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Abstract—In this paper, we address the problem of reconstruct-
ing the common nonzero support of multiple joint sparse vectors
from their noisy and underdetermined linear measurements.
The support recovery problem is formulated as the selection
of nonnegative hyperparameters of a correlation-aware, joint
sparsity inducing Gaussian prior. The hyperparameters are
then recovered as a nonnegative sparse solution of covariance
matching constraints formulated in the observation space by
solving a sequence of proximal regularized convex optimization
problems. For proximal regularization based on Von Neumann
Bregman matrix divergence, an exponentiated gradient (EG)
update is proposed, which when applied iteratively, converges
to hyperparameters with the correct sparse support. Compared
to existing MMV support recovery algorithms, the proposed
multiplicative EG update has a significantly lower computational
and storage complexity and takes fewer iterations to converge.
We empirically demonstrate that the support recovery algorithm
based on the proposed EG update can solve million variable
support recovery problems in tens of seconds. Additionally,
by leveraging its correlation-awareness property, the proposed
algorithm can recover supports of size as high as O(m2) from
only m linear measurements per joint sparse vector.

Index Terms—Compressive Sensing, Sparse Recovery, Joint
Sparsity, Multiple Measurement Vectors, Covariance Matching,
Von Neumann Divergence, Exponentiated Gradient Updates.

I. INTRODUCTION

A canonical problem in multi-sensor signal processing is
the reconstruction of the common nonzero support of a set
of joint sparse! vectors from their noisy and underdetermined
linear measurements. Traditionally referred to as the MMV
support recovery problem, it concerns locating the nonzero
rows of a row sparse matrix X = [X,Xo,...,xr] € R"*L,
where the k-sparse vector x; denotes the j™ column of X.
Since X is a row-sparse matrix, it implies that the columns
of X are jointly sparse, i.e., they share a common nonzero
support. Let us denote the common support of the columns
in X by the index set S € [n] where |S| = k. Then, the
goal of the MMV support recovery problem is to recover the
unknown support set S from the noisy and compressive linear
measurements Y = [y1,y2,...,yz] € R™*L generated as
per the linear measurement model

Y =AX+W. (1)

The authors are with the Department of Electrical Communication En-
gineering, Indian Institute of Science, Bangalore 560012, India (E-mail:
saurabh @iisc.ac.in; cmurthy @iisc.ac.in).

I'A set of vectors are said to be jointly sparse if their nonzero coefficients
belong to the same set of rows, and the number of nonzero rows is small
compared to the ambient signal dimension.

The measurement matrix A € R™*"™ in (1) is assumed to be
known, and W € R™*L models the additive noise in the mea-
surements. The noise matrix W is assumed to be entrywise
i.i.d Gaussian with zero mean and known variance o2. The
columns of Y are collectively called multiple measurement
vectors or MMVs.

Joint sparsity offers a compelling way to model the inherent
mutual structure within a given set of multiple signal vec-
tors [1], [2]. In various multi-sensor configurations, the high-
resolution data generated by the multiple sensors tends to ex-
hibit joint sparsity under a suitable basis transformation. This
can be attributed to overlapping of the signal subspaces per-
ceived by the different sensors sensing the same physical pro-
cess. In such scenarios, identifying the true low-dimensional
and common signal subspace of the compressively acquired
high-resolution multi-sensor data can be formulated as the
canonical MMV support recovery problem. For instance, in
a cognitive radio network, the estimation of sparse spectral
occupancy of the licensed users as perceived by the secondary
users in the cellular network using wideband compressive
measurements can be cast as the MMV support recovery
problem [3]. The support recovery problem also arises in
distributed source coding [1], event detection/localization in
wireless sensor networks [4], and array signal processing [5].

