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Abstract—In this paper, we derive mutual information based
upper bounds on the number of nonadaptive group tests required
to identify a given number of “non-defective” items from a large
population containing a small number of “defective” items.In the
asymptotic regime with the population sizeN → ∞, to identify
L non-defective items out of a population containingK defective
items, our results show that CsK

1−o(1)
(Φ(α0, β0) + o(1)) measure-

ments are sufficient when the tests are reliable. Here,Cs is a
constant independent ofN,K and L, andΦ(α0, β0) is a bounded
function of α0 , limN→∞

L
N−K

and β0 , limN→∞

K
N−K

. In
contrast, the necessary number of tests using the conventional
approach of first identifying the K defective items and picking
the required number of nondefective items from the complement
set grows withN as O (K logN). We also derive upper bounds
on the number of tests under both dilution and additive noise
models. Our results are obtained under a very general sparse
signal model, by virtue of which, they are also applicable toother
important sparse signal based applications such as compressive
sensing.

Index Terms—Sparse signal models, nonadaptive group testing,
inactive subset recovery.

I. I NTRODUCTION

Sparse signal models are of great interest due to their
applicability in a variety of areas such as group testing [2],
[3], compressive sensing [4], signal de-noising [5], subset
selection [6], etc. Generally speaking, in a sparse signal model,
out of a given numberN of input variables, only a small subset
of sizeK contributes to the observed output. For example, in
a non-adaptive group testing setup, the output depends only
on whether the items from the defective set participate or do
not participate in the group test. Similarly, in a compressive
sensing setup, the output signal is a set of random projections
of the signal corresponding to the non-zero entries (support
set) of the input vector. Thissalientsubset of inputs is referred
to by different names, e.g., defective items, sick individuals,
support set, etc. In the sequel, we will refer to it asthe active
set, and its complement asthe inactive set. In this paper, we
address the issue of theinactive subset recovery. That is, we
focus on the task of finding anL (≤ N − K) sized subset
of the inactive set(of sizeN − K), given the observations
from a sparse signal model withN inputs, out of whichK
are active.

The problem of finding a subset of items belonging to the
inactive set is of interest in many applications. An example
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is the spectrum hole search problem in the cognitive radio
(CR) networks [7]. It is well known that the primary user
occupancy (active set) is sparse in the frequency domain over
a wide band of interest [8], [9]. To setup a CR network, the
secondary users need to find an appropriately wide unoccupied
(inactive) frequency band. Thus, the main interest here is the
identification of only a sub-bandout of the total available
unoccupied band, i.e., it is an inactive subset recovery problem.
Furthermore, the required bandwidth of the spectrum hole will
typically be a small fraction of the entire bandwidth that is
free at any point in time [10]. Another example is a product
manufacturing plant, where a small shipment of non-defective
(inactive) items has to be delivered on high priority. Once
again, it is of interest to identify a subset of the non-defective
items using as few tests as possible.

Related work: In the group testing literature, the problem of
bounding the number of tests required to identify the defective
items in a large population has been studied, both in the
noiseless and noisy settings, for tractable decoding algorithms
as well as under general information theoretic models [11]–
[21]. A combinatorial approach has been adopted in [11],
[12], [22], where explicit constructions for the test matrices are
used, e.g., using superimposed codes, to design matrices with
properties that ensure guaranteed detection of a small number
of defective items. Two such properties were considered: dis-
junctness and separability [3].1 A probabilistic approach was
adopted in [13]–[15], [23], where random test matrix designs
were considered, and upper and lower bounds on the number
of tests required to satisfy the properties of disjunctness
or separability with high probability were derived. Another
study [20] uses random test designs, and develops compu-
tationally efficient algorithms for identifying defectiveitems
from the noisy test outcomes by exploiting the connection
with compressive sensing. An approach based on information
density is used in [21] to analyze the phase transition behavior
of Bernoulli test matrix designs and propose measurement-
optimal recovery algorithms. A general sparse signal model
for studying group testing problems, that turns out to be
very useful in dealing with noisy settings, was proposed
and used in [16]–[19]. In this framework, the group testing
problem was formulated as a detection problem and a one-
to-one correspondence was established with a communication

1A test matrix, with tests indexing the rows and items indexing the columns,
is said to bek-disjunct if the boolean sum of everyk columns does not equal
any other column in the matrix. Also, a test matrix is said to be k-separable
if the boolean sum of every set ofk columns is unique.
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channel model. Using information theoretic arguments, mutual
information based expressions (that are easily computablefor
a variety of noise models) for upper and lower bounds on the
number of tests were obtained [19].

The problem of non-defective subset identification can be
related to the problem of group testing using list decod-
ing [24]–[26], where the decoder outputs a superset of the
true defective set, i.e., a list of itemsL (with |L| > K )
such thatL contains the defective set. It finds applications
in scenarios where it is permissible for some non-defective
items to be included in the decoded set, as long as it contains
most of the defective items. For example, the output of the list
decoder could be used as a first step in a two-stage decoding
procedure in group testing, fault detection applications,etc.
In this setup, in contrast to our problem, the typical regimes
of interest are those where the list size, although larger than
K, is still comparable toK and much smaller thanN .
In [25], list decoding has been studied as an intermediate
step in conventional group testing decoding. A combinatorial
approach employing list-disjunct matrices was used to derive
bounds on number of tests. A very recent work [26] studies
list-decoding with partial recovery under the scaling regimes
|L| = o(N). The authors show that while list decoding may
offer significant benefit when|L| = O(N) (which is shown in
[27] in the context of non-defective subset recovery), the gains
are limited in the|L| = o(N) regime. Another recent work
[28] studies the problem of finding zeros in a sparse vector in
the framework of compressive sensing. The authors propose
computationally efficient recovery algorithms and study their
performance through simulations.

In this paper, we build on [1] and focus on derivinginfor-
mation theoretic upper bounds (i.e., sufficient conditions)
on the number of measurements needed for identifying a
given number of inactive items in a large population with
arbitrarily small probability of error. We consider the general
sparse signal model employed in [16], [19] in the context
of the support recovery (i.e., defective set recovery) problem.
The model consists ofN input covariates, out of which, an
unknown subsetS of size K are “active”. Only the active
variables, i.e., the variables from the setS, are relevant
to the output. Mathematically, this is modeled by assuming
that, given the active setS, the outputY is independent of
remaining input variables. Further, the probability distribution
of the output conditioned on a given active set, is assumed
to be known for all possible active sets. Given multiple
observations from the this model, we propose and analyze
decoding schemes to identifya set ofL inactive variables.
We compare two alternative decoding schemes: (a) Identify
the active set and then chooseL inactive covariates randomly
from the complement set, and, (b) Decode the inactive subset
directly from the observations. Our main contributions areas
follows:

1) We analyze the average probability of error for both the
decoding schemes. We use the analysis to obtain mutual
information based upper bounds on the number of obser-
vations required to identify a set ofL inactive variables
with the probability of error decreasing exponentially
with the number of observations.

2) We specialize the above bounds to various noisy non-
adaptive group testing scenarios, and characterize the
number of tests required to identifyL non-defective
items, in terms ofL, N andK.

Our results show that, compared to the conventional ap-
proach of identifying the inactive subset by first identifying
the active set, directly searching for anL-sized inactive
subset offers a reduction in the number of observations
(tests/measurements), which is especially significant when L
is small compared toN − K. When the tests are reliable,
in the asymptotic regime asN → ∞, if L

N−K → α0 and
K

N−K → β0, CsK
1−o(1) (Φ(α0, β0) + o(1)) measurements are

sufficient, whereCs is a constant independent ofN,K andL,
andΦ(α0, β0) is a bounded function ofα0 andβ0. We show
that this improves on the number of observations required by
the conventional approach, in the sequel.

The rest of the paper is organized as follows. Section II
describes the signal model and problem setup. We present our
upper bounds on the number of observations in Sections III.
An application of the bounds to group testing is described in
Section IV. The proofs for the main results are provided in
Section V, and concluding remarks are offered in Section VI.

