
1

On the Convergence of a Bayesian Algorithm for
Joint Dictionary Learning and Sparse Recovery

Geethu Joseph and Chandra R. Murthy Senior Member, IEEE

Abstract—Dictionary learning (DL) is a well-researched prob-
lem, where the goal is to learn a dictionary from a finite set of
noisy training signals, such that the training data admits a sparse
representation over the dictionary. While several solutions are
available in the literature, relatively little is known about their
convergence and optimality properties. In this paper, we make
progress on this problem by analyzing a Bayesian algorithm for
DL. Specifically, we cast the DL problem into the sparse Bayesian
learning (SBL) framework by imposing a hierarchical Gaussian
prior on the sparse vectors. This allows us to simultaneously
learn the dictionary as well as the parameters of the prior on the
sparse vectors using the expectation-maximization algorithm. The
dictionary update step turns out to be a non-convex optimization
problem, and we present two solutions, namely, an alternating
minimization (AM) procedure and an Armijo line search (ALS)
method. We analytically show that the ALS procedure is globally
convergent, and establish the stability of the solution by charac-
terizing its limit points. Further, we prove the convergence and
stability of the overall DL-SBL algorithm, and show that the
minima of the cost function of the overall algorithm are achieved
at sparse solutions. As a concrete example, we consider the
application of the SBL-based DL algorithm to image denoising,
and demonstrate the efficacy of the algorithm relative to existing
DL algorithms.

Index Terms—Sparse representation, dictionary learning, non-
convex optimization.

I. INTRODUCTION

In sparse coding, the signal of interest is represented as a
linear combination of a relatively small number of columns
of a properly chosen over-complete dictionary. The dictio-
nary can be of two types: first, non-adaptive or predefined
dictionaries like Fourier, Gabor, discrete cosine transform and
wavelet [1]; and second, an adaptive or learned dictionary that
is specific to the given class of signals. The use of adaptive
dictionaries often leads to more compact representations and
better performance in many signal processing applications
ranging from image denoising [2]–[4], audio processing [5],
[6], and classification tasks [7]–[13], to name a few. Therefore,
we are interested in the dictionary learning problem, where the
objective is to find a dictionary over which a set of training
signals admits a sparse representation.

Several dictionary learning algorithms for sparse coding
have been proposed in the literature such as method of

G. Joseph is at the Dept. of EECS, Syracuse University, New York, USA
13244. She was at the Dept. of ECE, Indian Institute of Science, Bangalore,
India 560012, during the course of this work. Email: geethu@iisc.ac.in. C. R.
Murthy is at the Dept. of ECE, Indian Institute of Science, Bangalore 560012,
India. Email: cmurthy@iisc.ac.in.

The work of G. Joseph was supported in part by the Intel India PhD
fellowship. This work was financially supported in part by the Young
Faculty Research Fellowship from the Ministry of Electronics and Information
Technology, Govt. of India.

optimal directions (MOD) [14], K-singular value decomposi-
tion (K-SVD) [15], dictionary learning via the majorization
method (DL-MM) [16], simultaneous codeword optimiza-
tion (SimCO) [17], parallel atom-updating dictionary learn-
ing (PAU-DL) [18], sequential generalization of K-means
(SGK) [19], iterative thresholding and K means (ITKM) [20].
Most of the algorithms involve an iterative procedure, alter-
nately updating the dictionary and the sparse representation,
and differ in the cost function used in the dictionary update
step. To update the sparse representation, an existing standard
sparse signal recovery algorithm is used.

Although the aforementioned algorithms achieve good per-
formance, they require the knowledge of the sparsity level
of the system and hand-tuning of various sensitive algorithm
parameters. These limitations are handled to some extent
by Bayesian algorithms [21]–[24]. Bayesian algorithms come
with an added advantage of not requiring the knowledge of the
measurement noise variance. However, the posterior distribu-
tions proposed in [21], [23], [25]–[27] cannot be derived ana-
lytically, and a Gibbs sampler is used for Bayesian inference.
The Gibbs sampling based algorithms are computationally
demanding as they involve ensemble learning. To overcome
this difficulty, [23] also proposes a variational Bayes’ based
algorithm for dictionary learning by imposing a Gaussian prior
on the dictionary elements. The Gaussian prior intuitively
models the boundedness of the dictionary elements and helps
to obtain closed form expressions for the dictionary update.
The closed form expressions results in faster convergence than
the Gibbs sampling based Bayesian algorithms. Nonetheless,
imposing a Gaussian prior (on a dictionary with no special
structure) results in low accuracy and requires a large number
of iterations to converge. Therefore, the choice of Gaussian
prior still leaves room for improvement. This motivates us to
develop an improved Bayesian dictionary learning algorithm
which does not require the knowledge of the sparsity level, or
fine-tuning of parameters, while at the same time improving
on the recovery performance.

Our proposed dictionary learning algorithm is based on
the sparse Bayesian learning (SBL) framework [28], [29].
In the context of sparse signal recovery, SBL is known to
offer superior performance compared to algorithms based on
convex relation and greedy approaches, and does not require
one to tune the algorithm parameters. The basic idea of SBL
is to incorporate a parameterized prior on the unknown sparse
vectors that encourages sparsity. Specifically, a fictitious Gaus-
sian prior is imposed on the sparse vectors, and the so-called
hyperparameters of the Gaussian distribution are determined
using Type-II maximum likelihood (ML) estimation. Our

2

approach is different from other Bayesian dictionary learning
algorithms as we impose no prior on the dictionary elements.
Instead, we estimate the dictionary as a deterministic matrix
with unit norm columns. The estimation method uses the
expectation-maximization (EM) algorithm to simultaneously
learn the parameters of the prior and the sparsifying dictionary.
The dictionary update step in the EM algorithm turns out to be
a quadratic optimization problem with unit norm constraints,
which is a non-convex problem because of the constraint.
Since a closed form solution is not available, we propose
to employ the alternating minimization (AM) procedure or
Armijo line search (ALS) to solve it. Our main contributions
are as follows:

• Algorithm development: We present a novel algorithm for
learning the sparsifying dictionary along with the sparse
representations, in Section II.

• Convergence guarantees for optimization procedures: We
derive convergence guarantees of the dictionary update
step using AM and ALS optimization procedures in
Section III. We show that the ALS procedure globally
converges. We also establish stability of the limit points
of the ALS procedure. The results hold irrespective of
the sparsity level, the initialization of the algorithm, or
the system dimensions.

• Convergence guarantees for DL-SBL: We derive conver-
gence guarantees for the entire algorithm, and also discuss
about the stability of the limit points in Section IV-A. We
show that the DL-SBL cost converges to a single point,
while the iterates converge to the set of stationary points.

• Cost function analysis: We extend the theoretical guar-
antees available for the original SBL algorithm [29] to
the DL-SBL setting and analyze the SBL cost function
in Section IV-B. This analysis shows why the DL-SBL
algorithm is likely to converge to the sparsest possible
representation of the measurement vectors.

• Empirical Validation: In Section V, we empirically cor-
roborate the convergence results in Section III. Further,
we illustrate the performance of the algorithms in terms of
the relative mean squared error and support recovery rate
of the sparse vectors, and Frobenius norm of estimation
error and atom recovery rate of the learned dictionary.
We compare the proposed scheme with the other popular
algorithms when applied to the image denoising problem.

Overall, the proposed algorithm is useful for learning a spar-
sifying overcomplete dictionary using a given set of training
signals. Our algorithm does not require the knowledge of the
sparsity level of the system1 or hand-tuning of the parameters.2

Finally, the main attraction of our algorithm is the associated
theoretical guarantees. Unlike similar existing dictionary learn-
ing approaches, we provide rigorous theoretical guarantees for
the optimization procedures and the overall algorithm.

1We present a version of algorithm that takes the noise variance as an input.
A modified version of algorithm which can learn the noise level is provided
in [30, Appendix D.11]

2The AM-based algorithm does not have any associated parameters, and
the recovery performance of the ALS-based algorithm is not sensitive to the
choice of its parameters.

Notation: Boldface small letters denote vectors and bold-
face capital letters denote matrices. The ith entry of a vector a
is denoted by a[i], while Ai and Aij represent the ith column
and (i, j)th entry of a matrix A, respectively. The symbol
‖ · ‖ denotes the `2 norm of a vector or the Frobenius norm
of a matrix, and ‖ · ‖0 denotes `0 pseudo-norm that counts
the number of nonzero entries in a vector. The symbols (·)T,
| · |, Tr {·} and (·)† denote the transpose, the determinant, the
trace and the pseudo-inverse of a matrix, respectively. Also,
Diag {·} represents a vector formed using the diagonal entries
of a square matrix or a diagonal matrix with entries of the
argument vector on the diagonal, depending on the context,
and D {·} = Diag {Diag {·}} represents a diagonal matrix
with the same diagonal entries as the argument matrix. The
pdf of the random variable X is represented as p(x). The
expectation with respect to a random variable X is denoted as
EX(·). The notation I , 0 and 1 represent the identity matrix,
the all zero matrix (or vector), the all ones vector. Also, R, R+

and N denote the set of real numbers, the set of all nonnegative
real numbers, and the set of natural numbers, respectively.
Throughout the paper, Γ = Diag {γ}, and we use the notations
Γ and γ interchangeably, depending on whether we need the
matrix or vector version, respectively.

II. SBL BASED DICTIONARY LEARNING

We consider a problem setup where we have a set of K
training signals yK = {yk ∈ Rm}Kk=1 such that yK admits a
sparse representation xK = {xk ∈ RN}Kk=1 over an unknown
dictionary A ∈ Rm×N and is corrupted by noise, i.e.,

yk = Axk +wk, (1)

where the noise term wk ∼ N (0, σ2I). To resolve the
ambiguity in amplitude, we assume A has unit norm columns.
That is, A ∈ O, where

O ,
{
A ∈ Rm×N : AT

i Ai = 1, i = 1, 2, . . . , N
}
. (2)

Our goal is to estimate the K sparse vectors and the measure-
ment matrix A, using the knowledge of N .

Motivated by the SBL framework [28], [29], we impose a
fictitious Gaussian prior on the unknown sparse vectors xk ∼
N (0,Diag {γk}), where γk ∈ RN+ . It is known that the use
of Gaussian prior encourages sparsity. On the other hand, we
do not assume any structure in A apart from the unit norm
columns, and thus, we do not impose any prior on A. We note
that imposing no prior is equivalent to the use of a uniform
prior, i.e., that the columns of A are uniformly distributed on
the m−dimensional unit sphere. Using this hierarchical model,
we first compute the ML estimates γ̂k and Â of γk and A,
respectively. These estimates, in turn, can be used to estimate
the sparse vectors as x̂k = E

{
xk|yk, γ̂k, Â

}
.

To obtain the ML estimates γ̂k and Â, we need to maximize
p(yK ; Λ), where Λ = {A,γk; k = 1, 2, . . .K} ∈ O× RNK+

is the tuple of unknown parameters.
We now develop an EM procedure to solve the ML esti-

mation problem, equivalently, for minimizing the negative log

3

likelihood − log p(yK ; Λ). Thus, the optimization problem to
be solved is arg min

Λ∈O×RNK+

T (Λ) , where the cost function3 is

T (Λ),
K∑
k=1

log
∣∣∣σ2I+AΓkA

T
∣∣∣+ yT

k

(
σ2I+AΓkA

T
)−1

yk.