The conventional MMV algorithms for sparse support re-
construction rely on techniques that include (i) solution space
regularization using joint-sparsity-inducing convex and non-
convex penalties (Row-LASSO [6] and CRL-1 [7]), (ii) greedy
support reconstruction (SOMP [8] and SCo-SAMP [9]), (iii)
iterative hard thresholding (SIHT) [9] and (iv) MuSiC criterion
(CS-MuSiC [10] and SA-MuSiC [11]). These conventional
techniques implicitly assume that the support size, k, is smaller
than m, the number of linear measurements per MMV. In
MMV literature, this upper limit on maximum size of recover-
able support is known as the ¢y-bound. This work focuses on
a recently proposed correlation-aware covariance matching
framework which can recover supports of size significantly
larger the ¢y-bound, by exploiting a latent correlation structure
in the joint sparse columns of X. In particular, this framework
has been empirically [12], [13] as well as theoretically [14],
[15] validated to be capable of recovering supports of size as
high as O(m?) from m linear measurements per MMV.

We propose a novel MMV support recovery algorithm
which is inspired by Co-LASSO [12], an existing covariance
matching algorithm. The proposed algorithm, Co-LASSO-
EXPGRD, iteratively applies exponentiated gradient (EG)
updates to recover the shared nonzero support of the joint
sparse columns of X as the nonnegative hyperparameters of



a correlation-aware, joint sparsity inducing Gaussian prior.
The proposed EG update is empirically shown to converge
significantly faster than the parent Co-LASSO algorithm and
also requires significantly lower storage space for execution.
The proposed Co-LASSO-EXPGRD is an ideal candidate for
solving very large scale support recovery problems which
involve millions of variables.

The rest of the paper is organized as follows. In Section
II, we introduce the concept of correlation-aware covariance
matching principle and discuss the Co-LASSO algorithm,
which serves as the starting point for developing the proposed
algorithm. In Sections III and IV, we give an overview of
the EG updates for the nonnegative parameter estimation, and
in Section V, we adapt these EG updates to solve the Co-
LASSO’s optimization problem. In Section VI, we present the
results of the numerical experiments showcasing the support
recovery performance of the proposed algorithm. Final con-
cluding remarks are made in Section VIIL.

II. CORRELATION-AWARE SUPPORT RECOVERY VIA
COVARIANCE MATCHING

The key idea behind the correlation-aware covariance
matching framework [12] for sparse support recovery is to
assume that the nonzero elements in different rows of the un-
known sparse ensemble are uncorrelated. For the observation
model described in (1), this assumption translates into latent
uncorrelatedness of the nonzero elements belonging to the
individual columns of X, and it can be enforced by using
a suitable correlation aware prior. In [12], [16], the authors
impose a common Gaussian prior on the unknown joint sparse
columns of X as shown below.

x; L N(O,T), je L], ®)

where I' = diag(y) and v € R%. Since xi,X2,...,X,
are zero mean and share a common covariance matrix, their
posterior means also share a common support, which in turn
equals the support of ~. Owing to the diagonal nature of
the covariance matrix I, the above Gaussian prior is deemed
correlation-aware in the sense that it naturally captures the
lack of intra-vector correlation in the individual columns of X.
Additionally, from the linearity of the measurement model
in (1), it follows that the MMVs are Gaussian distributed as

y; ~N(0,0%L,, + ATAT), je[L)], 3)

where 0°I,, denotes the known covariance matrix of the
additive white measurement noise. Under these assumptions,
the row-support of X can now be recovered as support (%),
where 4 is a nonnegative sparse solution of the following
covariance matching problem.

4 = argmin |||, subject to |||Ryy — AI‘AT’H? <e (4
v=0

The ¢;-norm objective in (4) promotes sparsity in 4, while
simultaneously the constraints on v demand a good fit between
the parameterized covariance matrix AT'AT and the sample
covariance matrix Ry, = %YYT. The positive constant €
introduces slackness in the covariance matching constraints to

account for the modeling errors arising from the presence of

measurement noise, the Gaussian source assumption, and the
use of a finite sample estimate of Ry, in place of true MMV
covariance E [yj yﬂ . An equivalent but unconstrained version
of the constrained optimization in (4) has been investigated
in [12] as the following nonnegative LASSO problem.