Notation: For any positive integera, [a] , {1, 2, . . . , a}.
For any setA, Ac denotes complement operation and|A|
denotes the cardinality of the set. For any two setsA and
B, A\B = A∩Bc, i.e., elements ofA that are not inB. {∅}
denotes the null set. Scalar random variables (RVs) are rep-
resented by capital non-bold alphabets, e.g.,{Z1, Z3, Z5, Z8}
represent a set of4 scalar RVs. If the index set is known,
we also use the index set as a subscript, e.g.,ZS , where
S = {1, 3, 5, 8}. Bold-face letters represent random matrices
(or a set of vector random variables). We use an index set to
specify a subset of columns from the given random matrix. For
example, letZ denote a random matrix withn columns. For
anyS ⊂ [n], ZS denotes a set of|S| columns ofZ specified
by the index setS. Individual vector RVs are also denoted
using an underline, e.g.,z represents a single random vector.
For any discrete random variableZ, {Z} represents the set
of all realizations ofZ. Similarly, for a random matrixZ,
whose entries are discrete random variables,{Z} represents
the set of all realizations ofZ. For any two jointly distributed
random variablesz1 andz2, with a slight abuse of notation, let
P (z1|z2) denote the conditional probability distribution ofz1
given “a realizationz2” of the random variablez2. Similarly,
P (z1|Z) denotes the conditional probability distribution ofz1,
given a realizationZ of the random matrixZ. B(q), q ∈ [0 1]
denotes the Bernoulli distribution with parameterq. IA denotes
the indicator function, which returns1 if the eventA is true,
and returns0 otherwise. Note that,x(n) = O(y(n)) implies
that ∃ B > 0 and n0 > 0, such that|x(n)| ≤ B|y(n)| for
all n > n0. Similarly, x(n) = Ω(y(n)) implies that∃ B > 0
andn0 > 0, such that|x(n)| ≥ B|y(n)| for all n > n0. Also,
x(n) = o(y(n)) implies that for everyǫ > 0, there exists an
n0 > 0 such that|x(n)| ≤ ǫ|y(n)| for all n > n0. In this work,
unless otherwise specified, all logarithms are to the basee. For
any p ∈ [0, 1], Hb(p) denotes the binary entropy in nats, i.e.,
Hb(p) , −p log(p)− (1 − p) log(1− p).
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II. PROBLEM SETUP

In this section, we describe the signal model and problem
setup. LetX[N ] =

[
X1, X2, . . . , XN

]
denote a set ofN

independent and identically distributed (i.i.d.) input random
variables (oritems). Let eachXj belong to a finite alphabet
denoted byX and be distributed as Pr{Xj = x} = Q(x), x ∈
X , j = 1, 2, . . . , N . For a group of input variables, e.g.,
X[N ], Q(X[N ]) =

∏

j∈[N ]Q(Xj) denotes the known joint
distribution for all the input variables. We consider a sparse
signal model where only a subset of the input variables are
active (or defective), in the sense that only a subset of the
input variables contribute to the output. LetS ⊂ [N ] denote
the set of input variables that are active, with|S| = K. We
assume thatK, i.e., the size of the active set, is known. Let
Sc , [N ]\S denote the set of variables that areinactive
(or non-defective). Let the output belong to a finite alphabet
denoted byY. We assume thatY is generated according to
a known conditional distributionP (Y |X[N ]). Then, in our
observation model, we assume that given the active set,S, the
output signal,Y , is independent of the other input variables.
That is, ∀ Y ∈ Y,

P (Y |X[N ]) = P (Y |XS). (1)

We observe the outputs corresponding toM independent
realizations of the input variables, and denote the inputs and
the corresponding observations by{X,y}. Here, X is an
M ×N matrix, with its ith row representing theith realization
of the input variables, andy is anM × 1 vector, with itsith

component representing theith observed output. Note that, the
independence assumption across the input variables and across
different observations implies that each entry inX is i.i.d. Let
L ≤ N −K. We consider the problem of findinga setof L
inactive variables given the observation set,{X,y}. That is,
we wish to find an index setSH ⊂ Sc such that|SH | = L. In
particular, our goal is to derive information theoretic bounds
on the number of observations (measurements/group tests)
required to find a set ofL inactive variables with the prob-
ability of error exponentially decreasing with the number of
observations. Here, an error event occurs if the chosen inactive
set contains one or more active variables. Now, one way to
find L inactive variables is to find all the active variables and
then choose anyL variables from the complement set. Thus,
existing bounds onM for finding the active set are an upper
bound on the number of observations required for solving our
problem. However, intuitively speaking, fewer observations
should suffice to findL inactive variables, since we do not
need to find the full active set. This is confirmed by our results
presented in the next section.

The above signal model can be equivalently described using
Shannon’s random codebook based channel coding frame-
work; see Figure 1. The active setS corresponds to one of
the

(
N
K

)
possible active sets withK variables, and constitutes

the input message. LetX ∈ XM×N be a random codebook
consisting ofN codewords of lengthM ; each associated with
one of theN input variables. Letxi denote the codeword
associated withith input variable. The encoder encodes the
message as a length-M messageXS ∈ XM×K , that comprises

of K codewords, each of lengthM , chosen according to the
index setS from X. That is, XS = [xi1 xi2 . . .xiK ], for

eachil ∈ S. Let X(i)
S denote theith row of the matrixXS

and lety(i) denote itsith component. The encoded message
is transmitted through a discrete memoryless channel [29],
[30], denoted by(XM , P (y|XS),YM ), whereP (y|XS) =
∏M

i=1 P (y(i)|X
(i)
S ) and the distribution functionP (y(i)|X(i)

S )
is known for each active setS. Given the codebookX and the
output messagey, our goal is to finda setof L variablesnot
belonging to the active setS. Also, the above signal model,
proposed and used earlier in [16], [19], is a generalization
of the signal models employed in some of the popular non-
adaptive measurement models such as compressed sensing2

and non-adaptive group testing. Thus, the general mutual
information based bounds on number of observations to find
a set of inactive items obtained using the above model are
applicable in a variety of practical scenarios.

We now discuss the above signal model in context of a
specific non-adaptive measurement system, namely the ran-
dom pooling based, noisy non-adaptive group testing frame-
work [3], [19]. In a group testing framework [3], [16], [19],we
have a population ofN items, out of whichK are defective.
Let G ⊂ [N ] denote the defective set, such that|G| = K. The
group tests are defined by a boolean matrix,X ∈ {0, 1}M×N ,
that assigns different items to theM group tests (pools). In the
ith test, the items corresponding to the columns with1 in theith

row of X are tested. As in [19], we consider an i.i.d. random
Bernoulli measurement matrix, where eachXij ∼ B(p) for
some0 < p < 1. Here,p is a design parameter that controls
the average group size. If the tests are completely reliable,
then the output of theM tests is given by the boolean OR of
the columns ofX corresponding to thedefective setG. We
consider the following two noise models [15], [19]: (a) An
additivenoise model, where there is a probability,q ∈ (0, 1],
that the outcome of a group test containing only non-defective
items comes out positive; (b) Adilution model, where there is
a probability,u ∈ (0, 1], that a given item does not participate
in a given group test. Letdi ∈ {0, 1}M . Let di(j) ∼ B(1−u)
be chosen independently for allj = 1, 2, . . .M and for all
i = 1, 2, . . .N . Let Di , diag(di). Let “

∨
” denote the

boolean OR operation. The output vectory ∈ {0, 1}M can
be represented as

y =
∨

i∈G

Dixi
∨

w, (2)

wherexi ∈ {0, 1}M is the ith column of X, w ∈ {0, 1}M
is the additive noise with theith componentw(i) ∼ B(q).
For the noiseless case,u = 0, q = 0. In an additive model,
u = 0, q > 0. In a dilution model,u > 0, q = 0. This “logical-
OR” signal model captures many practical non-adaptive group
testing measurement systems, see, e.g., [3], [15], [33], [34].

We now relate this model with the general sparse signal
model described above. Note that,X = {0, 1}, Y = {0, 1}.
Each item in the group testing framework corresponds to one
of theN input covariates. Theith row of the test matrix, which

2Although we focus on models with finite alphabets in this work, our results
easily extend to models with continuous alphabets [31], [32].
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{i1, i2, . . . , iK}

Active Set
Codebook

X ∈ XM×N

[x1,x2, . . . ,xN ]
S

P(y|XS)
XS ∈ XM×K y ∈ YM

[xi1
,xi2

, . . . ,xiK
]

Encoder Channel

Fig. 1. Sparse signal model: An equivalent random codebook based channel
coding model.

specifies theith random pool, corresponds to theith realization
of the input covariates. From (2), given the defective setG,
the ith test outcomey(i) is independent of values of input
variables from the set[N ]\G. That is, with regards to test
outcome, it isirrelevantwhether the items from the set[N ]\G
are included in the test or not. Thus,G corresponds to the
active setS. Further, with regards to the channel coding
setup, the test matrixX corresponds to the random codebook,
and each column specifies theM length random code with
the associated item. The channel model, i.e., the probability
distribution functionsP (y|XG) for anyG, is fully determined
from (2) and the statistical models for the dilution and additive
noise. Thus, it is easy to see that the group testing framework
is a special case of the general sparse model that we have
considered, and, the number of group tests correspond directly
to the number of observations in the context of sparse models.

We now define two quantities that are very useful in the
development to follow. LetS be a given active set. For any
1 ≤ j ≤ K, let S(j) and S(K−j) represent a partition of
S such thatS(j) ∪ S(K−j) = S, S(j) ∩ S(K−j) = {∅} and
|S(j)| = j. Define

E0(ρ, j, n) = − log
∑

Y ∈Y

∑

X
S(K−j)∈XK−j







∑

X
S(j)∈X j

Q(XS(j)) (P (Y,XS(K−j) |XS(j)))
1

1+ρn







1+ρn

(3)

for any positive integern and any ρ ∈ [0, 1]. Also, let
I(j) , I(Y,XS(K−j) ;XS(j)) = I(Y ;XS(j) |XS(K−j)) be the
mutual information between{Y,XS(K−j)} and XS(j) [29],
[30]. Mathematically,

I(j) =
∑

Y ∈Y

∑

X
S(K−j)∈XK−j

∑

X
S(j)∈X j

P (Y,XS(K−j) |XS(j))Q(XS(j)) log
P (Y,XS(K−j) |XS(j))

P (Y,XS(K−j))
.

