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Abstract—In this paper, we derive mutual information based
upper bounds on the number of nonadaptive group tests requied
to identify a given number of “non-defective” items from a large
population containing a small number of “defective” items.In the
asymptotic regime with the population sizeN — oo, to identify
L non-defective items out of a population containingk” defective
items, our results show that foﬁ (®(avo, Bo) + o(1)) measure-
ments are sufficient when the tests are reliable. Here('s is a
constant independent ofN, K and L, and ®(«ao, 5o) is a bounded
function of ao £ limy—oo 2% and Bo £ limy oo 5oge- IN
contrast, the necessary number of tests using the convential
approach of first identifying the K defective items and picking
the required number of nondefective items from the complemet
set grows with N as O (K log N). We also derive upper bounds
on the number of tests under both dilution and additive noise
models. Our results are obtained under a very general sparse
signal model, by virtue of which, they are also applicable tamther
important sparse signal based applications such as compr&se
sensing.

Index Terms—Sparse signal models, nonadaptive group testing,
inactive subset recovery.

|. INTRODUCTION

is the spectrum hole search problem in the cognitive radio
(CR) networks [7]. It is well known that the primary user
occupancy (active set) is sparse in the frequency domain ove
a wide band of interest [8], [9]. To setup a CR network, the
secondary users need to find an appropriately wide unoatupie
(inactive) frequency band. Thus, the main interest heréaes t
identification ofonly a sub-bandout of the total available
unoccupied band, i.e., it is an inactive subset recoverylpr.
Furthermore, the required bandwidth of the spectrum holle wi
typically be a small fraction of the entire bandwidth that is
free at any point in time [10]. Another example is a product
manufacturing plant, where a small shipment of non-defecti
(inactive) items has to be delivered on high priority. Once
again, it is of interest to identify a subset of the non-dt¥ec
items using as few tests as possible.

Related work: In the group testing literature, the problém o
bounding the number of tests required to identify the dafect
items in a large population has been studied, both in the
noiseless and noisy settings, for tractable decoding ihgos
as well as under general information theoretic models [11]-
[21]. A combinatorial approach has been adopted in [11],

Sparse signal models are of great interest due to thgip], [22], where explicit constructions for the test meds are
applicability in a variety of areas such as group testing [2}ised, e.g., using superimposed codes, to design matrities wi
[3], compressive sensing [4], signal de-noising [5], stibsgroperties that ensure guaranteed detection of a small @umb

selection [6], etc. Generally speaking, in a sparse sigaleth

of defective items. Two such properties were consideresd: di

out of a given numbeN of input variables, only a small subsefunctness and separability [3]A probabilistic approach was
of size K contributes to the observed output. For example, Bdopted in [13]-[15], [23], where random test matrix design
a non-adaptive group testing setup, the output depends ofre considered, and upper and lower bounds on the number
on whether the items from the defective set participate or @ tests required to satisfy the properties of disjunctness
not participate in the group test. Similarly, in a compressi or separability with high probability were derived. Anothe
sensing setup, the output signal is a set of random projectiatudy [20] uses random test designs, and develops compu-
of the signal corresponding to the non-zero entries (suppeitionally efficient algorithms for identifying defectivieems
set) of the input vector. Thisalientsubset of inputs is referredfrom the noisy test outcomes by exploiting the connection
to by different names, e.g., defective items, sick indialdy with compressive sensing. An approach based on information
support set, etc. In the sequel, we will refer to itthe active density is used in [21] to analyze the phase transition biehav
set and its complement ahe inactive setin this paper, we of Bernoulli test matrix designs and propose measurement-
address the issue of theactive subset recoveryrhat is, we optimal recovery algorithms. A general sparse signal model
focus on the task of finding ah (< N — K) sized subset for studying group testing problems, that turns out to be
of the inactive sef(of size N — K), given the observationsvery useful in dealing with noisy settings, was proposed
from a sparse signal model with" inputs, out of whichK"  and used in [16]-[19]. In this framework, the group testing
are active. problem was formulated as a detection problem and a one-
The problem of finding a subset of items belonging to th®-one correspondence was established with a communicatio

inactive set is of interest in many applications. An example

1A test matrix, with tests indexing the rows and items indgxime columns,
This work was presented in part in [1]. It was financially soped by a is said to bek-disjunct if the boolean sum of evely columns does not equal
research grant and fellowship from the Ministry of Electesrand Information any other column in the matrix. Also, a test matrix is said ¢okbseparable
Technology, Govt. of India. if the boolean sum of every set &f columns is unique.



channel model. Using information theoretic argumentsualut 2) We specialize the above bounds to various noisy non-

information based expressions (that are easily compufable adaptive group testing scenarios, and characterize the
a variety of noise models) for upper and lower bounds on the number of tests required to identiff, non-defective
number of tests were obtained [19]. items, in terms ofL,, N and K.

The problem of non-defective subset identification can be .
Our results show that, compared to the conventional ap-

related to the problem of group testing using list decod- - . . ! o .
ing [24]-[26], WF;]ere the de?:odeF? outpu?s a sugperset of t éoach of identifying the inactive subset by first identifyi

true defective set, i.e., a list of items (with [£] > K ) the active set, dlrectly_ sea_rchlng for abrsized inactive
EUbSEt offers a reduction in the number of observations

such thatZ contains the defective set. It finds application o . T
PP tgsts/measurements), which is especially significantrwhe

in scenarios where it is permissible for some non-defecti I d GV — K. When the test liabl
items to be included in the decoded set, as long as it contajns !l compare o en the tesis are rellavle,

- - . L
most of the defective items. For example, the output of thte “|nKthe asymptotcchreglme ad — oo, if 52 — ao and
decoder could be used as a first step in a two-stage decodngr . Bos T=5r) (®(ao, fo) + o(1)) measurements are
procedure in group testing, fault detection applicaticets, Suficient, where(s is a constant independent of, K and L,