. L1
Co-LASSO: = argmin [vec®Ryy) — (A A5 + Al »
YERY
5)

where A > 0 is the regularization parameter and A® A denotes
the columnwise self Khatri-Rao product of the measurement
matrix A with itself. The m? x n sized Khatri-Rao product
A © A is evaluated as the columnwise Kronecker product and
it arises as a consequence of vectorization of the covariance
matching constraint: Ry, ~ AT'A”. Once ¥ is found,
support () is declared as the estimated row-support of X.

Similar to Co-LASSO, MSBL [16] is another popular
MMV algorithm which also employs the Gaussian prior in
(2). In MSBL, the hyperparameter vector = is estimated
via covariance matching by seeking to minimize the gap
between the empirical Ryy and the parameterized AT A7 in
the LogDet Bregman matrix divergence sense [15]. In [12],
[14], [15], it is shown that both MSBL and Co-LASSO can
perfectly recover supports of size as high as O(m?) from
m linear measurements per MMV. The {y-bound breaching
support recovery performance of the covariance matching
based algorithms instigates our interest in developing their fast
variants for practical applications.

In the following sections, we develop a new type of support
recovery algorithm which employs a multiplicative update in ~
to find the nonnegative sparse solution 4 of Co-LASSO’s
optimization problem in (5). The new algorithm retains the at-
tractive £y-bound breaching performance of Co-LASSO, while
simultaneously requires significantly lesser storage resources
and takes fewer iterations to converge.

III. EXPONENTIATED GRADIENT UPDATES FOR
NONNEGATIVE PARAMETER ESTIMATION

We now discuss the matrix exponentiated gradient (MEG)
updates, first introduced in [17] for learning symmetric posi-
tive definite matrices. In the next section, we will adapt these
MEG updates to find the sparse nonnegative hyperparameter
vector 4 which solves the Co-LASSO optimization in (5).

Consider a batch learning setting wherein the goal is to learn
a positive definite matrix W™, which minimizes a real valued
loss function: L : ST, — R*, ie.,

W* = arg min L(W). (6)
Wesy
We assume that the loss L(W) is convex in W, and that the
gradient Vw L(W) is well defined. As motivated in [17], the
optimal W* can be found by solving the following sequence
of convex optimization problems,

W1 = argmin D (W, Wy) + nL(W), (M
w
where Dp(W, W,) denotes the Bregman matrix divergence

between positive definite matrices W and W,. For a given
convex seed function F' : Sﬁ . — R, the Bregman matrix



divergence Dr(W, VV) between any two positive definite
matrices W and W is defined as

Dr(W, W) £ F(W)—F(W)—tr ({(W)" (W-W)) . ®)

where f(W) = VF(W) is the first order derivative of the
matrix function F evaluated at W.

The matrix update in (7) serves the dual purpose of achiev-
ing a small value for the loss function while simultaneously
ensuring that the new parameter W, ; stays close to the old
parameter W,. The learning rate parameter 1 > 0 controls
the trade-off between these two conflicting goals.

A. Matrix Exponentiated Gradient (MEG) Updates

Since both Dp(W, W) and L(W) are convex functions
of W, the arg min in (7) can be eliminated by setting W,
such that the gradient of the objective, D (W, W) +nL(W),
with respect to W vanishes, i.e.,

Wi = fH (fF(We) = npVL(Wii1)). )

Here we assume that the matrix functions f, f~' and VL,
all three preserve the symmetry and positive semidefiniteness
of their respective outputs. It is usually difficult to obtain
a closed form expression for W, from the zero gradient
condition in (9). In [18], Kivinen and Warmuth proposed a
way to circumvent this issue by approximating VL(W ;1)
by VL(W,), leading to the following explicit update rule.

Wi = f71 (f(Wy) —nVL(Wy)). (10)

A choice of the seed function F' leads to multiplicative
updates of the exponentiated gradient (EG) form. As motivated
in [17], by choosing F' as the Von Neumann entropy, i.e.,
F(W) = tr(WlogW — W), the proximal function Dp
becomes the Von Neumann Bregman matrix divergence and
the update in (10) takes the following multiplicative form.