(4)

Using the independence assumptions in the signal model, by
the symmetry of the codebook construction, for a givenj,
E0(ρ, j, n) andI(j) are independent of the specific choice of
S, and of the specific partitions ofS. It is easy to verify that
dE0(ρ, j, n)

dρ
|ρ=0 = nI(j). Furthermore, it can be shown that

E0(ρ, j, n) is a concave function ofρ [29] (also see Figure 4).

III. SUFFICIENT NUMBER OF OBSERVATIONS

We first present results on the sufficient number of ob-
servations to find a set ofL inactive variables. The general

methodology used to find the upper bounds is as follows:
(a) Given a set of inputs and observations,{X,y}, we first
propose a decoding algorithm to find anL-sized inactive
set, SH ; (b) For the given decoding scheme, we find (or
upper bound) the average probability of error, where the error
probability is averaged over the random set{X,y} as well as
over all possible choices for the active set. An error occurs
when the decoded set ofL inactive variables contains one or
more active variables. That is, withS as the active set andSH

as thedecodedinactive set, an error occurs ifS ∩ SH 6= {∅};
(c) We find the relationships betweenM , N , L andK that
will drive the average probability of error to zero. SectionIII-A
describes the straightforward decoding scheme where we find
the inactive variables by first isolating the active set followed
by choosing the inactive set randomly from the complement
set. This is followed by the analysis of a new decoding scheme
we propose in Section III-B, where we directly search for an
inactive subset of the required cardinality.

A. Decoding scheme 1: Look into the Complement Set

One way to find a set of inactive (or non-defective) variables
is to first decode the active (defective) set and then pick a set
of L variables uniformly at random from the complement set.
Here, we employ maximum likelihood based optimal decoding
[19] to find the active set. Intuitively, even if we choose a
wrong active set, there is still a nonzero probability of picking
a correct inactive set, since there remain only a few active
variables in the complement set. We refer to this decoding
scheme as the “indirect” decoding scheme. The probability of
error in identifying the active set was analyzed in [19]. The
error probability when the same decoding scheme is employed
to identify a inactive subset is similar, with an extra term to
account for the probability of picking an incorrect set ofL
variables from the complement set. For this decoding scheme,
we present the following result, without proof, as a corollary
to (Lemma III.I, [19]).

Corollary 1. Let N , M , L andK be as defined above. For
any ρ ∈ [0, 1], with the above decoding scheme, the average
probability of error,Pe, in findingL inactive variables is upper
bounded as

Pe ≤ max
1≤j≤K

exp {− (ME0(ρ, j, 1)

−ρ log
[(
N −K

j

)

C0(j)

]

− log

[

K

(
K

j

)])}

, (5)

whereC0(j) ,

∑j
i=1

(
N−K−j

L−i

)(
j
i

)

(
N−K

L

) denotes the probability of

error in choosingL inactive variables uniformly at random
from N −K variables containingj active variables.

From above, by lower boundingE0(ρ, j, 1) for any specific
signal model, we can obtain a bound that gives us the sufficient
number of observations to find a set ofL inactive variables. We
obtain the corresponding bound in the context of non-adaptive
group testing in Section IV (see Corollary 2). SinceC0 ≤ 1,
this bound is tighter than the bound obtained by using the
same number of observations as is required to find the active
set [19].
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B. Decoding Scheme 2: Find the Inactive Subset Directly

For simplicity of exposition, we describe this decoding
scheme in two stages: First, we present the result for the
K = 1 case, i.e., when there is only one active variable. This
case brings out the fundamental difference between finding
active and inactive variables. We then generalize our decoding
scheme toK > 1.
1) TheK = 1 Case

We start by proposing the following decoding scheme:

• Given {X,y}, computeP (y|xi) for all i ∈ [N ] and
sort them in descending order. SinceK = 1, we know
P (Y |Xi) for all i ∈ [N ], and henceP (y|xi) can
be computed using the independence assumption across
different observations.

• Pick the lastL indices in the sorted array as the set ofL
inactive variables.

Note that, in contrast to finding active set, the problem of
finding L inactive variables does not have unique solution
(except forL = N − K). The proposed decoding scheme
provides a way to pick a solution, and the probability of error
analysis takes into account the fact that an error event happens
only when the inactive set chosen by the decoding algorithm
contains an active variable.

Theorem 1. Let N , M , L and K be as defined above. Let
K = 1. LetE0 and I(j) be as defined in (3) and (4). Letρ ∈
[0 1]. With the above decoding scheme, the average probability
of error, Pe, in findingL inactive variables is upper bounded
as

Pe ≤ exp

[

−
(

ME0(ρ, 1, N − L)− ρ log

(
N − 1

L− 1

))]

.

(6)

Further, for anyǫ0 > 0, if

M > (1 + ǫ0)
log

(
N−1
L−1

)

(N − L)I(1)
, (7)

then there existsǫ1 > 0, independent ofN andL, such that
Pe ≤ exp

(

−ǫ1 log
(
N−1
L−1

))

.
Proof: See Sec. V-A.

We make the following observations:

(a) Figure 2 compares the above bound on the number of
observations with the bounds for the decoding scheme
presented in Section III-A3 and in Theorem III.I [19],
for K = 1.

(b) Consider the caseL = N − 1, i.e., we want to find all the
inactive variables. This task is equivalent to finding the
active variable. The above decoding scheme for finding
N − 1 inactive variables is equivalent4 to the maximum
likelihood criterion based decoding scheme used in Theo-
rem III.I in [19] for finding 1 active variable. This is also

3We refer the reader to the remark at the end of the proof for Theorem 1
(Section V-A) for a bound on the sufficient number of observations, resulting
from Corollary 1, corresponding toK = 1 case.

4The decoding schemes are equivalent in the sense that an error in finding
K active variables implies an error in findingN −K inactive variables, and
vice-versa.

reflected in the above result, as the number of observations
sufficient for findingN − 1 inactive variables matches
exactly with the number of observations sufficient for
finding 1 active variable (see Figure 2).

Intuitively, out of the
(
N
L

)
possible sets of sizeL,

(
N−1

N−L−1

)

contain only inactive variables. Thus,log
((

N
L

)
/
(

N−1
N−L−1

))

number of bits can describe all the sets corresponding to each
“right choice,” i.e., corresponding to eachL-sized set contain-
ing only inactive variables. SinceI(1) denotes the amount of

information obtained per observation,
log N

N−L

I(1) ≈ log (N−1
L−1)

(N−L)I(1)

equals the number of observations required for finding an
inactive set. Hence, the result in Theorem 1 is intuitively
satisfying.
2) K > 1 Case

ForK > 1, by arrangingP (y|XSi
) in decreasing order for

all Si ⊂ [N ] such that|Si| = K, it is possible for the setsSi

towards the end of the sorted list to have overlapping entries.
Thus, in this case the decoding algorithm proceeds by picking
up just the sufficient number ofK-sized sets from the end that
provides us with a set ofL inactive variables. We propose the
following decoding scheme:

Decoding Scheme:

1) Given{X,y}, computeP (y|XSi
) for all Si ⊂ [N ] such

that |Si| = K, and sort these in descending order. Let the
ordering be denoted by{Si1 , Si2 , . . . , Si

(NK)
}.

2) Choosen0 sets from the end such that

|
n0⋃

l=1

Si
(NK)−l+1

| ≥ L and |
n0−1⋃

l=1

Si
(NK)−l+1

| < L. (8)

3) Let Ωlast , {i(NK), i(NK)−1, . . . , i(NK)−n0+1} denote this

set of lastn0 indices. DeclareSH ,
⋃

j∈Ωlast
Sj as the

decoded set of inactive variables.

That is, choose the minimum number ofK-sized sets with
least likelihoods such that we getL distinct variables and
declare these as the decoded set of inactive variables. We refer
to this decoding scheme as the “direct” decoding scheme. We
note thatSH might contain more thanL items. In particular,
L ≤ |SH | ≤ L + K − 1. Further, for all values ofL such
that L < (N − K) − (K − 1), the complement set ofSH ,
i.e., [N ]\SH , will contain at leastL0 , (N − L − 2K + 1)
variables from the inactive set[N ]\S1. This will be useful in
deriving an upper bound on the decoding error probability for
this algorithm. We summarize the probability of error analysis
of the above algorithm in the following theorem.