In this setup, in contrast to our problem, the typical regimé@nd ®(ao, 5) is @ bounded function aof, and 5. We show
of interest are those where the list size, although largan ththat this improves on the nu.mber of observations required by
K, is still comparable tokX and much smaller thanv. the conventional approach, in the sequel.
In [25], list decoding has been studied as an intermediateThe rest of the paper is organized as follows. Section Il
step in conventional group testing decoding. A combinatoridescribes the signal model and problem setup. We present our
approach employing list-disjunct matrices was used tovderiupper bounds on the number of observations in Sections IIl.
bounds on number of tests. A very recent work [26] studiésn application of the bounds to group testing is described in
list-decoding with partial recovery under the scaling negg Section IV. The proofs for the main results are provided in
|£| = o(N). The authors show that while list decoding mayection V, and concluding remarks are offered in Section VI.
offer significant benefit whefC| = O(NV) (which is shown in Notation: For any positive integer, [a] £ {1,2,...,a}.
[27] in the context of non-defective subset recovery), thing For any setA, A° denotes complement operation apd
are limited in the|£| = o(N) regime. Another recent work denotes the cardinality of the set. For any two sétand
[28] studies the problem of finding zeros in a sparse vector B, A\B = AN B¢, i.e., elements ofd that are not inB. {0}
the framework of compressive sensing. The authors prop@enotes the null set. Scalar random variables (RVs) are rep-
computationally efficient recovery algorithms and studgith resented by capital non-bold alphabets, €&, 73, Z5, Zs}
performance through simulations. represent a set of scalar RVs. If the index set is known,
In this paper, we build on [1] and focus on derivimjor- we also use the index set as a subscript, €., where
mation theoretic upper bounds (i.e., sufficient conditions S = {1,3,5,8}. Bold-face letters represent random matrices
on the number of measurements needed for identifying(er a set of vector random variables). We use an index set to
given number of inactive items in a large population witlkpecify a subset of columns from the given random matrix. For
arbitrarily small probability of error. We consider the geal example, letZ denote a random matrix with columns. For
sparse signal model employed in [16], [19] in the contexiny S C [n], Zs denotes a set dfS| columns ofZ specified
of the support recovery (i.e., defective set recovery) femob by the index setS. Individual vector RVs are also denoted
The model consists oN input covariates, out of which, anusing an underline, e.gz, represents a single random vector.
unknown subsetS of size K are “active”. Only the active For any discrete random variablg, {Z} represents the set
variables, i.e., the variables from the st are relevant of all realizations ofZ. Similarly, for a random matrixz,
to the output. Mathematically, this is modeled by assuminghose entries are discrete random variab{eg} represents
that, given the active sef, the outputY” is independent of the set of all realizations d&. For any two jointly distributed
remaining input variables. Further, the probability digition random variableg, andz,, with a slight abuse of notation, let
of the output conditioned on a given active set, is assuméz, |z,) denote the conditional probability distribution of
to be known for all possible active sets. Given multiplgiven “a realizationz,” of the random variable,. Similarly,
observations from the this model, we propose and analyPgz,|Z) denotes the conditional probability distributionzf,
decoding schemes to identify set of L inactive variables given a realizatiorZ of the random matridz. B(q),q € [0 1]
We compare two alternative decoding schemes: (a) Identdgnotes the Bernoulli distribution with paramejer 4 denotes
the active set and then choosdnactive covariates randomly the indicator function, which returnkif the eventA is true,
from the complement set, and, (b) Decode the inactive subaet returng) otherwise. Note thaty(n) = O(y(n)) implies
directly from the observations. Our main contributions ase that3 B > 0 andny > 0, such thatjz(n)| < Bly(n)| for
follows: all n > ng. Similarly, z(n) = Q(y(n)) implies that3 B > 0
1) We analyze the average probability of error for both thendn, > 0, such thaiz(n)| > Bly(n)| for all n > ng. Also,
decoding schemes. We use the analysis to obtain mutuéh) = o(y(n)) implies that for every > 0, there exists an
information based upper bounds on the number of obseiy > 0 such thafxz(n)| < e|y(n)| for all n > ny. In this work,
vations required to identify a set df inactive variables unless otherwise specified, all logarithms are to the baBer
with the probability of error decreasing exponentiallgny p € [0,1], H,(p) denotes the binary entropy in nats, i.e.,

A_

with the number of observations. Hy(p) £ —plog(p) — (1 — p)log(1 — p).



1. PROBLEM SETUP of K codewords, each of length/, chosen according to the

In this section, we describe the signal model and proble'rrﬁdex sets from X. That is, Xs = [x;, X;,...X;,], for

setup. LetX|y; = [X1, Xo Xx] denote a set ofy €achi; € S. Let Xg) denote thei™ row of the matrixXg
>SS P I A e e : o ith
independent and identically distributed (i.i.d.) inpundam @and lety(i) denote itsi™ component. The encoded message

variables (oritem3. Let eachX; belong to a finite alphabet is transmitted throujgh a dlscreteA;nemoryless channel [29],
denoted by’ and be distributed as PX; = 2} = Q(z),z € [30], denoted by(x™, P(y|Xs), V™), where P(y|Xs) =
X,j = 1,2,....,N. For a group of input variables, e.g.]T\, P(X(i)lxg)) and the distribution funCtiOW(z(i)ng))
Xivpy Q(Xvy) = HHN] Q(X;) denotes the known joint is known for each active s&t. Given the codebooK and the
distribution for all the input variables. We consider a sgar output messagg, our goal is to finda setof L variablesnot
signal model where only a subset of the input variables dpelonging to the active sef. Also, the above signal model,
active (or defectivg, in the sense that only a subset of th@roposed and used earlier in [16], [19], is a generalization
input variables contribute to the output. L&tC [N] denote of the signal models employed in some of the popular non-
the set of input variables that are active, wjj = K. We adaptive measurement models such as compressed sensing
assume thaf<, i.e., the size of the active set, is known. Leand non-adaptive group testing. Thus, the general mutual
S¢ £ [N]\S denote the set of variables that areactive information based bounds on number of observations to find
(or non-defectivi Let the output belong to a finite alphabe® set of inactive items obtained using the above model are
denoted by). We assume thaY” is generated according toapplicable in a variety of practical scenarios.
a known conditional distribution?(Y'|X|y). Then, in our ~ We now discuss the above signal model in context of a
observation model, we assume that given the activeSsehe specific non-adaptive measurement system, namely the ran-
output signalY’, is independent of the other input variablesdom pooling based, noisy non-adaptive group testing frame-
Thatis, VY €, work [3], [19]. In a group testing framework [3], [16], [19%e
have a population ofV items, out of whichK are defective.
P(Y|Xn) = P(Y[Xs). (1) LetG c [N] denote the defective set, such th@t= K. The
group tests are defined by a boolean matkxg {0, 1}M*¥,
athat assigns different items to tié group tests (pools). In the
i" test, the items corresponding to the columns with the i
row of X are tested. As in [19], we consider an i.i.d. random

We observe the outputs corresponding/Mb independent
realizations of the input variables, and denote the inpots
the corresponding observations H¥X,y}. Here, X is an

i with it it ; 4h i ati
M x N matrix, with itsi™ row representing thé" realization Bernoulli measurement matrix, where eagh; ~ B(p) for

. . : o th
of the input variables, angt is an M x 1 vector, with itsi somel < p < 1. Here,p is a design parameter that controls

component representing th& observed output. Note that, thethe average group size. If the tests are completely reliable

independence assumption across the input variables aosbaC{hen the output of the/ tests is given by the boolean OR of
different observations implies that each entryXnis i.i.d. Let 0\ 0o o corresponding to thelefective sef. We
.L < N B K.’ we copS|der the problem of findirg setof L consider the following two noise models [15], [19]: (a) An
nactive varl_ables given the observation s€X. y}. That is, ,qjitivenoise model, where there is a probabilifye (0, 1],
we wish to find an index sefy C 5¢ such thalSy| = L. In that the outcome of a group test containing only non-defecti

particular, our goal is to derive information theoretic hde itens comes out positive; (b) dilution model, where there is

on the numper of obseryatioqs (megsuremgnts/group teg robability,u € (0, 1], that a given item does not participate
required to find a set of. inactive variables with the prob- in a given group test. Let, € {0, 1}, Letd,(j) ~ B(1 —u)

ability of error exponentially decreasing with the numbér e chosen independently for gll= 1,2,... M and for all
observatlc_ms. Here, an error event occurs if the chosemvaacl. — 1,2,...N. Let D, 2 diagd,). Let “\/" denote the
set contains one or more active variables. Now, one way 8olean OR operation. The outﬁut vectpre {0,1}M can
find L inactive variables is to find all the active variables an e represented as ' = ’
then choose any. variables from the complement set. Thus,
existing bounds on\/ for finding the active set are an upper Y= \/ D;z; \/% (2)
bound on the number of observations required for solving our  ieg
problem. H_owever_, |ntu_|t|vel_y spea_kmg, fev_ver observasio wherez, € {0, 1} is the i column of X, w € {0, 1}
should suffice to findL inactive variables, since we do not v . . th .