(3)
The second term in the cost function, which depends on yk,

is equal to Tr

{(
σ2I +AΓkA

T
)−1

yky
T
k

}
. When σ is close

to zero, this term can be minimized by choosing a column of
A to match yk and driving the corresponding entry of Γk to
infinity. Therefore, the second term of the cost function helps
to learn the term AΓkA

T that matches the measurements.
However, it may not be possible to accomplish this for every
yk with a single A matrix. Also, making the entries of Γk
large increases the cost in the first term. Furthermore, there
could be multiple Γk corresponding to the same AΓkA

T, and
we are interested in a sparse solution. The true Γk is thus
learned with the help of the first term involving the log det in
the above cost function. The log term is minimized when the
rank of AΓkA

T goes to zero. However, if the dimension of
the span of yK is sufficiently large, the second term ensures
that A has full row rank. Hence, the log term tries to minimize
the rank of Γk. Since Γk is diagonal, this enforces sparsity
in γk, which in turn enforces sparsity in xk. Thus, the two
terms of the cost function balance the sparsity and the error
in the matching yk using A and xk.

The EM algorithm treats the unknowns xK as the hidden
data and the observations yK as known data. It is an iterative
procedure with two steps: an expectation step (E-step) and
a maximization step (M-step). Let Λ(r) be the estimate of
Λ at the rth iteration. The E-step computes the marginal
log-likelihood of the observed data Q(r−1), and the M-step
computes the parameter tuple Λ that maximizes Q(r−1).

E-step: Q
(
Λ; Λ(r−1)

)
= ExK |yK ;Λ(r−1)

{
log p

(
yK ,xK ; Λ

)}
M-step: Λ(r) = arg max

Λ∈O×RNK+

Q
(
Λ; Λ(r−1)

)
. (4)

Simplifying Q
(
Λ,Λ(r−1)

)
we get,

Q
(
Λ; Λ(r−1)

)
= cK−

1

2

K∑
k=1

[
log |Γk|+ Tr

{
Γ−1k E

{
xkx

T
k |yK ; Λ(r−1)

}}]
− 1

2σ2

K∑
k=1

E
{

(yk −Axk)
T

(yk −Axk) |yK ; Λ(r−1)
}
,

(5)

where cK is a constant independent of Λ. We notice that the
optimization in the M-step is separable in its variables Γk and
A. We get the update of γk in the M-step as follows (See [30,
Appendix D.11] for the detailed derivation):

γ
(r)
k = Diag

{
µkµ

T
k + Σ(k)

}
, (6)

3With a slight abuse of notation, we define Γk = Diag {γk}, and not the
kth column of the matrix Γ.

where we define µk , E
{
xk|yk; Λ(r−1)

}
∈ RN , and

Σ(k) , E
{

(xk − µk) (xk − µk)
T |yk; Λ(r−1)

}
∈ RN×N .

The optimization problem corresponding the dictionary up-
date reduces to

arg min
A∈O

K∑
k=1

E
{

(yk −Axk)
T

(yk −Axk)
∣∣∣yk; Λ(r−1)

}
.

(7)
The objective function above can be equivalently written as

g (A)=−Tr
{
MY TA

}
+

1

2
Tr
{
A (Σ−D {Σ})AT

}
,

(8)

where M ∈ RN×K has µk as its kth column, Y ∈
Rm×K has yk as its kth column, and the matrix Σ ,∑K
k=1

(
Σ(k) + µkµ

T
k

)
∈ RN×N . We note that the unit norm

constraint on the columns of A combined with the diagonal
structure on Γk = E

{
xkx

T
k

}
implies that the quadratic terms

in (7) are independent of A, and thus, in (8), the quadratic
terms are removed from the objective function.

We note that there is no closed form solution to the
quadratic optimization with the unit norm column constraints
in (7). Therefore, we solve the optimization problem using two
iterative schemes: AM and ALS.

A. Alternating Minimization (AM)

The AM procedure updates one column of A at a time,
keeping the other columns fixed. If we fix all columns of A
except the ith column, the optimization problem reduces to

arg min
Ai:AT

iAi=1

 K∑
k=1

−µk[i]yk +

N∑
j=1;j 6=i

Σ[i, j]Aj

T

Ai. (9)

Interestingly, the above reduced optimization problem admits
a unique closed form solution provided

∑K
k=1 µk[i]yk −∑N

j=1;j 6=i Σ[i, j]Aj 6= 0. If otherwise, we skip the update of
that particular column and continue with the update of the next
column. Therefore, the dictionary update in the rth iteration
of the EM algorithm reduces to the following recursions for
i = 1, 2, . . . , N :

v
(r,u)
i ,

K∑
k=1

µk[i]yk−
i−1∑
j=1

Σ[i, j]A
(r,u)
j −

N∑
j=i+1

Σ[i, j]A
(r,u−1)
j

(10)

A
(r,u)
i =


1∥∥∥v(r,u)
i

∥∥∥v(r,u)i if v(r,u)i 6= 0

A
(r,u−1)
i otherwise.

(11)

where u denotes the AM procedure iteration index. We stop
the AM iterations when A(r,u) converges, i.e., its change
in successive iterations is small. The pseudo-code for this
algorithm, which we call dictionary learning via SBL (DL-
SBL) using AM, is provided in Algorithm 1.
Remark: For the special case when Σ is a diagonal matrix
and YMT 6= 0, the optimization problem (7) is separable in
the columns of A. Then, the AM procedure returns the global
minimum of (8) in one iteration.

4

Algorithm 1 Dictionary Learning via SBL using AM
Input: Y = yK , N and σ2

Parameters: ε1 and ε2 (stopping thresholds)
Initialize: r = 0,A(0) = 1,γ(0)

k = 1, k = 1, 2, . . . ,K
repeat

for k = 1, 2, . . . ,K do
#E-Step:

Φ̃ =
(
σ2I +A(r)Γ

(r)
k A

(r)T
)−1

Σ(k) = Γ
(r)
k − Γ

(r)
k A

(r)TΦ̃A(r)Γ
(r)
k

µk = σ−2Σ(k)A
(r)Tyk

r ← r + 1
#M-Step:
γ
(r)
k = Diag

{
µkµ

T
k + Σ(k)

}
end for
#Update of A (also part of the M-Step)
Initialize AM: u = 0, A(r,0) = A(r−1)

Σ =
∑K
k=1

(
Σ(k) + µkµ

T
k

)
, M = [µ1,µ2, . . . ,µK]

repeat
u← u+ 1
for i = 1, 2, . . . , N do
v
(r,u)
i =

(
YMT

)
i
−
∑i−1
j=1 Σ[i, j]A

(r,u)
j

−
∑N
j=i+1 Σ[i, j]A

(r,u−1)
j

A
(r,u)
i =


1∥∥∥v(r,u)
i

∥∥∥v(r,u)i if v(r,u)i 6= 0

A
(r,u−1)
i otherwise.

end for
until ‖A(r,u) −A(r,u−1)‖ < ε2
A(r) = A(r,u)

until ‖A(r) −A(r−1)‖+
∑K
k=1 ‖γ

(r)
k − γ

(r−1)
k ‖ < ε1

Output: {µk, k = 1, 2, . . . ,K} and A(r)

B. Armijo Line Search (ALS)

The ALS procedure updates the entire matrix A in every
iteration instead of updating one column at a time [31]–[33].
The idea here is to translate the constrained optimization prob-
lem into an unconstrained convex optimization problem using
Riemannian geometry. The algorithm continuously translates
a test point in the opposite direction of the tangent vector at
the point, while staying on the manifold, until a reasonable
decrease in objective function is obtained, and finally reaches
a stationary point. Such a mapping is called a retraction, is
denoted by RA. For Riemannian manifolds, the line search
method takes the form

A(r,u) = RA(r,u−1)

(
βpαZ(r,u−1)

)
, (12)

where Z(r,u−1) is the negative tangent direction of the cost
function at A(r,u−1) and βpα is the Armijo step size. The
constants β and α are the parameters of the algorithm. The
step size is chosen so that p is the smallest nonnegative integer
that satisfies

g
(
RA(r,u−1)

(
βpαZ(r,u−1)

))
− g

(
A(r,u−1)

)
≤ −cβpα

∥∥∥Z(r,u−1)
∥∥∥2 , (13)

where the scalar parameter c ∈ (0, 1). The interested readers
are referred to [31] for more details on ALS procedure.

We first note that the feasible set O is the Cartesian
product of N unit spheres in Rm which are submanifolds
of the Euclidean space Rm. Since the Cartesian product of
Riemannian manifolds is a Riemannian manifold, O is a
Riemannian manifold. We define the Riemannian metric for
O as 〈A,B〉 = Tr

{
ATB

}
for A,B ∈ O. The gradient of

the objective function g in the Euclidean space is as follows:

∇g (A) = −YMT +A (Σ−D {Σ}) . (14)

The tangent space of the Cartesian product of manifolds is the
Cartesian product of the tangent spaces. Therefore, we get the
tangent space as

TA =
{
B : AT

i Bi = 0,∀i
}
. (15)

The ith column of the orthogonal projection onto the tangent
space is

PA (Z)i =
(
I −AiA

T
i

)
Zi. (16)

Thus, the gradient of the restriction of g to O is PA (∇g (A)),
and we can choose the ith column of the retraction as

RA (Z)i =
Ai +Zi
‖Ai +Zi‖

. (17)

We note that the denominator ‖Ai +Zi‖ 6= 0 when Zi is
the orthogonal projection onto the tangent space from (16).
We call this algorithm DL-SBL using ALS, and summarize
its pseudo-code in Algorithm 2.

C. Comparison of the two optimization procedures

In this subsection, we compare the AM and the ALS
procedures to get insights on how to choose between them.
• Computational complexity: We assume that the multipli-

cation of a p × q matrix with a q × r matrix requires
O(pqr) flops [34]. Each iteration of the AM procedure
has a complexity O(mKN +mN2). Typically, K � N
for accurate estimation, and therefore the complexity
order is O(mKN). Thus, the complexity is linear in
m, N and K. On the other hand, the computational
complexity of the ALS procedure is also of the order
O(mKN), except for the computation of the step-size
parameter m. The complexity of this step depends on c, β
and α, and it is hard to determine the precise dependence.
However, we have observed in our simulations that the
ALS algorithm requires a larger number of iterations
and a longer run time to converge compared to the AM
procedure for the same initialization. Hence, the AM
procedure is faster than the ALS procedure.

• Memory Requirements: Both AM and ALS procedures
require O(N2) sized memory, as the largest matrix we
keep track of has size N ×N .

• Parameter tuning: The AM procedure does not require
tuning of any sensitive parameters. However, the ALS
procedure has scalar parameters c, β and α which deter-
mine the rate of convergence, but these parameters do not
affect the recovery performance of the overall algorithm.