Theorem 2. Let N , M , L and K be as defined above. Let
L0 , (N − L − 2K + 1). For any ρ ∈ [0 1] and any1 ≤
L < (N−K)−(K−1), with the above decoding scheme, the
average probability of error,Pe, in findingL inactive variables
is upper bounded as

Pe ≤ exp [−{ME0(ρ, 1, L0)

−ρ log
(
N −K

L0

)

− log

[

K

(
N − 1− L0

K − 1

)]}]

. (9)

Proof: See Sec. V-B.
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Fig. 2. Sufficiency bounds on the number of observations required to findL
inactive variables forK = 1 case. The comparison is presented with respect
to the value ofMI(1), as the application-dependent mutual information term
I(1) is common to all the bounds. The approach of finding theL inactive
variables directly, especially for small values ofL, requires significantly
fewer number of observations compared to the approach of finding the
inactive variables indirectly, after first identifying theactive variables. The
plot corresponding to the curve labeledFind Active Directly refers
to the number of observations that are sufficient for finding the K active
variables [19].

The above result is applicable to the abstract signal model
specified in Section II. It can be specialized to the non-adaptive
group testing model by lower boundingE0(ρ, 1, L0), to obtain
a relationship betweenM and the average probability of error
for the decoding algorithm. We present the results for the case
of the non-adaptive group testing in Section IV.

We first note thatlog ( N

L+K−1)
( N−K

L+K−1)
≈ K log

[
N−K
L0

]

, whereL0

is as defined above, denotes the number of bits that can index
all sets (of sizeL + K − 1) for eachL + K − 1 sized set
containing only inactive variables.5 Thus, the number of obser-
vations is approximatelyK

I(K) log
[
N−K
L0

]

, whereI(K) denotes
the mutual information per observation. This explains the first
term in (9), as can be seen from the following argument.

Using the fact that
dE0(ρ, j, n)

dρ

∣
∣
∣
∣
ρ=0

= nI(j), we note that

for ρ = α K
L0

, E0(ρ, 1, L0) ≈ α K
L0

(L0I
(1)) for sufficiently

smallα. Further, in the non-adaptive group testing framework,
I(j) = O( j

K ) [19]. Thus,E0(ρ, 1, L0) ≈ αI(K). The claim

now follows by noting thatρ log
(
N−K
L0

)
≈ αK log

[
N−K
L0

]

.
The additional term contributing to the total number of tests
in (9) may be an artifact of the particular decoding scheme
and/or its analysis presented here.

Before concluding this section and proceeding to specialize
the above results to the case of non-adaptive group testing,we
summarize a lower bound, derived in [27], on the number of
observations required to find a set ofL inactive variables. The
lower bound will be used in the comparisons and discussion
to follow. Let ω denote the index of the defective set such

5Note that the decoding scheme might end up choosing a maximumof
L+K − 1 inactive variables, and this represents the worst case outcome.

that Sω ⊂ [N ] and |Sω| = K. Given the observation vector,
y ∈ YM , let φ : YM × XM×N → SH denote a decoding
function, such thatŜ = φ(y,X) is the decoded set ofL

inactive variables. LetPe = Pr
({

Ŝ ∩ Sω 6= {0}
})

. We state
a necessary condition on the number of observations in the
following theorem.

Theorem 3. Let N , M , L and K be as defined before.
Let I(j) be as defined in (4). A necessary condition on
the number of observationsM required to findL inactive
variables with asymptotically vanishing probability of error,
i.e., limN→∞ Pe = 0, is given by

M ≥ max
1≤j≤K

Γl(L,N,K, j)

I(j)
(1− η), (10)

where Γl(L,N,K, j) , log
[(

N−K+j
j

)
/
(
N−K+j−L

j

)]

, and
for someη > 0.

The proof is provided in [27]. That is, any sequence of
random codebooks that achieveslimN→∞ Pe = 0 must satisfy
the above bound on the length of the codewords. Given a spe-
cific application, we can boundI(j) for eachj = 1, 2, . . . ,K,
and obtain a characterization on the necessary number of
observations, as we show in the next section.

IV. F INDING NON-DEFECTIVE ITEMS V IA GROUP

TESTING

In this section, we specialize the above mutual information
based results to the case of non-adaptive group testing, and
characterize the number of tests to identify a subset of non-
defective items in a large population. We consider the ran-
dom pooling based noisy non-adaptive group testing model
given by (2) [3], [19]. Our goal is to find upper bounds on
the number of tests required to identify anL sized subset
belonging to[N ]\G using the observationsy, with vanishing
probability of error asN → ∞. We focus on the regime where
K,L,N → ∞ with L

N−K → α0, K
N−K → β0 for some fixed

α0, β0 ∈ (0, 1).
First, we make a note about lower bounds on the number

of tests. Using the results of Theorem 3, we need to upper
bound the mutual information term,I(j), for the group testing
signal model given in (2). Using the bounds onI(j) [35], with6

p = 1
K andu ≤ 0.5, we summarize the order-accurate lower

bounds on the number of tests to find a set ofL non-defective
items in Table I. A brief sketch of the derivation of these
results is provided in Appendix VII-B.

To compute the upper bounds on the number of tests, we
need to lower boundE0(ρ, 1, n) for someρ ∈ [0, 1] and show
that the negative exponent in the probability of error term
in (9) can be made strictly greater than0 by choosingM
sufficiently large. We present our lower bounds onE0(ρ, 1, n)
in the following lemma.

6The value ofp is a test design parameter. In general,p = α
K

, with
α independent ofK, has been widely used in the group testing literature
[19]–[21], [35]. In the noiseless case,p = 1/K is a useful choice since it
maximizes the mutual informationI(j) [19], [35]. In [21], it is shown that
choosingα = log 2 helps close the gap between upper and lower bound in
the noiseless case.



7

Lemma 1. Let N , M , L and K be as defined above. Let
L0 = (N − L − 2K + 1). Let E0(ρ, j, n) be as defined in
(3) and defineρ0 , K−1

L0
. For the non-adaptive group testing

model withp = 1
K and for all values ofL ≤ (N − 3K + 1),

we have

(a) For the noiseless case (u = 0, q = 0):

E0(ρ0, 1, L0) ≥
(1− e−1)− ( 1

K )K

e
. (11)

(b) For the additive noise only case (u = 0, q > 0):

E0(ρ0, 1, L0) ≥
e−2

4
(1 − q). (12)

(c) For the dilution noise only case (u > 0, q = 0):

E0(ρ0, 1, L0) ≥
e−2

4
(1 − u

1
K ). (13)

The proof of the above lemma is presented in Ap-
pendix VII-A. For notational convenience, we letE(lb)

0 denote
a common lower bound onE0(ρ0, 1, L0), as derived above.
The following theorem presents an upper bound on the number
of tests required to identifyL non-defective items in the non-
adaptive group testing setup.

Theorem 4. Let Pe be the average probability of error
in finding L inactive variables under the decoding scheme
described in Section III-B2. Note thatPe is upper bounded by
(9). LetL0 , (N −L− 2K +1) and letθ0 , L+K−1

N−K . Then,
for any ǫ0 > 0 and all values ofL ≤ (N − 3K + 1), if M is
chosen as

M > (1 + ǫ0)
K − 1

E
(lb)
0

[
Hb(θ0)

1− θ0
+ log

(

2 +
L

K − 1

)

+1 +
logK

K − 1

]

, (14)

thenPe ≤ exp
(

−ǫ0(K − 1) log N−K
L0

)

.

An outline of the proof is presented in Section V-C. In the
regime whereL,K → ∞ asN → ∞, it follows from the
above theorem thatlimN→∞ Pe = 0.

Finally, we present an upper bound on the number of
tests obtained for the indirect decoding scheme presented in
Section III-A for the noiseless case. Using [19, Lemma VII.1
and VII.3] to lower boundE0(ρ, j, 1) for the noiseless case,
and noting that, from the union bound, we haveC0(j) ≤
j(N−K−1

L−1 )
(N−K

L )
= j L

N−K , the following corollary builds on the

result presented in Corollary 1.

Corollary 2. Let Pe be the average probability of error
in finding L inactive variables under the decoding scheme
described in Section III-A. Note thatPe is upper bounded by
(5). For anyǫ0 > 0, there exist absolute constantsc0, c1 > 2,
independent ofN , K andL, such that ifM is chosen as

M > (1 + ǫ0)c0K
(
logL+ c1 log

3K
)
, (15)

thenPe ≤ exp (−ǫ0(K logL)).

A. Discussion of the Results

We now make following observations about the results
presented in this section.

1) Linear Scaling Regime

First, we consider the linear scaling regime, where, for some
fixed α0, β0 ∈ (0, 1), L

N−K → α0, K
N−K → β0 asN → ∞.

Since our results apply forL ≤ N − 3K+1, we considerα0,
β0 such thatα0 + 2β0 ≤ 1. For the direct decoding scheme
presented in Section III-B, we summarize the upper bounds
on the number of tests to find a set ofL non-defective items
in Table II.

(a) We first consider the noiseless case.