. . s ! s the additive noise with thé" componentw(i) ~ B(q).
need to find the full active set. This is confirmed by our re:sult:or the noiseless case,— 0.q = 0. In an additive model

presented in the next section. — 0,4 > 0. In a dilution model > 0, ¢ = 0. This “logical-
The above signal model can be equivalently described usigg,, 4 : " g =" A
signal model captures many practical non-adaptive grou

Shannon’s random codebook based channel coding frame-..
work; see Figure 1. The active sStcorresponds to one Ofrpestmg measurement systems, see, e.g., [3], [15], [38], [3

the (%) possible active sets witk variables, and constitutesm(\)/geeI r:joevl Crriekl)z;tde ;Efvén O,\(ljg:e\/\:lrt];trle {%er;}? ra)l} ir)z?r()si}3|gnal
the input message. L& € XM*YN pe a random codebook : = W dn V=

consisting of N codewords of lengtid/; each associated with Each 'te'."” in the group tes“r,‘? framework corresppnds .to one
. . of the IV input covariates. Thé" row of the test matrix, which
one of the N input variables. Letx;, denote the codeword

associated with™ input variable. The encoder enCOd_eS the 2Although we focus on models with finite alphabets in this warkr results
message as a lengfii-messag& s € XM*X that comprises easily extend to models with continuous alphabets [31]]. [32



Encoder Channel methodology used to find the upper bounds is as follows:

Active Set | Codebook Xe @ VK yeyM (a) Given a set of_ inputs a_nd obser_\/atioﬁx,_z}, we fir_st
—— X € AMxN S P(y|Xs) propose a decoding algorithm to find dnsized inactive
(ivvin, i) | X1 X, oo X] | B X X set, Sy; (b) For the given decoding scheme, we find (or

upper bound) the average probability of error, where thererr
Fig. 1. Sparse signal model: An equivalent random codebasked channel Probability is averaged over the random $, X} as well as
coding model. over all possible choices for the active set. An error occurs
when the decoded set @f inactive variables contains one or
more active variables. That is, wit$ as the active set anly

as thedecodednactive set, an error occurs N Sy # {0};

(c) We find the relationships betweeéd, N, L and K that

will drive the average probability of error to zero. SectldpA
describes the straightforward decoding scheme where we find
the inactive variables by first isolating the active setdaid

by choosing the inactive set randomly from the complement

active setS. Further, with regards to the channel codin o . .
i et. This is followed by the analysis of a new decoding scheme
setup, the test matriX corresponds to the random codebook ! . .
We propose in Section 11I-B, where we directly search for an

and each column specifies thié length random code with . : . o
the associated item. The channel model, i.e., the probﬁtbiIL|naCtIVe subset of the required cardinality.
distribution functionsP(y|Xg) for any g, is fully determined
from (2) and the statistical models for the dilution and &idi . . . . .
noise. Thus, it is easy to see that the group testing framewor ON€ Way to find a set of inactive (or non-defective) variables
is a special case of the general sparse model that we his o flrs_t decode_the active (defective) set and then pick a se
considered, and, the number of group tests correspondlgire®f L variables uniformly at random from the complement set.
to the number of observations in the context of sparse moddl§"e: We employ maximum likelihood based optimal decoding

We now define two quantities that are very useful in thid9] to find the active set. Intuitively, even if we choose a

development to follow. LetS be a given active set. For anyWrong active set, there is still a nonzero probability ofiing

1 <j < K, let SU) and S5~ represent a partition of & correct inactive set, since there remain only a few active
g gucthaté(j) USE=) =g 5§60 ngE=I) = ()} and variables in the complement set. We refer to this decoding

specifies the™ random pool, corresponds to ti realization
of the input covariates. From (2), given the defective Get
the i" test outcomey (i) is independent of values of input
variables from the sefN]\G. That is, with regards to test
outcome, it isirrelevantwhether the items from the sgV]\g
are included in the test or not. Thug, corresponds to the

A. Decoding scheme 1: Look into the Complement Set

1SU)| = 5. Define scheme as the “indirect” decoding scheme. The probabifity o
error in identifying the active set was analyzed in [19]. The
Eo(p, j,n) = —log Z Z error probability when the same decoding scheme is employed
YEY X (x_jy€XE—I to identify a inactive subset is similar, with an extra termn t
14+pn account for the probability of picking an incorrect set bf
Z Q(Xs) (P(Y, Xt |XS<j>))%fm variables from the complement set. For this decoding scheme

we present the following result, without proof, as a comylla
3) to (Lemma IILI, [19]).

for any positive integern and anyp € [0,1]. Also, let Corollary 1. Let_ N, M, L and K be_as defined above. For
19 27 1(Y, X g Xao) = I(Y: Xg0 | Xaw—n) be the any p € [0, 1], with the above decoding scheme, the average
mutual infc;rmsation 7be§weer{Y D% ’(K S_)} arS1d Xoo [29] probability of error, P., in finding L inactive variables is upper

) XS =3 SG ’

Xg() €XI

[30]. Mathematically, bounded as
=3 3 S Pe < max exp{—(MEo(p,j,1)
Yey . K—j . J _
R —plog KN , K>Co(j)} — log [K(K)D} ®)
PY: Xgi- | Xs50)Q(Xs) log DX sten | Xsw), / I
) A8 J S0 SG P(Y7 XS(K—j)) J (N—K}—j) (J)
(4)  whereCy(j) & == L2t 22 denotes the probability of

Using the independence assumptions in the signal model, diyor in choosingL inactive variables uniformly at random
the symmetry of the codebook construction, for a given fom v — K variables containing active variables.
FEo(p,j,n) andIY) are independent of the specific choice of

S, and of the specific partitions . It is easy to verify that From above, by lower bounding(p, j, 1) for any specific
dEy(p,j,n) . . signal model, we can obtain a bound that gives us the sufficien
——2 7| _o = nIY). Furthermore, it can be shown tha

dp humber of observations to find a setlofnactive variables. We
Ey(p, j,n) is a concave function g [29] (also see Figure 4) obtain the corresponding bound in the context of non-adepti
group testing in Section IV (see Corollary 2). SinCg < 1,
IIl. SUFFICIENT NUMBER OF OBSERVATIONS this bound is tighter than the bound obtained by using the
We first present results on the sufficient number of olsame number of observations as is required to find the active
servations to find a set af inactive variables. The generalset [19].



B. Decoding Scheme 2: Find the Inactive Subset Directly reflected in the above result, as the number of observations

For simplicity of exposition, we describe this decoding Sufficient for finding N' — 1 inactive variables matches
scheme in two stages: First, we present the result for the €Xactly with the number of observations sufficient for
K =1 case, i.e., when there is only one active variable. This fln_d_lng 1 active variable (Se? Figure 2). _
case brings out the fundamental difference between findinglntuitively, out of the(Y) possible sets of sizé, (V"))

active and inactive variables. We then generalize our degodcontain only inactive variables. Thugyg (Zg)/(NNzl )

scheme tol > 1. number of bits can describe all the sets corresponding fo eac
1) TheK =1 Case _ _ _ “right choice,” i.e., corresponding to eadhsized set contain-
We start by proposing the following decoding scheme: ing only inactive variables. Sinc&!) denotes the amount of

. . N N—-1
» Given {X,y}, computeP(y|x;) for all i & [N] and jnformation obtained per observatioResL ~ (I;gfg);(f)
sort them in descending order. Sinéé = 1, we know gquals the number of observations required for finding an

P(Y]X;) for all < € [N], and henceP(y|x;) can jnactive set. Hence, the result in Theorem 1 is intuitively
be computed using the independence assumption acrggfsfying.

different observations. 2) K > 1 Case
o Pick the lastL indices in the sorted array as the set/of
inactive variables.