5

Algorithm 2 Dictionary Learning SBL using ALS
Input: Y = yK , N and σ2

Parameters: ε1 and ε2 (stopping thresholds)
Initialize: r = 0,A(0) = 1,γ(0)

k = 1, k = 1, 2, . . . ,K
repeat

for k = 1, 2, . . . ,K do
#E-Step:

Φ̃ =
(
σ2I +A(r)Γ

(r)
k A

(r)T
)−1

Σ(k) = Γ
(r)
k − Γ

(r)
k A

(r)TΦ̃A(r)Γ
(r)
k

µk = σ−2Σ(k)A
(r)Tyk

r ← r + 1
#M-Step:
γ
(r)
k = Diag

{
µkµ

T
k + Σ(k)

}
end for
#Update of A (also part of the M-Step)
Initialize ALS: u = 0, A(r,0) = A(r−1)

Σ =
∑K
k=1

(
Σ(k) + µkµ

T
k

)
, M = [µ1,µ2, . . . ,µK]

repeat
u← u+ 1
Z(r,u−1) = PA(r,u−1)

(
YMT −A(r,u−1)Σ

)
Compute the smallest integer p > 0 such that

g
(
RA(r,u−1)

(
βpαZ(r,u−1)

))
− g

(
A(r,u−1)

)
≤ −cβpα

∥∥∥Z(r,u−1)
∥∥∥2

A(r,u) = RA(r,u−1)

(
βpαZ(r,u−1)

)
until ‖A(r,u) −A(r,u−1)‖ < ε2
A(r) = A(r,u)

until ‖A(r) −A(r−1)‖+
∑K
k=1 ‖γ

(r)
k − γ

(r−1)
k ‖ < ε1

Output: {µk, k = 1, 2, . . . ,K} and A(r)

Hence, the tuning of the parameters of ALS is not very
critical. We illustrate this point using experimental results
in Section V-A (See Figure 1a, Figure 1b and Table I).

Thus, for practical applications, we prefer AM to ALS
as it is computationally less expensive and does not require
tuning of any parameters. However, ALS has better theoretical
convergence guarantees compared to AM algorithm, which we
discuss in Section III.

D. Comparison with other Bayesian techniques

The main differences between our algorithm and the other
Bayesian algorithms in the literature are as follows:

1) Our algorithm does not use Gibbs sampling, unlike the
algorithms in [21], [23]. Instead, we use a variational
evidence framework which obviates the need for gener-
ating posterior samples, and thus our algorithm is faster.
Moreover, the ensemble learning based algorithms come
with no convergence guarantees. We provide rigorous
convergence guarantees for our algorithm in Section III.

2) Our algorithm is similar to the sparse Bayesian dictionary
learning with a Gaussian hierarchical model proposed
in [23] except for the prior on the dictionary. The al-
gorithm in [23] uses a Gaussian prior on the dictionary

elements to obtain a closed form expression for the
EM updates. However, the choice of Gaussian prior
was heuristically motivated by the fact that the entries
of the dictionary are bounded. Since the dictionary is
an arbitrary matrix with unit norm columns, the ideal
choice of prior on the dictionary columns is a uniform
distribution on the unit m−dimensional sphere. Hence,
we propose to use no prior (which is equivalent to a
uniform prior) on the dictionary and learn the dictionary
as a deterministic unknown. Due to the better prior
model used, our algorithm outperforms the one in [23]
in terms of the reconstruction accuracy. The cost paid
for this approach is the extra iterative procedure that is
nested within the EM algorithm. Using an optimization
procedure within the EM framework may appear to be
more computationally demanding than an approach with
closed form expressions. Nonetheless, from our simu-
lations, we find that our algorithm requires far fewer
number of iterations compared to the algorithm in [23].
Hence, the overall run time of the algorithm is much
smaller.4 In other words, the algorithm in this paper is an
improved version of Gaussian hierarchical model based
SBL algorithm with reduced run time and higher accu-
racy. We corroborate these arguments through numerical
simulations in Section V-B (See Figure 2).

3) Another Bayesian algorithm for dictionary learning is the
multimodal sparse Bayesian dictionary learning algorithm
[25]. This algorithm is same as the Gaussian hierarchical
model based SBL algorithm with a non-informative prior
on the dictionary columns, except that it includes an ad-
ditional projection step. This step projects the columns of
the dictionary to the unit norm sphere to avoid instabilities
due to the ambiguity in the amplitude. As in the case of
the Gaussian hierarchical model based SBL algorithm,
this algorithm has a closed form expression for the M-
step. As explained above, the algorithm effectively uses
a non-informative prior on the dictionary atoms instead
of using a uniform distribution on the m−dimensional
unit sphere. Further, the convergence guarantees in [25]
do not apply to the algorithm that involves the projection
step, which is crucial to the success of the algorithm.
Since our cost function is carefully designed to handle
the amplitude ambiguity, our algorithm outperforms the
multimodal sparse Bayesian dictionary learning algo-
rithm. We illustrate this through numerical simulations
in Section V-B (See Figure 2).

III. CONVERGENCE ANALYSIS OF OPTIMIZATION
PROCEDURES

In this section, we discuss the convergence properties of the
AM and ALS procedures proposed to solve (7).

4A similar observation can be found, in the context of sparse signal
recovery, in [35]. Iterative reweighted `2 algorithms are typically slower than
iterative reweighted `1 algorithms, even though the former admits closed form
expressions in the iterations.

6

Proposition 1 (Function value convergence). The sequences
of cost function values

{
g
(
A(r,u)

)}
u∈N

generated by the AM
and the ALS procedures are non-increasing and convergent.

Proof. See Appendix A.

While above proposition guarantees that the cost function
value converges, it does not establish the convergence of the
iterates. Hence, we study the convergence behavior of the
iterates in the next subsections. Before presenting the results,
we start with a definition that applies to both the AM and ALS
procedures.

Definition 1 (Nash equilibrium). The matrix A with unit norm
columns is said to be a Nash equilibrium point of (7) if

g (A) ≤ g ([A1, . . . ,Ai−1,a,Ai+1, . . . ,AN]) , (18)

for any unit-norm vector a and for i = 1, 2, . . . , N .

Every column of a Nash equilibrium is optimal when other
columns of the dictionary are held fixed, that is, one cannot
unilaterally improve the cost function in (7) by updating any
single column. We now proceed with our analysis of the
convergence of the AM procedure in the next subsection.

A. AM Procedure

The iterative AM procedure can be viewed as a fixed point
iteration with the update mapping dictated by the function
whose stationary point is sought. The following result shows
that the fixed points of the updates generated by the AM
procedure are Nash equilibria of (7).

Proposition 2 (Nash Equlibrium). Let G : O → O be the
update mapping of AM procedure, i.e., A(r,u+1) = G(A(r,u)).
Then, a matrix A∗ is a fixed point of G if and only if A∗ is a
Nash equilibrium point of (7). Further, all Nash equilibrium
points are stationary points of the cost function.

Proof. See Appendix B.

Corollary 1. A matrix A with unit norm columns is a Nash
equilibrium point of the objective function in (7) if and only
if A satisfies the relation:

AL = YMT −A (Σ−D {Σ}) (19)

for some diagonal positive semidefinite (psd) matrix L.

Proof. The result directly follows from the form of the fixed
points shown in the proof of Proposition 2.

We note that the update mapping of the AM procedure does
not have a closed form expression owing to the sequential,
column-wise update of the dictionary. Due to this, although
the above theorem characterizes its fixed points, it is hard to
establish the convergence of the iterates. On the other hand, it
is possible to show several interesting convergence properties
of the iterates in the ALS procedure. We discuss this next.

B. ALS Procedure

We begin by noting that establishing convergence guar-
antees for the ALS procedure is challenging because the
optimization problem in (7) is non-convex in A. In particular,
since A is constrained to lie in the set O, the set of all
matrices with unit-norm columns, establishing convergence
requires analyzing the convergence behavior over Riemannian
manifolds. Existing results in this direction, e.g., [36]–[40],
consider convex optimization problems, and very few results
are known for the non-convex case. In [41], the authors studied
the convergence of a proximal algorithm applied to nonsmooth
functions that satisfy the Łojasiewicz inequality around their
generalized stationary points. Based on this, convergence of
iterative solvers for quadratic optimization of a matrix valued
variable over the space of orthogonal matrices was shown
in [42]. In [43], quadratic optimization over the space of
unit norm vectors was studied. These results, when extended
to a matrix setting, lead to a unit norm constraint on the
rows of the matrix, and hence are not applicable in our case.
The convergence of an ALS type procedure for a quadratic
optimization problem under unit-norm column constraints has
not been studied in the literature, and requires new analysis.

To discuss the convergence properties of the ALS proce-
dures, we consider an equivalent unconstrained version of the
optimization problem in (7) as follows:

arg min
A

Tr

{
−MY TA+

1

2
(Σ−D {Σ})ATA

}
+δnorm(A).

(20)
Here, we define δnorm as a barrier function corresponding to
the feasible region of (7):

δnorm(A) ,

0, if A ∈ O

∞, otherwise.
(21)

Also, let g̃ : Rm×N → R denote the objective function of
(20). The stationary points of (7) are the points where the
subgradient of g̃ vanishes.5

Theorem 1 (Convergence of iterates). The sequence output
by the ALS procedure, {A(r,u)}u∈N, is globally convergent.

Proof. See Appendix C.

The above theorem guarantees that the iterates of the ALS
procedure converge irrespective of the initial point. However, it
does not ensure that the algorithm converges to the same point
for any initial point. Such a guarantee exists only if the cost
function has only one limit point. Hence, we next characterize
the limits points of the sequence of iterates.

Proposition 3 (Characterization of limits). The limit A(r) of
the sequence

{
A(r,u)

}
u∈N

generated by the ALS procedure
satisfies the relation:

YMT −A(r) (Σ−D {Σ}) = A(r)L, (22)

for some diagonal matrix L. Moreover,

5We note that we use an extended definition of sub-gradient as the function
g̃ is non-convex.

7

1) A(r) is a Nash equilibrium point of (7) if and only if L
is a positive semidefinite matrix.

2) A(r) is a local minimum if and only if L+ Σ−D {Σ}
is a positive semidefinite matrix. Further, A(r) is a strict
local minimum if and only if L+Σ−D {Σ} is a positive
definite matrix.

Proof. See Appendix D.

We make the following observations from the above results:
• As in the case of the AM procedure, the update mapping

of ALS is not available in closed form because of the step
size selection process. However, the results characterize
the fixed points of the mapping.

• The initialization A(r,0) need not be a feasible point of
(7). Because of the retraction step which projects the
iterates to the feasible set, the algorithm can be initialized
from any bounded matrix.

• The results are independent of the estimates from the
outer iteration loop of the EM algorithm and the dimen-
sion of the dictionary. Thus, the results are applicable to
any quadratic cost function of the form (7).

• Given A(r),M ,Y and Σ, the conditions for the Nash
equilibrium and local minimum are easily verifiable.

