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Abstract—In [1], Proposition 15 is incorrect. Due to this
error, the statements of Theorems 2 and 3 in [1] claiming
m ≥ O(

√
k log3/2 n) as sufficient for kth order restricted isometry

property (RIP) of the columnwise Khatri-Rao product of two
m×n sized random matrices containing independent subgaussian
entries may not hold true. This errata corrects the claims of
Theorems 2 and 3 in [1] to show that a higher sample complexity
requirement, m ≥ O(k logn), is the new sufficient condition. The
k-RIP compliance of the columnwise Khatri-Rao product for m
scaling sublinearly with k remains an open question.

The deterministic bounds for the kth-order restricted isometric
constants of a generic columnwise Khatri-Rao product presented
in [1] remain unchanged.

I. ERROR IN PROPOSITION 15

Proposition 15 in [1] makes an erroneous claim that a non-
negative random variable z with a subgaussian tail probability(
P (z− Ez > t) ≤ exp

(
−t2/2ν2

))
satisfies Ez ≤

√
2πν. As

a consequence, the proofs of Lemmas 4 and 6 in [1] which
rely on Proposition 15 are invalid, and the probabilistic bounds
for the restricted isometry constants (RICs) of the columnwise
Khatri-Rao product between random subgaussian matrices in
Theorems 2 and 3 may not hold.

In Section II, we state and prove a corrected, weaker
version of Theorem 2 in [1], which discusses a probabilistic
bound for the k-RIC of the columnwise Khatri-Rao product
between two independent random subgaussian matrices. In
Section III, we replace Theorem 3 in [1] with its weaker
version which provides a probabilistic k-RIC bound for the
Khatri-Rao product of a random subgaussian matrix with itself.
The proof of Theorem 3 is omitted due to lack of space, but
it follows along similar lines as the proof of Theorem 2. The
detailed proof can be found in [2]. All through this note, the
notation is the same as in [1].

II. CORRECTION TO THEOREM 2

We begin with a corollary of the Hanson-Wright inequality
[1, Theorem 13] about the tail probability of the weighted
inner product between two subgaussian vectors.

Corollary 1. Let u = (u1,u2, . . . ,un) ∈ Rn and v =
(v1,v2, . . . ,vn) ∈ Rn be independent random vectors with
independent subgaussian components satisfying Eui = Evi =
0 and ||ui||ψ2

≤ K, ||vi||ψ2
≤ K. Let D be an n×n matrix.

Then, for every t ≥ 0,

P
{∣∣uTDv

∣∣ > t
}

≤ 2 exp

[
−cmin

(
t2

K4 ||D||2HS
,

t

K2 |||D|||2

)]

where c is a universal positive constant.

Proof. The desired tail bound is obtained by using the Hanson-
Wright inequality [1, Theorem 13] with x =

[
uTvT

]T
and

A = [0n×n | D;0n×n | 0n×n].

Given a pair of random input matrices with i.i.d. subgaus-
sian entries, the following corrected version of Theorem 2
in [1] provides an upper bound for the k-RIC of their colum-
nwise Khatri-Rao product.

Theorem 2. Suppose A and B are m×n matrices with real
i.i.d. subgaussian entries, such that EAij = 0, EA2

ij = 1,
and ||Aij ||ψ2

≤ K, and similarly for B. Then, for any δ > 0,
the kth order restricted isometry constant δk of A√

m
� B√

m

satisfies δk ≤ δ with probability at least 1 − 10n−2(γ−1) for
any γ > 1, provided that

m ≥ 4cγK4
o

(
k log n

δ

)
.

Here, Ko = max (K, 1) and c is a universal positive constant.

Proof. We begin with a variational definition of the k-RIC:

δk

(
A√
m
� B√

m

)
= sup

z∈Rn,
||z||2=1,||z||0≤k

∣∣∣∣∣
∣∣∣∣∣∣∣∣( A√

m
� B√

m

)
z

∣∣∣∣∣∣∣∣2
2

− 1

∣∣∣∣∣ .
(1)

In order to find a probabilistic upper bound for δk, we seek to
find a constant δ ∈ (0, 1) such that P(δk

(
A√
m
� B√

m

)
≥ δ) is

arbitrarily close to zero. We therefore consider the tail event

E ,

 sup
z∈Rn,

||z||2=1,||z||0≤k

∣∣∣∣∣
∣∣∣∣∣∣∣∣( A√

m
� B√

m

)
z

∣∣∣∣∣∣∣∣2
2

− 1

∣∣∣∣∣ ≥ δ
 ,

(2)
and show that for m sufficiently large, P(E) can be driven
arbitrarily close to zero. In other words, the constant δ serves
as a probabilistic upper bound for δk

(
A√
m
� B√

m

)
. Let Uk

denote the set of all k or less sparse unit norm vectors in Rn.
Then, using Proposition 12 in [1], the tail event in (2) can be
rewritten as

P(E) = P
(
sup
z∈Uk

∣∣∣zT (A�B)
T
(A�B) z−m2

∣∣∣ ≥ δm2

)
= P

(
sup
z∈Uk

∣∣zT (ATA ◦BTB
)
z−m2

∣∣ ≥ δm2

)

= P

 sup
z∈Uk

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

zizj
(
aTi aj

) (
bTi bj

)
−m2

∣∣∣∣∣∣ ≥ δm2

 ,(3)
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where ai and bi denote the ith column of A and B, re-
spectively. Further, by applying the triangle inequality and the
union bound, the above tail probability splits as

P(E) ≤ P

(
sup
z∈Uk

∣∣∣∣∣
n∑
i=1

z2i ||ai||
2
2 ||bi||

2
2 −m

2

∣∣∣∣∣ ≥ αδm2

)

+P

 sup
z∈Uk

∣∣∣∣∣∣
n∑
i=1

n∑
j=1,j 6=i

zizja
T
i ajb

T
i bj

∣∣∣∣∣∣ ≥ (1− α)δm2

 . (4)

In the above, α ∈ (0, 1) is a variational union bound parameter
which can be optimized at a later stage. We now proceed to
find separate upper bounds for each of the two probability
terms in (4).

