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Abstract— Thanks to the recent advances in processing speed,
data acquisition and storage, machine learning (ML) is pene-
trating every facet of our lives, and transforming research in
many areas in a fundamental manner. Wireless communications
is another success story — ubiquitous in our lives, from handheld
devices to wearables, smart homes, and automobiles. While recent
years have seen a flurry of research activity in exploiting ML
tools for various wireless communication problems, the impact
of these techniques in practical communication systems and
standards is yet to be seen. In this paper, we review some of the
major promises and challenges of ML in wireless communication
systems, focusing mainly on the physical layer. We present some
of the most striking recent accomplishments that ML techniques
have achieved with respect to classical approaches, and point
to promising research directions where ML is likely to make
the biggest impact in the near future. We also highlight the
complementary problem of designing physical layer techniques
to enable distributed ML at the wireless network edge, which
further emphasizes the need to understand and connect ML with
fundamental concepts in wireless communications.

Index Terms— Autoencoders, channel coding, channel esti-
mation, data-driven methods, distributed learning, distributed
resource allocation, deep learning, federated edge learning, joint
source-channel coding, machine learning, stochastic approxima-
tion, wireless communications.

I. INTRODUCTION

ECENT advances in machine learning (ML) have caused
a wave that has swept across all walks of science and
engineering. The main premise of ML is to enable computers
to learn and perform certain tasks (e.g., classification and
prediction) without being explicitly programmed to do so. This
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is achieved by training algorithms on vast amounts of data
available for the task to be accomplished. While the basic
ideas and ambitions of ML go back to the 1950s, recent
years have witnessed an unprecedented surge in interest in
this area, fuelled by the availability of increasingly powerful
computers, large and well-curated datasets, and developments
in theoretical understanding of various learning algorithms.

Arguably, the most impressive success stories of modern
ML are due to the remarkable efficacy of deep learning,
in the form of deep neural networks (DNNs), generative
adversarial networks (GANSs), and the resurgence of (deep)
reinforcement learning ((D)RL) [1], [2]. These tools have
resulted in remarkable advances in audio and image recogni-
tion, natural language processing, recommender systems, and
have beaten human grandmasters in chess and Go. They have
also led to many advances in applications from healthcare
to autonomous driving, finance, marketing and robotics. The
success of these approaches in many practical applications,
and particularly the fact that they perform far better than dis-
ciplined approaches based on sound theory, has challenged the
very foundation of our engineering education. Very few people
believed that such a resurgence of ‘black box’ methods would
ever happen, much less that they would work so remarkably
well in practice. Hence the latest wave in ML caught many
communications engineers by surprise. But because we are
engineers, we cannot look away from something that works.
We have to understand it and use it to our advantage when
possible. ML is certainly ‘in the air’, with many special
issues, workshops, special sessions and panels, exploring the
potentials and promises of ML for wireless systems. While the
activity in this area is growing at an exponential rate, some
seasoned researchers in the community are skeptical, and the
impact of ML techniques in practical communication systems
and standards is indeed yet to be seen.

Before we go into the challenges of applying ML in wireless
systems, we would like to understand whether ML is really
a novelty to communications researchers. Is it a completely
new paradigm that can transform communications research and
future communication systems, or is it yet another “old wine
in a new bottle”, presenting various old and known techniques
with a new flavour? Indeed, the connections between ML
and the theory of information transmission and storage are
numerous and often striking. The fundamental problem of
communication, as stated by Shannon [3], “reproducing at
one point either exactly or approximately a message selected
at another point,” can in fact be recast as a classification
problem. More specifically, symbol and sequence detection
that constitute the core of any communication system are
special cases of the general classification problem, which is
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at the heart of ML. Shannon’s entropy, mutual information,
and Kullback-Leibler divergence are widely used in ML as
training objectives. Vector quantization (VQ) is key for source
coding and rate-distortion, going back to Shannon [4]. VQ is
also known as k-means clustering — a staple of unsupervised
ML. Universal source coding inherently learns the distribution
of the underlying information source in an online fashion
[5], [6], and the most successful lossless compression algo-
rithms are based on information theoretic principles, such as
Lempel-Ziv and Burrows-Wheeler transforms, and have been
successfully implemented for everyday use (gzip, pdf, GIF,
etc.). Channel estimation is the task of learning a linear system
in a supervised fashion when training/pilots are used. When
(e.g., power amplifier) nonlinearities come into play, one has
to learn a more general nonlinear system. Coding can be
considered as controlled dimensionality expansion from the
reduced-dimension /atent information symbols to the channel
input space, and decoding reduces things back to the original
low-dimensional information space.

Despite all the fascinating connections, there remain some
key differences between generic ML and conventional wireless
communication systems. Perhaps the most crucial differences
are that 1) in communications we have a fairly good grasp
of what to expect by way of channel and system models,
which obey physical laws; and ii) we have complete control
of what, when, and how to transmit. In principle this makes
communications an overall better playing field for model-
based solutions than generic ML applications.

The most striking aspect of the recent success of ML is
its ‘data-driven’ nature — we have access to a lot of data
nowadays; hence, we can rely on data to draw conclusions, and
design systems like never before. The data-driven approach of
ML is significantly different from the model-based approaches
that have long dominated communication system design.
Communication and networking engineers for many years
have developed models with ever-increasing complexity and
accuracy for the underlying physical communication channels,
antenna patterns, data traffic, user mobility, interference, and
many other aspects of communication systems. They have
then designed highly complex modulation/ demodulation tech-
niques, error correction codes, and networking protocols based
on these models, which can be implemented efficiently (even
on low-complexity and energy-limited mobile devices), and
can enable reliable communications at fairly high data rates.
The model-based approach has been tremendously successful
for communication system design, taking us from the first to
the fifth generation (5G) of wireless networks, successfully
keeping up with the rapidly growing demand for higher quality
and lower latency content delivery. However, as we move
towards implementing 5G networks and adopting a more
flexible network architecture (network function virtualization,
software defined networking, etc.), it is likely that there will
be many scenarios in which the modeling assumptions used
in traditional designs become questionable. For example, with
network slicing and multiple service classes, the interference
can become highly non-stationary and non-Gaussian. Also,
low-latency communications that should be supported with
5G may not allow accurate channel estimation, and short
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blocklength codes cannot benefit from the ergodicity of some
of the randomness in the channel. Similarly, low latency
requirements make the structured and modular layered net-
work architecture highly suboptimal, requiring more integrated
cross-layer designs, which increases the complexity of opti-
mizing and operating these networks. These challenges point
to the need for less structured solutions that are robust to
model mismatches. Can the data-driven approach of ML be
useful for designing such wireless communication systems and
protocols? Modern ML techniques can help us make infer-
ences and predictions about network traffic, user behaviour,
application requirements and security threats, all of which
can be used for better resource provisioning and improved
network operation. 3GPP has already introduced the network
data analytics function (NWDAF) in order to standardize the
way such data is collected and communicated across various
network functions [7]. While this has limited functionality at
the moment, it is widely accepted that analysis using higher
layer network and user behaviour data will be an integral
part of 5G and future communication network architectures,
where network functions will interact through NWDAF to
provide relevant data to be used by other network functions,
and will apply various ML techniques on the available data
to make control and resource allocation decisions. Therefore,
an important question in this context is what type of lower
layer data can be used to improve the utilization of limited
physical layer resources, and which ML techniques would
provide timely and useful inferences and predictions based
on this data.

In this paper we will try to answer these questions, focusing
mainly on some exemplary applications of ML tools for lower
layer design. We note here that the goal of this paper is
not to provide a survey of recent results in this very active
research area, but to highlight some of the striking recent
results that promise significant gains compared to conven-
tional physical layer design techniques, and provide a general
discussion on why these techniques are promising, and the
potential roadblocks for their implementation in real systems
and adoption in standards. We refer the readers to excellent
survey and overview papers on various aspects of ML in
wireless communications to gather a more complete picture
of its recent applications in different settings [8]-[13]. Next,
we will go over some of the major challenges of applying ML
in the lower layers of the protocol stack.

A. Challenges of Applying ML Tools in Wireless
Communications

A major criticism for the data-driven approach to
communication system design is the ‘black-box’ nature
of some of the ML algorithms, e.g., DNNs, and the
lack of guarantees for performance; whereas communication
engineers are accustomed to providing performance guarantees
on error probability, interference level, channel outage, latency,
etc. In many cases, such as emergency communication
networks or for critical infrastructures, reliability and latency
requirements can be extremely stringent. However, such
provable guarantees hinge on the assumed channel, traffic,
and device models, and their validity is as good as the accuracy
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of these models. Channel modeling, for example, no matter
how ingenious, is always approximate, and the true channel
dynamically evolves and is subject to all sorts of nonlinear/
phase transition effects, from amplifier nonlinearities to loss
of synchronization, which bring us closer to the realm of more
general ML. On the contrary, the data-driven approach does
not need powerful models, and instead can learn the optimal
system architecture simply from available data. One particu-
larly striking example is the use of the autoencoder as a general
nonlinear detection mechanism — without having to physically
model, estimate, and explicitly implement an equalizer or an
error control mechanism. The advantage of such an approach is
that it can “invert” even unknown nonlinear channels directly,
based only on training data and nothing else. Therefore, it is
not clear which would provide a more reliable communication
system: the one optimally designed based on complex yet
approximate models, or the one designed by black-box ML
algorithms based on training data. While the former is limited
by the accuracy of the model in representing the reality,
the latter uses real data in the learning process, but the data
is always limited in size and generalizability. We expect that
ML-based solutions will be effective particularly when an
accurate model for the problem of interest is not available
(i.e.,‘'model-deficit’ as referred to in [13]), and a sufficiently
large and representative training dataset is available.

The ‘black box’ aspect of DNNs also brings along the
interpretability problem. Understanding the reasons behind the
success or failure of ML methods, particularly those based on
DNNS, is an on-going research challenge [14], which is yet to
be addressed satisfactorily. From an engineering perspective,
not knowing the reasons behind the decisions taken by an
algorithm makes it very difficult to tackle failures, or to
predict the impact of changes in the environment on the
performance. Also relevant for communication networks is
to guarantee some sense of fairness across users, such that
they are not penalized unintentionally by a ML algorithm
due to the type of their device, their location, protocol being
used, etc. Fairness in ML is a very important and growing
research challenge, particularly for applications that involve
personal data, and those that make decisions that have direct
impact on our lives, e.g., automatic evaluation and ranking
of CVs, recommender systems for online shopping, and even
for criminal investigations [15]. Given the sensitivity of our
mobile traces, and the close association between users and
their mobile devices, fairness is likely to be an important
concern in future application of ML in wireless systems
as well.