Now, for any first order method such as the ALS procedure,
the best guarantees one can obtain are that it converges to
a stationary point. Further, we can determine whether the
stationary point is a local minimum using the test in step 2
of Proposition 3. Beyond this, the only guarantee one can
provide for first order methods is that of stability of the limit
points. Stability implies that the algorithm converges to a limit
point whenever it is initialized close enough to it. Formally,
we define stability as follows:

Definition 2 (Stability). Let G : O → O be the update
mapping of an iterative algorithm, i.e., A(r,u+1) = G(A(r,u)).
Also, we let G(u)(·) denote the result of u applications of G:

G(1)(A) = G(A); G(u+1)(A) = G
(
G(u)(A)

)
. (23)

The matrix A∗ said to be a stable point of the iterative
algorithm if, for every neighborhood U of A∗, there exists
a neighborhood V of A∗ such that, for all A ∈ V and any
positive integer u, it holds that G(u)(A) ∈ U .

We have the following characterization of the stability of
the fixed points of the ALS procedure, based on whether the
fixed point is a local minimum or not.

Theorem 2 (Stability). Let A(r) be a limit point of the
sequence

{
A(r,u)

}
u∈N

generated by the ALS procedure. Then,

(i) If A(r) is not a local minimum of g̃, then A(r) is not a
stable point of the ALS procedure.

(ii) If A(r) is a strict local minimum of g̃, then the algorithm
converges to A(r) if the initial point A(r,0) is sufficiently
close to A(r).

Proof. See Appendix E.

An implication of Theorem 2 is that the ALS procedure
converges to a local minimum of the cost function, unless

the initial condition is carefully constructed to be adversarial
in nature. Also, as in the previous case, the results are
independent of the estimates from the outer iteration loop of
the EM algorithm and the dimension of the dictionary. Thus,
Theorem 2 is applicable to any optimization of the form (7).

In this section, we analyzed the convergence properties of
the inner loop in the M-step of EM algorithm. Our analysis
guarantees that the optimization procedure has good converge
properties. As a consequence, and by virtue of the well-
known properties of the EM algorithm, DL-SBL is globally
convergent. Next, we formally prove the convergence of the
overall DL-SBL algorithm and analyze the minima of the DL-
SBL cost function given by (3).

IV. ANALYSIS OF DL-SBL ALGORITHM

The DL-SBL algorithm is not an EM algorithm in the strict
sense because the M-step of the DL-SBL is not guaranteed
to converge to the global minimizer, unlike the conventional
EM. However, DL-SBL inherits many good properties of EM
such as a monotonic reduction of the cost function. In this
section, we build on the results in Section III and study the
characteristics of the DL-SBL algorithm and the cost function.

A. Convergence of DL-SBL

We start by stating the following result, which asserts that
the DL-SBL cost converges.

Proposition 4. Suppose that σ2 > 0. The sequence of cost
function values

{
T (Λ(r))

}
r∈N

generated by the DL-SBL

algorithm via ALS procedure converges to T (Λ∗) for some
Λ∗ ∈ O× RKN+ .

Proof. See Appendix F.

Next, we characterize the properties of the iterates generated
by the algorithm.

Theorem 3. Suppose that σ2 > 0. The iterates
{

Λ(r)
}
r∈N

of the outer loop of the DL-SBL algorithm converge to the set
of stationary points of the DL-SBL cost function given by (3).
Moreover, if a limit point Λ∗ of the sequence

{
Λ(r)

}
r∈N

is

not a local minimum of T , then Λ∗ is not a stable point of
the ALS procedure.

Proof. See Appendix G.

The above results guarantee that the cost function values{
T (Λ(r))

}
converge to T (Λ∗) for some stationary point Λ∗.

They also guarantee that the sequence of iterates converges
to a compact and connected subset of a level set of the cost
function, although it does not necessarily converge to a single
point. Theorem 3 also gives insights to the stability of the
fixed points of the algorithm, similar to Theorem 2. Further,
as in the case of the results in Section III, the above results
hold for any values of system dimensions: m,N , and K, and
sparsity level s.

The next question that we address is on how good the final
solution of DL-SBL is, by analyzing the minima of the DL-
SBL cost function given by (3).

8

B. Analysis of Minima of the Cost Function

First, note that, in the context of dictionary learning, the
problem of finding the sparse representation of a given set
of vectors yK , uniqueness of the solution is defined up to
an unavoidable permutation of the unit-norm columns of A
and rows of X , where X ∈ RN×K is the matrix obtained
by stacking the sparse vectors xk. We now present necessary
conditions for the uniqueness of the solution:

Proposition 5. Consider the dictionary learning problem
under noiseless condition σ2 = 0, i.e., for any given Y , the
problem of finding matricesA andX such that Y = AX , the
columns of A have unit norm and the columns of X have at
most s non-zero entries. The solution to the problem is unique
only if the following conditions are satisfied:

Rank {X} = N (24)
Rank {ASk} = |Sk| < m, (25)

where Sk is the support of xk and ASk ∈ Rm×|Sk| is the
submatrix of A formed by the columns indexed by Sk. Further,
if max
k=1,2,...,K

‖xk‖0 = 1, the conditions are sufficient.

Proof. See Appendix H.

We note that the necessary conditions required to ensure the
uniqueness of the solution of the dictionary learning problem
is applicable for any dictionary learning algorithm, and in
particular, DL-SBL. Next, we establish that the cost function
in (3), when minimized, has the desired global minima.

Theorem 4. Suppose the tuple (A∗,X∗) satisfies the neces-
sary conditions (24) and (25). Also, let

{
Γ∗k ∈ RN×N

}K
k=1

be
a set of nonnegative diagonal matrices denoting the covari-
ance matrix of the sparse vectors such that

x∗k = Γ
∗1/2
k

(
A∗Γ

∗1/2
k

)†
yk (26)

and 0 < c < min
k=1,2,...K

γ∗k (27)

where γ∗k is the smallest nonzero entry of Γ∗k and c is a
universal constant. Then, as the noise variance σ2 → 0, the
global minimum of (3) is achieved at

(
A∗P , {PΓ∗kP }

K
k=1

)
where P is a signed permutation matrix.

Proof. See Appendix I.

We note that the sparsest solution of (3) is (A∗,X∗) due to
(25). Although we assume that the necessary conditions (24)
and (25) hold, the theorem holds under the mild condition that

max
k=1,2,...,K

‖xk‖0 < m. (28)

However, under the above condition, uniqueness is not guaran-
teed, i.e., solutions with suboptimal sparsity may also globally
minimize the cost function.

We know that the DL problem is NP-hard [44]. Thus, it
is not surprising that the cost function obtained using SBL
framework may have multiple local minima. Nonetheless,
extending the results of the original SBL algorithm on sparse
recovery [29], we can show that all the local minima of the
function are achieved at sparse solutions.

Table I
COMPARISON OF ALS CONVERGENCE BEHAVIOUR WITH VARYING STEP

SIZE PARAMETERS β AND α

Setting Fit parameters no. of
iterations

run
time (s)a b

α = 0.1

β = 0.01 -0.034 -0.093 565.04 1.33
β = 0.1 -0.036 -1.102 490.09 1.5
β = 0.9 -0.044 -1.554 480.63 13.68

β = 0.1

α = 0.01 -0.036 -1.118 494.26 1.55
α = 0.1 -0.036 -1.102 490.09 1.50
α = 0.9 -0.037 -0.226 486.60 1.51

Table II
COMPARISON OF ALS AND AM CONVERGENCE BEHAVIOR

Algo. Fit parameters no. of
iterations

run
time (s)a b

AM -0.0427 -0.4603 248.95 0.5828

ALS -0.0361 -1.1022 490.09 1.5020

Theorem 5. Every γk corresponding to the local minimum
of (3) is at most m−sparse, regardless of the value of noise
variance σ2.

Proof. See Appendix J.

V. SIMULATION RESULTS

We use the following simulation setup to evaluate the
performance of the algorithms and validate the theoretical con-
vergence results in Section V-A and Section V-B. The locations
of nonzero coefficients are chosen uniformly at random, and
the nonzero entries are independent and identically Gaussian
distributed with zero mean and unit variance. The length of
measurement vector is chosen as m = 20 and SNR = 20 dB.
The columns of dictionary matrixA are drawn uniformly from
the surface of the m-dimensional unit hypersphere [45].

A. Convergence

To study the convergence of the AM procedure, we take size
of training data set as K = 1000. We generate sparse signals
of length N = 60, each with s = 6 nonzero entries. We look
at the first iteration (r = 1) of the EM algorithm because that
requires the maximum number of inner iterations to converge,
and thus illustrates the convergence behavior well.

Figure 1 shows the `2 squared norm of the difference
between the iterates and the limit point, given by ‖A(1,u) −
A(1)‖2, of the AM and ALS procedures under different
settings. We set β = α = 0.1 for Figure 1, unless specified
otherwise. The curves labeled Diff and Fit correspond to
the curves obtained via numerical experiments and by fitting
the function f(u) = exp(au + b) on the values, respectively,
where a < 0 and b are parameters of the curve. The values
of the parameters averaged over 100 experiments are listed in
Table I and Table II. Our observations are as follows:
• Rate of convergence: From Figure 1, we see that the

curve is well approximated using an exponential function

9

0 100 200 300 400 500 600
10

−15

10
−10

10
−5

10
0

‖
A

(r
,u
)
−

A
(r
)
‖
2

Iterate index u

β=0.01: Diff

β=0.01: Fit

β=0.1: Diff

β=0.1: Fit

β=0.9: Diff

β=0.9: Fit

(a) Varying value of β

0 100 200 300 400 500 600
10

−15

10
−10

10
−5

10
0

10
5

‖
A

(r
,u
)
−

A
(r
)
‖
2

Iterate index u

α=0.01: Diff

α=0.01: Fit

α=0.1: Diff

α=0.1: Fit

α=0.9: Diff

α=0.9: Fit

(b) Varying value of α

0 100 200 300 400 500
10

−15

10
−10

10
−5

10
0

‖
A

(r
,u
)
−

A
(r
)
‖
2

Iterate index u

AM: Diff

AM: Fit

ALS: Diff

ALS: Fit

(c) Comparison of AM and ALS

Figure 1. Convergence of ALS procedure ((a), (b)) and comparison with AM (c), with K = 1000, m = 20, N = 60, s = 6, and SNR = 20 dB, for the
first iteration of EM algorithm.

for moderate values of iteration number. Further, the
tail of the curve exhibits a faster-than-exponential decay.
Interestingly, both AM and ALS procedures exhibit the
same behavior for all choices of β and α.

• Step size parameter β: In the backtracking step of the
ALS procedure, we need to evaluate the optimal step
size by searching over the step sizes βα, β2α, β3α,
For smaller β, the number of iterations to reach the
stopping threshold decreases, as the search domain is
larger. However, as β increases, the optimal value of p
also increases, which results in a higher run time as it
requires p function evaluations and comparisons. Thus,
using β ≤ 0.1 strikes a good balance between run time
and the number of iterations.

• Step size parameter α: For the ALS procedure, α does
not have any effect on rate of convergence or run time.
This is because, the size of the discrete search in the
backtracking step does not depend on the value of α.

• Comparison of AM and ALS: From Figure 1c and Ta-
ble II, we see that the AM algorithm converges faster
than ALS and requires fewer number of iterations for the
same stopping threshold. Therefore, the AM procedure
is computationally more attractive than the ALS in prac-
tice, although the ALS procedure comes with stronger
theoretical convergence guarantees.