For K > 1, by arrangingP(y|Xs, ) in decreasing order for
i o _ all S; C [N] such that|S;| = K, it is possible for the sets;
Note that, in contrast to finding active set, the problem @fwards the end of the sorted list to have overlapping entrie
finding L inactive variables does not have unique solutiophusy in this case the decoding algorithm proceeds by pickin
(except forL = N — K). The proposed decoding scheme just the sufficient number df -sized sets from the end that

provides a way to pick a solution, and the probability of errgyoyides us with a set of inactive variables. We propose the
analysis takes into account the fact that an error eventémepfo|lowing decoding scheme:

only when the inactive set chosen by the decoding algorithmDecoding Scheme

contains an active variable. 1) Given{X,y}, computeP(y|Xs,) for all S; C [N] such
Theorem 1. Let N, M, L and K be as defined above. Let that|S;| = K, and sort these in descending order. Let the
K =1. Let E; and IY) be as defined in (3) and (4). Lpte ordering be denoted b¥/S;,, Si,,...,Si, y\ }-

[0 1]. With the above decoding scheme, the average probabilitz) Choosen, sets from the end such that

of error, P,, in finding L inactive variables is upper bounded

no ’n.()fl
as
N1 |U5i(%)4+1| >L and | U Si(%)fl+l| < L. (8)
P. <exp|—(MEy(p,1,N — L) — plog L1 . 1=1 1=1

—10°
set of lastn, indices. DeclareSy = |
decoded set of inactive variables.

3) Let Qast £ {i(N),i(N) .,i(N)7n0+1} denote this

S; as the

Further, for anyey > 0, if 7€ Qast

M>(1+ <) log (771) ) That is, choose the minimum number &f-sized sets with
YVIN LI’ least likelihoods such that we gét distinct variables and

then there exists, > 0, independent oV and I, such that declare these as the decoded set of inactive variables.féfe re

p < log (V-1 to this decoding scheme as the “direct” decoding scheme. We
€= ?Xp (_61 08 (L—1> note thatSy might contain more that. items. In particular,
Proof: See Sec. V-A. L < |Sy| < L+ K — 1. Further, for all values of. such

We make the following observations: that L < (N — K) — (K — 1), the complement set af;,

: . . A
(a) Figure 2 compares the above bound on the number 6t [NI\Sw, will contain at leastLy = (N — L — 2K +1)

observations with the bounds for the decoding schenﬁ@riables from the inactive sgN]\5;. This will be useful in
presented in Section llliAand in Theorem IILI [19], eriving an upper bound on the decoding error probability fo
for K =1 this algorithm. We summarize the probability of error aisay

(b) Consider the cask = N —1, i.e., we want to find all the of the above algorithm in the following theorem.
inactive variables. This task is equivalent to finding th&heorem 2. Let N, M, L and K be as defined above. Let
active variable. The above decoding scheme for finding, £ (N — L — 2K +1). For any p € [0 1] and anyl <
N — 1 inactive variables is equivaléhto the maximum [ < (N— K)— (K —1), with the above decoding scheme, the
likelihood criterion based decoding scheme used in Thegyerage probability of errorP., in finding L inactive variables
rem lIL.I'in [19] for finding 1 active variable. This is also is upper bounded as

3We refer the reader to the remark at the end of the proof foofkme 1 P, <exp|—{MEy(p,1, L)
(Section V-A) for a bound on the sufficient number of obseovet, resulting N_K N-1-1

from Corollary 1, corresponding t& = 1 case.
4The decoding schemes are equivalent in the sense that arirefiading Lo K-1

K active variables implies an error in finding — K inactive variables, and

vice-versa. Proof: See Sec. V-B.



that S, C [N] and|S,,| = K. Given the observation vector,

4.5 * y € M let ¢ : YM x XMxN — SH denote a decoding
a | 'N-64 K=1 function, such thatS = ¢(y,X) is the decoded set of
; 3.5¢ ’ 1 inactive variables. LeP, = Pr(< SN S, # {0} ;). We state
s 3t | a necessary condition on the number of observations in the
IS . following theorem.
ﬁ -27 | Theorem 3. Let N, M, L and K be as defined before.
= Let IU) be as defined in (4). A necessary condition on
; 1.5¢ . the number of observationd/ required to find L inactive
2 4l : : : variables with asymptotically vanishing probability ofres
2 —¥—Find Active Directly i.e., limy_o P. = 0, is given by
05 —»— | ook Into Complement ]
0 —©—Find Inactive Directly M > max Iy (L, N, K, j) (1-n) (10)
10 20 30 40 50 60 1<k 1)

Si f inacti t (L j j
ize of inactive set (L) where Ty(L, N, K, j) 2 log [(NvaLJ)/(NfK;LJ*L)}, and

J
Fig. 2. Sufficiency bounds on the number of observationsireduo findZ.  for somen > 0.

inactive variables for’ = 1 case. The comparison is presented with respect

to the value ofM/I()), as the application-dependent mutual information term The proof is provided in [27]. That is, any sequence of
1)) is common to all the bounds. The approach of finding thénactive  random codebooks that achievas y .. P, = 0 must satisfy
variables directly, especially for small values &f requires significantly .

fewer number of observations compared to the approach ofngnthe the above bound on the length Qf the codewords. Given a spe-
inactive variables indirectly, after first identifying treetive variables. The cific application, we can boung#9) for eachj =1,2,..., K,

plot corresponding to the curve label&lind Active Directly refers and obtain a characterization on the necessary number of

to the number of observations that are sufficient for findihg K active . . .
variables [19]. observations, as we show in the next section.

IV. FINDING NON-DEFECTIVEITEMS VIA GROUP

The above result is applicable to the abstract signal model TESTING
specified in Section I1. It can be specialized to the non-8dap |, yhis section, we specialize the above mutual information
group testing model by lower bounditig(p, 1, Lo), to obtain 5o resuits to the case of non-adaptive group testing, and
a relationship betwee/ and the average probability of errory. o cterize the number of tests to identify a subset of non-
for the decoding glgorlthm. We.pre.sent thg results for trmCaulefective items in a large population. We consider the ran-
of the non-adaptive grczupNtesjtmg in Section 1V. dom pooling based noisy non-adaptive group testing model

We first note thalog 15574 ~ K log {NL*K}, whereL, given by (2) [3], [19]. Our goal is to find upper bounds on

0

is as defined above, denotes the number of bits that can indé& number of tests required to identify dnsized subset
all sets (of sizeL + K — 1) for eachL + K — 1 sized set belonging to[N]\G using the observationg with vanishing

containing only inactive variabl€sThus, the number of obser-Probability of error asV — oo. We focus on the regime where

e K ;
vations is approximately/i log [NL*OK _wherel ) denotes % ]E N Z) Olo) With =% — a0, = — bo for some fixed
Qo, Po € ) .

the mutual information per observation. This explains thet fi :
First, we make a note about lower bounds on the number

term in (9), as can be seen from the following argument .

: dEy(p, j,n) ‘ of tests. Using the results of Theorem 3, we need to upper
Using the fact thatT = nIY, we note that pound the mutual information terni’), for the group testing
for p = af, Eo(p,1,Lo) ~ oszEO(LoI(l)) for sufficiently siginzaf motilelgiven In (2). Using t_he bﬁundzﬂﬁ) [35]’Witr|]6
smalla. Furtoher, in the non—adapt?ve group testing framework, = K andu < 0.5, we summarize the order-accurate jower
16) = O(4) [19]. Thus, Fo(p, 1, Lo) ~ al'X). The claim ound_s on the number_of tests to find a seLqion_-defectlve

K } N items in Table I. A brief sketch of the derivation of these

now follows by noting thaplog (*, ") ~ oK log LNLOKJ- results is provided in Appendix VII-B.
The additional term contributing to the total number ofsest To compute the upper bounds on the number of tests, we
in (9) may be an artifact of the particular decoding schemged to lower bound(p, 1,n) for somep € [0, 1] and show
and/or its analysis presented here. that the negative exponent in the probability of error term

Before concluding this section and proceeding to speeialil (9) can be made strictly greater thanby choosingM
the above results to the case of non-adaptive group testieg, sufficiently large. We present our lower bounds©gi(p, 1, )
summarize a lower bound, derived in [27], on the number of the following lemma.
observations required to find a setbfinactive variables. The
lower bound will be used in the comparisons and discussiorfThe value ofp is a test design parameter. In general= %, with

. . independent ofi, has been widely used in the group testing literature
to follow. Let w denote the index of the defective set sucﬁg]_m], [35]. In the noiseless casp,= 1/K is a useful choice since it

maximizes the mutual informatiofi¢’) [19], [35]. In [21], it is shown that
5Note that the decoding scheme might end up choosing a maxiofum choosinga: = log 2 helps close the gap between upper and lower bound in
L + K — 1 inactive variables, and this represents the worst case@mgc  the noiseless case.