Wiy =exp (log Wi —nVL(Wy)). (11)

The above matrix update” preserves the symmetry and positive
definite nature of the iterates W, for all ¢ > 1, provided
that Wy is initialized as a symmetric positive definite matrix.
For an in-depth analysis of how the loss function L(W) decays
with the number of iterations of the Von Neumann update in
(11), the reader is referred to the excellent exposition in [17].

IV. THE PROPOSED CO-LASSO-EXPGRD ALGORITHM

Using the matrix EG updates described in Section III-A,
we now develop Co-LASSO-EXPGRD, an iterative algorithm
to find a sparse nonnegative solution of the Co-LASSO opti-
mization problem in (5). According to the correlation-aware
covariance matching framework for support recovery, we seek
a diagonal positive semidefinite matrix I' that minimizes the
below convex loss function L(T'),

1
L(T) 2 3 ||[Ryy - ATAT||[Z 4+ X[l (2)

2In (11), the matrix functions exp A and log A are evaluated as exp A £
Udiag (e>‘1, er2, ..., e>‘") UT and log A £ Udiag (log A1,log Mg, .. .,
log An) U7, respectively for any n x n sized positive definite matrix A
admitting the eigenvalue decomposition A = Udiag (A1, A2, ..., \,) UT.

Under the assumption that the iterates v, = 0, a consequence
of the nonnegativity preserving updates, the gradient of L(T")
with respect to , can be evaluated as

V,, L(T)=a] (ATAT —Ryy)a; + A, Vi€ [n], (13)

where a; denotes the i column of the measurement matrix A.
For F(T') = tr (TlogT —T'), by using the above expression
for V. L(T") in (11), we obtain the following multiplicative
elementwise update for -,

(Z-)efn[a? (AFtATfRyy)aiJr)\}

Yeg1(i) =74 , 1€ n]. (14)

Since the objective L(I") contains an ¢; regularization term,
the multiplicative updates in (14) converge to a nonnegative
sparse vector 4, and support(9) is declared as an estimate
of the row-support of X. In practice, only those coefficients of
<4 whose magnitude exceeds a carefully chosen threshold value

are deemed as active and determine the nonzero support of .
Finally, we summarize Co-LASSO-EXPGRD in Algorithm 1.

Algorithm 1: Co-LASSO-EXPGRD
Input: {yj}f:l and A.
Initializations: v,(:) < 1 Vi € in]7 t« 0, A=1
while (¢ < tya) and (A > 10~ ) do
L i (6) = v, (@) (ATATRew)atA] g [y,
d2- A lvepr = Yell2/|lvell2 and ¢ <= ¢ + 1.
en

Output: 4 < ~,,,. and S« {ien]:4G) >}

In Table I, we compare the computational and storage
complexity of Co-LASSO-EXPGRD with the existing algo-
rithms, MSBL [16] and Co-LASSO [12]. MSBL has the
highest per-iteration computational complexity and combined
with the slow convergence rate of its underlying Expectation-
Maximization (EM) iterations, it quickly becomes impractical
for large signal dimensions. The Co-LASSO algorithm, on the
other hand, has the highest storage complexity, as it needs to
store an m? x n sized Khatri-Rao product matrix A® A, which
quickly becomes prohibitive for larger values of m and n. In
contrast, the proposed Co-LASSO-EXPGRD algorithm based
on the EG update in (14) has the lowest storage complex-
ity which scales conveniently with the problem dimensions.
Co-LASSO-EXPGRD and its parent algorithm, Co-LASSO,
have identical per-iteration computational complexities which
interestingly do not depends on L. However, in practice, Co-
LASSO-EXPGRD converges in significantly fewer iterations.