Another challenge of applying data-driven ML tools to
wireless systems is the limited availability of training data.
Unlike in computer vision, speech processing, or health-
care applications, in most wireless applications standardized
datasets for testing and comparison of proposed ML tech-
niques are not available. However, we expect that, with the
increasing adoption of ML techniques, more public datasets
will become available to the community. There are a number
of initial efforts in this direction, and several publicly available
datasets can be used to perform and compare some basic ML
tasks on wireless signals [16]-[19].
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Even if such datasets become available, it is questionable
whether success on such datasets can promise success in
other channel and network conditions. Wireless channels are
often highly non-stationary, and offline training on a generic
dataset may not lead to satisfactory results when tested on a
very different wireless environment. This may require online
training of the existing models to adapt them to the current
scenario; however, training time of an ML model for reason-
able performance is often beyond the operation timescales of
communication systems.

On the other hand, when a reasonably accurate model (e.g.,
for the underlying communication channel) is available, one
can generate synthetic data from the model, which can be
used for offline training. In this case, by a judicious choice
of the architecture, one can arrive at an ML algorithm that (at
least empirically) outperforms its conventional counterparts,
when algorithms of similar computational complexity are
compared. This points to another setting in which ML-based
techniques have proven useful: even when the system model is
accurately or perfectly known, the optimal solution may be too
complex, or even intractable [20] (referred to as ‘algorithm-
deficit’ in [13]). In such a case, the model can be used to gener-
ate data, which can then be used to train a limited-complexity
ML-model, which can either try to imitate an available model-
based approximate or optimal solution, or directly achieve the
optimal performance. Such an approach has been shown to
provide approximate solutions to even NP-hard problems using
moderate computational resources [21], [22], or to outperform
human experts in fully known yet highly complex models,
such as chess, Go, or Atari games [23], [24]. We will provide
more details in Section V along with several examples how
ML can be used in wireless networks with known models as
a way to optimize the network performance (e.g., sum rate in
a multi-user network).

Another issue raised when adopting ML-based techniques in
wireless communication networks is the limited computational
and memory resources available to most wireless devices,
especially low-complexity terminals at the network’s edge.
Many of the impressive results with data-driven ML tech-
niques are obtained using very powerful computing machinery
and massive datasets, which may not be possible to reach
by mobile devices with limited computation, memory, and
energy resources. The computing power of even the most
recent mobile devices is orders of magnitude less than high
performance computers used to train complex ML models.
Also, each wireless end-user device typically has only a lim-
ited amount of data, further limiting the training capabilities.
The current approach to overcome the limitations of wireless
devices is cloud or edge processing, in which all the data
available at wireless devices are transferred to an edge or cloud
unit, where a powerful ML algorithm can be centrally trained
using all the data. However, such a solution comes at the cost
of transferring the data from energy and bandwidth limited
wireless edge devices to a central edge or cloud processor,
and the latency this would incur — not to mention privacy
concerns, which are increasingly becoming a serious challenge
to centralized data processing. This necessitates new ways
of achieving decentralized learning in the wireless setting.
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Decentralized learning and decision making is ultimately
limited by how much information is let to flow between
the learning devices, and how much noise corrupts the local
device’s information. Clearly, algorithms which can adapt to
arbitrarily distributed information settings would be highly
desirable. More details and concrete examples will be given
in Section VI on distributed ML at the wireless network
edge.

In the rest of this paper, we will highlight some specific
problems in wireless communication networks, and in partic-
ular at the physical layer, where we believe ML techniques
can make a significant impact. In some of the settings, data-
driven solutions are posed to solve hard wireless networking
problems, trained on data generated from existing models.
These emphasize the use of ML as an optimization technique
to obtain solutions that can surpass the state-of-the-art. We will
also highlight some applications in which data-driven ML
techniques are suitable due to the lack of accurate models.
Although we provide pointers to a large number of key
references, the presented examples are naturally influenced by
our personal research experiences and interests. Nonetheless,
we believe that the highlighted observations are likely to
‘generalize’ to other relevant problems and scenarios.

II. DEEP LEARNING BASED DETECTION AND DECODING

Data detection over a noisy channel, which is an essential
component of any communication system, is inherently a clas-
sification problem. Current detection systems rely on model-
based solutions, employing a mathematical model describing
the underlying communication channel. Moreover, we typi-
cally use a detector derived assuming perfect channel state
information (CSI) at the receiver, with the channel state
replaced by its estimate computed from training symbols.
This renders the detector sub-optimal in the presence of CSI
estimation errors, and a well-trained ML algorithm can out-
perform classical approaches. In the context of data detection
under a Poisson channel model (which arises in molecular
communication), in [25], a recurrent NN (RNN) is used in the
presence of intersymbol interference (ISI). While the proposed
RNN structure can be trained to learn to disentangle the impact
of ISI without any additional information, the performance
of the classical Viterbi decoder (VD) depends heavily on the
accuracy of CSI, as well as the memory length of ISI in the
channel. In [25], authors also train a detector based purely on
data collected from a molecular communication channel. Since
accurate models for this system are lacking, they show that,
under CSI estimation errors, the NN-based detector performs
significantly better than state-of-the-art detectors. This result
corresponds to a fully data-driven approach for a complex
system with hard-to-model imperfections and nonlinearities,
where ML provides an attractive alternative.

The detection problem is also studied in [26] considering a
MIMO channel:

y =Hx+w, (1)

where y € RY is the received vector, H € RV*K ig the
channel matrix, x € {—1, 41} is the unknown channel input
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vector consisting of independent and equally likely binary
symbols, and w € R¥ is the noise vector consisting of inde-
pendent zero-mean Gaussian variables of unknown variance.
Even under the perfect knowledge of the channel model and
the channel matrix H, as the dimensionality of the problem,
N x K, increases, the optimal maximum likelihood (ML)
detector becomes impractical due to formidable computational
complexity. The authors propose a DNN-based detector. The
challenge here is to find the best way to feed the CSI to the
DNN to allow the network to learn to exploit this additional
information. The authors exploit the structure of a projected
gradient solution, and design the network architecture accord-
ingly. In particular, they feed into each layer of the network
HTy, v, x; and HTHx;,, where v;, and x;, are obtained
iteratively as outputs of each layer of the DNN. The results
in [26] show that the DNN-based decoder achieves comparable
performance with a high-complexity decoder based on semi-
definite relaxation, while running 30 times faster. This is a
good example of a solution that combines DNN-based “black-
box” solution with domain knowledge, which is used to “steer”
the DNN to exploit the available information in an efficient
manner. Note that, the decoder is not provided any additional
information, and in theory should be able to learn to mimic
this structure; however, providing the same information in the
most convenient form can speed up the learning process, and
avoid suboptimal local optima.

In [27], the authors study the data detection problem over
a known channel model, without CSI at the receiver. The
DNN-based decoder in this case is trained to output the
estimated data symbols based purely on the received signal,
without explicitly estimating the wireless channel. The DNN
is trained using synthetically generated input-output data.
Specifically, the channel is drawn from the wireless world
initiative for new radio (WINNER II) model, which models
a typical urban channel with 24 sample-spaced paths. The
DNN consists of an input layer, three hidden layers and an
output layer, with a heuristically selected number of neurons
in each layer. The rectified linear unit (ReLU) is used as
the activation function in all but the output layer, where the
sigmoid function is used to map the output to the interval
[0,1]. MSE between the transmitted and predicted symbols
is used as the loss function for training the DNN. Numer-
ical results illustrate several interesting points. First, when
sufficiently many pilots are present, the bit error rate (BER)
performance of the DNN-based decoder matches that of the
minimum mean square error (MMSE) receiver. However,
under non-ideal conditions, such as fewer pilots, absence of
the cyclic prefix, or nonlinear clipping noise, the DNN-based
decoder can significantly outperform the MMSE receiver. Of
course, the MMSE receiver is no longer optimal under these
non-idealities, and another hand-crafted solution that address
them could perform as well or better than the DNN-based
decoder. Nonetheless, the deep learning approach offers a
relatively straightforward and promising solution, that can
potentially deal with a variety of non-idealities in a robust
manner. In [28], the authors carry this idea further and
illustrate over-the-air results of an online trainable OFDM
receiver.
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A. Learning to Decode

While the above works mainly focus on detecting the
channel input symbols, DNNs can also be used to recover
coded symbols. Decoding of codewords from a certain channel
code is another classification problem. However, the number
of classes to classify the received signal into grows exponen-
tially with the blocklength, leading to exponentially growing
training complexity. Therefore, most of the current approaches
to DNN-based channel decoding incorporate DNNs into the
existing decoder structures. For example, [29] uses a NN to
learn the weights that should be assigned to the Tanner graph
of the belief propagation (BP) algorithm. In [30], authors
propose improving the performance of conventional iterative
decoding for polar codes by complementing it with NN-
based components. In particular, they divide the decoder into
subblocks, each of which is replaced by a NN-based decoder,
and the results of these decoders are fed into a BP decoder.
This allows controlling the training complexity by adjusting
the number of subblocks.

A fully DNN-based channel decoder is considered in [31].
To keep the complexity reasonable, codelength is limited to
16 while the code rate is fixed to 1/2. The authors trained
the decoder NN both for a polar code and a random code.
While a performance close to a maximum aposteriori (MAP)
decoder can be achieved for the polar code, the gap to the MAP
decoder performance is much larger for the random code.
Although this gap can be closed with increasing the number
of training epochs, the result highlights the point that NNs are
most effective when the data has an underlying structure that
can be learned. The authors also considered limiting the set of
codewords observed during training. This is to test whether the
NN-based decoder can generalize to unseen codewords. They
observed that this was indeed the case for the polar code; the
decoder was able to learn to decode codewords it has never
seen before, which can only be explained by the fact that the
NN-based decoder has learned the structure of the decoding
algorithm. This is not the case for the random code, which
did not have any particular structure that could be exploited
by the NN-based decoder.

B. Observations

Certain features that are common to the aforementioned
works are worth mentioning. First, most of them use the
so-called one-hot representation of the transmitted
signal [32], [33]. In the one-hot representation, the signal is
represented as a binary vector of length equal to the number
of possible signals. The binary vector contains a single 1
at the location corresponding to the transmitted signal, and
zeros everywhere. While one-hot encoding typically provides
better results as it prevents any numerical ordering between
the inputs, it also leads to an exponentially growing input
size for channel decoding.