Lemma 1. Let N, M, L and K be as defined above. LetA. Discussion of the Results

Ly = (N —-L—2K +1). Let Ey(p,j,n) be as defined in

(3) and defingyy £ £~1. For the non-adaptive group testing We now make following observations about the results
0 . . .

model withp = - and for all values off < (N — 3K + 1), Presented in this section.

we have 1) Linear Scaling Regime

(a) For the noiseless case & 0, ¢ = 0): First, we consider the linear scaling regime, where, foressom
(1= 1) (1)K fixed ag, B0 € (0,1), 327 — o, 7oz — Bo asN — oo.
K

Eo(po,1, Lo) > (11) Since our results apply fab < N —3K + 1, we consideky,

e Bo such thatay + 25, < 1. For the direct decoding scheme
(b) For the additive noise only case & 0, ¢ > 0): presented in Section IlI-B, we summarize the upper bounds
) on the number of tests to find a set bfnon-defective items
- )
Eopo, 1, Lo) = “—(1 - q). () TPl

(a) We first consider the noiseless case.

(c) For the dilution noise only case:(> 0,¢ = 0): (i) For the direct decoding schemé&,(k) number of

o2 . tests are sufficient. In comparison, using results from
Eo(po; 1, Lo) = —=(1 —u™). (13) Corollary 2, O(K log Llog® K) tests are sufficient
for the indirect decoding scheme. Also, from [19,
The proof of the above lemma is presented in Ap- Theorem V.2],O(K log N log? K) tests are suffi-
pendix VII-A. For notational convenience, we IEé“’) denote cient for finding all the defective items. Thus, in
a common lower bound oty(po, 1, Lo), as derived above. this case, the direct decoding scheme for finding
The following theorem presents an upper bound on the number non-defective items performs better compared to the
of tests required to identify. non-defective items in the non- indirect decoding schemes by a poly-log factor of the
adaptive group testing setup. number of defective itemdy. Further, from Table |,

we observe that the upper bound on the number
of tests for the direct decoding scheme is within
a clog K factor of the lower boundn [27], where

Theorem 4. Let P, be the average probability of error
in finding L inactive variables under the decoding scheme
described in Section 11I-B2. Note th&t. is upper bounded by

(9). LetLy & (N — L —2K +1) and letd, & Z-E=L Then, Ch's abco.”s%“ independent of, L and *f we
for anyeg > 0 and all values ofL < (N —3K + 1), if M is thus obtain arD (log K.) Improvement overt_ € upper
chosen as bounds for computationally tractable algorithms such
as COMP, COMA, and linear programming based
K —1 [Hy(bh) ( L ) algorithms, where it was shown that the sufficient
M > (1+ — +1 24 —— ' . .
(1+ <o) E(()“ﬂ [ 1—06y 8 K—-1 number of tests required to guarantee non-defective
log K subset recovery are withi®(log? K) of the lower
4 = 1] ; (14) bounds [20], [27].
(i) The size of non-defective sef;, impacts the upper
then P, < exp (—eo(K “1)log NEK)_ bound on the number of tests only through, i.e.,
0 the fraction of non-defective items that need to be
An outline of the proof is presented in Section V-C. In the found. From Table II,®(«ag, 5p) is an increasing
regime whereL, K — oo as N — oo, it follows from the function ofag. That is, a highew results in a higher
above theorem thdimy_, P. = 0. rate at which the upper bound on the number of tests
Finally, we present an upper bound on the number of increases withi.
tests obtained for the indirect decoding scheme presentedld) Performance under noisy observations:
Section 1lI-A for the noiseless case. Using [19, Lemma VII. (i) For the additive noiseO(li) number of tests
and VII.3] to lower boundEq(p, j, 1) for the noiseless case, are sufficient for the direct decoding scheme. The
and noting that, from the union bound, we ha¥g(j) < indirect scheme (as well as the scheme for finding
i —— ) - ijK, the following corollary builds on the the defective items) also show similgf— factor
result presented in Corollary 1. increas_e in the number of tests under additive noise
scenario (see, e.g., [19, Theorem VI.2]). Further,
Corollary 2. Let P. be the average probability of error from Table I, we observe that, for fixed,, 3, and
in finding L inactive variables under the decoding scheme ¢, the upper bound on the number of tests for the
described in Section Ill-A. Note thd, is upper bounded by direct decoding scheme is within a constant factor
(5). For anyeg > 0, there exist absolute constanig c¢; > 2, of the lower bound.
independent ofV, K and L, such that ifM is chosen as (i) For dilution noise, O K ) are sufficient for
1—ukK
M > (1 + eo)coK (log L + ey log® K), (15) the direct decoding scheme. Another characterization

for the sufficient number of tests for the direct
then P, < exp (—€o(K log L)). decoding scheme, based on the remark at the end



TABLE | TABLE Il

FINDING A SUBSET OFL NON-DEFECTIVE ITEMS. RESULTS FOR FINDING A SUBSET OF L NON-DEFECTIVE ITEMS. RESULTS FOR
NECESSARY NUMBER OF GROUP TESTS WHICH HOLD ASYMPTOTICALLY SUFFICIENT NUMBER OF GROUP TESTS WHICH HOLD ASYMPTOTICALLY
AS (N, K,L) = 00, 2% — ag WITHO < ap < 1. THE CONSTANTS AS (N, K,L) = 00, 2% — ao AND 5 — Bo WITH

Cn,C},,C}! > 0 ARE INDEPENDENT OFN, L, K, uw AND g. 0 < Bo,ap < 1 SUCH THATag + 2680 < 1. DEFINE
® (g, Bo) & (%jm“) +log(2+ 32) + 1) , WHERE~Yo = ag + Bo. THE
- C. K T CONSTANTSC, C%, C” > 0 ARE INDEPENDENT OFN, L, K, u AND gq.
No Noise log
log K [1 —ag+o(1)]
N . CT'K 1 UK
Additive Noise - n log No Noise s e 1
min{log 2,log K}~ [1 — o +0(1)] (1—o(1) [2(0, fo) + o(1)]
- . CI'K 1 . . CIK
Dilution Noise n log Additive Noise S [®(0, Bo) + o(1)]
(1—wlogK ~[1—ap+o(1)] (15”(1[){
Dilution Noise | ——=—— [®(aw, B0) + o(1)]
(1-ux)

of Appendix VII-A, is O lel number of tests.
—u?2
The direct decoding scheme shows high sensitivity to o )
the dilution noise. This behavior is in sharp contradd- Proof of Theorem 1: Sufficient Number of Observations,

to the indirect scheme, where the dilution noisé(: 1

parameten, leads to an increase in the number of At the heart of the proof of this theorem is the derivation of
tests only by a factor of= (see, e.g., [19, Theoremap ypper bound on the average probability of error in finding
VI.5]). From Table |, the lower bounds also showy, inactive variables using the decoding scheme described
an increase in the number of tests by a faGtf. in Section I1I-B1. This is obtained by characterizing the
for the dilution noise scenario. The conservativeneggnonents on the average probability of error [29]. Without
of the upper bound for the direct decoding schemgss of generality, due to the symmetry in the model, we can
in the presence of dilution noise may be due to: (Fssume thak, is active. Then, the decoding algorithm makes
The lower bound otEy is (), which underscores gn error if P(y|X, ) falls within the lastZ entries of the sorted
the general fact that the group testing system igray generated as described in the decoding schemg. het
more sensitive to the diluton noise, and (b) The terfhe opserved output, and I€tdenote the event that an error
log (" ;") in (9), which might be due to the hag occurred, when iteny; is the active variable an&; is
particular decoding scheme employed or the specifige first column ofX. Further, let P€) be a shorthand for
technique employed in bounding the error exponensy(errori x; is active X1,y}. The overall average probability