(i) For the direct decoding scheme,O(K) number of
tests are sufficient. In comparison, using results from
Corollary 2,O(K logL log2K) tests are sufficient
for the indirect decoding scheme. Also, from [19,
Theorem V.2],O(K logN log2K) tests are suffi-
cient for finding all the defective items. Thus, in
this case, the direct decoding scheme for finding
non-defective items performs better compared to the
indirect decoding schemes by a poly-log factor of the
number of defective items,K. Further, from Table I,
we observe that the upper bound on the number
of tests for the direct decoding scheme is within
a c logK factor of the lower boundin [27], where
c is a constant independent ofN , L and K. We
thus obtain anO(logK) improvement over the upper
bounds for computationally tractable algorithms such
as COMP, COMA, and linear programming based
algorithms, where it was shown that the sufficient
number of tests required to guarantee non-defective
subset recovery are withinO(log2K) of the lower
bounds [20], [27].

(ii) The size of non-defective set,L, impacts the upper
bound on the number of tests only throughα0, i.e.,
the fraction of non-defective items that need to be
found. From Table II,Φ(α0, β0) is an increasing
function ofα0. That is, a higherα0 results in a higher
rate at which the upper bound on the number of tests
increases withK.

(b) Performance under noisy observations:

(i) For the additive noise,O( K
1−q ) number of tests

are sufficient for the direct decoding scheme. The
indirect scheme (as well as the scheme for finding
the defective items) also show similar11−q factor
increase in the number of tests under additive noise
scenario (see, e.g., [19, Theorem VI.2]). Further,
from Table I, we observe that, for fixedα0, β0 and
q, the upper bound on the number of tests for the
direct decoding scheme is within a constant factor
of the lower bound.

(ii) For dilution noise,O

(

K

1−u
1
K

)

are sufficient for

the direct decoding scheme. Another characterization
for the sufficient number of tests for the direct
decoding scheme, based on the remark at the end
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TABLE I
FINDING A SUBSET OFL NON-DEFECTIVE ITEMS: RESULTS FOR

NECESSARY NUMBER OF GROUP TESTS WHICH HOLD ASYMPTOTICALLY
AS (N,K,L) → ∞, L

N−K
→ α0 WITH 0 < α0 < 1. THE CONSTANTS

Cn, C′

n, C
′′

n > 0 ARE INDEPENDENT OFN,L,K, u AND q.

No Noise
CnK

logK
log

1

[1− α0 + o(1)]

Additive Noise
C′

nK

min{log 1
q
, logK}

log
1

[1− α0 + o(1)]

Dilution Noise
C′′

nK

(1 − u) logK
log

1

[1− α0 + o(1)]

of Appendix VII-A, is O

(

K2

1−u
1
2

)

number of tests.

The direct decoding scheme shows high sensitivity to
the dilution noise. This behavior is in sharp contrast
to the indirect scheme, where the dilution noise
parameteru leads to an increase in the number of
tests only by a factor of c1−u (see, e.g., [19, Theorem
VI.5]). From Table I, the lower bounds also show
an increase in the number of tests by a factor11−u
for the dilution noise scenario. The conservativeness
of the upper bound for the direct decoding scheme
in the presence of dilution noise may be due to: (a)
The lower bound onE0 is Ω( 1

K ), which underscores
the general fact that the group testing system is
more sensitive to the diluton noise, and (b) The term
log

(
N−1−L0

K−1

)
in (9), which might be due to the

particular decoding scheme employed or the specific
technique employed in bounding the error exponent.

2) Sub-Linear Scaling Regime
We now consider the sub-linear scaling regime, where

L
N → 0, K

N → 0 as N → ∞. In particular, we consider
L = Nλ andK = Nλ′

with 0 < λ, λ′ < 1. We discuss
the noiseless case; similar conclusions can be drawn under
noisy observations. The lower bound scales aso(1), since, in
this regime, L

N−K → 0. However, there are two contrasting
scenarios for the upper bounds. Whenλ < λ′, O(K) tests are
sufficient. Further, compared to the linear regime, we obtain
smaller constants, since both the termsHb(θ0)

1−θ0
and L

K−1 in (14)
vanish asymptotically asN → ∞. Also, the direct decoding
scheme offers significant gains compared to the indirect decod-
ing scheme, since the necessary number of tests required for
finding defective items scales asΩ(K logN). Thus, we again
obtain an improvement ofO(logN) over computationally
tractable algorithms [20], [27]. However, whenλ > λ′,
O(K logNα) tests are sufficient, whereα (, λ − λ′) < 1.

This is because of thelog
(

2 + L
K−1

)

term in (14), which

scales asO(logNα). In this case, we obtain an improvement
in the constant involved, with the gain depending on the the
difference betweenλ andλ′. This regime also exposes a non-
trivial gap between the upper and lower bounds, indicating the
need for further work into finding better decoding schemes or
tighter bounds to close the gap.

V. PROOFS OF THEMAIN RESULTS

We now present the proofs of Theorems 1, 2 and 4, which
are the main results in this paper.

TABLE II
FINDING A SUBSET OFL NON-DEFECTIVE ITEMS: RESULTS FOR

SUFFICIENT NUMBER OF GROUP TESTS WHICH HOLD ASYMPTOTICALLY
AS (N,K,L) → ∞, L

N−K
→ α0 AND K

N−K
→ β0 WITH

0 < β0, α0 < 1 SUCH THATα0 + 2β0 < 1. DEFINE

Φ(α0, β0) ,
(

Hb(γ0)
1−γ0

+ log(2 + α0
β0

) + 1
)

, WHEREγ0 = α0 + β0 . THE

CONSTANTSCs, C′

s, C
′′

s > 0 ARE INDEPENDENT OFN,L,K, u AND q.

No Noise
CsK

(1 − o(1))
[Φ(α0, β0) + o(1)]

Additive Noise
C′

sK

(1 − q)
[Φ(α0, β0) + o(1)]

Dilution Noise
C′′

s K

(1 − u
1
K )

[Φ(α0, β0) + o(1)]

A. Proof of Theorem 1: Sufficient Number of Observations,
K = 1

At the heart of the proof of this theorem is the derivation of
an upper bound on the average probability of error in finding
L inactive variables using the decoding scheme described
in Section III-B1. This is obtained by characterizing the
exponents on the average probability of error [29]. Without
loss of generality, due to the symmetry in the model, we can
assume thatX1 is active. Then, the decoding algorithm makes
an error ifP (y|X1) falls within the lastL entries of the sorted
array generated as described in the decoding scheme. Lety be
the observed output, and letE denote the event that an error
has occurred, when itemX1 is the active variable andX1 is
the first column ofX. Further, let Pr(E) be a shorthand for
Pr{error|X1 is active,X1,y}. The overall average probability
of error,Pe, can be expressed as

Pe =
∑

y,X1

P (y|X1)Q(X1)Pr(E). (16)

LetSz ⊂ [N ]\1 be a set ofN−L items, i.e.,|Sz | = N−L. Let
Sz denote the set of all possibleSz. Further, letASz

⊂ {XSz
}

be such that,ASz
= {{XSz

} : P (y|Xj) ≥ P (y|X1) ∀ j ∈
Sz}. That is, ASz

represents all those realizations of the
random variableXSz

which satisfy the above condition, which
states that each variable inSz is more likely than the active
variable,X1. It is easy to see thatE ⊂ A ,

⋃

Sz∈Sz
ASz

, i.e.,
an error event implies that there exists at least one set ofN−L
variables,Sz, such thatP (y|Xj) ≥ P (y|X1) ∀ j ∈ Sz.
Thus, Pr(E) ≤ Pr(A). Let s be an optimization variable such
that0 ≤ s ≤ 1. The following set of inequalities upper bound
Pr(E):

Pr(E) ≤
∑

Sz∈Sz

∑

XSz∈ASz

Q(XSz
)

(a)
≤

∑

Sz∈Sz

∑

XSz∈ASz

Q(XSz
)
∏

j∈Sz

[
P (y|Xj)

P (y|X1)

]s

(b)
≤

∑

Sz∈Sz

∑

XSz

∏

j∈Sz

Q(Xj)

[
P (y|Xj)

P (y|X1)

]s

(c)
=

∑

Sz∈Sz

∏

j∈Sz

∑

Xj

Q(Xj)

[
P (y|Xj)

P (y|X1)

]s
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(d)
=

(
N − 1

L− 1

)






∑

Xj

Q(Xj)

[
P (y|Xj)

P (y|X1)

]s






N−L

. (17)

In the above, (a) follows since we are multiplying with terms
that are all greater than1 and(b) follows since we are adding
extra nonnegative terms by summing over allXSz

. (c) follows
by using the independence of the codewords, i.e.,Q(XSz

) =
∏

j∈Sz
Q(Xj), and simplifying.(d) follows since the value of

the expression inside the product term does not depend upon
any particularj.