The output layer of the DNN that attempts to reconstruct
the input signal is typically chosen as the sigmoid function.
In this case, the DNN attempts to output the likelihoods of
possible signals, which is useful, for example, in detection of
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coded symbols, where the bit log likelihood ratios need to be
fed into a channel decoder.

Another interesting recent development is the use of RNNs
with long-short term memory (LSTM), which allows for
smaller generalization error [25]. This allows for unseen
channel instantiations to be handled effectively.

III. DEEP LEARNING FOR CHANNEL ESTIMATION AND
CHANNEL STATE INFORMATION (CSI) FEEDBACK

CSlI is essential in wireless communications. On the receiver
side, knowledge of the channel state allows coherent detection
and decoding. Channel estimation at the receiver is typically
carried out by sending pilots from the transmitter. On the
transmitter side, CSI allows employing adaptive transmission
techniques, which can provide significant gains in performance
and efficiency. Transmitter CSI is especially important in
massive MIMO systems. For time division duplex schemes
CSI can be obtained at the transmitter side by exploiting
reciprocity. However, in frequency division duplex schemes,
CSI estimated at the receiver needs to be conveyed to the
transmitter over a feedback link. In order to minimize the
resources dedicated to CSI feedback, it is essential to compress
the CSI estimate at the receiver as efficiently as possible.
Below we review some of the recent applications of DNNs
to the channel estimation and CSI compression problems.
While detection and decoding studied in the previous section
correspond to classification problems, channel estimation is
a regression problem, and CSI compression represents an
unsupervised clustering problem.

A. Channel Estimation

Recall that MMSE channel estimation entails knowledge
of the channel statistics and a potentially computationally
expensive conditional mean computation. In [34], the authors
model the channel as conditionally Gaussian distributed given
a set of (hyper)parameters. These hyperparameters are also
random, whose distribution is eventually learned from training
data. The MMSE estimator under this model can be written
as a linear estimator, with weights depending on the statistics
of the hyperparameters. By vectorizing the MMSE estimate,
the authors write the estimator in a form that is amenable to
implementation as a feed-forward neural network with two
linear layers connected by a nonlinear activation function.
These layers are made learnable, and are trained via stochastic
gradient descent with the mean squared channel estimation
error as the loss function. It is shown that, under certain
assumptions, this can lead to a computationally inexpensive,
near-optimal MMSE estimator when the channel covariance
matrix is Toeplitz and has a shift-invariance structure. Simula-
tion results suggest that the NN based channel estimator out-
performs state-of-the-art estimators and has low complexity.

In the context of wideband channels, [35] models the chan-
nel time-frequency response as an image, and the pilot based
samples as a low-resolution sampled version of the image. The
authors use convolutional neural networks (CNN) based image
super-resolution and image restoration techniques to estimate
the channel, with the mean squared error (MSE) as the loss
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function. Empirically, the performance is demonstrated to be
similar to that of an ideal MMSE estimator that has perfect
knowledge of the channel statistics.

As a final note on DNN-based channel estimation, above
ideas have been extended to the case where the receiver
has fewer RF chains than antenna elements, for example,
in mmWave systems. In this case, the key challenge for the
receiver is to estimate the channel from compressed measure-
ments. In [36] and [37], it is shown that these estimators can
even outperform estimators based on sparse signal recovery,
when trained with sufficient amount of data.

B. CSI Compression

As mentioned above, accurate CSI knowledge at the trans-
mitter can significantly increase the performance of wire-
less communication systems, for example, by avoiding poor
channel states, or by employing beamforming. In frequency
duplex systems, the transmitter depends on feedback from
the receiver to acquire CSI. In order to limit the resources
dedicated to CSI feedback, it is important to design an efficient
compression algorithm which can provide a high accuracy CSI
estimate to the transmitter while using limited communication
resources, measured in terms of bits per channel symbol. This
becomes particularly important in massive MIMO systems,
which require accurate downlink CSI to achieve the promised
performance gains, while the CSI feedback overhead can be
excessive due to the massive number of antennas.

Simple scalar quantization methods are not suitable for
schemes that are highly sensitive to CSI estimation quality
at the transmitter. Moreover, they cannot exploit the spatial
structure in the channel matrix, and result in high feedback
overhead. CSI feedback reduction techniques based on vector
quantization [38] are also limited, particularly for massive
MIMO systems, as the codebook size, and thus, grow propor-
tionally with the number of transmit antennas. More recently,
compressive sensing has been considered to exploit the sparse
structure of the underlying channel in a transform domain
[39], [40]. While this provides significant reductions in CSI
feedback, they do not fully exploit the correlations among
antennas.

Since CSI compression is a special case of the more general
data compression problem, let us briefly mention here how
ML techniques can be used for data compression in general.
Data compression is a fundamental problem in information
and coding theory, and significant research efforts have been
dedicated to developing efficient compression algorithms for
various information sources, such as image, audio, or video.
The traditional approach has been to leverage expert feature
knowledge for each domain to design specific compression
schemes; so much so that there have been separate research
communities working on each of these data domains, and dis-
tinct compression standards, such as MP3, JPEG and MPEG,
have been developed. In most cases the algorithms try to
exploit the sparsity of the information source in a transform
domain, such as discrete cosine transform in image com-
pression, or some other structures, such as motion compen-
sation in video compression. While these highly specialized
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techniques, which have been refined and perfected over many
decades of research and development, provide reasonably good
performance in general, recently there has been significant
progress in exploiting DNN architectures for compression in
all these data domains [41]-[44], with results meeting or sur-
passing state-of-the-art expert-based compression techniques,
which is quite remarkable.

The main component in most of these implementations is
the autoencoder structure. An autoencoder is a pair of NNs,
called the encoder and the decoder networks. The output of the
encoder network, called the bottleneck layer, is the input to the
decoder network. The two networks are trained jointly with
the goal of recovering the input at the output of the decoder.
Typically the bottleneck layer has lower dimension than the
input data, and if the autoencoder can learn to recover the input
with a minimal distortion, this means that the bottleneck layer
carries the essential information to approximately reconstruct
the input data; and hence, can be considered as a compressed
version of the input signal. Autoencoders are used in ML for
feature extraction or as generative models for data [1]. It is
an unsupervised learning technique as it does not require any
labels.

The main advantage of autoencoders for data compression is
that they do not require the knowledge of the underlying data
distribution, or explicit identification of a certain structure, but
instead they learn a low-dimensional representation directly
from data. Moreover, autoencoders can be optimized for very
specific information sources. While standard image compres-
sion techniques apply the same algorithm on all types of
images, an autoencoder can be trained only on, say, underwater
images, and learn specific features of these images, resulting
in a much higher compression efficiency.

This data-driven autoencoder-based compression approach
is particularly attractive for CSI feedback compression as
it is difficult to identify and characterize the features of
channel matrices, which can have quite complicated inter-
dependencies through the physical environment. On the other
hand, acquiring CSI data for training can be easy if we have a
relatively simple model that can represent the physical channel
accurately. Many such models have been developed over the
years, such as the 3GPP spatial channel model (SCM) [45],
WINNER [46], IEEE 802.16a,e [47], or the more advanced
geometry-based COST 2100 stochastic channel model [48].

An autoencoder based compression scheme, called CSINet,
is studied in [49], and it shown to provide significant improve-
ment in compression efficiency compared to the state-of-the-
art techniques exploiting sparsity. In [50], the authors consider
temporal correlations in time-varying channels, and improve
the performance of CSINet for this scenario using a RNN.
Utilizing channel reciprocity, the authors in [51] use the
uplink CSI as additional correlated side information to further
improve the compression efficiency.

However, the aforementioned works focus mainly on the
dimensionality reduction aspect, and they do not directly
tackle the compression problem, which requires a binary
representation of the CSI, which is then transmitted reliable
over the feedback link. While dimensionality reduction can
potentially reduce the required feedback resources, in principle
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each autoencoder output is still a real number that needs
to be quantized before being fed back to the transmitter.
In practice, sufficient accuracy can be achieved by using 32-bit
quantization for each of the autoencoder outputs. However, it is
not clear if this leads to the most efficient binary representation
of the CSI matrix. An alternative approach is to directly
incorporate the quantization operation into the autoencoder
training process. This is challenging, however, as the quan-
tization operation is non-differentiable. Various methods have
been proposed in the image compression literature to overcome
this difficulty. In [52] quantizer gradient is approximated as 1
in the backward pass, while [42] replaces the quantization with
additive uniform noise, and a stochastic binarization function
is used in [53].

Quantization is incorporated into the CSI compression
architecture in [54], where a more advanced autoencoder archi-
tecture is employed compared to [49], and trained together
with the quantizer. The output of the quantizer is entropy
coded as in standard image compression algorithms to fur-
ther reduce the compression rate. This leads to significant
improvement in the compression efficiency. For example, for
32 transmit antennas and 256 subcarriers, the results in [54]
show that the proposed architecture, which also includes the
quantization and entropy coding can provide approximately
7dB reduction in the mean-square error of the reconstructed
channel matrix at 0.01 — 0.12 bits per channel symbol.

IV. AUTOENCODERS FOR END-TO-END
COMMUNICATION SYSTEM DESIGN

The correspondence of the autoencoder structure to a com-
munication system with an encoder and a decoder is quite
obvious. As mentioned in Section III-B, autoencoders have
been successfully applied to image and video compression,
which can be considered as communication over a finite-rate
error-free channel. End-to-end learning of encoder and decoder
functions for communications over a physical layer channel is
first proposed in [55], and later expanded in [56]. The noisy
communication channel that connects the output of the encoder
NN to the input of the decoder NN is treated as an untrainable
layer with a fixed transformation. This end-to-end training of
the physical layer bypasses the modular structure of conven-
tional communication systems that consists of separate blocks
for data compression, channel coding, modulation, channel
estimation and equalization, each of which can be individually
optimized. While this modular structure has advantages in
terms of complexity and ease of practical implementation,
it is known to be suboptimal. An autoencoder is trained for
coding and modulation over an additive white Gaussian noise
channel in [56], and it is shown to have a performance very
close to conventional coding and modulation scheme in short
blocklengths.

The aforementioned works on autoencoder-based end-to-
end physical layer design assume a known channel model, and
the encoder and decoder networks are trained jointly by simu-
lating many realizations of this channel model. While models
for wireless channels are considered to be accurate in general,
they may still have mismatch with the real channel experienced
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by the transceivers, limiting the overall performance of the
system. An alternative would be to use a GAN architecture
to learn a channel model based on real data collected from
the channel. This can provide a more accurate model of the
channel, particularly if sufficient data can be collected from
the channel. In [57], the authors propose to use the learned
GAN as the channel layer between the encoder and decoder
NNs of an end-to-end communication system.

