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Abstract—In [1], Proposition 15 is incorrect. Due to this
error, the statements of Theorems 2 and 3 in [1] claiming
m >0k log®/? n) as sufficient for k™ order restricted isometry
property (RIP) of the columnwise Khatri-Rao product of two
m xn sized random matrices containing independent subgaussian
entries may not hold true. This errata corrects the claims of
Theorems 2 and 3 in [1] to show that a higher sample complexity
requirement, m > O(klogn), is the new sufficient condition. The
k-RIP compliance of the columnwise Khatri-Rao product for m
scaling sublinearly with £ remains an open question.

The deterministic bounds for the k™-order restricted isometric
constants of a generic columnwise Khatri-Rao product presented
in [1] remain unchanged.

I. ERROR IN PROPOSITION 15

Proposition 15 in [1] makes an erroneous claim that a non-
negative random variable z with a subgaussian tail probability
(P(z—Ez > t) < exp (—1?/21?)) satisfies Ez < v/27v. As
a consequence, the proofs of Lemmas 4 and 6 in [1] which
rely on Proposition 15 are invalid, and the probabilistic bounds
for the restricted isometry constants (RICs) of the columnwise
Khatri-Rao product between random subgaussian matrices in
Theorems 2 and 3 may not hold.

In Section II, we state and prove a corrected, weaker
version of Theorem 2 in [1], which discusses a probabilistic
bound for the k-RIC of the columnwise Khatri-Rao product
between two independent random subgaussian matrices. In
Section III, we replace Theorem 3 in [1] with its weaker
version which provides a probabilistic k£-RIC bound for the
Khatri-Rao product of a random subgaussian matrix with itself.
The proof of Theorem 3 is omitted due to lack of space, but
it follows along similar lines as the proof of Theorem 2. The
detailed proof can be found in [2]. All through this note, the
notation is the same as in [1].

II. CORRECTION TO THEOREM 2
We begin with a corollary of the Hanson-Wright inequality
[1, Theorem 13] about the tail probability of the weighted
inner product between two subgaussian vectors.

Corollary 1. Ler u = (uj,ua,...,u,) € R" and v =
(Vi,va,...,vy) € R™ be independent random vectors with
independent subgaussian components satisfying Eu; = Ev; =
0 and [|uy|l,, < , < K. Let D be an n X n matrix.
Then, for every t > 0,

P{|u"Dv| > t}

t2 t
< 2exp |—cmin ,
[ <K4|D|§1,S K2|||D||2>]

where c is a universal positive constant.

Proof. The desired tail bound is obtained by using the Hanson-
Wright inequality [1, Theorem 13] with x = [uTvT]T and
A= [Onxn | D;Onxn | 0n><n]~

Given a pair of random input matrices with i.i.d. subgaus-
sian entries, the following corrected version of Theorem 2
in [1] provides an upper bound for the £-RIC of their colum-
nwise Khatri-Rao product.

Theorem 2. Suppose A and B are m x n matrices with real
i.i.d. subgaussian entries, such that EA;; = 0, EAfj =1
and ||Aj|,,, < K, and similarly for B. Then, for any ) > 0,
the k™ order restricted isometry constant &), of —2 7 © Um
satisfies 0y, < & with probability at least 1 — 10n—2(v—1) for
any v > 1, provided that

m > 4eyK2 (klogn) .

0

Here, K, = max (K, 1) and c is a universal positive constant.

Proof. We begin with a variational definition of the k-RIC:

A 5 B A 5 B 2 .
— O —= ] = s — O — |2z —1].

Avmovm) = o I\wme s
||zl |, =1, |z]|, <A "

In order to find a probabilistic upper bound for d;, we seek to
find a constant § € (0, 1) such that P(y, (\F \F) > 0)is
arbitrarily close to zero. We therefore consider the tail event

B 2
£4 sup H(@)z 11>0,,
2€R™, vm —/m
||ZH2:11||ZH0Sk
2)

and show that for m sufficiently large, P(€) can be driven
arbitrarily close to zero. In other words, the constant § serves

N \/E) Let U,
denote the set of all £ or less sparse unit norm vectors in R".