2) Sub-Linear Scaling Regime of error, P,, can be expressed as

We now consider the sub-linear scaling regime, where
L 50 % =0 as N — cc. In particular, we consider P.= > P(ylX1)Q(X1)Pr(&). (16)
L = N*and K = N with 0 < A\, X < 1. We discuss ¥ X4

the noiseless case; similar conclusions can be drawn under

noisy observations. The lower bound scales@s, since, in LetS. C [N]\1 be a setofV—L items,i.e.|S.| = N—L.Let
this regime, 2 — 0. However, there are two contrastingS, denote the set of all possibi . Further, letds, C {Xs,}
scenarios for the upper bounds. Wher: X', O(K) tests are be such thatAs, = {{Xs.}: P(y|X;) > P(y|X1) Vje€
sufficient. Further, compared to the linear regime, we obtab.}. That is, Ag, represents all those realizations of the
smaller constants, since both the terﬁ-’éﬁ—;’) and£— in (14) random variablé&Ks. which satisfy the above condition, which
vanish asymptotically a® — oo. Also, the direct decoding states that each variable B, is more likely than the active
scheme offers significant gains compared to the indireadiec variable, X It is easy to see that ¢ A £ (Jg s As., i.e.,
ing scheme, since the necessary number of tests requiredaorerror event implies that there exists at least one sat-of
finding defective items scales & K log N). Thus, we again variables,S., such thatP(y|X;) > P(y|X;) V¥ j € S..
obtain an improvement of)(log N) over computationally Thus, P(£) < Pr(A). Let s be an optimization variable such
tractable algorithms [20], [27]. However, wheh > )/, that0 < s < 1. The following set of inequalities upper bound
O(K log N®) tests are sufficient, where (£ X\ — \') < 1. Pr(&):

This is because of théog (2 + %) term in (14), which

scales a®)(log N¢). In this case, we obtain an improvement Pr(€) < Z Z Q(Xs.)

in the constant involved, with the gain depending on the the 9:€5: Xs.€As,
difference between and)\’. This regime also exposes a non- @ P(y|X;)7°
trivial gap between the upper and lower bounds, indicatireg t = SZS < 24 QXs.) 1! [p(yp(l)
need for further work into finding better decoding schemes or o 260z Bs. CAs JEP( |X; s
. y|X
tighter bounds to close the gap. < Z Z H Q(X;) [ YAy }
S.€S, Xs. jES P(y[X1)
V. PROOFS OF THEMAIN RESULTS FEos A8 N PvIX. )1
We now present the proofs of Theorems 1, 2 and 4, which © Z H ZQ(Xj) [7@' '7)]
are the main results in this paper. S.e8, jeS. X, P(X|X1)



Using the Taylor series expansion é%(p), and following

. . similar analysis as in [19, Section III.D], it is easy to show
In the above, (a) follows since we are multiplying with term3 .+t there exists a < (0, 1], sufficiently small, such that i/

that are all greater thahand (b) follows since we are adding is chosen as in (7), therl F(p) > e1(N — L) log (N—l) for
’ L*l

extra nonnegative terms by summing overX@}l.. (¢) follows ; -
by using the independence of the codewords, Q8Xs. ) — ;orr;?q > 0, independent ofV and L. This completes the
f

HJES @(X;), and simplifying.(d) follows since the value o Remark: For the decoding scheme described in Section
the expression inside the product term does not depend Uﬁ)ﬁf})\ for the K = 1 case, using similar arguments as the
any particular;. above, it is easy to show that ¥ > (1 + ¢o)'2%+ for any

_L?t O.S p < 1. 1f the R.H.S._m .(17) 1S Iess_, t.ha.m’ then o > 0, then there existg; > 0, and independent oV and
raising it to the powep makes it bigger, and if it is greaterL such thatP, < exp(—e; log L), i.e., P, — 0, as L — 0o
than1, it remains greater thah after raising it to the power e = GXPLTEL 08 L)y LE- e ' '
p. Thus, we get the following upper bound on(&y.’

p(N—L) B. Proof of Theorem 2: Sufficient Number of Observations,

X;
PHE) < ( ) ZQ [ &l )} C et
P(y|Xy) The decoding algorithm outputs a sefy, of at least

(18) L inactive variables. A decoding error happens if the set
Sy contains one or more variables from the active set. We
now upper bound the average probability of error of the

N —1\" roposed decoding algorithm. The probability is avera 0
Pe<< - ) D) QX)) P(y[Xy) VR prop g alg p y get

(d)( >{ZQ { y:i)} }N—L' . | | | = (N — L)IW, (2-2)

Substituting this into (16) and simplifying, we get

all possible instantiations dfX, y } as well as over all possible
active sets. By symmetry of the codebodk)(construction,
P(N=L) the average probability of error is the same for all the activ
Z Q(X;)P(y|X;)*

y X

(19) sets. Hence, we fix the active set and then compute average
probability of error with this set. Lef; C [N] be the active
set such thatS;| = K. We also define the following notation:
For any setS,, C [NV] such that|S,,| = K and for any item
j € S, let Sy £ S,\j. Note that|S,c| = K — 1.

Putting s = 1/(1 + p(N — L)), we get

P <
L+ p(N—L) For anyd € 51, let &; be the error event € Sy. The
N — overall average probability of erroF., in finding L inactive
( ) Z ZQ P(y|X,) 7= . variables can then be upper bounded as
(20) P. <Y PrEy). (23)
Finally, using the independence across observations dnd us des
the definition of Ey(p, j,n) from (3) with j = 1 andn = Further,
N — L, we get
N —1\" Pr€a) =) Y PylXs)Q(Xs,)
Pe < (L _ 1) y Xs
Vep(N—L)] M [PH{&4]S1 is the active sety, Xg, }] . (24)
Z Z Q(X;)P(Y|X; ) TN T We now upper bound RE;|S; is the active sely, X, }.
vey | x,ex Let S, C [N]\S: be such thatS.| = Ly. Let S, C [N]
- xp[*MF(P”, 21) be a K sized index set such tha#, = {d U S,4}, where

Swae C [N\{d}\S. andd € S; (see Figure 3). Further, let

S, and S,,4- be the collection of all possible sefs. and
S..qe, respectively. It is easy to see thal,| = (NL_OK) and

Suae| = (V771°). With S; as the active sey € Sy, the

N-—-1
where F(p) = Ey(p,1,N — L) — %. Hence (6)
follows.

