated via a Monte-Carlo method, which will be described in greater

detail later. In Sec. 5.6, simulation results show that although the above derived

theoretical expressions can be utilized to correctly estimate the amount of channel

error that can be tolerated, given an upper-limit on the allowable distortion (about

1dB2 is considered transparent quality for speech).
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5.6 Simulation Results

5.6.1 Equal Gain Transmission

First, the problem of quantized equal gain beamforming described in Sec.

5.4 is considered, and it is shown that the theoretical curves agree well with the

simulation based ones. The 1 × t MISO channel is assumed to be i.i.d. Rayleigh

flat fading, and 10,000 random instantiations were used with the Lloyd algorithm

proposed in Chapter 3 to generate the beamforming codebook.

First, consider the noiseless case, i.e., ǫ(N) = 0. Fig.5.2 shows the loss

in SNR relative to perfect feedback versus the number of feedback bits B. The

simulation results agree well with the theoretical expression of (5.23). Also, note

that about 2 bits per dimension is a good rule-of-thumb to ensure that the high

rate approximations become accurate. Next, consider the feedback channel with a

fixed probability of success, i.e., a(N) = ρ/(N − 1), where 0 ≤ ρ ≤ (N − 1)/N is

a parameter. In this case, from (5.23), the relative loss in SNR is given by

Ed ≈
Nρ

N − 1
(1 − Lt) +N

−2

t−1

(

1 − Nρ

N − 1

)



(2π)2 (t− 1)κ

−2

t−1

t−1Mt

(t+ 1)



 . (5.36)

Fig.5.3 plots the relative loss in SNR versus the parameter ρ with the number of

quantization levels fixed at N = 16 (i.e., B = 4 bits). Notice that as ρ gets close

to 1, for large N the distortion approaches Ed ≈ ρ(1 − Lt), i.e., it is linear in ρ.

Also, for a given N , as ρ gets smaller, the performance improves initially, but after

a point, it is determined by the E
(3)
d,2 term (i.e., due to the source distortion). In

Fig. 5.4, the relative loss in SNR versus the number of feedback bits B is plotted,

with ρ fixed at 10−1.5 ≈ 0.0316. The theoretical curves are generated using the

expression in (5.36). Again, we see that the theoretical curves agree well with

the experimental curves as B increases. Also, for a fixed ρ, the performance is

eventually dominated by the E
(1)
d term of (5.16) as B gets large.
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Figure 5.2: Loss in gain relative to perfect feedback, with a noiseless feedback

channel, versus the number of feedback bits B.

5.6.2 Wideband Speech Compression

Next, an experiment is performed on wideband speech spectrum coding,

under the LSD measure. The goal in this context is to achieve an average distortion

of 1dB2. This experiment is designed to determine at what error rates this goal

is feasible. A database of 16-dimensional wideband speech spectrum vectors is

gathered, and their sensitivities are evaluated using the method described in Sec.

5.5. For sources with such a large dimension, the codebook sizes become very

large (around 50 bits). This rules out the use of full-search vector quantizers, and

structured systems must instead be used to reduce the complexity. To this end,

the Gaussian Mixture Model (GMM) based VQ described in [89] is employed. This
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Figure 5.3: Loss in gain relative to perfect feedback versus ρ, where ρ is the

parameter that determines the transition probability of the SEC of (5.1) when

ǫ(N) = ρ/(N − 1). Here, the number of quantization levels N is kept fixed at 16.

system is able to operate with a low, rate-independent complexity, although it is

suboptimal in the sense that its cells are not ellipsoidal; and as a result there is a

small gap between the theoretical and experimental distortion curves.

The point density of the quantizer is itself a GMM, with parameters

specified through the training process. Thus, the integral in (5.7) over y can

be approximated by averages over data y drawn randomly according to the point

density. A database of 65000 source vectors xi is employed, along with a database of

65000 “error” vectors yi, drawn according to λ(y) for the Monte-Carlo estimation.

From figure 5.7, it can be seen that the theory is good at predicting the true high-
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Figure 5.4: Loss in gain relative to perfect feedback versus the number of feedback

bits B, where ρ is the parameter that determines the transition probability of the

SEC of (5.1) when ǫ(N) = ρ/(N − 1). Here, ρ is kept fixed at 10−1.5.

rate distortion. Observe that for high values of the error probability, it is impossible

to perform high-quality quantization of this source, with the error levelling off

at around 3dB2. For moderate error probabilities, 1dB2 LSD can be achieved,

although a few extra bits will be required to compensate for channel errors. At

low values of the error probability, there is no penalty, as the channel effects do

not become significant until well beyond the desired 1dB2 operating point. Thus,

a channel error probability of at most 0.001 is judged to be permissible for the

wideband speech spectrum quantization problem.
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Figure 5.5: The term E
(1)
d versus ρ, where ρ is the parameter that determines the

transition probability of the SEC of (5.1) when ǫ(N) = ρ/(N − 1). Here, the

number of quantization levels N is kept fixed at 16.