Then, using Proposition 12 in [1], the tail event in (2) can be
rewritten as

as a probabilistic upper bound for J (

PE) = P (sup z' (AoB)  (AOB)z— mQ’ > (5m2>
zeUy,
=P (sup |zT (ATA ) BTB) z m2’ > (5m2>
zEU,
=P | sup ZZzlzJ a b b) m2| > ém? | ,(3)
zc€Uy,

=1 j=1



where a; and b; denote the ith column of A and B, re-
spectively. Further, by applying the triangle inequality and the
union bound, the above tail probability splits as

n
PE) < P(Sup > llaills bl —m? Za5m2>
z€Uyk |, 1
+P | sup Z zizjal ajbl b;| > (1 —a)dm?| . (4)
2C€Uk | =1 j=1,ji

In the above, o € (0, 1) is a variational union bound parameter
which can be optimized at a later stage. We now proceed to
find separate upper bounds for each of the two probability
terms in (4).

From [1, (32)], the first tail probability term in (4) is
bounded as
P | sup zf ai2bi27 2l > adm?
<Zeuk ; [lai |5 [[bl]5
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_( ema?s?2(1—as/4)? 1
— 8n aK31ogn ) (5)
In order to bound the second tail probability term in (4),
we note that

n

n
E zizja?ajb?bj

sup
S P
< sup Z Z |zi2;] |a a,| |bTb |
zeuki 1 5=1,5%#1
< sup Z Z |2:2;] max |a aj||bTb‘
z€Uy i=1 j=1,j#1 ZJE:;EE
<k max |a aj| |bTb | , (6)
i,jE€[n
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where the second step is an application of Holders inequality.
The last step follows from ||z||, < vk for z € Uy. Using (6),
and by applying the union bound over (g) possible distinct
(i,7) pairs, the second probability term in (4) can be bounded
as

P sup Z zizja] ajblb;| > (1 — a)dm?

z€U},
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The last inequality in the above is obtained by using the tail
bound for |alay| from Corollary 1. Finally, by combining

(4), (5) and (7), and setting oo = 1/2, we obtain the following
simplified tail bound,

cms?(1-5/8)2
16K21ogn

) 4 on (=) g
4 N 4 .

4’YKOC](9510% n7 Ssz’y(ll(iéii)’r;) and any

v > 1, we have P(€) < 10n~2~1)_ Note that, in terms of k

and n, the first term in the inequality for m scales as klogn;

it dominates the second term, which scales as log n. This ends

our proof. O

P(E) < 8n7<

From (8), for m > max

III. CORRECTION TO THEOREM 3

Theorem 3. Let A be an m X n matrix with real i.i.d.
subgaussian entries, such that EA;; = 0, EAZ; = 1, and
[A4ll,, < K. Then, for any 6 > 0 the k™ order restricted
isometry constant §j, of the column-normalized self Khatri-Rao
product f—m ® \/% satisfies 0y, < § with probability at least
1 —5n=20=Y for any v > 1, provided

klogn
5 .

Here, K, = max (K,1) and ¢ > 0 is a universal constant.

m > Zlc”yK;1 <

Proof. A detailed proof is given in [2]. [

IV. REMARKS

Remark 1: According to Theorem 2, for fixed k& and n,
Ok ( N f) <O ( ) with high probability, which is an

improvement over O( \ﬁ) decay rate [3] for 1nd1v1dua1 k-RICs
of the input subgaussian matrices % and —=. Therefore,
we conclude that the Khatri-Rao product exh1b1ts stronger
restricted isometry property, with smaller k-RICs compared
to the k-RICs for the input matrices.

Remark 2: For A,B as constructed in Theorem 2, a
straightforward application of [4, Lemma 2] and the eigenvalue
interlacing theorem [5] gives the following relation.

(Ao BYes (Ao BYco( L) o
F\vm T ) = \ym T m) = \ym )
for n, k fixed. In comparison Theorem 2 suggests a tighter

\ﬁ \F <0 (%) We conjecture that

an even faster O ( ) decay rate prevails, but it appears that
a different approach would be required to establish this result.

upper bound dy, (
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