Let 0 ≤ ρ ≤ 1. If the R.H.S. in (17) is less than1, then
raising it to the powerρ makes it bigger, and if it is greater
than1, it remains greater than1 after raising it to the power
ρ. Thus, we get the following upper bound on Pr(E):7

Pr(E) ≤
(
N − 1

L− 1

)ρ






∑

Xj

Q(Xj)

[
P (y|Xj)

P (y|X1)

]s






ρ(N−L)

.

(18)

Substituting this into (16) and simplifying, we get

Pe ≤
(
N − 1

L− 1

)ρ ∑

y

∑

X1

Q(X1)P (y|X1)
1−ρ(N−L)s

×







∑

Xj

Q(Xj)P (y|Xj)
s







ρ(N−L)

. (19)

Puttings = 1/(1 + ρ(N − L)), we get

Pe ≤
(
N − 1

L− 1

)ρ∑

y







∑

Xj

Q(Xj)P (y|Xj)
1

1+ρ(N−L)







1+ρ(N−L)

.

(20)

Finally, using the independence across observations and using
the definition ofE0(ρ, j, n) from (3) with j = 1 and n =
N − L, we get

Pe ≤
(
N − 1

L− 1

)ρ






∑

Y ∈Y







∑

Xj∈X

Q(Xj)P (Y |Xj)
1

1+ρ(N−L)







1+ρ(N−L)





M

= exp[−MF (ρ)], (21)

where F (ρ) = E0(ρ, 1, N − L) − ρ log (N−1
L−1)

M . Hence (6)
follows.

For the following discussion, we treatF andE0 as functions
of ρ only and all the derivatives are with respect toρ. Note that

F
′

(ρ) = E
′

0(ρ) −
log (N−1

L−1)
M . It is easy to see thatE0(0) = 0

and henceF (0) = 0. With some calculation, we get,

E
′

0(ρ)
∣
∣
∣
ρ=0

= (N − L)
∑

Y,X

P (Y,X) log
P (Y |X)

P (Y )

7This is a standard Gallager bounding technique [29, Section5.6].

= (N − L)I(1). (22)

Using the Taylor series expansion ofE0(ρ), and following
similar analysis as in [19, Section III.D], it is easy to show
that there exists aρ ∈ (0, 1], sufficiently small, such that ifM
is chosen as in (7), thenMF (ρ) > ǫ1(N − L) log

(
N−1
L−1

)
for

someǫ1 > 0, independent ofN andL. This completes the
proof.

Remark: For the decoding scheme described in Section
III-A, for the K = 1 case, using similar arguments as the
above, it is easy to show that ifM > (1 + ǫ0)

logL
I(1) for any

ǫ0 > 0, then there existsǫ1 > 0, and independent ofN and
L, such thatPe ≤ exp(−ǫ1 logL), i.e.,Pe → 0, asL→ ∞.

B. Proof of Theorem 2: Sufficient Number of Observations,
K > 1

The decoding algorithm outputs a set,SH , of at least
L inactive variables. A decoding error happens if the set
SH contains one or more variables from the active set. We
now upper bound the average probability of error of the
proposed decoding algorithm. The probability is averaged over
all possible instantiations of{X,y} as well as over all possible
active sets. By symmetry of the codebook (X) construction,
the average probability of error is the same for all the active
sets. Hence, we fix the active set and then compute average
probability of error with this set. LetS1 ⊂ [N ] be the active
set such that|S1| = K. We also define the following notation:
For any setSω ⊂ [N ] such that|Sω| = K and for any item
j ∈ Sω, let Sωjc , Sω\j. Note that|Sωjc | = K − 1.

For any d ∈ S1, let Ed be the error eventd ∈ SH . The
overall average probability of error,Pe, in finding L inactive
variables can then be upper bounded as

Pe ≤
∑

d∈S1

Pr(Ed). (23)

Further,

Pr(Ed) =
∑

y

∑

XS1

P (y|XS1)Q(XS1)

[
Pr{Ed|S1 is the active set,y,XS1}

]
. (24)

We now upper bound Pr{Ed|S1 is the active set,y,XS1}.
Let Sz ⊂ [N ]\S1 be such that|Sz | = L0. Let Sω ⊂ [N ]
be aK sized index set such thatSω = {d ∪ Sωdc}, where
Sωdc ⊂ [N ]\{d}\Sz and d ∈ S1 (see Figure 3). Further, let
Sz and Sωdc be the collection of all possible setsSz and
Sωdc , respectively. It is easy to see that|Sz| =

(
N−K
L0

)
and

|Sωdc | =
(
N−1−L0

K−1

)
. With S1 as the active set,d ∈ S1, the

observed outputy and the codebook entries corresponding to
setS1 asXS1 , defineAd(Sz , Sωdc) ⊂ {XSz∪Sωdc

} andAd

as follows:

Ad(Sz , Sωdc) = {{XSz
,XSωdc

} :

P (y|Xα,XSωdc
) ≥ P (y|Xd,XSωdc

) ∀ α ∈ Sz}, (25)

Ad =
⋃

Sz∈Sz

⋃

Sωdc∈Sωdc

Ad(Sz , Sωdc). (26)
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S1dc

S1 = S1dc ∪ d, |S1| = K

Sz ⊂ [N ]\S1 and |Sz| = L0

Active Set

Declared inactive subset (SH)

|SH | ≤ L+K − 1, SH ∩ Sz = {Φ}

Sω = d ∪ Sωdc; |Sω| = K

Sωdc ⊂ [N ]\Sz\{d}

Set of all variables ([N ])

d ∈ S1

L0 = N − 2K − L+ 1

Inactive variable

Active variable

Sz

Fig. 3. Illustration of the notation used in the proof of Theorem 2.

That is,Ad(Sz, Sωdc) represents the set of those realizations
of the random variablesXSz

and XSωdc
which satisfy the

condition in (25).

Proposition 1. Pr{Ed|S1 is the active set,y,XS1} ≤ Pr(Ad)

Proof: We will show that given the active setS1, d ∈ S1,
y and XS1 , the event{d ∈ SH}, i.e., the decoded set of
inactive variables containsd, implies the eventAd. We first
note that, since|SH | ≤ L + K − 1, there exists a set of
L0 = N − K − (L + K − 1) inactive variables that do not
belong toSH . Let Sz ⊂ [N ]\S1 be such a set of inactive
variables such that|Sz| = L0 andSz ∩ SH = {∅}.

Further, sinced ∈ SH , this implies that there exits an
ω ∈ Ωlast such thatd belongs toSω, whereΩlast is as defined
in the decoding scheme forK > 1 (see Section III-B2).
With the notation described above, we can represent such
Sω as {d ∪ Sωdc}, where Sωdc ⊂ [N ]\{d}\Sz such that
|Sωdc | = K − 1. For anyα ∈ Sz, if we replaced ∈ Sω with
α and evaluateP (y|Xα,XSωdc

), it cannot be smaller than
P (y|Xd,XSωdc

) or else the decoding algorithm would have
chosenα as belonging toSH . This implies that, there exists a
realization ofXSz

andXSωdc
such thatP (y|Xα,XSωdc

) ≥
P (y|Xd,XSωdc

) ∀ α ∈ Sz , i.e.,Ad occurs.
We now upper bound Pr(Ad) as follows:

Pr(Ad) ≤
∑

Sz∈Sz

∑

Sωdc∈Sωdc

qd, (27)

whereqd , Pr{Ad(Sz, Sωdc)|S1 is active set,y,XS1}. Here,
the randomness comes from the set of variables inSz and
Sωdc , i.e.,XSz

andXSωdc
. Let s be such that0 ≤ s ≤ 1. We

have

qd =
∑

XSz ,XSωdc
∈Ad(Sz,Sωdc)

Q(XSz
,XSωdc

)

(a)
≤

∑

XSωdc
,XSz∈Ad(Sz,Sωdc)

Q(XSz
,XSωdc

)

×
∏

Sα∈Sz

[
P (y|Xα,XSωdc

)

P (y|Xd,XSωdc
)

]s

(b)
≤

∑

XSωdc

Q(XSωdc
)
∑

XSz

Q(XSz
)

×
∏

Sα∈Sz

[
P (y|Xα,XSωdc

)

P (y|Xd,XSωdc
)

]s

(c)
=

∑

XSωdc

Q(XSωdc
)

L0∏

l=1

∑

XSα

Q(XSα
)

[
P (y|Xα,XSωdc

)

P (y|Xd,XSωdc
)

]s

(d)
=

∑

XSωdc

Q(XSωdc
)







∑

XSα

Q(XSα
)

[
P (y|Xα,XSωdc

)

P (y|Xd,XSωdc
)

]s






L0

=
∑

XSωdc

Q(XSωdc
)







∑

XSα

Q(XSα
)

[
P (y,XSωdc

|Xα)

P (y,XSωdc
|Xd)

]s






L0

︸ ︷︷ ︸

,P0(y,Xd,XSωdc
)

.