Remark: The number of iterations required by the procedure
dramatically reduces as r increases. All the plots shown here
correspond to r = 1. However, for r > 10, only about 2-4
iterations are required for the inner optimization, making it
computationally very efficient.

B. Performance of the Algorithms

In this subsection, we compare the performance of our al-
gorithms with other popular algorithms in literature. Here, we
do not show separate curves for DL-SBL using the ALS and
AM algorithms, as their performances are virtually identical.

For fairness of comparison, the noise level information is
provided to all algorithms. For SimCo, KSVD and MOD, it
is used to set the error threshold in the orthogonal matching

pursuit (OMP) step of the algorithm; the threshold is set to be
1.15 times the noise variance. For DL-SBL, GAMP, Gaussian
hierarchical model based SBL, multimodal sparse Bayesian
dictionary learning, and Bayesian KSVD, the noise variance
is an input to the algorithm. We use the version of Gaussian
hierarchical model based SBL and Bayesian KSVD which do
not learn the noise level, but take the noise level as an input.

1) Synthetic Data: We use the same setup as in [15]. We
generate sparse signals of length N = 50, each with s = 3
nonzero entries. We let x̂k and xk denote the estimate and true
value of the sparse vector, respectively, and Â and A denote
the estimate and true value of the dictionary, respectively. We
use the following metrics evaluating the performance.

(i) Dictionary recovery success rate (DRSR) [15], which is
the fraction of successfully recovered columns of the
dictionary. A column is said to be successfully recovered
if the magnitude inner product between the column in
the true dictionary and any of the estimated dictionary
columns exceeds 0.99.

(ii) Relative distortion (RD) [17], defined as:

RD ,

∑K
k=1 ‖Âx̂k −Axk‖2∑K

k=1 ‖Axk‖2
. (29)

(iii) Run time, which is the time required to complete the
computations. It measures the computational complexity.

We refer to the DRSR and RD metrics jointly as the recovery
performance of the algorithm. Note that, any solution of
the form {AP ,Pxk, k = 1, 2, . . . ,K}, where P is a signed
permutation matrix6 is a solution to the dictionary learning

problem. Consequently, the error metric ‖A−Â‖
2

‖A‖2 does not ac-
count for the inherent non-uniqueness of the solution. Hence,
we use DRSR as a measure of how well the dictionary is
recovered, and RD is a measure of how well the recovered
solution matches with the measurements.

Figure 2 compares the proposed algorithm with the follow-
ing algorithms:

6A matrix is said to be a signed permutation matrix if it has exactly one
nonzero entry which is either 1 or −1 in each row and each column.

10

0 500 1000 1500 2000

No. of Sparse Vectors K

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
R

S
R

DL-SBL

MOD

KSVD

BKSVD

SBDL

Proj-SBDL

(a)

0 500 1000 1500 2000

No. of Sparse Vectors K

10
-2

10
-1

R
D

DL-SBL

MOD

KSVD

BKSVD

SBDL

P-SBDL

(b)

0 500 1000 1500 2000

No. of Sparse Vectors K

10
-1

10
0

10
1

10
2

10
3

R
u

n
 T

im
e

KSVD

DL-SBL

BKSVD

MOD

SBDL

Proj-SBDL

(c)

Figure 2. Comparison of DL-SBL with KSVD, MOD, Gaussian hierarchical model based SBL algorithm, multimodal sparse Bayesian dictionary learning,
and Bayesian KSVD, when the number of input vectors is varied. The performance of DL-SBL is superior to the other three algorithms.

• KSVD [15]
• MOD [14]
• Gaussian hierarchical model based SBL algorithms [23]

(labeled as SBDL)
• Multimodal sparse Bayesian dictionary learning [25], [26]

(labeled as Proj-SBDL)
• Bayesian KSVD [27].

For the Gaussian hierarchical model based SBL, using a non-
informative prior results in the best performance. Therefore,
we use that version of the algorithm for comparison.

The performance of all the algorithms improve with K,
as more information about the dictionary is available to
the algorithm. The DL-SBL algorithm outperforms the other
algorithms in terms of both DRSR and RD. The run time
demanded by our algorithm is larger than K-SVD, but it is
lower than the other two algorithms.

The Gaussian hierarchical model based SBL and multi-
modal sparse Bayesian dictionary learning have similar per-
formance except for K = 200. When the number of measure-
ments is very small (K = 200), the Gaussian hierarchical
model based SBL algorithm fails to converge, resulting in
higher run time and poor performance. The projection step
used in the multimodal sparse Bayesian dictionary learning
eliminates such instabilities. However, in the regime shown in
Figure 2, the performance of both the algorithms is inferior to
the other algorithms in the literature. This observation agrees
with the intuitive explanation presented in Section II-D that
the Gaussian hierarchical model based SBL algorithm requires
a larger number of measurements compared to the DL-SBL
algorithm to achieve good performance.

2) Image Denoising: We next consider the application of
DL to the problem of image denoising. Here, the goal is to
remove zero-mean white and homogeneous Gaussian additive
noise from a given image. We adopt the same simulation setup
as in [15], and use 10 randomly chosen gray scale images
from the Berkeley segmentation database. The noise standard
deviations used in this benchmark are 5, 10, 15, and 25 gray
levels. For every image, we learn the dictionary using K =
6000 uniformly randomly chosen blocks of size m = 8× 8 =

Table III
COMPARISON OF PSNR VALUES OF DIFFERENT ALGORITHMS WITH

VARYING NOISE VARIANCE

Noise
Standard
Deviation

5 10 15 25

SimCo 38.9843 33.7205 30.8103 27.3856

KSVD 39.0861 33.8418 30.8928 27.3751

MOD 38.8720 33.8818 31.0586 27.5354

DL-SBL 39.0680 33.9115 31.0513 27.6371
GAMP 38.7975 33.7574 30.9353 27.4408

BKSVD 39.0317 33.8861 31.0124 27.6041

Table IV
COMPARISON OF SSIM VALUES OF DIFFERENT ALGORITHMS WITH

VARYING NOISE VARIANCE

Noise
Standard
Deviation

5 10 15 25

SimCo 0.9643 0.8936 0.8289 0.7396

KSVD 0.9648 0.8946 0.8297 0.7393

MOD 0.9646 0.8959 0.8324 0.7425

DL-SBL 0.9650 0.8958 0.8320 0.7440
GAMP 0.9600 0.8876 0.8252 0.7384

BKSVD 0.9644 0.8953 0.8317 0.7439

64 pixels. The length of the sparse vectors N is taken as 256.
For all the algorithms, once the dictionary is learned, the

complete image is reconstructed using the OMP algorithm
with the corrupted image and the learned dictionary as inputs
and error threshold as 1.15 times the noise variance. We
reconstruct the image as 8 × 8 overlapping blocks which are
then combined by averaging the overlapping pixels. The peak
SNR (PSNR) and structural similarity index (SSIM) values
of the images reconstructed by several algorithms are shown
in Table III and Table IV, respectively. The tables show the

11

median values of the corresponding measures for each noise
levels. The following algorithms are compared:
• Simultaneous codeword optimization (SimCo) [17]
• K-singular value decomposition (K-SVD) [15]
• Method of optimal directions (MOD) [14]
• Bilinear generalized approximate message passing algo-

rithm (GAMP) [22]
• Bayesian K-SVD (BKSVD) [27].
The results show that the performance of DL-SBL matches

that of the other algorithms at all noise levels, and it offers the
best performance at a noise level of 25. At smaller noise levels
(5 and 10), there is no clear winner as the best PSNR value
and the best SSIM value correspond to different algorithms
including DL-SBL. At noise level 15, MOD has the best
performance. However, the performance of DL-SBL is close
to the best performing algorithm for both metrics for all noise
levels. Therefore, the performance of our algorithm is similar
to the state-of-the-art algorithms.

VI. CONCLUSIONS

In this paper, we analyzed a Bayesian algorithm for jointly
recovering a dictionary matrix and a set of sparse vectors
from a training set containing noisy underdetermined linear
measurements. We developed the algorithm using the SBL
framework, and implemented it using the EM algorithm, with
the dictionary matrix and the variances of the entries of the
sparse vectors as unknown parameters. The EM algorithm
requires one to solve a non-convex optimization problem in
the M-step, which we tackled using an AM or ALS procedure.
We compared the AM and ALS procedures in terms of their
computational complexity and memory requirements. We also
provided a rigorous convergence analysis of the proposed
optimization procedures. Further, by direct analysis of the
cost function involved, we showed that the DL-SBL algorithm
is likely to output the sparsest representation of the input
vectors. We empirically showed the efficacy of our algorithm
compared to existing algorithms, when applied to the image
denoising problem. Designing low complexity DL algorithms
in an online setup where the data is sequentially available is
an interesting direction for future work.

ACKNOWLEDGEMENTS

We gratefully thank Rajiv Soundararajan for helpful dis-
cussions on the image processing application presented in
this work. We also thank the anonymous reviewers, whose
insightful feedback helped improve the paper.

APPENDIX A
PROOF OF PROPOSITION 1

Proof. For the AM procedure, since we optimize one column
of A at a time, it is easy to see that

g
(
A(r,u−1)

)
≥ g

(
A(r,u)

)
. (30)

The above relation holds even if we skip the update of a
column when

∥∥∥v(r,u)i

∥∥∥ = 0, in which case the value of the

cost function remains unchanged. Similarly, from (13), the
sequence

{
g
(
A(r,u)

)}
u∈N

generated by the ALS algorithm

is also nonincreasing. Thus, in both cases,
{
g
(
A(r,u)

)}
u∈N

is

a nonincreasing sequence bounded by g
(
A(r,0)

)
from above.

From (8), we have

g (A) =
1

2
Tr

{(
YMT −A

)T (
YMT −A

)
+AΣAT

}
− 1

2
Tr
{
Y TMMTY + Σ

}
−N/2 (31)

≥ −1

2
Tr
{
Y TMMTY + Σ

}
−N/2. (32)

Therefore, the nonincreasing sequence
{
g
(
A(r,u)

)}
u∈N

is
bounded from below, and hence it converges.

APPENDIX B
PROOF OF PROPOSITION 2

Proof. The first part of the result directly follows from the
properties of AM. Further, any stationary point of the cost
function takes the following form:

AL = YMT −A (Σ−D {Σ}) (33)

for some diagonal matrix L. From (11), we get

G(A)i ‖vi‖ = vi, (34)

where

vi =

K∑
k=1

µk[i]yk −
i−1∑
j=1

Σ[i, j]G(A)j −
N∑

j=i+1

Σ[i, j]Aj

=
(
YMT

)
i
−G(A)

(
Σ̂

T
)
i
−AΣ̂i, (35)

where Σ̂ is lower triangular with zero diagonal entries and
Σ̂+ Σ̂

T
= Σ−D {Σ}. When A is a fixed point of G, we get

vi =
(
YMT

)
i
−A (Σ−D {Σ})i . (36)

Now, from (34) and (36), it can be seen that A satisfies (33)
with Lii = ‖vi‖ ≥ 0, which concludes the proof.