From [1, (32)], the first tail probability term in (4) is
bounded as

P

(
sup
z∈Uk

∣∣∣∣∣
n∑
i=1

z2i ||ai||
2
2 ||bi||

2
2 −m

2

∣∣∣∣∣ ≥ αδm2

)

≤ 8ne
−cmα2δ2

4K4
o
(1−αδ/4)2

= 8n
−
(
cmα2δ2(1−αδ/4)2

4K4
o logn

−1
)
. (5)

In order to bound the second tail probability term in (4),
we note that

sup
z∈Uk

∣∣∣∣∣∣
n∑
i=1

n∑
j=1,j 6=i

zizja
T
i ajb

T
i bj

∣∣∣∣∣∣
≤ sup

z∈Uk

n∑
i=1

n∑
j=1,j 6=i

|zizj |
∣∣aTi aj∣∣ ∣∣bTi bj∣∣

≤ sup
z∈Uk

 n∑
i=1

n∑
j=1,j 6=i

|zizj |

 max
i,j∈supp(u),

i 6=j

∣∣aTi aj∣∣ ∣∣bTi bj∣∣


≤ k

 max
i,j∈[n],
i 6=j

∣∣aTi aj∣∣ ∣∣bTi bj∣∣
 , (6)

where the second step is an application of Hölders inequality.
The last step follows from ||z||1 ≤

√
k for z ∈ Uk. Using (6),

and by applying the union bound over
(
n
2

)
possible distinct

(i, j) pairs, the second probability term in (4) can be bounded
as

P

 sup
z∈Uk

∣∣∣∣∣∣
n∑
i=1

n∑
j=1,j 6=i

zizja
T
i ajb

T
i bj

∣∣∣∣∣∣ ≥ (1− α)δm2


≤ n2

2
P
(∣∣aT1 a2∣∣ ∣∣bT1 b2

∣∣ ≥ (1− α)δm2

k

)
≤ n2P

(∣∣aT1 a2∣∣ ≥ √(1− α)δm√
k

)

≤ 2n2e
− c(1−α)δm

K4
ok = 2n

−
(
c(1−α)δm

K4
ok logn

−2
)
. (7)

The last inequality in the above is obtained by using the tail
bound for |aT1 a2| from Corollary 1. Finally, by combining

(4), (5) and (7), and setting α = 1/2, we obtain the following
simplified tail bound,

P(E) ≤ 8n
−
(
cmδ2(1−δ/8)2

16K4
o logn

−1
)
+ 2n

−
(

cδm
2K4
ok logn

−2
)
. (8)

From (8), for m > max
(

4γK4
ok logn
cδ ,

32γK4
o logn

cδ2(1−δ/8)2

)
and any

γ > 1, we have P(E) < 10n−2(γ−1). Note that, in terms of k
and n, the first term in the inequality for m scales as k log n;
it dominates the second term, which scales as log n. This ends
our proof.

III. CORRECTION TO THEOREM 3

Theorem 3. Let A be an m × n matrix with real i.i.d.
subgaussian entries, such that EAij = 0, EA2

ij = 1, and
||Aij ||ψ2

≤ K. Then, for any δ > 0 the kth order restricted
isometry constant δk of the column-normalized self Khatri-Rao
product A√

m
� A√

m
satisfies δk ≤ δ with probability at least

1− 5n−2(γ−1) for any γ ≥ 1, provided

m ≥ 4c′γK4
o

(
k log n

δ

)
.

Here, Ko = max (K, 1) and c′ > 0 is a universal constant.

Proof. A detailed proof is given in [2].

IV. REMARKS

Remark 1: According to Theorem 2, for fixed k and n,
δk

(
A√
m
� B√

m

)
≤ O

(
1
m

)
with high probability, which is an

improvement over O( 1√
m
) decay rate [3] for individual k-RICs

of the input subgaussian matrices A√
m

and B√
m

. Therefore,
we conclude that the Khatri-Rao product exhibits stronger
restricted isometry property, with smaller k-RICs compared
to the k-RICs for the input matrices.

Remark 2: For A,B as constructed in Theorem 2, a
straightforward application of [4, Lemma 2] and the eigenvalue
interlacing theorem [5] gives the following relation.

δk

(
A√
m
� B√

m

)
≤ δk

(
A√
m
⊗ B√

m

)
≤ O

(
1√
m

)
, (9)

for n, k fixed. In comparison, Theorem 2 suggests a tighter
upper bound δk

(
A√
m
� B√

m

)
≤ O

(
1
m

)
. We conjecture that

an even faster O
(

1
m2

)
decay rate prevails, but it appears that

a different approach would be required to establish this result.
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