(28)

In the above, (a)-(d) follow using the same reasoning as in (17)
in the proof of Theorem 1 (Section V-A). We note that, due to
symmetry in the construction of codebook,P0(y,Xd,XSωdc

)
does not depend upon the index setSz or XSz

. In fact, it
depends only upon the given realizations ofXSωdc

, Xd and
not on the particular index setsSωdc andd, respectively. Thus,
from (27), and for some0 ≤ ρ ≤ 1, we get

Pr(Ad) ≤
∑

Sωdc∈Sωdc

∑

XSωdc

Q(XSωdc
)

[
∑

Sz∈Sz

P0(y,Xd,XSωdc
)

]

≤
∑

Sωdc∈Sωdc

∑

XSωdc

Q(XSωdc
)

×
[

∑

Sz∈Sz

P0(y,Xd,XSωdc
)

]ρ

≤
(
N − 1− L0

K − 1

)
∑

XSωdc

Q(XSωdc
)

×
[(
N −K

L0

)

P0(y,Xd,XSωdc
)

]ρ

. (29)

The second inequality above follows since the expression
inside the square brackets represents the probability of a union
of events and therefore, as in theK = 1 case, by raising it
to a power0 < ρ ≤ 1, we still get an upper bound [29,
Section 5.6]. LetC2 ,

(
N−K
L0

)ρ(N−1−L0

K−1

)
. Using proposition

1, we substitute the above expression into (23) to get:

Pr(Ed) ≤ C2

∑

y

∑

XS1

Q(XS1)P (y|XS1)

×
∑

XSωdc

Q(XSωdc
)
[
P0(y,Xd,XSωdc

)
]ρ

(a)
≤ C2

∑

y

∑

XS1

∑

XSωdc

Q(XS1)P (y,XSωdc
|XS1)

×
[
P0(y,Xd,XSωdc

)
]ρ

(b)
≤ C2

∑

y

∑

Xd

∑

X1dc

∑

XSωdc

Q(Xd)

× P (y,XSωdc
,XS1dc

|Xd)
[
P0(y,Xd,XSωdc

)
]ρ

(c)
≤ C2

∑

y

∑

XSωdc

∑

Xd

Q(Xd) P (y,XSωdc
|Xd)
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×







∑

XSα

Q(XSα
)

[
P (y,XSωdc

|Xα)

P (y,XSωdc
|Xd)

]s






ρL0

(d)
≤ C2

∑

y

∑

XSωdc







∑

XSα

Q(XSα
)

×P (y,XSωdc
|Xα)

1
1+ρL0

}1+ρL0

. (30)

In the above equation, (a) follows because given the ac-
tive set S1, y is independent of the other input variables.
Thus,P (y,XSωdc

|XS1) = P (y|XS1)Q(XSωdc
). (b) follows

since S1 = {d ∪ S1dc}. (c) follows by substituting the
expression forP0 and by averaging outXS1dc

, since the
expression forP0 does not depend uponXS1dc

. In (c), the term
[P (y,XSωdc

|Xd)]
sρL0 can be factored out from expression

inside the curly braces. Finally, (d) is obtained by choosing
s = 1

1+ρL0
and simplifying. Next, the above upper bound for

Pr(Ed) depends only onXd and not on any particular value
of d. Thus, from (23) and (30) we get:

Pe ≤KC2

∑

y

∑

XSωdc







∑

XSα

Q(XSα
)P (y,XSωdc

|Xα)
1

1+ρL0







1+ρL0

≤ exp

[

−M
(

E0(ρ, 1, L0)−
log(KC2)

M

)]

. (31)

The inequality above is obtained by further simplifying using
independence across different observations and writing the
bound in the exponential form, as in theK = 1 case. The
upper bound onPe given in (9) now follows by substituting
the value ofC2 in the above. Hence the proof follows.�

C. Proof of Theorem 4

In (9), consider the term T (ρ) ,(

ME0(ρ, 1, L0)− ρ log
(
N−K
L0

)
− log

[

K
(
N−1−L0

K−1

)])

.
Using the results of Lemma 1, for anyǫ0 > 0, at ρ = ρ0
whereρ0 = K−1

L0
,8 if M is chosen as

M>(1 + ǫ0)




ρ0 log

(
N−K
L0

)

E
(lb)
0

+
log

[(
L+2(K−1)

K−1

)]

E
(lb)
0

+
logK

E
(lb)
0



 ,

(32)

then, T (ρ) > ǫ0(K − 1)
(

log N−K
L0

+ log(2 + L
K−1 )

)

>

ǫ0(K − 1) log N−K
L0

> 0.
Using Stirling’s formula, for any n ∈ Z+:√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n, we note

log

(
N −K

L0

)

≤ L0 log(
N −K

L0
) +

1

2
log

N −K

L0(L+K − 1)

+ (L+K − 1) log(
N −K

L+K − 1
) (33)

≤ L0 log(
N −K

L0
)

+ (L+K − 1) log(
N −K

L+K − 1
). (34)

8Note that, forL ≤ N − 3K + 1, ρ0 = K−1
L0

< 1.

The second inequality follows since under the assumptions on
the range ofL, N−K

L0(L+K−1) < 1. Thus, withθ0 , L+K−1
N−K , we

get
log (N−K

L0
)

L0
≤ Hb(θ0)

1−θ0
. Finally, the bound in (14) results by

using the inequality
(
m
n

)
≤

(
em
n

)n
to upper bound the second

term in (32).

VI. CONCLUSIONS

In this paper, we considered the problem of identifyingL
non-defective items out of a large population ofN items con-
tainingK defective items in a general sparse signal modeling
setup. We contrasted two approaches: identifying the defective
items using the observations followed by pickingL items from
the complement set, and directly identifying non-defective
items from the observations. We derived upper bounds on
the number of observations required for identifying theL
non-defective items. We showed that a gain in the number
of observations is obtainable by directly identifying the non-
defective items. We specialized the results to the nonadaptive
group testing setup. We also characterized the number of
tests that are sufficient to identify a subset of non-defective
items in a large population, under both dilution and additive
noise models. Future work could focus on tightening the upper
bounds on the sufficient number of tests and/or devising better
decoding algorithms, and obtaining order-optimal results.

VII. A PPENDIX

A. Proof of Lemma 1

From (3), it follows that:

E0(ρ, j, n) = − log
∑

Y ∈Y, X
S(K−j)∈XK−j

Q (XS(K−j))

×







∑

X
S(j)∈X j

Q(XS(j)) (P (Y |XS(K−j) , XS(j)))
1

1+ρn







1+ρn

(35)

In the above, we substitutej = 1, n = L0 and ρ = ρ0.
Let w(XS(K−1)) denote the number of1’s in XS(K−1) ∈
{0, 1}(K−1). Letn0 , 1+ρ0L0 and further, note thatn0 = K.
For the non-adaptive group testing signal model, using (2),we
have computed the posterior probabilityP (Y |XS(K−1) , XS(1))
for different scenarios and summarized it in Table III.

(a) Noiseless case: Usingq = 0, u = 0 in Table III and
substituting in (35) we get(also see Figure 4):

E0(ρ, 1, L0) =− log
[

1− (1− p)(K−1)

× (1− (1− p)n0 − pn0)] . (36)

Using, (i) the inequality− log(1 − x) ≥ x for x < 1, (ii)
For p = 1

K , (1 − p)(K−1) > e−1 and (1 − p)K < e−1,
(11) results.

(b) Additive noise case: Usingu = 0 in Table III and
substituting in (35) we get:

E0(ρ, 1, L0) = − log
[

1− (1 − p)(K−1)
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TABLE III
P (Y |X

S(K−1) ,XS(1) ) FOR THE NON-ADAPTIVE GROUP TESTING MODEL, UNDER DIFFERENT SCENARIOS.

w(X
S(K−1) ) = 0 w(X

S(K−1)) = l, 1 ≤ l ≤ K − 1
X

S(1) = 0 X
S(1) = 1 X

S(1) = 0 X
S(1) = 1

P (Y = 0|X
S(K−1) , XS(1)) (1− q) (1 − q)u (1− q)ul (1 − q)ul+1

P (Y = 1|X
S(K−1) , XS(1)) q (1 − (1 − q)u) 1− (1 − q)ul 1− (1− q)ul+1

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

E
0
(

, 1
, L

0
) N=512, K=16

L
0
= (N-K) - (L+K-1)

L=32
L=64
L=128

Fig. 4. E0(ρ, 1, L0) vs ρ: Noiseless case.

×
(

1− (1− q)(1− p)n0 −
{

(1− p)q
1

n0 + p
}n0

)]

.

(37)

To lower boundE0, we first upper bound the term

t0 ,
{

(1− p)q
1

n0 + p
}n0

. For any n ≥ 1, xn is a
convex function and hence, using Jensen’s inequality we
get t0 ≤ (1−p)q+p. Substituting and further simplifying
we get:

E0(ρ, 1, L0) ≥ − log
[
1− (1− p)K(1− q)

×
(

1− (1− p)(n0−1)
)]

. (38)

The bound in (12) now results by using the inequality
− log(1−x) ≥ x for x < 1 and noting the following: For
p = 1

K , using the inequality,1 − x ≤ e−x ≤ 1 − x
2 for

0 ≤ x ≤ 1, we get(1−p)K ≥ e−2 and1−(1−p)(n0−1) ≥
n0−1
2K ≥ 1

4 for K ≥ 2.
(c) Dilution noise case: LetGl ,

(
K−1

l

)
pl(1 − p)(K−1−l).