For the following discussion, we treatand £y as functions observed out and the codebook entries corresponding to
of p only and all the derivatives are with respecptdNote that v utpuy . ! ponding

, , log (Y1) . - set.S; asXg,, defineAy(Ss, Swae) C {Xs.us,. p and Ay
F(p) = Eg(p) — —5—= Itis easy to see thak,(0) = 0 55 follows:
and henceF'(0) = 0. With some calculation, we get,

'Ad(Szv Suﬂic) = {{X‘Sz’XSwdC} :
( ) P(Z|XaaX5’wdc) 2 P(ledaXSwdc) Vac Sz}a (25)
o A= U U AalSe Suae). (26)

"This is a standard Gallager bounding technique [29, Se&i6h S:€8: Swac€Suac

PY]X)

Eo(p)| = (N =1)} P(Y,X)log



Set of all variables ([N])

Active Set
=S Ud, |5 =K
-

S1
Shae d e Sy

-—>

EE

S, |
5. C [N\S; and |S.| = Lo 1Sy =dU Sua; |Su| = K
Lo=N-2K—L+1 1 Suae C [N\S:\{d}

-

h
Declared inactive subset (Sy)
[Sul <L+ K —-1,84N5. ={®}

D Active variable
D Inactive variable

Fig. 3. lllustration of the notation used in the proof of Theorem 2.
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|

P Y|Xa7XSwdc)
Py|Xd7XSwdC)

Z Q0. T S e,

1=1Xs,

|7

Lo
@ P(y|Xa, Xs )
) X T AL e BSgac)
Z Q wd ) EQ( SQ) |:P X|Xd,XSwd0):|
Lo
anSwdc|XOt):|S
= X . e
Z Q(Xsue) XXSjQ { Py Xo %)
é'Po (Z,Xd,Xswdc)
(28)

That is, A4(S., S,ac) represents the set of those realization® the above, (a)-(d) follow using the same reasoning as (1

of the random variableXs, and Xg
condition in (25).

which satisfy the

wd®

Proposition 1. Pr{&4|.5; is the active sel, X, } < Pr(Aqg)

Proof: We will show that given the active sét, d € Sy,

y and Xg,, the event{d € Sy}, i.e., the decoded set of
inactive variables containg, implies the eventd,;. We first
note that, sincdSy| < L + K — 1, there exists a set of
Ly =N - K — (L+ K —1) inactive variables that do not”
belong toSy. Let S, C [N]\S: be such a set of inactive
variables such thatS.| = Ly and S, N Sy = {0}.

Further, sinced € Sy, this implies that there exits an
w € Qast SUCh thatd belongs toS,,, whereQst is as defined
in the decoding scheme foK > 1 (see Section IlI-B2).

With the notation described above, we can represent such

Sw as {d U S,4c}, where S,qc € [N]\{d}\S. such that
|Swae| = K — 1. For anya € S, if we replaced € S, with
a and evaluateP(y|X,,Xg,_,.), it cannot be smaller than

P(y|X4,Xs,,.) or else the decoding algorithm would have

chosenx as belonging t&;. This implies that, there exists a
realization ofXs. andXs_,. such thatP(y|X,, Xs, ) >

P(y|Xa,Xs, ) VaeS,,ie., Aq occurs. [ ]
We now upper bound RH4,) as follows:
A< S Y (27)

S.€S; SwacE€Suac

whereqy = Pr{A4(S., S,ac)|S1 is active sety, X, }. Here,
the randomness comes from the set of variables$.inand
Swae, 1.€.,Xg, andXg Let s be such that < s < 1. We

have
>

X5.:X3,4c €Aa(Sz,50ac)

2.

X5, gc X5, €A4(Sz,50dc)

11 [ (Y1 Xa, Xs,c)

sucs. PO Xsue)

QXs,.e) Y, QXs.)

I |7

wd®*

dd = Q(st7XSwdC)

@
<

Q(XSZ ) Xswdc )

|
|

(b)
<

(Y|X0u XSWdC)
(Zle’ XSwdC)

in the proof of Theorem 1 (Section V-A). We note that, due to
symmetry in the construction of codebodk (y, X4, Xs,, .. )
does not depend upon the index ggt or Xg._. In fact, it
depends only upon the given realizationsXf_,., X, and
not on the particular index sef%, ;- andd, respectively. Thus,
from (27), and for som® < p < 1, we get

>1

Z Z Q(Xs,40) LZ Po(y, Xa, X5,y

Swdc EswchSwdc LES.
‘| P

> Y@
) 3 A

SwdcE€ESpae Xg wdC
> Poly, Xa, X,
Sde

>< l
S.€S.
P
)PO(Xa Xd7 Xswdﬂ ):| .

<

wdc

N—-1-1L
K-1

<

The second inequality above follows since the expression
inside the square brackets represents the probability afanu

of events and therefore, as in tli€¢ = 1 case, by raising it

to a powerd < p < 1, we still get an upper bound [29,
Section 5.6]. LetC, £ (NL*UK)p(N;( /). Using proposition

1, we substitute the above expression into (23) to get:

PrE) < C2 ) Y Q(Xs,)P

y Xsl

x Z
2 zz S Q(Xs,)P

< Oy
X Xsl Xswdc
[Po(ya Xda XSwdc )]p
(b)
<Gy D> Z
Y Xa Xiage Xs,
X P(y, X5, e X840 |Xd [Poly, Xa, Xs,.0)]"

©
(¥, X5, | Xa)

Yoy Y Yax

Y X5 4 Xd

<

N - K

Ly (29)

|X51)

Soae) [Po(y, Xa, Xs,,0)]”

(X’ X Sae |X51 )
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pL() . . . .
Py, Xs,,.|Xa)]" The second |nequal|ty follows since under thAe ?fiur?ptmns o]
X ; P S £ S
XES Q(Xs,) {P(Xa XSwdc|Xd):| the range of’, o (L+K 7 < 1. Thus, withf, = we

tIOg (NE()K) < Hb(eo)

ge < . Finally, the bound in (14) results by
@ using the mequallt m ™)™ to upper bound the second
= OQZ Z {Z QXs.,) term in (32). )( ) o
Y Xs 4 (Xsa
1+4+pLo
X P(y, X5, [ Xa )””L“} : (30) VI. CONCLUSIONS

In the above equation, (a) follows because given the ac-In this paper, we considered the problem of identifyibhg
tive set.S;, y is independent of the other input variablesnon-defective items out of a large population/éfitems con-
Thus, P(y,Xs_,.|Xs,) = P(y|Xs,)Q(Xs_,.). (b) follows taining K defective items in a general sparse signal modeling
since S; = {d U Si4}. (c) follows by substituting the setup. We contrasted two approaches: identifying the theéec
expression forP, and by averaging ouXg,,., since the items using the observations followed by pickihdgtems from
expression fofP, does not depend updgs, ,.. In (c), the term the complement set, and directly identifying non-defextiv
[P(y, Xs,,.|Xa)]*?Le can be factored out from expressioritems from the observations. We derived upper bounds on
inside the curly braces. Finally, (d) is obtained by chogsirthe number of observations required for identifying the
s = ﬁ and simplifying. Next, the above upper bound fonon-defective items. We showed that a gain in the number
Pr(£4) depends only orX,; and not on any particular valueof observations is obtainable by directly identifying thenn
of d. Thus, from (23) and (30) we get: defective items. We specialized the results to the nonaaapt
1+pL, Qroup testing setup. We also characterized the number of
tests that are sufficient to identify a subset of non-defecti
Fe SKC?Z Z ZQ(XSa) (¥ Xsuae [ Xa )H’)L” items in a large population, under both dilution and additiv
Y Xs,qeXsa noise models. Future work could focus on tightening the uppe
log(KC>) bounds on the sufficient number of tests and/or devisingbett
= e [_M (Eo(p’ L Lo) - M )] ' (31) decoding algorithms, and obtaining order-optimal results