V. NUMERICAL EXPERIMENTS

In this section, we benchmark the support recovery perfor-
mance of Co-LASSO-EXPGRD against the parent Co-LASSO

TABLE I: COMPUTATIONAL & STORAGE COMPLEXITY COMPARISON

Algorithm :;etl;()irtngliazi)(i?l;flzl;]i{);- Storage complexity

MSBL O(m3+nm?24+n2L) | O(nm +mL + nL)
Co-LASSO O(nm?2) O(nm?+mL+m?)
Co-LASSO-EXPGRD | O(nm?2) O(nm +mL+m?2)
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Fig. 1: Support recovery phase transition for the proposed Von-Neumann updates. Other
simulation parameters: n = 200, L = 400, SNR = 20 dB, number of trials = 100.

algorithm (implemented as an ¢;-regularized least squares pro-
gram with nonnegativity constraints [19] using MATLAB code
from http://stanford.edu/~boyd/11_ls) and MSBL, the current
state-of-the-art covariance matching method. Conventional
MMV algorithms like SOMP, SCo-SAMP, SIHT, Row-LASSO
and CS/SA-MUSIC are not included in our comparison as
they fail to recover the true support when the support size,
k, exceeds m. The entries of the measurement matrix A are
drawn independently according to A/(0,1/+/m). The common
k-sparse support of X1, Xs, ...,xy, is uniformly selected from
(Z) possible combinations and the nonzero signal coefficients
are i.i.d A(0,1). For Co-LASSO and Co-LASSO-EXPGRD,
the regularization parameter )\ is set to 0.1o+/2logn and the
learning rate parameter 7 is set to 0.5. In all three algorithms
considered here, the active support is identified by hard-
thresholding the converged 4 using the threshold 0.6502 +
0.3503g, where aszig denotes the signal variance which can be
roughly estimated as 63, = (tr (Ryy) — mo?) / A%

Figure 1 shows the support recovery phase transition of
the proposed Co-LASSO-EXPGRD algorithm. The lighter and
darker regions of the phase transition plots correspond to
the success and failure in terms of at least 99% support
reconstruction, respectively. The quadratic behavior of the
support recovery phase transition empirically validates that the
proposed algorithm is capable of recovering supports of size
even beyond the £y bound and up to O(m?).

Next, we compare the Receiver Operation Characteristic
(ROC) of the support recovery algorithms. Figure 2 plots
the ROCs for L = {k/2,k, 2k, 3k}, which are generated by
varying the threshold used to obtain hard support estimates.
The asymmetric nature of the sparse support recovery problem
demands that we achieve a low false alarm probability. For
a fixed false alarm rate, the support detection improves as
the number of MMVs grow as expected. MSBL consistently
offers the best support detection rate for a fixed false alarm
probability, however, it is computationally feasible only when
n is at most a few hundred. Co-LASSO and Co-LASSO-
EXPGRD have almost identical ROCs, which is expected, as
both optimize the same cost function.

Finally, in Figure 3, we compare the average run-times of
the algorithms for problem dimension n ranging from 100 to 1
million. For sparsity growing logarithmically with n, the Co-
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Fig. 2: ROC plots indicating the achievable combinations of support detection and false
alarm probabilities for growing number of MMVs. Other simulation parameters: n =
500, k = 200, m = 100, SNR = 10 dB and number of trials = 100.
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Fig. 3: Average runtimes of algorithms for signal dimension (n) varying from 100 to
109, and for k = 20 logn, m = g, L = 200logn and SNR = 10dB. Simulations
were run on an Intel Xeon machine with 16 CPU cores and 64 gigabytes memory.

LASSO-EXPGRD is at least 10 times faster than MSBL and
2 to 5 times faster than Co-LASSO for n in thousands, and
this gap increases as n grows. While MSBL and Co-LASSO
are either computationally or storage wise bottlenecked, the
proposed Co-LASSO-EXPGRD algorithm is able to scale
easily to solve a million variable problem in tens of seconds.

VI. FINAL REMARKS

Despite the /y-bound surpassing performance of the existing
correlation-aware covariance matching MMV algorithms, their
high computational and storage complexities has been a major
bottleneck to their use in very large scale settings involving
millions of variables. We have addressed this issue to a signif-
icant extent by proposing a new type of multiplicative support
recovery updates based on the Co-LASSO algorithm. The
new updates consume lesser memory resources for execution
and converge faster leading to significantly shorter runtimes
compared to the parent Co-LASSO and the current state-of-
the-art algorithm, MSBL. The future extensions of this work
can focus on analyzing the convergence of the proposed EG
updates and developing their online/stochastic extensions.
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