A fundamental challenge in training autoencoders directly
on a real channel is the significant delay this may cause. Since
the encoder and decoder must be trained jointly, the back-
propagation has to propagate the gradient from the receiver
to the transmitter, requiring a feedback link during training,
which would significantly slow down training. To circumvent
this limitation, [58] proposes a two-phase training approach:
the first phase uses a channel model as before and the
encoder and decoder are trained based on this model as before.
Once these networks are deployed at the transmitter and the
receiver, the receiver network is trained further based on the
transmission of known signals from the transmitter. This is
similar to pilot transmission in channel estimation, and does
not require feedback to the transmitter.

A. Joint Source-Channel Coding (JSCC)

All the above works have exclusively focused on trans-
mitting bits over the noisy channel, that is, the goal is to
design error correction codes jointly with modulation, channel
estimation, etc. Note that, when the input to the encoder is a
bit sequence, there is no structure in the data, and the goal
is to learn the best mapping of the message bits into the
channel input space, and jointly the best inverse mapping. This
is achieved mainly by distributing the input signals as much as
possible in the channel input space within the constraints of the
transmitter, and taking into account the random channel trans-
formation. However, in many real applications, the goal is to
transmit some information signal, e.g., a picture, video, or an
audio signal, which is not in the form of a sequence of equally
likely bits, and typically has significant redundancy.

The current standard approach to transmission of such sig-
nals is to first compress them with a source coding algorithm
in order to get rid of the inherent redundancy, and to reduce
the amount of transferred information; then the compressed
bitstream is encoded and modulated over the channel.
Shannon’s separation theorem proves that this two-step
separate source and channel coding approach is optimal theo-
retically in the asymptotic limit of infinitely long source and
channel blocks [60]. However, in practical applications, JSCC
is known to outperform the separate approach, particularly
in short-blocklength and low-SNR regimes. Many emerging
applications from the Internet-of-things (IoT) to autonomous
driving and to tactile Internet require transmission of high data
rate information (image/video, various sensor measurements)
under extreme latency, bandwidth and/or energy constraints,
which preclude computationally demanding long-blocklength
source and channel coding techniques. However, characteriz-
ing the optimal JSCC in non-asymptotic regimes has remained
an open problem, even for fully known source and channel
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Fig. 2. Performance of the deep JSCC algorithm in [59] on CIFAR-10 test

images transmitted over an AWGN channel with respect to the available
channel bandwidth per image pixel for different SNR values. For each case,
the same SNR value is used in training and evaluation, and a different network
is used to obtain each point in the curve.

distributions, and it is significantly more challenging for the
transmission of complicated sources, such as images or videos,
for which we do not have good statistical models.
Alternatively, a deep JSCC architecture can be trained
to map the underlying signal samples directly to channel
inputs. Such an architecture is studied for transmission of
images over wireless channels in [59]. This can be considered
as an “analog” JSCC scheme since, unlike digital systems
built upon the separation approach, the input signal is never
converted into bits, and the channel input signal is not limited
to a finite number of constellation points. The deep JSCC
architecture proposed in [59] is illustrated in Fig. 1. This
fully convolutional architecture allows compression of images
of any size. The results illustrated in Fig. 2 show that deep
JSCC outperforms state-of-the-art digital image transmission
schemes, e.g., JPEG/ JPEG2000 image compression followed
by capacity-achieving channel codes, particularly in the low
SNR and small channel bandwidth regimes. Note that, both
JPEG and JPEG2000 fail completely at SNR = 0 dB. For
SNR = 10 dB, JPEG2000 can provide reasonable quality
if the channel bandwidth is sufficiently large. A few aspects
of deep JSCC are particularly worth mentioning: First of
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is 1/12, i.e., 1 channel use per 12 pixels. SNR¢ain value.

all, it provides non-trivial image reconstruction even at very
low SNR values and limited channel bandwidths, i.e., in the
case of short blocklengths. Moreover, thanks to the analog
nature of the encoder, the performance behaves like analog
modulation schemes, and exhibits graceful degradation with
channel SNR. This can be observed in the performance curves
in Fig. 3. A deep JSCC architecture trained for a particular
target channel SNR value gracefully degrades if the channel
SNR falls below this value, and its performance improves
gradually if the channel SNR goes above the target value.

This analog behaviour is particularly attractive for
broadcasting to multiple receivers, or when transmitting over
a time-varying channel. Indeed, it is shown in [59] that the
performance improvement of deep JSCC compared to conven-
tional digital schemes is much higher over fading channels.
Note also that, while learning channel codes is challenging
even for very limited blocklengths, deep JSCC can achieve
performance levels above or comparable with state-of-the-
art digital techniques even over large blocklengths.

It is shown in [61] that this deep JSCC architecture also
allows bandwidth adaptation through successive refinement;
that is, an image can be transmitted over m layers, and
a user receiving the first k£ layers can recover the image
with peak signal-to-noise ratio PSNRg, £ = 1,...,n. While
PSNR; < --- < PSNR,, as expected, PSNRy is very close to
the performance one would obtain if the image was transmitted
targeting the total bandwidth available for the first & layers;
that is, transmitting the image in layers comes at almost no
additional cost, providing seamless bandwidth adaptivity.

V. MACHINE LEARNING BASED RESOURCE ALLOCATION

An important class of problems where modern ML tech-
niques can help is formed by (NP-) hard resource allocation
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and decision / scheduling problems — which are very common
in wireless communications and networking. Examples range
from classical multi-user detection to sum-rate optimal power
control, multi-user scheduling, and transmission control —
or “smart” data-driven TCP-IP. In the following paragraphs,
we will review some illustrating examples.

The case of joint multicast beamforming and antenna selec-
tion is considered in [62], where it is shown how a DNN can
be used to successfully solve the discrete optimization part of
the problem. This is an example of a hybrid strategy, where a
DNN is employed to solve part of the problem, synergistically
with classical optimization.

Beamforming for minimum outage [63] has also been
proven to be NP-hard even when the channel distribution is
known exactly, and in fact no practically good approximation
algorithm was known until very recently. Yet, relying on a
sample average ‘counting’ approximation of outage, simple
smoothing, and stochastic gradient updates, a lightweight and
very effective algorithm was recently designed in [64] that
performs remarkably well, using only recent channel data. The
problem is formulated as follows:

in ¢ F(w) :=Pr( |[w”h|* < 2
min { ) = pr(fwn <) |, @
where v > 0 denotes the outage threshold and YW C CV
is a simple (element-wise or sum) power constraint. We can
equivalently express (2) as

. H 2 .
vﬁnel}r/lvPrOw h|* < 'y> ¢>vf,nel1r}th[]l{\th\2<v}]' 3)

Define

1, if [wh|? <y
ih) = 1w up = 4
f(w;h) {lwh[?<~y} { 0, otherwise @

as the indicator function of the event [wh|? < . Consider
a given set of ‘recent’ channel realizations Hr := {h;}]_;.
Utilizing Hr, we may construct the following sample average
estimate of Ey[f(w;h)]

A 1
F(w;Hr) = o > fwsihy). 5)
t=1
The interpretation is that we minimize the total number of
outages over (‘recent’) channel history - very reasonable, since
under appropriate mixing conditions we have

Jim F(wiHr) = En[f(w;h)] = F(w), YweW, (6)

almost surely. Replacing F'(w) by F(w; Hr) in (2), we obtain
min F(w; Hr). (7)

wew

The final step is to construct a smooth approximation of
f(w;h), and optimize the resulting function using stochastic
gradient descent. As it is shown in [64], this approach works
unexpectedly well, on a problem that has challenged many
disciplined optimization experts for years.

Finally, the sum-rate optimal power control problem
is known to be NP-hard, but we have good, albeit
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computationally expensive, approximation schemes at
our disposal. These include the iterative weighted minimum
mean squared error (WMMSE) approach [65], [66], and
successive convex approximation [67]. These algorithms are
too complex for practical implementation, but a key idea
advocated in [20], [68] is that we can take this complexity
offline by training a DNN to mimic the input-output behavior
of the WMMSE algorithm. The way to do this is to use
historical (measured) and/or simulated channel data, run the
WMMSE algorithm offline to generate the associated power
allocation values, and use these input-output pairs to train
the DNN. At run time, we simply pass the input through the
trained neural network, which is far cheaper than running
WMMSE online, and works remarkably well.

The approach can be further refined by training the network
to optimize sum rate directly as described in [69]. In that
case, the sum rate is directly differentiated with respect to
the coefficients of the DNNs, which allows to further improve
the performance. The existing state-of-the-art solutions and
the approximation approach described above are still used to
initialize the optimization, and hence avoid the inefficient local
optima.

A. ML for Decentralized Resource Allocation

While the solution approach to the resource allocation prob-
lems above exploits a central common intelligence with full
knowledge of the network state, many networking problems
require decentralized optimization. Such settings include, for
instance, coordination and cooperation tasks among radio
devices in the absence of a central controller, and can be
linked to so-called team decision (TD) and decentralized
control problems, which are notoriously difficult to tackle.
In TD problems, multiple-agents aim at cooperating to achieve
a common goal on the basis of imperfect and nonhomogeneous
information.

The derivation of robust multi-device decision-making algo-
rithms with arbitrary input uncertainties across agents is well
known to be a challenging task, and cannot be solved via
conventional optimization methods. Team decision problems
were first formulated by Radner in [70], and later studied by
Marschak and Radner in [71]. Although some particular simple
cases could be solved (e.g., a linear objective), the general
problem remains open, with no good approximate solution.
This makes this class of communication design problems an
interesting playing field for ML.

Distributed radio resource optimization in communication
networks with the goal of maximizing the network perfor-
mance can be recast as a multi-agent coordination problem.
Typically, the agents (i.e., radio devices) optimize their trans-
mission parameters on the basis of imperfect local information,
for example, noisy CSI [72].

Consider the general problem with n agents, where agent j
takes decision d; using the information locally available,
denoted by y;:

dj = s;(y;), @)

where s; can be any arbitrary function from the information
space to the decision space. Information y; available at agent j



GUNDUZ et al.: MACHINE LEARNING IN THE AIR

may be the result of sensing, estimation, feedback, or infor-
mation shared over the backhaul network before the actual
transmission. Due to the limited amount of available resources,
the resulting estimate obtained is expected to be a potentially
imperfect and/or incomplete estimate of the true representation
of the network state x. This information model is extremely
general and encompasses as special cases the centralized CSI
configuration of the problems discussed above as well as the
local CSI configuration.