APPENDIX C
PROOF OF THEOREM 1

The proof of the theorem rests on the following lemmas.

Lemma 1. Let
{
A(r,u)

}
u∈N

be a sequence generated by the
ALS procedure. Then, there exists C1 > 0 such that

g̃
(
A(r,u−1)

)
− g̃

(
A(r,u)

)
≥ C1

∥∥∥A(r,u−1) −A(r,u)
∥∥∥2 .

(37)

Proof. We note from (17) that

A
(r,u)
i =

A
(r,u−1)
i + βpαZ

(r,u−1)
i∥∥∥A(r,u−1)

i + βpαZ
(r,u−1)
i

∥∥∥ . (38)

Also, from (16), we know that

A
(r,u−1)T
i Z

(r,u−1)
i = 0. (39)

12

Therefore, we get

1

2

∥∥∥A(r,u−1) −A(r,u)
∥∥∥2

=

N∑
i=1

1

2

∥∥∥A(r,u−1)
i −A(r,u)

i

∥∥∥2 (40)

=

N∑
i=1

(
1−A(r,u−1)T

i A
(r,u)
i

)
(41)

=

N∑
i=1

1− 1√
1 +

∥∥∥βpαZ(r,u−1)
i

∥∥∥2
 (42)

≤
N∑
i=1

∥∥∥βpαZ(r,u−1)
i

∥∥∥2 , (43)

≤ 1

c

[
g
(
A(r,u−1)

)
− g

(
A(r,u)

)]
(44)

where (41) is because A(r,u−1)
i and A

(r,u)
i are unit norm

vectors, and (42) is a consequence of (38) and (39), (43) is
due to the fact that x2 + 1/

√
1 + x2 − 1 ≥ 0 for all x ∈ R,

and (44) follows from (13). Thus, the proof is complete.

Lemma 2 (Subgradient of δnorm). For any A ∈ O ⊂ Rm×N ,

∂δnorm (A) =
{
AL̃, L̃ ∈ RN×N :

Lii≥0,∀ i
L̃ij=0,i6=j

}
. (45)

Proof. Let Z ∈ ∂δnorm (A). From the definition of the sub-
gradient, we get δnorm (A) + Tr

{
ZT (B −A)

}
≤ δnorm (B),

∀B ∈ Rm×N . This relation is trivially satisfied for all Z and
for any B /∈ O. However, when B ∈ O, Z should satisfy

Tr
{
ZTB

}
≤ Tr

{
ZTA

}
, (46)

since δnorm (A) = δnorm (B).
To prove the result, we consider three different cases that

cover all possible values for Z.
1) We express the columns of the matrix Z as Zi = L̃iiAi+
A⊥i , where L̃ii ∈ R andA⊥i ∈ Rm is such thatAT

i A
⊥
i =

0, ∀i. Suppose A⊥i 6= 0 for at least one value of i. Also,
let B ∈ Rm×N ∈ O be defined as

Bi =

e, for ‖Zi‖ = 0,

Zi/ ‖Zi‖ , for ‖Zi‖ 6= 0,
(47)

where e is any unit norm vector. Then,

Tr
{
ZTA

}
=

N∑
i=1

L̃ii <

N∑
i=1

‖Zi‖ = Tr
{
ZTB

}
.

Therefore, there exists a matrix B ∈ O such that (46) is
not satisfied. Thus, we get

∂δnorm (A) ⊆
{
AL̃, L̃ ∈ RN×N : L̃ij = 0, if i 6= j

}
.

(48)
2) Let Z = AL̃ for some diagonal matrix such that at least

one of the diagonal entries of L̃ is negative. Let B ∈
Rm×N ∈ O be defined such that Bi = sign

{
L̃ii

}
Ai,

where the function sign{·} takes values 1 and −1 for
nonnegative and negative arguments, respectively. Then,

Tr
{
ZTA

}
=

N∑
i=1

L̃ii <

N∑
i=1

∣∣∣L̃ii∣∣∣ ≤ Tr
{
ZTB

}
,

(49)
Therefore, (46) does not hold for B ∈ O, and from (48)
we get

∂δnorm (A) ⊆
{
AL̃, L̃ ∈ RN×N :

Lii≥0,∀i
L̃ij=0, if i6=j

}
. (50)

3) Let Z = AL̃, for some psd matrix L̃. Here, for any
matrix B ∈ O,

Tr
{
ZTB

}
= Tr

{
L̃ATB

}
=

N∑
i=1

L̃iiA
T
i Bi (51)

≤
N∑
i=1

L̃ii =

N∑
i=1

L̃iiA
T
i Ai (52)

= Tr
{
L̃ATA

}
= Tr

{
ZTA

}
. (53)

Therefore, from (50) we get

∂δnorm (A) =
{
AL̃, L̃ ∈ RN×N :

Lii≥0,∀i
L̃ij=0,i6=j.

}
. (54)

Hence, the proof is complete.

A. Proof of Theorem 1

Proof. In [41, Theorem 2], the authors provide a Kurdyka-
Łojasiewicz property based proof of convergence of a proximal
algorithm. By careful examination their proof, it can be seen
that a bounded sequence of iterates converges to a stationary
point of g̃ if the following four conditions hold:7

(i) The function g̃(A) satisfies inf
A∈Rm×N

g̃ (A) > −∞.
(ii) There exist constants θ ∈ [0, 1), C, ε > 0 such that

|g̃ (A)− g̃ (A∗)|θ ≤ C ‖Z‖ (55)

for any stationary point A∗ of g̃, any A such that
‖A−A∗‖ ≤ ε, and any Z such that Z ∈ ∂g (A). The
constant θ is called the Łojasiewicz exponent.

(iii) There exists C1 > 0 such that

g̃
(
A(r,u−1)

)
− g̃

(
A(r,u)

)
≥ C1

∥∥∥A(r,u−1) −A(r,u)
∥∥∥2 .
(56)

(iv) There exist u0 > 1, C2 > 0 and Z ∈ ∂g
(
A(r,u)

)
such

that for all u > u0

‖Z‖ ≤ C2

∥∥∥A(r,u−1) −A(r,u)
∥∥∥ . (57)

Here, the first two conditions are on the cost function, and
the last two are on the iterates. In [41, Theorem 2], these
conditions are verified to hold for the proximal algorithm. The
rest of the proof below is the verification of the four conditions
for the ALS procedure.

As discussed in Appendix A (see (32)), the cost function
g is bounded from below. Therefore, g̃ is also bounded from
below, and hence Condition (i) is satisfied.

7A more detailed version of the proof precisely connecting it to the result
in [46] is given in [30, Appendix D.12].

13

Next, note that δnorm(·) is an indicator function of a semi-
algebraic set, and g is a real analytic function. Therefore, g̃
is a sum of real analytic and semi-algebraic functions. As a
consequence, from [47, Section 2.2], we have that g̃ satisfies
the desired condition ((ii)).

Condition (iii) follows from Lemma 1.
Finally, to verify Condition (iv), we first compute the

subgradient of g̃ using Lemma 2. Hence, the desired condition
is true if and only if, for all u > u0, it holds that

min
Z̃∈∂g̃(A(r,u))

∥∥∥Z̃∥∥∥ ≤ C2

∥∥∥A(r,u−1) −A(r,u)
∥∥∥ . (58)

Now, from Lemma 2, we have,

min
Z̃∈∂g̃(A)

∥∥∥Z̃∥∥∥2 = min
L̃ii≥0

∥∥∥∇g(A) +AL̃
∥∥∥2 . (59)

Since the optimization problem is separable in the diagonal
entries of L̃, we get the optimum value L̃

∗
as

L̃
∗
ii =

−AT
i ∇g (A)i , if AT

i ∇g (A)i ≤ 0

0, otherwise
(60)

for i = 1, 2, . . . , N . This gives

arg min
Z̃∈∂g̃(A)

∥∥∥Z̃∥∥∥
≤

√√√√ N∑
i=1

max
{∥∥∥(I −AiA

T
i

)
∇g (A)i

∥∥∥ , ‖∇g (A)i‖
}

= ‖∇g (A)‖ . (61)

Here, (61) follows from the fact that I −AiA
T
i is the projec-

tion matrix for the subspace orthogonal to the unit norm col-
umn Ai. Therefore,

∥∥∥(I −AiA
T
i

)
∇g (A)i

∥∥∥ ≤ ‖∇g (A)i‖.
Thus, we have

min
Z̃∈∂g̃(A(r,u))

∥∥∥Z̃∥∥∥ =
∥∥∥(A(r,u−1) −A(r,u)

)
(Σ−D {Σ})

∥∥∥
(62)

≤ C2

∥∥∥(A(r,u−1) −A(r,u)
)∥∥∥ , (63)

where C2 is the spectral norm of Σ − D {Σ}. Also, (62) is
due to the definition of g in (8). Hence, Condition (iv) is
satisfied for all u. Therefore, all four conditions are met, and
consequently, the convergence is guaranteed.

APPENDIX D
PROOF OF PROPOSITION 3

Proof. From (13) and Proposition 1,

0 = lim
u→∞

Z(r,u) = PA(r)

(
YMT −A(r)Σ

)
. (64)

Thus, (16) gives

YMT −A(r) (Σ−D {Σ}) = A(r)L, (65)

for some diagonal L. Then, the result related to the Nash
equilibrium follows from Corollary 1. Further, we have

∇g
(
A(r)

)
= −A(r)L. (66)

Let ∆ = A −A(r), where A is any matrix in O. Then, for
i = 1, 2, . . . , N we have

1 = ‖Ai‖2 =
∥∥∥∆i +A

(r)
i

∥∥∥2 = ‖∆i‖2+1+2∆T
i A

(r)
i . (67)

Thus, we get 1
2 ‖∆i‖2 = −∆T

i A
(r)
i , and similarly, expanding

‖Ai −∆i‖2, we get 1
2 ‖∆i‖2 = ∆T

i Ai. Therefore,

D
{
∆TA

}
= −D

{
∆TA(r)

}
=

1

2
D
{
∆T∆

}
. (68)

Now, using a Taylor series expansion around A(r), we have

g (A)− g
(
A(r)

)
= Tr

{
∆T∇g

(
A(r)

)
+

1

2
∆T∆ (Σ−D {Σ})

}
(69)

= Tr

{
−∆TA(r)L+

1

2
∆T∆ (Σ−D {Σ})

}
(70)

=
1

2
Tr
{
∆T∆L+∆T∆ (Σ−D {Σ})

}
(71)

=
1

2
Tr
{
∆ (L+ Σ−D {Σ})∆T

}
, (72)

where we use (66) and (68) to get (70) and (71) respectively.
Note that the Taylor series expansion is not an approximation
here, as our cost function is quadratic. The right hand side of
(72) is non-negative if and only if L+ Σ−D {Σ} is positive
semi-definite, and strictly positive if and only if L+Σ−D {Σ}
is positive definite. Hence, the proof is complete.

APPENDIX E
PROOF OF THEOREM 2

Proof. The first part of the result directly follows from
Proposition 1 and [31, Theorem 4.4.1] (See Theorem 7 in
Appendix G.)