Using q = 0 in Table III and substituting in (35) we get:

E0(ρ, 1, L0) = − log [T0 + T1] , (39)

whereT0 ,
∑K−1

l=0 Glu
l
(

(1− p) + pu
1

n0

)n0

andT1 ,
∑K−1

l=0 Gl

(

(1− p)(1 − ul)
1
n0 + p(1− ul+1)

1
n0

)n0

.
Using Jensen’s inequality to upper boundT1, we get

T1 ≤
K−1∑

l=0

Gl

(
(1− p)(1 − ul) + p(1− ul+1)

)
(40)

= 1− ζ0

K−1∑

l=0

Glu
l, (41)

whereζ0 , (1−(1−u)p) and we have made use of the fact
that

∑K−1
l=0 Gl = 1. Further, since

∑K−1
l=0 Glu

l = ζ
(K−1)
0 ,

we get

E0(ρ, 1, L0) ≥ − log
[

1− (ζ0 − ψ0)ζ
(K−1)
0

]

, (42)

whereψ0 ,
(

1− (1− u
1

n0 )p
)n0

. Using the inequality

− log(1− x) ≥ x for x < 1, we get:

E0(ρ, 1, L0) ≥ (ζ0 − ψ0)ζ
(K−1)
0

≥
[

1−
(

1− (1− u
1
n0 )p

)n0−1
]

ζK0 , (43)

where the second inequality follows since(1 − (1 −
u

1
n0 )p) ≥ ζ0. The bound in (13) now results by noting

the following: Forp = 1
K , using the inequality,1 − x ≤

e−x ≤ 1− x
2 for 0 ≤ x ≤ 1, we getζK0 ≥ e−2(1−u) ≥ e−2

and

[

1−
(

1− (1− u
1
n0 )p

)n0−1
]

≥ (1 − u
1
n0 )n0−1

2K ≥
1
4 (1− u

1
n0 ) for K ≥ 2.

Remark: For ρ0 = a
L0

for any a, n0 = 1 + a. Thus,

E0(ρ0, 1, L0) ≥ (1−u
1

1+a )a
2K . In particular, witha = 1,

E0(ρ0, 1, L0) ≥ (1−u
1
2 )

2K .

B. Order-Tight Results for Necessary and Sufficient Number
of Tests with Group Testing

In this section, we present a brief sketch of the derivation of
the order results for the necessary number of tests presented
in Table I. We first note thatI(j) = H(Y |XS(K−j)) −
H(Y |XS(K−j) , XS(j)) [19], whereH(·|·) represents the en-
tropy function [30]. From (2), we have

H(Y |XS(K−j)) =

K−j
∑

l=0

[(
K − j

l

)

pl(1− p)K−j−l

×Hb

(
(1− q)ul(1− p(1 − u))j

)]
(44)

H(Y |XS(K−j) , XS(j)) =

K∑

i=0

[(
K

i

)

pi(1− p)K−i

×Hb

(
(1− q)ui

)]
. (45)

We use the results from [35] for bounding the mutual infor-
mation term. We collect the required results from [35] in the
following lemma.

Lemma 2. Bounds onI(j) [35]: Let p = δ
K . I(j) can be

expressed asI(j)1 + I
(j)
2 , where

I
(j)
1 = δe−δ(1−u)(1− q) (u logu+ 1− u)

j

K
+O

(
1

K2

)

.

(46)
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For the case withu = 0 and q > 0 we have:

I
(j)
2 = δe−δ

(

log(
1

q
)− (1− q)

)
j

K
+O

(
1

K2

)

, (47)

and for q = 0, u ≥ 0 we have:

δe−δ

(

(1 − u)

[

log
K

jδ(1− u)

]

− u

)
j

K
+O

(
1

K2

)

≤ I
(j)
2

≤ δe−δ(1−u2)

(

(1− u)

[

log
K

jδ(1 − u)

]

− u+ u2
)
j

K

+O

(
1

K2

)

. (48)

Thus, withδ = 1 and largeK, neglectingO(1/K2) terms,
we get: (a) Foru = 0, q > 0 case,I(j) ≈ j

eK log(1q ). (b) For
q = 0, 0 ≤ u ≤ 0.5 case, simplifying further, we get

j

eK
(1− u) log

K

j
/ I(j) /

j

e1/2K
(1− u)

(

log
K

j
+ 1

)

.

(49)

In the above, we have used the notation “≈” and “/” to
highlight the fact thatO( 1

K2 ) terms have been neglected in the
above expressions forI(j). The order results for lower bounds
now follow by first noting thatmax1≤j≤K

Γl(L,N,K,j)
I(j) ≥

Γl(L,N,K,1)
I(1) , and, for the scaling regimes under consideration

the combinatorial term,Γl(L,N,K, 1) can be asymptotically
bounded aslimN→∞ Γl(L,N,K, 1) ≥ log 1

1−α0
.

REFERENCES

[1] A. Sharma and C. R. Murthy, “On finding a set of healthy individuals
from a large population,” inInformation Theory and Applications
Workshop, San Diego, CA, USA, 2013, pp. 1–5.

[2] R. Dorfman, “The Detection of Defective Members of LargePopu-
lations,” The Annals of Mathematical Statistics, vol. 14, no. 4, Dec.
1943.

[3] D. Du and F. Hwang,Pooling designs and non-adaptive group testing:
Important tools for DNA sequencing, World Scientific, 2006.

[4] E. J. Candés and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[5] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of
systems of equations to sparse modeling of signals and images,” SIAM
Rev., vol. 51, no. 1, pp. 34–81, Feb. 2009.

[6] J. A. Tropp, “Just relax: convex programming methods foridentifying
sparse signals in noise,”IEEE Trans. Inf. Theory, vol. 52, no. 3, pp.
1030–1051, Mar. 2006.

[7] S. Haykin, “Cognitive radio: brain-empowered wirelesscommunica-
tions,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201–220, Feb.
2005.

[8] D. Cabric, S. M. Mishra, D. Willkomm, R. Brodersen, and A.Wolisz,
“A cognitive radio approach for usage of virtual unlicensedspectrum,”
in Proc. of 14th IST Mobile Wireless Communications Summit, 2005.

[9] FCC, “Et docket no. 02-155,”Spectrum policy task force report, Nov.
2002.

[10] A. Sharma and C. R. Murthy, “Group testing-based spectrum hole search
for cognitive radios,”IEEE Transactions on Vehicular Technology, vol.
63, no. 8, pp. 3794–3805, Oct 2014.

[11] W. Kautz and R. Singleton, “Nonrandom binary superimposed codes,”
IEEE Trans. Inf. Theory, vol. 10, no. 4, pp. 363–377, 1964.

[12] P. Erdos, P. Frankl, and Z. Furedi, “Families of finite sets in which no
set is covered by the union ofr others,” Israel Journal of Mathematics,
vol. 51, no. 1-2, pp. 79–89, 1985.

[13] A. G. Dyachkov and V. V. Rykov, “Bounds on the length of disjunctive
codes,”Problems of Information Transmission, vol. 18, no. 3, pp. 7–13,
1982.

[14] A. Sebo, “On two random search problems,”Journal of Statistical
Planning and Inference, vol. 11, no. 1, pp. 23–31, Jan. 1985.

[15] M. Cheraghchi, A. Hormati, A. Karbasi, and M. Vetterli,“Group testing
with probabilistic tests: Theory, design and application,” IEEE Trans.
Inf. Theory, vol. 57, no. 10, pp. 7057–7067, Oct. 2011.

[16] M. B. Malyutov, “The separating property of random matrices,” Mat.
Zametki, vol. 23, no. 1, pp. 155–167, 1978.

[17] M. B. Malyutov, “On the maximal rate of screening designs,” Theory
Probab. and Appl., vol. 24, pp. 655–667, 1979.

[18] M. B. Malyutov and P. S. Mateev, “Planning of screening experiments
for a nonsymmetric response function,”Mat. Zametki, vol. 27, no. 1,
pp. 109–127, 1980.

[19] G. Atia and V. Saligrama, “Boolean compressed sensing and noisy group
testing,” IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1880–1901, 2012.

[20] C. L. Chan, S. Jaggi, V. Saligrama, and S. Agnihotri, “Non-adaptive
group testing: Explicit bounds and novel algorithms,”IEEE Trans. Inf.
Theory, vol. 60, no. 5, pp. 3019–3035, May 2014.

[21] J. Scarlett and V. Cevher, “Phase transitions in group testing,” in Proc.
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, Jan. 2016, pp. 40–53.
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