5.7 Conclusions

In this chapter, the source quantization problem where the quantized

index is sent over a noisy channel before being reproduced at the receiver was

considered. For the case of the simplex error channel, a theoretical framework for

the asymptotic performance analysis with channel errors and arbitrary distortion

functions was presented, and applied to the problem of quantizing the phase angle

information in equal gain beamforming. Theoretical expressions were derived for

the asymptotic loss in SNR performance in the presence of channel errors. The
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Figure 5.6: The term E
(1)
d versus the number of feedback bits B, where ρ is the

parameter that determines the transition probability of the SEC of (5.1) when

ǫ(N) = ρ/(N − 1). Here, ρ is kept fixed at 10−1.5.

framework was also applied to the problem of wideband speech spectrum quanti-

zation under the LSD measure, and seen to accurately characterize the effects of

the source, the quantizer and the channel. The accuracy of the theoretical results

were further illustrated through Monte-Carlo simulation.
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Figure 5.7: Log Spectral Distortion on Wideband Speech LSF vectors versus B.

Both predicted and actual distortions are shown for several values of Pe, the total

probability of an index error.

5.8 Appendix

5.8.1 Derivation of the LPC Sensitivity Matrices

In this section, it is shown that, when the distortion is given by

L(x,y) ,
β

2π

∫ π

−π

[

log

(
xTB(ω)x

yTB(ω)y

)]2

dω, (5.37)

the sensitivity matrix D(x,y) defined in 5.5 is given by

D(x,y) = D(x,x) +
β

2π

∫ π

−π

B(ω)

xTB(ω)x
log

(
xTB(ω)x

yTB(ω)y

)

dω. (5.38)
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The proof is straightforward from first principles. Define By(ω) as

By(ω) ,
B(ω)

yTB(ω)y
. (5.39)

Then,

L(x,y) =
β

2π

∫ π

−π

[
log
(
xTBy(ω)x

)]2
dω. (5.40)

To find D(x,y) , ∂2L(x̂,y)/∂x̂2|x̂=x, consider the expansion of L(x̂,y) around x,

where x is a vector that is “close to” x̂, and let e , x̂ − x. Only the integrand of

the above expression is written here for simplicity.

log
(
x̂TBy(ω)x̂

)
= log

(

(x + e)T By(ω) (x + e)
)

= log
(
xTBy(ω)x

)
+ log

(

1 +
2eTBy(ω)x

xTBy(ω)x
+

eTBy(ω)e

xTBy(ω)x

)

Note that By(ω)/(xTBy(ω)x) = Bx(ω), and considering a second-order approxi-

mation to log
(
x̂TBy(ω)x̂

)
,

log
(
x̂TBy(ω)x̂

)
= log

(
xTBy(ω)x

)
+ 2eTBx(ω)x + eTBx(ω)e. (5.41)

Squaring and isolating just the second order terms to obtain the Hessian matrix,

[
log
(
x̂TBy(ω)x̂

)]2 ≈ Constant and First order terms

+ 4eTBx(ω)xxTBx(ω)e + 2 log
(
xTBy(ω)x

)
eTBx(ω)e

Thus, we have the sensitivity matrix

D(x,y) =
β

2π

∫ π

−π

(
4Bx(ω)xxTBx(ω) + 2 log

(
xTBy(ω)x

)
Bx(ω)

)
dω (5.42)

Clearly, when y = x, we get D(x,x) = 4Bx(ω)xxTBx(ω), therefore,

D(x,y) = D(x,x) + 2
β

2π

∫ π

−π
Bx(ω) log

(
xTBy(ω)x

)
dω

= D(x,x) + 2
β

2π

∫ π

−π

B(ω)

xTB(ω)x
log

(
xTB(ω)x

yTB(ω)y

)

dω, (5.43)

which completes the proof.
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6 Conclusions

In this thesis, several aspects of feedback based communication with mul-

tiple antennas were considered, primarily in the areas of channel estimation and

quantization, and the main contributions are summarized below.

6.1 Contributions of this Thesis

As pointed out earlier, channel estimation is doubly important in feedback-

based communication because inaccurate CSI affects not only the receiver perfor-

mance, but also results in sub-optimal transmission. In this context, MIMO flat-

fading channel estimation when the transmitter employs Maximum Ratio Trans-

mission (MRT) was studied. Two competing schemes for estimating the transmit

and receive beamforming vectors of the channel matrix were analyzed: a train-

ing based conventional least squares estimation (CLSE) scheme and a closed-form

semi-blind (CFSB) scheme that employs training followed by information-bearing

spectrally white data symbols. Employing matrix perturbation theory, expressions

for the mean squared error (MSE) in the beamforming vector, the average received

SNR and the symbol error rate (SER) performance of both the semi-blind and the

conventional schemes were derived. A weighted linear combiner of the CFSB and

CLSE estimates for additional improvement in performance was also proposed.