We focus here on the fully cooperative scenario, in which
all the agents aim at jointly maximizing a common objective
function u in an expected sense. The optimization problem
can then be written as

©)

(1, 8) = argmax: Blu(x, 81(y1),.--,8n(yn))]
15-++9Sn

where the expectation is taken over the joint distribu-
tion pxy,..yx- We assume that all the agents know this
distribution, or equivalently, as it will become clear later on,
that the training dataset is available at all the agents. It is
important to note that we consider for the sake of clarity
in (9) an optimization problem with only implicit constraints
on the decision functions and no explicit constraints. Yet,
this formulation trivially extends to constrained optimization
problems.

This is however a rather simplified case of more general
decentralized multi-agent optimization problems as we con-
sider only a one-shot optimization rather than a repeated
setting where agents take decisions in multiple rounds, while
receiving some form of feedback at the end of each round. The
feedback could be in the form of a reward function, or explicit
information exchange among the agents, which can be classi-
fied as active and passive feedback, respectively. In the case
of active feedback, each agent would optimize the information
to share with the other agents, possibly in multiple rounds,
jointly with the decision functions. In either case, the problem
could then be formulated as a reinforcement learning (RL)
problem [73], which has been successfully applied to many
communication problems [74].

In a naive approach to solve optimization problem (9), each
agent assumes that its information about the world is perfect,
and all the other agents share the same information. Hence,
the optimization problem solved by agent j is

(10)

naive
(..., smane,

I ) =argmax E [u(yj, Sl(yj)v cees 3n(3’j))]~

S81,...,8n,
This approach can be improved by taking into account the
imperfection in y; with respect to X, i.e., taking the expec-
tation over pxy, as conventionally done in robust signal
processing [75], instead of simply taking y; as being perfect,
ie, y; = x. Yet, it is still fundamentally limited as the
decentralized information structure is not taken into account:
Coordination cannot be reached. The alternative best-response
strategy is optimal given the strategies of the other agents,
i.e., a Nash equilibrium [76]. Hence, best-response strategies
(sPR ..., sBR) satisfy:

S?R: argmax E [u(x, s;, E?R)] ,

Sj

Y
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where we have used 87" as a short-hand notation for all
strategies sP™ except k = j, and omitted the functional
dependencies for the sake of clarity. A best-response strat-
egy is also called a per-agent optimal strategy, and can be
reached by iterating over the agents, which transforms the
decentralized optimization problem (9) into a succession of
conventional centralized functional optimization problems that
can be tackled with conventional optimization tools. Yet, this
best-response solution suffers from two important limitations.
First, it only enables a weak form of cooperation as solutions
necessitating a tight inter-dependency between the agents
cannot be reached. More specifically, each agent can only
update its action unilaterally. This means that a solution
necessitating several agents to update their strategies at the
same time cannot be reached. Second, it still requires solving
a functional optimization problem at each agent, and hence,
is severely limited by the complexity when the dimension of
the problem grows.

1) Centralized Training of Decentralized Strategies: We
will now discuss how the Team-DNN (T-DNN) approach
proposed in [77] allows to leverage recent developments in
deep learning to solve the two main challenges: (i) achieving
a strong form of cooperation, and (ii) reducing the complexity.
This approach is extended in [78] to the design via DNN of
instantaneous and quantized message exchanges between the
transmitters, where it is highlighted how joint optimization of
message sharing and transmission provide more robustness.
It is further extended to other settings and arbitrary constraints
in [79].

As a first step, optimizing (9) over the space of functions,
it is natural to resort to a set of basis functions to reduce
the dimensionality of the optimization space (see e.g., [80]).
Hence, we propose to restrict the strategy of agent j to belong
to a parameterized subspace, i.e., to be of the form s?j, 0;
being a vector of real parameters. We will consider DNNs to
parametrize the decision functions for their many advantages;
in particular, for their efficient implementation and the abun-
dant literature [1], [81], but other functional approximation
methods could also be considered. Optimization problem (9)
can be approximated as:

(07,...,0;)=argmaxE [u(x, sfl (V1)) -+ sz" (yn))} . (12)

01,..,0,

Following a data-driven approach, we then aim at maximizing
the average performance using the training samples from
the known distribution. This is possible as the objective
utility function v is known and differentiable. This will be
achieved by centralized training to optimize over decision
functions using the training samples. In practice, this means
that we will jointly update the parameter vectors of all the
agents (01,...,0,) using the stochastic gradient approach
during the training phase, as is standard in deep learning,
i.e., at step k

0,...,6%) =@V ... 8¢
glk—1) ok—1)
+arVie,, o u(x 8" (y1),...,82"  (yn)). (13)
We illustrate the proposed T-DNN approach in Fig. 4.
Interestingly, it remains an open problem to determine how
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Fig. 4. Illustration of the T-DNN approach with centralized training and
decentralized testing.

efficient these methods designed in the centralized setting
work in the decentralized setting at hand. In particular, it is
not known which DNN architectures are better suited for the
decentralized setting and how to improve the efficiency of the
training.

2) Application in Wireless Networks: Learning to Cooperate
in Coordinated Power Control: To illustrate the application of
the concepts described above in wireless networks, we con-
sider a toy example consisting of 2 single-antenna transmitters,
with imperfect estimates of the channel coefficients, serving
2 single-antenna receivers. We consider a standard Rayleigh
fading scenario and joint precoding across the transmitters
with the goal of maximizing the sum rate. We also extend the
previous team decision formulation (9) to allow a one stage
limited exchange of information between the two transmitters.

We consider a T-DNN architecture, where a different DNN
is used to parameterize each decision function, while all the
DNNs are trained jointly. Following the assumption of one-
step exchange, the two DNNs generate the messages to be
exchanged, while they also learn the power control from all
the inputs.

We consider a simple CSI configuration where transmitter 1
has a noisy CSI, where all the coefficients are corrupted
by an additive independent Gaussian noise of variance o2,
while transmitter 2 has access to perfect CSI. To facilitate
the qualitative interpretation, we furthermore reduce to an
asymmetric setting where only transmitter 1 can share a
message with transmitter 2 via one-step cooperation.

In Fig. 5, we show the average sum rate after normalization
by the performance achieved if perfect CSI is handed over
to a central node controlling both transmitters, which serves
as an upperbound on the performance. We first observe that
the naive use of DNNs in which each transmitter applies
its learning algorithm assuming that it controls the two
transmit antennas (i.e., transmitter j is trained using only
samples of the locally available CSI) is outperformed by
the proposed T-DNN approach, which is hence more robust
to the distributed CSI configuration at hand. We can also
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Fig. 5. Percentage of the average sum-rate achieved by a centralized DNN as
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notice the benefit of a cooperation link: The T-DNNs have
learned during training how to use the limited cooperation
link between them to exchange useful information; and hence,
to coordinate in order to maximize the sum rate.

VI. LEARNING AT THE WIRELESS EDGE

There is an ongoing rapid growth in IoT applications,
which depend heavily on data collected by sensor nodes
being continuously communicated to centralized processing
units, typically located at the network edge, made possible by
the emerging multi-access edge computing (MEC) paradigm.
Data collected at these centralized units is processed to make
inferences and prediction on the state of the system being
monitored, which in turn may lead to status updates that are
communicated to users, or action instructions delivered to
actuators.

ML tools are increasingly deployed for the analysis of huge
amount of data collected from IoT devices. With an increasing
number of successful and promising IoT applications and
deployments, we expect that communication of IoT data for
learning tasks will constitute a significant portion of the wire-
less network traffic in the near future. However, there are two
potential roadblocks in front of this MEC-based centralized
training approach. First of all, offloading all the data to a
cloud processor for centralized training will be challenging
particularly in wireless networks with limited bandwidth and
energy resources. This is particularly true for data intensive
applications, such as autonomous vehicles or virtual reality.
For example, a self-driving car is expected to generate about
one gigabyte of data per second, and continuously offloading
such an amount of data to the edge network is not realistic.
Privacy is another concern that can prevent centralized ML
for most sensor data collected by IoT devices, e.g., smart
meters [82] or electric vehicles [83]. While local processing
of IoT data is an alternative, often a single device is limited
in terms of both available data and computation power. An
alternative is to implement learning at the wireless edge, also
called edge learning [84], in the form of distributed stochastic
gradient descent (DSGD) or federated learning (FL) [85].
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It is now commonly accepted that the main bottleneck in
distributed learning is the communication load [86]. Due to the
lack of centralized processing capabilities, these algorithms
depend heavily on information exchange between multiple
learning agents, representing different devices each with its
own local dataset, either through a ‘master’ orchestrating node,
called a parameter server, or in a fully distributed fash-
ion through device-to-device communications. In either case,
distributed learning requires iterative information exchanges
among the participating devices and the parameter server,
where the devices share either their local gradient estimates in
DSGD, or local model updates in FL.

There have been numerous studies that focus on
communication-efficient distributed ML. These studies can be
grouped into three different approaches, namely quantization,
sparsification, and local updates. Quantization algorithms aim
at reducing the amount of information that need to be com-
municated to convey the result of local learning iteration, e.g.,
the local gradient estimate [87], [88]. Sparsification, on the
other hand, reduces the communication load by transmitting
only the important values of local estimates [89]-[91]. Another
approach is to reduce the frequency of communication from
the devices by allowing local parameter updates [92], [93].
We remark, however, that, these studies do not explicitly
model the underlying communication channel between the
devices and the parameter server, and mainly focus on large
scale distributed learning within server farms, where hundreds,
maybe thousands of machines collaborate to learn a high-
dimensional model on an extremely large dataset. However,
as we will show below, taking the particular channel model
into account is critical in wireless edge learning, where the
channel can be severely limiting.

Consider DSGD over a shared wireless medium, as illus-
trated in Fig. 6, where the transmission of local gradient
estimates from the devices participating in the learning process
to the parameter server can be formulated as a wireless
computation problem [94]. One approach to this problem is to
treat communication and computation separately, and exploit
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a coding scheme across computing agents such that each of
them is assigned a non-zero rate to convey its gradient estimate
at each iteration. Therefore, each agent employs quantization
to reduce the amount of information to be transmitted to the
level that is allowed by the wireless channel. This can be
called a ‘separate digital’ scheme as the gradient estimates are
converted into bits, which are communicated by independent
channel codes.