The inequality above is obtained by further simplifyingngsi

independence across different observations and writieg th VII. APPENDIX
bound in the exponential form, as in tHé = 1 case. The
upper bound orP, given in (9) now follows by substituting
the value ofC, in the above. Hence the proof followll From (3), it follows that:

Ey(p,j,n) = —log Z Q (Xgu-n)

YE)/,XS(K,ﬂ cXE—J

A. Proof of Lemma 1

C. Proof of Theorem 4

In (9), consider the term T (p) = 14pn
N—-1—Lg
SMEO(pvlaLO) plOg( ) 1Og |:K( K—-1 ):|) X Z Q(XS(j> (Y'Xs(K ])’XS(])))1+pn
sing the results of Lemma 1, forany > 0, atp = pg X)) €X
wherepy = £ 01 8if M is chosen as - (35)
polog (V) log {(”12((51’”)} log K In the above, we substitutg = 1, n = Lo andp = po.
M >(1+¢) b + ) +—m | »  Let w(Xguc-n) denote the number of's in Xguc1) €
By Eg Eo {0,1}(5=Y_ Letng £ 1+poLo and further, note thaty = K.
(32)  For the non-adaptive group testing signal model, usingv®),
have computed the posterior probabilyY | X gx 1), Xga))
L
then, 7(p) > 60(K - 1) (10g £ +log(2 ﬁ)) > for different scenarios and summarized it in Table III.
co(K —1)log &5 > 0. (a) Noiseless case: Using = 0, v = 0 in Table lll and
Using Stiring's formula, for any n €  Zj: substituting in (35) we gefalso see Figure 4)
V2rntl/2e=n < pl < enpnt1/2¢=7 we note
lo ( 3 )<L10 NoEy L NoK Eo(p,1,Lo) = —log |1 — (1 — p) <~
S\ Ly )L T LA K - ) (L= (1=p) ™). (36)
N-K
+(L+K-1) 1og(m> (33) Using, (i) the inequality—log(1 — z) > z for = < 1, (ii)
N_K Forp =+, (1-p)E1 >etand(l-pk <e?,
< Lo log( To ) (11) results.
N_K (b) Additive noise case: Usingg = 0 in Table Il and
+(L+K-1) 10g(m)- (34) substituting in (35) we get:

8Note that, forL < N — 3K +1, po = K~1 < 1. Eo(p,1,Lo) = —log |1 — (1 — p)* 7V
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TABLE llI
P(Y|Xg(x-1),Xga)) FOR THE NONADAPTIVE GROUP TESTING MODEL UNDER DIFFERENT SCENARIOS

wXgx_1)) =0 WX k1) =LI<I<K-—1
Xe» =01 Xe =1 Xea» =0 Xey =1
P =0Xgx-1),Xgm) | (1—=q) (1 —qu (1— g (1 —g)u'™!
PY =1 Xqx-1,Xqm) | a (I-(0-qu [1-(0-gu [1-01—gu!
0.5 ‘ ; ; : we get
—= Eo(p,1,Lo) > —log |1 — (Co — 1bo)¢{E ™Y 42
04l L=32 1) o(p, 1, Lo) = —log (G0 — %0)Go , (42)
-=1=128 n
> N=512, K=16 N 4L 0 . . .
03] Ly= (NK) - (L+K-D) wherey, = (1 (1-u O)p) Using the inequality
) —log(l —z) >z for z < 1, we get:
= 0.2 (K-1
My Eo(p,1,Lo) > (Go — )¢S~V
no—1
o1 > |- (1 a-ut) " @
00 O.‘l 0.‘2 0.‘3 0.‘4 05 wf;ere the second inequality follows singé — (1 —
p u™ )p) > (o. The bound in (13) now results by noting
- Noisel the following: Forp = % using the inequality] — z <
4. Eo(p,1,Lo) vs p: Noiseless case. e < 1_% for0<a < 1,we getc({( > o—2(1-u) > o2
a no—1 a2
( ( | : ( : ) o and [1—(1—(1—u"0)p) } > (1 —umo)lel >
x(1l—(1-g¢q 1—p”“—{1—pq’70+p} )}
(37) L1 —u7s) for i > 2.
Remark: For pg = -+ for any a, ng = 1 + a. Thus,

To lower bound E,, we first upper bound the term = . .
0 0 P Eo(po,1,Lo) > “?%” In particular, witha = 1,

to & {(1— p)q no+p} . Foranyn > 1, 2" is a o)
U
convex function and hence, using Jensen’s inequality we Eo(po, 1, Lo) = 55—

getty < (1—p)g+ p. Substituting and further simplifying
we get:

B. Order-Tight Results for Necessary and Sufficient Number
Eo(p,1,Lo) > —log [1 — (1 —p)*(1—¢q) of Tests with Group Testing
% (1 —(1- p)(noq))} . (38) In this section, we present a brief sketch of the derivation o

the order results for the necessary number of tests presente

The bound in (12) now results by using the inequalitin Table 1. We first note tha’) = H(Y|Xgux ) —

—log(1—x) >z for z < 1 and noting the following- For H(Y[Xgx-i,Xgw) [19], where H(:|-) represents the en-

p= % using the inequality] —xz < e=® < 1 — Z for tropy function [30]. From (2), we have

0<z<1,weget(l-p)X >e2andl—(1—p)ro- ) >

K—j .
mod > 1for K >2. KK_]> ! K=yt
2K = 4 = H(Y | Xgx-5) = 1- J
Dilution noise case: LeG, £ (%, !)p!(1 — p)E-1-D, ¥ Xgoe-n) ; ! p{=p)
Using ¢ = 0 in Table Ill and substituting in (35) we get: % H, ((1 — U1 - p(1 — u))j)} (44)
EO(palaLO) = —lOg [TO +T1] ’ (39) K K . K—i
Lo H(Y|Xguc-,Xg0) = K ; )pz(l -p)
where Ty 2 S0 Gl ((1 —p) +puﬁ) andT; £ i=o !
G (- p) (1 - ) p(1 -t ) " o (=) (43)
Using Jensen’s inequality to upper boufig we get We use the results from [35] for bounding the mutual infor-

mation term. We collect the required results from [35] in the
T, < Z Gi((1—p)(1 —ub) +p(1 — 1)) (40) following lemma.
Lemma 2. Bounds onI(j> [35]: Let p = £. I\ can be

=1-( E : Gyl (41) expressed a:il(- + 19 where
() _ 5. —6(1—u)(q _ _ ( 1
Iy = de 1 ulogu+1—u +0
Wherego = ( —(1—u)p) and we have made use of the fact ' (1-q)(ulog ) K K2

thaty"/ ;' G, = 1. Further, sinc& 1 ! Gyul = ¢{¥ (46)



For the case withu = 0 and¢ > 0 we have:

Iy = J 4o

o (1ox(3) - (1-0)) %

().

and forg = 0, u > 0 we have:

se—? ((1 — ) [log ]5(1%] _ u) % Lo (%) <1V
+0 <%) . (48)

Thus, withé = 1 and largeK, neglectingO(1/K?) terms,

we

get: (a) Foru = 0, ¢ > 0 case /) ~ - log(1). (b) For

q=0,0<wu<0.5 case, simplifying further, we get

. K _
LK(I—u)logT SI1U) S

J
el2K

< (1—u) <1og§+1).

(49)

In the above, we have used the notation”“and “<” to

highlight the fact thaO(

L

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

) terms have been neglected in they

2
above expressions fdﬁjg(. The order results for lower bounds

[23]

now follow by first noting thatmasx; ;< s "Bl >
LUEAIGD " and, for the scaling regimes under consideration

the combinatorial terml’;(L, N, K, 1) can be asymptotically [24]

bounded asimy o I'y(L, N, K, 1) > log —L

(1]

(2]

(31
(4
(5]

(6]
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