To prove the second part, suppose that A(r) is a strict local
minimum. Then, for any neighborhood U of A(r), there exists
ε > 0 such that, in the closed ball Hε ⊆ U around A(r),
g(A) > g(A(r)) for all A 6= A(r) ∈ Hε. Here, the closed
ball is defined as follows:

Hε =
{
A ∈ O :

∥∥∥A−A(r)
∥∥∥ ≤ ε} . (73)

Moreover, from Lemma 1, we get∥∥∥G(A)−A(r)
∥∥∥ ≤ ‖G(A)−A‖+

∥∥∥A−A(r)
∥∥∥ (74)

≤ C1 [g (G(A))− g (A)] +
∥∥∥A−A(r)

∥∥∥ (75)

≤ C1

[
g (A)− g

(
A(r)

)]
+
∥∥∥A−A(r)

∥∥∥ , (76)

where the last step is because of Proposition 1 which gives
g(A) ≥ g (G(A)) ≥ g(A(r)). From Proposition 3, we know
that A(r) satisfies the relation:

A(r)L = YMT −A(r) (Σ−D {Σ}) , (77)

for some diagonal matrix L. Following the same steps as (70)-
(72), we get

0 < g (A)− g
(
A(r)

)

14

=
1

2
Tr

{(
A−A(r)

)
(L+ Σ−D {Σ})

(
A−A(r)

)T}
≤ λmax

2

∥∥∥A−A(r)
∥∥∥2 , (78)

where λmax > 0 is the largest singular value of the matrix
(L+ Σ−D {Σ}). Thus, from (76),∥∥∥G(A)−A(r)

∥∥∥ ≤ C1λmax

2

∥∥∥A−A(r)
∥∥∥2 +

∥∥∥A−A(r)
∥∥∥ .
(79)

Let ε′ > 0 be such that

max
A∈Hε′

∥∥∥G(A)−A(r)
∥∥∥ = ε ≤

(
C1λmax

2
ε′ + 1

)
ε′. (80)

Therefore, for all A ∈ Hε′ , G(A) ∈ Hε. Now, using the proof
technique used in [31, Theorem 4.4.2], we define the set

V = {A ∈ Hε : g(A) < α} ⊆ Hε, (81)

where α = min
B∈Hε\Hε′

G (B) when ε′ ≤ ε, and α = ∞

otherwise. Note that, when ε′ ≤ ε, g(A) ≥ α, for all
A ∈ Hε\Hε′ , which implies V ⊆ Hε′ . Also, when ε′ > ε,
Hε′ ⊃ Hε′ ⊇ V . Thus, in both cases, V ⊆ Hε′ . Hence, for
every A ∈ V , G(A) ∈ Hε. By Proposition 1, the sequence
g
(
G(u)(A)

)
generated by ALS is nonincreasing, and hence

g (G(A)) ≤ g (A) < α. (82)

Therefore, G(A) ∈ V for all A ∈ V , hence G(u)(A) ∈ V ⊆ U
for all u ∈ N. Thus, stability of the point is guaranteed. Since
A(r) is the only strict local minimum of g in V , it follows
that limu→∞G(u)(A) = A(r) for all A ∈ V , which shows
the asymptotic stability of A(r). This completes the proof.

APPENDIX F
PROOF OF PROPOSITION 4

Proof. The AM and the ALS procedures along with the update
equations of Γ ensure that

Q(Λ(r); Λ(r−1)) ≤ Q(Λ(r−1); Λ(r−1)),∀r ≥ 1. (83)

This result immediately follows from Proposition 1 and the
fact that (6) maximizes the part of Q(Λ; Λ(r−1)) that depends
on Γk. Using the properties of EM [48], we have that

T (Λ(r)) ≤ T (Λ(r−1)). (84)

Since (σ2I+AΓkA
T)−1 is positive definite, from (3), we get

T (Λ) ≥
K∑
k=1

log
∣∣∣σ2I +AΓkA

T
∣∣∣ ≥ Km log σ2. (85)

Therefore,
{
T (Λ(r))

}
r∈N

is monotonically decreasing and
bounded from below. Hence, the sequence of DL-SBL cost
function values converges.

APPENDIX G
PROOF OF THEOREM 3

Before we present the proof of the theorem, we first list a
set of results from the literature that are used in the proof.

A. Toolbox

Definition 3 (Coercive function). A function T : RN → R is
called coercive if lim

‖x‖→∞
T (x) = +∞.

Lemma 3. The cost function T (Λ) defined in (3) is a coercive
and continuous function of Λ.

Proof. The proof is adapted from the proofs of [25, Theorem
1, Corollary 1]. We have

lim
‖Λ‖→∞

T (Λ) = lim
‖γk‖→∞

K∑
k=1

(
log
∣∣∣σ2I +AΓkA

T
∣∣∣

+yT
k

(
σ2I +AΓkA

T
)−1

yk

)
=∞. (86)

Therefore, T (Λ) defined in (3) is a coercive function of Λ,
because ‖Λ‖ → ∞ only if at least one of the entries of
{γk}k=1,2,...,K goes to ∞, and A belongs to a bounded set.

The continuity of the cost function with respect to
AΓkA

T, k = 1, 2, . . . ,K follows from the fact that both the
determinant and matrix inverse functions are continuous [49,
Theorems 5.18, 5.19]. Further, since AΓkA

T is a continuous
function of A and γk, k = 1, 2, . . . ,K, the cost function is a
continuous function of Λ.

Theorem 6 ([48, Theorem 1]). Let
{

Λ(r)
}
r∈N

be the iterates
generated by a generalized EM algorithm. Also, let G be the
point-to-set mapping defining algorithm updates: Λ(r+1) =

G(Λ(r)). Then, all the limit points of
{

Λ(r)
}
r∈N

are the set

of stationary points crit(T) of the cost function T , if
(i) T (Λ(r)) > T (Λ(r−1)), for all Λ /∈ crit(T).

(ii) G(Λ(r−1)) is a closed set over the complement of crit(T).

Theorem 7 ([31, Theorem 4.4.1]). For any set G Let G :
G → G be a descent mapping for a smooth cost function
T : G → R, and assume that for every Λ ∈ G, all limit points
of
{

Λ(r)
}
r∈N

are stationary points of T . Let Λ̂ ∈ G be any

limit point of
{

Λ(r)
}
r∈N

which is not a local minimum of T .

Further, assume that there is a compact neighborhood U of Λ̂
where, for every critical point Λ̄ of T in U , T (Λ̄) = T (Λ̂).
Then, Λ̂ is an unstable point of T .

B. Proof of Theorem 3

Proof. From Proposition 4, the sequence
{
T (Λ(r))

}
r∈N

gen-
erated by the DL-SBL algorithm using ALS procedure con-
verges to a point T (Λ∗). Also, from Lemma 3, we know that
T (Λ∗) is finite and therefore the set of limit points is compact.
Thus, it follows that the iterates

{
Λ(r)

}
r∈N

admit at least one
limit point for k = 1, 2, . . . ,K.

Next, we use Theorem 6 to prove that the iterates converge
to the set of stationary points of the cost function. Clearly,
Condition (i) of Theorem 6 is satisfied due to Proposition 4
and the properties of E and M steps. To prove Condition (ii),
we first note that the AM and the ALS algorithm converge to a
closed set, as proved by Proposition 3. Further, since T (Λ) is
a continuous function of A and γk, the M-step update always

15

satisfies Condition (ii) of Theorem 6. Therefore, the algorithm
satisfies both conditions, and hence, converges to the set of
stationary points.

The last part of the result about the stability follows directly
from Proposition 4 and Theorem 7.

APPENDIX H
PROOF OF PROPOSITION 5

Proof. Under noiseless measurements, the dictionary learning
problem reduces to a matrix factorization problem: Y = AX .
Suppose that X is already known to the algorithm. Then, to
uniquely estimate A, condition (24) is necessary. Similarly,
when A is known to the algorithm, to uniquely recover X ,
(25) is necessary. Otherwise, there exists an s−sparse vector
z in the null space of A such that z + xk is s−sparse for
some k, and yk = A(z+xk), i.e., the solution is not unique.
Also, for X to have full rank, at least two columns of X must
have different supports. Therefore, if |Sk| = m, uniqueness is
not guaranteed, which leads to the condition |Sk| < m. Thus,
the first part of the result is obtained.

Next, if maxk=1,2,...,K ‖xk‖0 = 1, every nonzero mea-
surement vector is a scaled version of some column of the
measurement matrix. The condition (24) guarantees that there
is no all-zero row in X and thus, there exists a measurement
vector yk corresponding to every column Ai of the dictionary
such that yk = XikAi where Xik is the only nonzero entry
of the kth column of X . Further, by assumption, the columns
of A are unit norm, and hence, given yk, the tuple (Xik,Ai)
is unique upto the sign of Xik. Thus, the solution is unique
under (24) and (25).

APPENDIX I
PROOF OF THEOREM 4

Proof. The cost function T in (3) consists of two terms: the
logarithm of the determinant of the product of matrices of the
form σ2I+A∗Γ∗kA

∗T, and sum of projections of the inverses
of the same matrices. Since the second term is positive, the
minimum is achieved when the first term goes to minus infinity
while maintaining a finite upper bound on the second term. We
note that, from (25)

Rank {Γ∗k} = ‖Diag {Γ∗k}‖0 = |Sk| < m, (87)

where Sk denotes the support of x∗k. Further, we get that

lim
σ2→0

∣∣∣σ2I +A∗Γ∗kA
∗T
∣∣∣

≤ lim
σ2→0

(λ̂max + σ2)Rank{Γ
∗
k}(σ2)m−Rank{Γ

∗
k} = 0, (88)

where λ̂max is the largest eigenvalue of A∗Γ∗kA
∗T. Thus, the

first term goes to negative infinity. Using arguments similar to
those in [29, Theorem 1], we can show that

lim
σ2→0

yT
k

(
σ2I +A∗Γ∗kA

∗T
)−1

yk ≤
1

c
‖x∗k‖

2
. (89)

Thus, the second term in the cost function is upper bounded by
1
c ‖X

∗‖2F < ∞. Hence,
(
A∗, {Γ∗k}

K
k=1

)
achieves the global

minimum. Further, it is easy to see that the cost function takes
the same value over the set

(
A∗P , {PΓ∗kP }

K
k=1

)
, and thus

the result is proved.

APPENDIX J
PROOF OF THEOREM 5

Proof. The goal of DL-SBL is to solve:

min
A∈O

[
K∑
k=1

min
γk∈RN+

log
∣∣∣σ2I +AΓkA

T
∣∣∣

+yT
k

(
σ2I +AΓkA

T
)−1

yk

]
. (90)

For any given A, the local minima of the objective function
of the sub-optimization problem within the square brackets is
at most m−sparse [29, Theorem 2]. Hence, the local minima
of the DL-SBL cost function are all at most m−sparse.

REFERENCES

[1] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse
representation modeling,” Proc. IEEE, vol. 98, no. 6, pp. 1045–1057,
Jun. 2010.

[2] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 54, no. 12, pp. 3736–3745, Dec. 2006.

[3] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image
restoration,” IEEE Trans. Image Process., vol. 17, no. 1, pp. 53–69, Jan.
2008.