Another important issue in beamforming-based communication with mul-

tiple antennas is the quantization and feedback of CSI. Hence, this dissertation

also considered the design and analysis of quantizers for Equal Gain Transmission
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(EGT) systems with finite rate feedback-based communication in flat-fading MISO

systems. EGT is a beamforming technique that maximizes the MISO channel ca-

pacity when there is an equal power-per-antenna constraint at the transmitter,

and requires the feedback of t − 1 phase angles, when there are t antennas at

the transmitter. Two popular approaches for quantizing the phase angles were

contrasted: vector quantization (VQ) and scalar quantization (SQ). On the VQ

side, using the capacity loss with respect to EGT with perfect channel information

at transmitter as performance metric, a criterion for designing the beamforming

codebook for quantized EGT (Q-EGT) was developed. An iterative algorithm

based on the well-known generalized Lloyd algorithm was proposed for computing

the beamforming vector codebook. On the analytical side, closed-form expressions

were derived for the performance of quantized feedback in terms of capacity loss

and outage probability in the case of i.i.d. Rayleigh flat-fading channels.

The next issue addressed in this thesis dealt with the effect of having

a noisy feedback channel. Errors in the feedback channel can adversely affect

the performance of a quantized-feedback based transmission scheme, because the

beamforming vector employed by the transmitter could be very different from the

intended beamforming vector due to index errors. With the view to understand the

effect of errors on channel quantization, the more general problem of characterizing

the high-rate performance of source coding for noisy discrete symmetric channels

with random index assignment was considered. Theoretical expressions for the

performance of source coding were derived for a large class of distortion measures.

It was shown that when the point density is continuous, the high-rate distortion

can be approximately expressed as the sum of the source quantization distortion

and the channel-error induced distortion, result known previously only for the

case of the mean-squared error distortion. Optimization of the point density was

also considered. For general distortion functions, assuming that the point density

is continuous, expressions were derived for the point density that minimizes the

expected distortion. For the mean squared error distortion, an upper bound on the
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asymptotic (i.e., high-rate) distortion was derived by assuming a certain structure

on the codebook. This structure enabled the extension of the analysis to source

coders with singular point densities. It was shown that, for channels with small

errors, the point density that minimizes the upper bound is continuous, while as

the error rate increases, the point density becomes singular, and the extent of the

singularity was analytically characterized.

In the final chapter of this thesis, new results on the performance of

the high-rate vector quantization of random sources when the quantized index is

transmitted over a noisy channel were derived for two specific applications. The

first was the quantization of the channel state information for multiple-input, single

output systems with beamforming at the transmitter. Here, it was assumed that

there exists a per-antenna power constraint at the transmitter, hence, the Equal

Gain Transmission (EGT) beamforming vector is quantized and sent from the

receiver to the transmitter over a noisy discrete symmetric channel with random

index assignment. The loss in received SNR was analytically characterized, and it

was shown that at high rates, the overall distortion can be expressed as the sum of

the quantization-induced distortion and the channel error-induced distortion. The

optimum density of codepoints (also known as the point density) that minimizes

the overall distortion subject to a boundedness constraint was shown to be the

uniform density. Also, it was found that the asymptotic performance depends on

the behavior of the noisy feedback channel as the number of codepoints gets large.

The binary symmetric channel with random index assignment was a special case

of the analysis, and it was shown that the asymptotic distortion as the number of

quantized bits gets large approaches the distortion with random beamforming. The

second application was in the wideband speech compression problem, i.e., that of

quantizing the linear predictive coding parameters in speech coding systems with

the log spectral distortion as performance metric. It was shown that the theory is

able to correctly predict the channel error rate that is permissible for operation at

a particular distortion level.
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6.2 Future Work

Several interesting and important problems remain, some of which are

listed below.

• If the channel changes is time-varying, the performance of feedback based

communication can be very sensitive to feedback delays. The exact charac-

terization of the effect of the delay in the feedback channel is therefore an

interesting issue to be addressed.

• In this dissertation, the channel was assumed to be flat-fading, i.e., it is appli-

cable for narrowband communication. Extension of the channel quantization

results to wideband communication scenarios such as OFDM is yet another

open topic of research.

• The results derived here assumed point-to-point communication, hence, it

would be interesting to consider multi-user, broadcast or multiple-access com-

munication with feedback, and consider the problem of CSI quantization for

these scenarios.

• In the channel estimation area, it is interesting to consider the effect of

time variation, and analytically characterize the efficacy of using semi-blind

estimation schemes as a function of the doppler or mobile speed.

• The design of optimum training sequences with feedback-based communica-

tion (since part of the channel is known at the transmitter and receiver, the

training sequence needs to help estimate only the unknown part) is another

interesting problem.

Solving all of the problems listed above should result in several years of fruitful

research.
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