Note, however, that, the parameter server is interested
only in the average of the gradient estimates, rather than
their individual values. Accordingly, a much more efficient
communication strategy would be to transmit local estimates
without any coding, in an ‘analog’ fashion. If the devices are
synchronized, than the wireless channel adds their estimates,
directly conveying the desired value to the parameter server
(which simply divides this sum by the number of devices
to find the average). A random projection of the gradient
estimates is proposed in [94] to reduce the required channel
bandwidth. This approach can also be extended to the scenario
with fading [95], [96], in which case power control can be
employed at the devices to align their transmissions at the
same received power level.

In Fig. 7 we illustrate the performance of the digital
and analog computation approaches for learning over the
wireless edge. The figure compares the training accuracy
when a single layer NN is trained on the MNIST dataset.
A total of 60000 data samples are distributed across K
devices, which employ DSGD utilizing ADAM optimizer. The
figure compares the accuracy achieved for a fixed average
transmit power value for each user. We observe that analog
transmission of gradient estimates achieves a significantly
higher accuracy compared to first quantizing the estimates,
and then transmitting the quantized bits with a channel code.
We also make an interesting observation from Fig. 7: while the
accuracy of the analog scheme increases with the number of
devices, as each additional device comes with its own power
source, the digital scheme has an optimal number of devices,
beyond which the accuracy degrades. This is because, channel
resources per device becomes limited beyond this optimal
number of devices, which, in turn, limits the accuracy of the
gradient estimates that are conveyed to the parameter server.
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Overall, the results highlight the fact that, for efficient ML
at the wireless edge, communication and computation have
to be considered jointly, and distributed ML can benefit from
physical layer techniques to improve the efficiency and accu-
racy. A similar observation is also made in [97] by considering
coded wireless computation in the map-shuffle-reduce frame-
work, where physical layer techniques are leveraged to provide
robustness against both device and channel uncertainties.

VII. CONCLUSIONS

We have presented what we hope is a stimulating overview
of the promises and challenges of ML for the physical layer
of wireless networks. We have presented a wide variety of
wireless communications problems, in which ML tools have
been shown to offer significant gains. As indicated earlier,
these correspond to scenarios in which either we do not have
an accurate model of the system, or we have an accurate
model but the optimal solution is extremely complex and thus
cannot be attained with conventional means. Various power
allocation problems have been presented as good examples of
the latter scenario. The joint source-channel coding problem
can be considered as exhibiting both limitations. In the case
of image transmission, we do not have a good statistical
model of natural images; however, even when transmitting
Gaussian sources over a noisy channel, the optimal solution is
not known for finite blocklengths, as the separation theorem
fails. We have also highlighted another connection between
ML and the wireless physical layer through edge learning.
We have shown that the accuracy of distributed ML over
wireless channels can benefit greatly from the joint treatment
of the physical layer and the employed learning algorithm.

In light of these intriguing achievements and challenges,
an important question that our research community will tackle
in the next few years is the following: Will the ongoing
ML revolution completely transform communication system
design, so that we will soon be designing autonomous com-
munication devices that do not need standards or protocols,
and can simply learn to communicate with one another using
data-driven ML techniques? Or do the existing drawbacks of
ML-based techniques limit their relevance for communication
systems, and we should instead “stick to our guns” — the time-
tested highly-optimized model-based approaches? While time
will tell what the answer is, it will probably land somewhere
in the middle; strong domain knowledge and model-based
approaches will need to be combined with powerful data-
driven ML techniques. Another important question relates to
the use of physical layer techniques for edge learning: Given
the rapid speed of developments in ML and particularly edge
learning, do we need new standards and new communication
techniques that can sustain the growing demand for ML
applications at the edge?

We believe that ML and data-driven approaches in general
have a lot to offer to all aspects of the communication network
architecture, and they have already started to have impact
on the higher layers [98]-[100]. Yet, to realize this promise,
significant research efforts are needed, from adaptation of
existing ML techniques to the development of new ones that
can meet the constraints and requirements of communication
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networks, including the implementation of at least some of
these capabilities in low-power chips that can be used in
mobile devices [101], [102], and/ or the development of fully
distributed, yet efficient implementations that can employ low-
power low-complexity mobile devices.

To conclude, one message that comes out loud and clear
from our recent experience with deep learning and other data-
driven approaches is that we should think big and be bold.
Communications engineers are trained to think about physical
models and optimal solutions, but the success of deep learning
hinges on using lots of data together with ‘naive’ lightweight
approaches, like stochastic gradient descent, to solve NP-hard
problems. It takes quite a bit of cultural transformation to
digest this. Moreover, the performance of these generic light-
weight tools can be improved significantly through domain
expertise in wireless communications, complemented with a
thorough knowledge of the tricks of the trade in ML.

REFERENCES

[1] 1. Goodfellow, Y. Bengio, and A. Courville,
Cambridge, MA, USA: MIT Press, 2016. [Online].
http://www.deeplearningbook.org

[2] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[3] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379423, 1948.

[4] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. Norwell, MA, USA: Kluwer, 1991.

[5] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337-343,
May 1977.

[6] F. M.J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree

weighting method: Basic properties,” IEEE Trans. Inf. Theory, vol. 41,

no. 3, pp. 653-664, May 1995.

System Architecture for the 5G System, LTE Release 15, document

3GPP TS 23.501, v 15.1.0, Mar. 2018.

[8] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile
and wireless networking: A survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 3, pp. 2224-2287, 3rd Quart., 2019. doi:
10.1109/COMST.2019.2904897.

[9] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, ‘“Machine

learning for wireless networks with artificial intelligence: A tutorial on

neural networks,” Oct. 2017, arXiv:1710.02913. [Online]. Available:
http://arxiv.org/abs/1710.02913

L. Liang, H. Ye, and G. Y. Li, “Toward intelligent vehicular networks:

A machine learning framework,” IEEE Internet Things J., vol. 6, no. 1,

pp. 124-135, Feb. 2019.

J. Jagannath, N. Polosky, A. Jagannath, F. Restuccia, and T. Melodia,

“Machine learning for wireless communications in the Internet of

Things: A comprehensive survey,” Ad Hoc Netw., vol. 93, 2019,

Art. no. 101913.

X. Zhou, M. Sun, G. Y. Li, and B. F. Juang, “Intelligent wireless

communications enabled by cognitive radio and machine learning,”

China Commun., vol. 15, no. 12, pp. 1648, Dec. 2018.

O. Simeone, “A very brief introduction to machine learning with

applications to communication systems,” IEEE Trans. Cogn. Commun.

Netw., vol. 4, no. 4, pp. 648-664, Dec. 2018.

F. Doshi-Velez and B. Kim, “Towards a rigorous science of inter-

pretable machine learning,” Feb. 2017, arXiv:1702.08608. [Online].

Available: https://arxiv.org/abs/1702.08608

K. Holstein, J. W. Vaughan, H. Daumé, III, M. Dudik, and H. Wallach,

“Improving fairness in machine learning systems: What do industry

practitioners need?” in Proc. CHI Conf. Hum. Factors Comput. Syst.

New York, NY, USA: ACM, Scotland, U.K., 2019, pp. 600-1-600-16.

T. O’Shea and N. West, “Radio machine learning dataset generation

with GNU radio,” in Proc. GNU Radio Conf., vol. 1, 2016,

no. 1. [Online]. Available: https://pubs.gnuradio.org/index.php/grcon/

article/view/11

A. Alkhateeb, “DeepMIMO: A generic deep learning dataset for

millimeter wave and massive MIMO applications,” in Proc. Inf. Theory

Appl. Workshop (ITA), San Diego, CA, USA, Feb. 2019, pp. 1-8.

Deep Learning.
Available:

[7

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]


http://dx.doi.org/10.1109/COMST.2019.2904897

GUNDUZ et al.: MACHINE LEARNING IN THE AIR

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

I. Nascimento, F. Mendes, M. Dias, A. Silva, and A. Klautau, “Deep
learning in rat and modulation classification with a new radio signals
dataset,” in Proc. 36th Simposio Brasileiro Telecomunicacoes Proces-
samento Sinais (SBrT), Campina Grande, Brazil, Sep. 2018.

M. Arnold, J. Hoydis, and S. ten Brink, “Novel massive MIMO channel
sounding data applied to deep learning-based indoor positioning,” in
Proc. Int. ITG Conf. Syst., Commun. Coding (SCC), Feb. 2019, pp. 1-6.
H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for interfer-
ence management,” IEEE Trans. Signal Process., vol. 66, no. 20,
pp. 5438-5453, Oct. 2018.

O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,”
in  Advances in  Neural Information  Processing  Systems,
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and

R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2015,
pp. 2692-2700. [Online]. Available: http://papers.nips.cc/paper/5866-
pointer-networks.pdf

A. Milan, S. Rezatofighi, R. Garg, A. Dick, and I Reid,
“Data-driven approximations to NP-hard problems,” in Proc. AAAI
Conf. Artif. Intell., 2017. [Online]. Available: https://aaai.org/
ocs/index.php/AAAI/AAAIL7/paper/view/14700

V. Mnih et al., “Playing Atari with deep reinforcement learning,” in
Proc. NIPS Deep Learn. Workshop, 2013.

D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, p. 354, 2017.

N. Farsad and A. Goldsmith, ‘“Neural network detection of data
sequences in communication systems,” [EEE Trans. Signal Process.,
vol. 66, no. 21, pp. 5663-5678, Nov. 2018.

N. Samuel, T. Diskin, and A. Wiesel, “Deep MIMO detection,”
2017, arXiv:1706.01151. [Online]. Available: https:/arxiv.org/pdf/
1706.01151.pdf

H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel
estimation and signal detection in OFDM systems,” IEEE Wireless
Commun. Lett., vol. 7, no. 1, pp. 114-117, Feb. 2018.

P. Jiang et al., “Artificial intelligence-aided OFDM receiver: Design
and experimental results,” Dec. 2018, arXiv:1812.06638. [Online].
Available: https://arxiv.org/abs/1812.06638

E. Nachmani Y. Be’ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in Proc. Allerton Conf. Commun., Control,
Comput. (Allerton), 2016, pp. 341-346.

S. Cammerer, T. Gruber, J. Hoydis, and S. ten Brink, “Scaling deep
learning-based decoding of polar codes via partitioning,” 2017. arXiv:
1702.06901. [Online]. Available: https://arxiv.org/abs/1702.06901

T. Gruber, S. Cammerer, J. Hoydis, and S. ten Brink, “On deep
learning-based channel decoding,” in Proc. Conf. Inf. Sci. Syst. (CISS),
2017, pp. 1-6.

A. Felix, S. Cammerer, S. Dorner, J. Hoydis, and S. Ten Brink,
“OFDM-autoencoder for end-to-end learning of communications sys-
tems,” in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless
Commun. (SPAWC), Jun. 2018, pp. 1-5.