[4] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Nonlocal
sparse models for image restoration,” in ICCV, Sep. 2009, pp. 2272–
2279.

[5] R. Grosse, R. Raina, H. Kwong, and A. Y. Ng, “Shift-invariant sparse
coding for audio classification,” in Proc. UAI, Jul. 2007.

[6] M. Zibulevsky and B. Pearlmutter, “Blind source separation by sparse
decomposition in a signal dictionary,” Neural Computation, vol. 13,
no. 4, pp. 863–882, Apr. 2001.

[7] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught
learning: Transfer learning from unlabeled data,” in Proc. ICML, Jun.
2007, pp. 759–766.

[8] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Discrimina-
tive learned dictionaries for local image analysis,” in Proc. CVPR, Jun.
2008, pp. 1–8.

[9] ——, “Supervised dictionary learning,” in Proc. Adv. in Neural Inform.
Process. Syst., Dec. 2009, pp. 1033–1040.

[10] D. Bradley and J. Bagnell, “Differentiable sparse coding,” in Proc. Adv.
in Neural Inform. Process. Syst., Dec. 2009, pp. 113–120.

[11] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun, “Learning
invariant features through topographic filter maps,” in Proc. CVPR, Jun.
2009, pp. 1605–1612.

[12] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in Proc. CVPR,
Jun. 2009, pp. 1794 – 1801.

[13] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 4, pp. 791–804, Apr.
2012.

[14] K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions
for frame design,” in Proc. ICASSP, Mar. 1999.

[15] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[16] M. Yaghoobi, T. Blumensath, and M. E. Davies, “Dictionary learning
for sparse approximations with the majorization method,” IEEE Trans.
Signal Process., vol. 57, no. 6, pp. 2178–2191, Jun. 2009.

[17] W. Dai, T. Xu, and W. Wang, “Simultaneous codeword optimization
(SimCO) for dictionary update and learning,” IEEE Trans. Signal
Process., vol. 60, no. 12, pp. 6340–6353, Dec. 2012.

[18] M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, “Learning overcomplete
dictionaries based on atom-by-atom updating,” IEEE Trans. Signal
Process., vol. 62, no. 4, pp. 883–891, Feb. 2014.

[19] S. K. Sahoo and A. Makur, “Dictionary training for sparse representation
as generalization of K-Means clustering,” IEEE Signal Process. Lett.,
vol. 20, no. 6, pp. 587–590, Jun. 2013.

[20] K. Schnass, “Convergence radius and sample complexity of ITKM
algorithms for dictionary learning,” Appl. Comput. Harmo. A., vol. 45,
no. 1, pp. 22–58, Jul. 2018.

16

[21] M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson,
G. Sapiro, and L. Carin, “Nonparametric bayesian dictionary learning for
analysis of noisy and incomplete images,” IEEE Trans. Image Process.,
vol. 21, no. 1, pp. 130–144, Jan. 2012.

[22] J. T. Parker, P. Schniter, and V. Cevher, “Bilinear generalized approx-
imate message passing - part II: Applications,” IEEE Trans. Signal
Process., vol. 62, no. 22, pp. 5854–5867, Nov. 2014.

[23] L. Yang, J. Fang, H. Cheng, and H. Li, “Sparse Bayesian dictionary
learning with a Gaussian hierarchical model,” Signal Process., vol. 130,
pp. 93–104, Jan. 2017.

[24] M. Girolami, “A variational method for learning sparse and overcomplete
representations,” Neural Comput., vol. 13, no. 11, pp. 2517–2532, Nov.
2001.

[25] I. Fedorov and B. D. Rao, “Multimodal sparse bayesian
dictionary learning,” ArXiv e-prints, May 2019. [Online]. Available:
https://arxiv.org/abs/1804.03740

[26] I. Fedorov, B. D. Rao, and T. Q. Nguyen, “Multimodal sparse bayesian
dictionary learning applied to multimodal data classification,” in Proc.
ICASSP, Mar. 2017, pp. 2237–2241.

[27] J. G. Serra, M. Testa, R. Molina, and A. K. Katsaggelos, “Bayesian k-svd
using fast variational inference,” IEEE Trans. Image Process., vol. 26,
no. 7, pp. 3344–3359, Mar. 2017.

[28] M. E. Tipping, “Sparse Bayesian learning and the relevance vector
machine,” J. Mach. Learn. Res., vol. 1, pp. 211–214, Sep. 2001.

[29] D. Wipf and B. Rao, “Sparse Bayesian learning for basis selection,”
IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153–2164, Aug. 2004.

[30] G. Joseph, “Linear dynamical systems with sparsity constraints: Theory
and algorithms,” Ph.D. dissertation, Indian Institute of Science, Banga-
lore, India, 2019.

[31] P.-A. Absil, M. Robert, and R. Sepulchre, Optimization algorithms on
matrix manifolds. Princeton University Press, 2008.

[32] P.-A. Absil and J. Malick, “Projection-like retractions on matrix mani-
folds,” SIAM J. Optim., vol. 22, no. 1, pp. 135–158, Oct. 2012.

[33] T. Kaneko, S. Fiori, and T. Tanaka, “Empirical arithmetic averaging over
the compact Stiefel manifold,” IEEE Trans. Signal Process., vol. 61,
no. 4, pp. 883–894, Feb. 2013.

[34] R. Hunger, “Floating point operations in matrix-vector calculus,” Munich
University of Technology, TUM-LNS-TR-05-05, Tech. Rep. TUM-LNS-
TR-05-05, Sep. 2007.

[35] D. Wipf and S. Nagarajan, “Iterative reweighted `1 and `2 methods for
finding sparse solutions,” IEEE J. Sel. Topics Sig. Proc., vol. 4, no. 2,
pp. 317–329, Apr. 2010.

[36] J. Cruz Neto, L. De Lima, and P. R. Oliveira, “Geodesic algorithms in
Riemannian geometry,” Balkan J. Geom. Appl, vol. 3, no. 2, pp. 89–100,
1998.

[37] J. Cruz Neto, O. Ferreira, and L. R. Lucambio Perez, “A proximal
regularization of the steepest descent method in Riemannian manifold,”
Balkan J. Geom. Appl, vol. 4, no. 2, pp. 1–8, 1999.

[38] Y. Yang, “Globally convergent optimization algorithms on Riemannian
manifolds: Uniform framework for unconstrained and constrained opti-
mization,” J. Optim. Theory Appl., vol. 132, no. 2, pp. 245–265, 2007.

[39] C. Li and J. Wang, “Newton’s method for sections on Riemannian
manifolds: Generalized covariant α-theory,” J. Complex., vol. 24, no. 3,
pp. 423–451, Jun. 2008.

[40] X.-b. Li, N.-j. Huang, Q. H. Ansari, and J.-C. Yao, “Convergence rate of
descent method with new inexact line-search on Riemannian manifolds,”
J. Optim. Theory Appl., pp. 1–25, Sep. 2018.

[41] H. Attouch and J. Bolte, “On the convergence of the proximal algorithm
for nonsmooth functions involving analytic features,” Mat. Program-
ming, vol. 116, no. 1-2, pp. 5–16, Jan. 2009.

[42] H. Liu, W. Wu, and A. Man-Cho So, “Quadratic optimization with
orthogonality constraints: Explicit Łojasiewicz exponent and linear
convergence of line-search methods,” ArXiv e-prints, Oct. 2015.
[Online]. Available: https://arxiv.org/abs/1510.01025

[43] B. Gao, X. Liu, X. Chen, and Y. xiang Yuan, “On
the Łojasiewicz exponent of the quadratic sphere constrained

[46] M. D. Asic and D. D. Adamovic, “Limit points of sequences in metric
spaces,” The American Mathematical Monthly, vol. 77, no. 6, pp. 613–
616, Jun.-Jul. 1970.

optimization problem,” ArXiv e-prints, Nov. 2016. [Online]. Available:
https://arxiv.org/abs/1611.08781

[44] M. Razaviyayn, H.-W. Tseng, and Z.-Q. Luo, “Dictionary learning for
sparse representation: Complexity and algorithms,” in Proc. ICASSP,
May 2014, pp. 5247–5251.

[45] M. E. Muller, “A note on a method for generating points uniformly on
N-dimensional spheres,” Commun. ACM, vol. 2, no. 4, pp. 19–20, Apr.
1959.

[47] Y. Xu and W. Yin, “A block coordinate descent method for regular-
ized multiconvex optimization with applications to nonnegative tensor
factorization and completion,” SIAM J. Imaging Sci., vol. 6, no. 3, pp.
1758–1789, Sep. 2013.

[48] C. J. Wu, “On the convergence properties of the EM algorithm,” Ann.
Stat., vol. 11, no. 1, pp. 95–103, Mar. 1983.

[49] J. R. Schott, Matrix analysis for statistics. John Wiley & Sons, 2016.

Geethu Joseph received the B. Tech. degree in
Electronics and Communication Engineering from
National Institute of Technology, Calicut, India, in
2011, and the M. E. degree in Signal Processing and
the Ph.D. degree in Electrical Communication Engi-
neering (ECE), from the Indian Institute of Science
(IISc), Bangalore, in 2014 and 2019, respectively.
She was awarded the Prof. I. S. N. Murthy medal
in 2014 for being the best M. E. (signal processing)
student in the Dept. of ECE, IISc. She is currently a
post-doctoral fellow at the Department of Electrical

Engineering and Computer Science, Syracuse University, NY. Her research
interests include statistical signal processing, adaptive filter theory, sparse
Bayesian learning, and compressive sensing.

Chandra R. Murthy received the B. Tech. degree
in Electrical Engineering from the Indian Institute
of Technology Madras, Chennai, India, in 1998, the
M.S. and Ph.D. degrees in Electrical and Computer
Engineering from Purdue University, West Lafayette,
IN and the University of California, San Diego,
CA, in 2000 and 2006, respectively. From 2000
to 2002, he worked as an engineer for Qualcomm
Inc., San Jose, USA, where he worked on WCDMA
baseband transceiver design and 802.11b baseband
receivers. From 2006 to 2007, he worked as a staff

engineer at Beceem Communications Inc., Bangalore, India on advanced
receiver architectures for the 802.16e Mobile WiMAX standard. Currently,
he is working as a Professor in the department of Electrical Communication
Engineering at the Indian Institute of Science, Bangalore, India.

His research interests are in the areas of energy harvesting communications,
multiuser MIMO systems, and sparse signal recovery techniques applied
to wireless communications. His paper won the best paper award in the
Communications Track at NCC 2014 and a paper co-authored with his student
won the student best paper award at the IEEE ICASSP 2018. He has 60+
journal papers and 90+ conference papers to his credit. He was an associate
editor for the IEEE Signal Processing Letters during 2012-16. He is an elected
member of the IEEE SPCOM Technical Committee for the years 2014-16,
and has been re-elected for the 2017-19 term. He is a past Chair of the
IEEE Signal Processing Society, Bangalore Chapter. He is currently serving
as an associate editor for the IEEE Transactions on Signal Processing and
IEEE Transactions on Information Theory, and as an editor for the IEEE
Transactions on Communications.