V. Raj and S. Kalyani, “Backpropagating through the air: Deep learning
at physical layer without channel models,” IEEE Commun. Lett.,
vol. 22, no. 11, pp. 2278-2281, Nov. 2018.

D. Neumann, T. Wiese, and W. Utschick, “Learning the MMSE
channel estimator,” [EEE Trans. Signal Process., vol. 66, no. 11,
pp- 2905-2917, Jan. 2018.

M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh, “Deep
learning-based channel estimation,” IEEE Commun. Lett., vol. 23, no. 4,
pp. 652-655, Apr. 2019.

M. Koller, C. Hellings, M. Knoedlseder, T. Wiese, D. Neumann,
and W. Utschick, “Machine learning for channel estimation from
compressed measurements,” in Proc. 15th Int. Symp. Wireless Commun.
Syst. (ISWCS), 2018, pp. 1-5.

H. He, C. Wen, S. Jin, and G. Y. Li, “Deep learning-based channel
estimation for beamspace mmwave massive MIMO systems,” IEEE
Wireless Commun. Lett., vol. 7, no. 5, pp. 852-855, Oct. 2018.

D. J. Love, R. W. Heath, Jr., V. K. Lau, D. Gesbert, B. D. Rao,
and M. Andrews, “An overview of limited feedback in wireless
communication systems,” IEEE J. Sel. Areas Commun., vol. 26, no. 8,
pp. 1341-1365, Oct. 2008.

P. Kuo, H. T. Kung, and P. Ting, “Compressive sensing based channel
feedback protocols for spatially-correlated massive antenna arrays,”
in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2012,
pp. 492-497.

X. Rao and V. K. N. Lau, “Distributed compressive CSIT estimation
and feedback for FDD multi-user massive MIMO systems,” IEEE
Trans. Signal Process., vol. 62, no. 12, pp. 3261-3271, Jun. 2014.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

[571

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

2197

R. Setiono and G. Lu, “Image compression using a feedforward neural
network,” in Proc. IEEE Int. Conf. Neural Netw., IEEE World Congr.
Comput. Intell., vol. 7, Jun. 1994, pp. 4761-4765.
J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image
compression,” in Proc. Int. Conf. Learn. Represent. (ICLR), Apr. 2017,
. 1-27.
?p Han, S. Lombardo, C. Schroers, and S. Mandt, “Deep probabilistic
video compression,” CoRR, vol. abs/1810.02845, Oct. 2018. [Online].
Available: https://arxiv.org/abs/1810.02845
S. Kankanahalli, “End-to-end optimized speech coding with deep
neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Apr. 2018, pp. 2521-2525.
Spatial Channel Model for Multiple Input Multiple Output (MIMO)
Simulations, document, 3GPP 3GPP2 Spatial Channel Model Ad-hoc
Group3GPP, Sep. 2003.
IST-4-027756 ' WINNER II DI1.1.2 V1.2 WINNER II Channel
Models.  Accessed:  Jan. 25, 2019. [Online].  Available:
https://www.cept.org/files/8339/winner2%?20-%20final %20report.pdf
V. Erceg et al., Channel Models for Fixed Wireless Applications,
Standard IEEE 802.16.3¢-01/29r4, IEEE 802.16 Broadband Wireless
Access Working Group, 2001.
L. Liu et al., “The COST 2100 MIMO channel model,” IEEE Wireless
Commun., vol. 19, no. 6, pp. 92-99, Dec. 2012.
T. Wang, C.-K. Wen, S. Jin, and G. Y. Li, “Deep learning-based CSI
feedback approach for time-varying massive MIMO channels,” IEEE
Wireless Commun. Lett., vol. 8, no. 2, pp. 416419, Apr. 2019.
C. Lu, W. Xu, H. Shen, J. Zhu, and K. Wang, “MIMO channel
information feedback using deep recurrent network,” IEEE Commun.
Lett., vol. 23, no. 1, pp. 188-191, Jan. 2019.
Z. Liu, L. Zhang, and Z. Ding, “Exploiting bi-directional channel
reciprocity in deep learning for low rate massive MIMO CSI feedback,”
1IEEE Wireless Commun. Lett., vol. .8, no. 3, pp. 889-892, Jun. 2019.
L. Theis, W. Shi, A. Cunnigham, and F. Huszdr, “Lossy image
compression with compressive autoencoders,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2017.
G. Toderici et al., “Variable rate image compression with recurrent
neural networks,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016.
Q. Yang, M. B. Mashhadi, and D. Giindiiz, “Deep convolutional
compression for massive MIMO CSI feedback,” in Proc. IEEE Int.
Workshop Mach. Learn. Signal Process. (MLSP), 2019.
T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate:
Channel auto-encoders, domain specific regularizers, and attention,”
in Proc. IEEE Int. Symp. Signal Process. Inf. Technol. (ISSPIT),
Dec. 2016, pp. 223-228.
T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4,
pp. 563-575, Dec. 2017.
H. Ye, G. Y. Li, B.-H. F. Juang, and K. Sivanesan, “Channel agnostic
end-to-end learning based communication systems with conditional
GAN,” in Proc. IEEE Globecom Workshops (GC Wkshps), Dec. 2018,
. 1-5.
IS)p Déorner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep learning-
based communication over the air,” 2017, arXiv:1707.03384. [Online].
Available: https://arxiv.org/abs/1707.03384
E. Bourtsoulatze, D. B. Kurka, and D. Giindiiz, “Deep joint source-
channel coding for wireless image transmission,” IEEE Trans. Cogn.
Commun. Netw., to be published.
T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, Jul. 2006.
D. B. Kurka and D. Giindiiz, “Successive refinement of images with
deep joint source-channel coding,” in Proc. IEEE Int. Workshop Signal
Process. Adv. Wireless Commun. (SPAWC), Jun. 2019.
M. S. Ibrahim, A. S. Zamzam, X. Fu, and N. D. Sidiropoulos,
“Learning-based antenna selection for multicasting,” in Proc. IEEE
19th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC),
Jun. 2018, pp. 1-5.
V. Ntranos, N. D. Sidiropoulos, and L. Tassiulas, “On multicast
beamforming for minimum outage,” IEEE Trans. Wireless Commun.,
vol. 8, no. 6, pp. 3172-3181, Jun. 2009.
Y. Shi, A. Konar, N. D. Sidiropoulos, X. Mao, and Y. Liu, “Learning to
beamform for minimum outage,” IEEE Trans. Signal Process., vol. 66,
no. 19, pp. 5180-5193, Oct. 2018.
S. S. Christensen, R. Agarwal, E. De Carvalho, and J. M. Cioffi,
“Weighted sum-rate maximization using weighted MMSE for MIMO-
BC beamforming design,” IEEE Trans. Wireless Commun., vol. 7,
no. 12, pp. 4792-4799, Dec. 2008.
Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted
MMSE approach to distributed sum-utility maximization for a MIMO
interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59,
no. 9, pp. 4331-4340, Sep. 2011.



2198

[67]

[68]

[69]

[70]
[71]
[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]
[90]

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 10, OCTOBER 2019

J. Kaleva, A. Tolli, and M. Juntti, “Successive convex approxima-
tion for simultaneous linear TX/RX design in MIMO BC,” in Proc.
IEEE Asilomar Conf. Signals, Syst. Comput. (ACSSC), Nov. 2015,
pp. 1227-1231.
H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for wireless
resource management,” in Proc. IEEE 18th Int. Workshop Signal
Process. Adv. Wireless Commun. (SPAWC), Sapporo, Japan, Jul. 2017,
. 1-6.
%\e. Lee, M. Kim, and D. Cho, “Deep power control: Transmit power
control scheme based on convolutional neural network,” IEEE Com-
mun. Lett., vol. 22, no. 6, pp. 1276-1279, Jun. 2018.
R. Radner, “Team decision problems,” Ann. Math. Statist., vol. 33,
no. 3, pp. 857-881, 1962.
J. Marschak and R. Radner, Economic Theory of Teams. London, U.K.:
Yale Univ. Press, Feb. 1972.
D. Gesbert and P. de Kerret, “Team methods for device cooperation
in wireless networks,” in Cooperative and Graph Signal Processing,
P. M. Djuric and C. Richard, Eds. New York, NY, USA: Academic,
2018, ch. 18, pp. 469-487.
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.
N. C. Luong et al., “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Commun. Surveys
Tuts., to be published.
D. A. Awan, R. L. G. Cavalcante, and S. Stanczak, “A robust machine
learning method for cell-load approximation in wireless networks,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Apr. 2018, pp. 2601-2605.
J. Nash, “Non-cooperative games,” Ann. Math., vol.
pp. 286-295, 1951.
P. de Kerret and D. Gesbert, “Robust decentralized joint precoding
using team deep neural network,” in Proc. IEEE Int. Symp. Wireless
Commun. Syst. (ISWCS), Aug. 2018, pp. 1-5.
M. Kim, P. de Kerret, and D. Gesbert, “Learning to cooperate in
decentralized wireless networks,” in Proc. 52nd Asilomar Conf. Signals,
Syst. Comput., Pacific Grove, CA, USA, Oct. 2018.
H. Lee, S. Hyun, and T. Q. S. Quek, “Deep learning for distributed
optimization: Applications to wireless resource management,” /EEE J.
Sel. Areas Commun., to be published.
G. Gnecco and M. Sanguineti, “Smooth optimal decision strate-
gies for static team optimization problems and their approxima-
tions,” in SOFSEM 2010: Theory and Practice of Computer Sci-
ence, J. van Leeuwen, A. Muscholl, D. Peleg, J. Pokorny, and
B. Rumpe, Eds. Berlin, Germany: Springer, 2010, pp. 440—451.
Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Miiller, “Efficient
BackProp,” in Neural Networks: Tricks of the Trade (Lecture Notes
in Computer Science), G. Montavon, G. B. Orr, and K.-R. Miiller,
Eds., 2nd ed. Berlin, Germany: Springer, 2012, pp. 9-48.
G. Giaconi, D. Gunduz, and H. V. Poor, “Privacy-aware smart metering:
Progress and challenges,” IEEE Signal Process. Mag., vol. 35, no. 6,
pp.- 59-78, Nov. 2018.
N. Saxena, S. Grijalva, V. Chukwuka, and A. V. Vasilakos, “Network
security and privacy challenges in smart vehicle-to-grid,” IEEE Wireless
Commun., vol. 24, no. 4, pp. 88-98, Aug. 2017.
J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” 2018, arXiv:1812.02858. [Online]. Available:
http://arxiv.org/abs/1812.02858
J. Kone¢ny, H. B. McMahan, D. Ramage, and P. Richtérik,
“Federated optimization: Distributed machine learning for on-
device intelligence,” 2016, arXiv:1610.02527. [Online]. Available:
http://arxiv.org/abs/1610.02527
M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication
efficient distributed machine learning with the parameter server,” in
Advances in Neural Information Processing Systems, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.
Lane Red Hook, NY, USA: Curran Associates, 2014, pp. 19-27.
S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proc. ICML, Jul. 2015,
pp. 1737-1746.
F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “lI-bit stochastic
gradient descent and its application to data-parallel distributed training
of speech DNNS,” in Proc. INTERSPEECH, Singapore, Sep. 2014,
pp. 1058-1062.
N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Proc. INTERSPEECH, 2015, pp. 1488-1492.
A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” Jul. 2017, arXiv:1704.05021v2. [Online]. Available:
http://arxiv.org/abs/1704.05021v2

54, no. 2,

[91] F. Sattler, S. Wiedemann, K. Miiller, and W. Samek, “Sparse binary
compression: Towards distributed deep learning with minimal commu-
nication,” 2018, arXiv:1805.08768. [Online]. Available: http://arxiv.org/
abs/1805.08768

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., A. Singh
and J. Zhu, Eds. Fort Lauderdale, FL, USA: PMLR, Apr. 2017,
pp. 1273-1282.

T. Chen, G. B. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggre-
gated gradient for communication-efficient distributed learning,” in
Proc. 32nd Int. Conf. Neural Inf. Process. Syst. (NIPS), USA, 2018,
pp. 5055-5065.

[94] M. M. Amiri and D. Giindiiz, “Machine learning at the wire-
less edge: Distributed stochastic gradient descent over-the-air,” 2019,
arXiv:1901.00844. [Online]. Available: http://arxiv.org/abs/1901.00844
M. M. Amiri and D. Giindiiz, “Federated learning over wire-
less fading channels,” 2019, arXiv:1907.09769. [Online]. Available:
https://arxiv.org/abs/1907.09769

G. Zhu, Y. Wang, and K. Huang, “Low-latency broadband analog
aggregation for federated edge learning,” CoRR, vol. abs/1812.11494,
2018.

S. Ha, J. Zhang, O. Simeone, and J. Kang, “Coded federated computing
in wireless networks with straggling devices and imperfect CSI,” 2019,
arXiv:1901.05239. [Online]. Available: http://arxiv.org/abs/1901.05239
R. Li et al., “Intelligent 5G: When cellular networks meet artificial
intelligence,” IEEE Wireless Commun., vol. 24, no. 5, pp. 175-183,
Oct. 2017.

M. G. Kibria, K. Nguyen, G. P. Villardi, O. Zhao, K. Ishizu, and
F. Kojima, “Big data analytics and artificial intelligence in next-
generation wireless networks,” IEEE Access, vol. 6, pp. 32328-32338,
2018.

V. P. Kafle, Y. Fukushima, P. Martinez-Julia, and T. Miyazawa,
“Consideration on automation of 5G network slicing with machine
learning,” in Proc. ITU Kaleidoscope, Mach. Learn. 5G Future (ITU
K), Nov. 2018, pp. 1-8.

S. I. Venieris, A. Kouris, and C. Bouganis, “Deploying deep neural
networks in the embedded space,” 2018, arXiv:1806.08616. [Online].
Available: http://arxiv.org/abs/1806.08616

H. Yoo, “Intelligence on silicon: From deep-neural-network acceler-
ators to brain mimicking AI-SoCs,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 20-26.

[92]

[93]

[95]

[96]

[971

[98]

[99]

[100]

[101]

[102]

Deniz Giindiiz (S’03-M’08-SM’13) received the
B.S. degree in electrical and electronics engineering
from METU, Turkey, in 2002, and the M.S.
and Ph.D. degrees in electrical engineering from
NYU Tandon School of Engineering (formerly
Polytechnic ~ University) in 2004 and 2007,
respectively. After his Ph.D., he served as a
Post-Doctoral Research Associate with Princeton
University, and as a Consulting Assistant Professor
with Stanford University. He was a Research
Associate  with CTTC, Barcelona, Spain, until
September 2012, when he joined the Electrical and Electronic Engineering
Department, Imperial College London, U.K., where he is currently a Reader
(Associate Professor) in information theory and communications, and leads
the Information Processing and Communications Laboratory (IPC-Lab).

His research interests lie in the areas of communications and information
theory, machine learning, and privacy. He was a recipient of the
IEEE Communications  Society—Communication — Theory  Technical
Committee (CTTC) Early Achievement Award in 2017, a Starting Grant of the
European Research Council (ERC) in 2016, IEEE Communications Society
Best Young Researcher Award for the Europe, Middle East, and Africa Region
in 2014, Best Paper Award at the 2016 IEEE Wireless Communications and
Networking Conference (WCNC), and the Best Student Paper Awards at the
2018 IEEE Wireless Communications and Networking Conference (WCNC),
and the 2007 IEEE International Symposium on Information Theory (ISIT).
He was the General Co-Chair of the 2019 London Symposium on
Information Theory, 2018 International ITG Workshop on Smart Antennas,
2016 IEEE Information Theory Workshop, and 2012 European School of
Information Theory. He is an Editor of the IEEE TRANSACTIONS ON GREEN
COMMUNICATIONS AND NETWORKING, and a Guest Editor of the IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, Special Issue on
Machine Learning in Wireless Communication. He served as an Editor of
the TRANSACTIONS ON COMMUNICATIONS from 2013 to 2018.



GUNDUZ et al.: MACHINE LEARNING IN THE AIR

Paul de Kerret received the degree in engineering
from the French Graduate School IMT Atlantique
in 2010 and the Diploma degree in electrical
engineering and information technology from the
Munich University of Technology through a double
degree program, and the Ph.D. degree from the
French Graduate School Télécom Paris in 2013.
Since 2015, he has been a Senior Researcher with
EURECOM as part of the ERC-funded project
PERFUME to investigate how to enable efficient
and decentralized cooperation to boost performance
in future wireless networks. He is particularly active in the decentralized
use of machine learning methods to solve coordination problems. He has
been involved in several European collaborative projects on mobile
communications, co-presented several tutorials at major IEEE international
conferences, and authored more than 30 papers in IEEE flagship conferences.

Nicholas D. Sidiropoulos (F’09) received the
Diploma degree in electrical engineering from the
Aristotelian  University of Thessaloniki, Thessa-
loniki, Greece, and the M.S. and Ph.D. degrees
in electrical engineering from the University of
Maryland at College Park, College Park, MD, USA,
in 1988, 1990, and 1992, respectively. He has served
on the Faculty of the University of Virginia (UVA),
University of Minnesota, and the Technical Univer-
) g sity of Crete, Greece, prior to his current appoint-

ment as a Louis T. Rader Professor and a Chair of
the Electrical and Computer Engineering Department, UVA.

His research interests are in signal processing, communications, optimiza-
tion, tensor decomposition, and factor analysis, with applications in machine
learning and communications. He received the NSF/CAREER award in 1998,
the IEEE Signal Processing Society (SPS) Best Paper Award in 2001, 2007,
and 2011, served as IEEE SPS Distinguished Lecturer (2008-2009), and
currently serves as Vice President—Membership of IEEE SPS. He received
the 2010 IEEE Signal Processing Society Meritorious Service Award, and the
2013 Distinguished Alumni Award from the University of Maryland, Dept.
of ECE. He is a fellow of EURASIP in 2014.

David Gesbert (S’96-M’99-SM’06-F’11) received
the Ph.D. degree from the Ecole Nationale
Superieure des Telecommunications, France, in
1997. From 1997 to 1999, he was with the Infor-
mation Systems Laboratory, Stanford University. He
was a Founding Engineer of Iospan Wireless, Inc.,
a Stanford spin off pioneering MIMO-OFDM (now
Intel). Before joining EURECOM in 2004, he has
been with the Department of Informatics, University
of Oslo, as an Adjunct Professor. He is currently
a Professor and the Head of the Communication
Systems Department, EURECOM. He has published about 300 papers and
25 patents, some of them winning 2019 ICC Best Paper Award, 2015 IEEE
Best Tutorial Paper Award (Communications Society), 2012 SPS Signal
Processing Magazine Best Paper Award, 2004 IEEE Best Tutorial Paper
Award (Communications Society), 2005 Young Author Best Paper Award for
Signal Proc. Society journals, and paper awards at conferences 2011 IEEE
SPAWC, 2004 ACM MSWiM. He has been a Technical Program Co-Chair
for ICC2017. He was named a Thomson-Reuters Highly Cited Researchers in
Computer Science. Since 2015, he holds the ERC Advanced grant PERFUME
on the topic of smart device Communications in future wireless networks.
Since 2019, he has been the Head of the Huawei-funded Chair on Adwanced
Wireless Systems Towards 6G Networks. Since 2017, he has also been a
Visiting Academic Master within the Program 111 at the Beijing University of
Posts and Telecommunications and a member in the Joint BUPT-EURECOM
Open5G Lab. He is a Board Member for the OpenAirInterface (OAI) Software
Alliance.

2199

Chandra R. Murthy received the B.Tech. degree
in electrical engineering from IIT Madras, Chennai,
India, in 1998, the M.S. degree in electrical and
computer engineering from Purdue University, West
Lafayette, IN, USA, in 2000, and Ph.D. degree in
electrical and computer engineering from the Uni-
versity of California at San Diego, San Diego, CA,
USA, in 2006. From 2000 to 2002, he was an Engi-
neer with Qualcomm, Inc., San Jose, USA, where
he worked on WCDMA baseband transceiver design
and 802.11b baseband receivers. From 2006 to 2007,
he was a Staff Engineer with Beceem Communications, Inc., Bengaluru, India,
on advanced receiver architectures for the 802.16e Mobile WIMAX standard.
He is currently a Professor with the Department of Electrical Communication
Engineering, Indian Institute of Science, Bengaluru.

His research interests are in the areas of energy harvesting communications,
multiuser MIMO systems, and sparse signal recovery techniques applied to
wireless communications. He is an Elected Member of the IEEE SPCOM
Technical Committee from 2014 to 2016, and has been re-elected from 2017 to
2019 term. His paper received the Best Paper Award in the Communications
Track at NCC 2014 and a paper coauthored with his student received
the Student Best Paper Award at the IEEE ICASSP 2018. He has more
than 50 journal papers and more than 80 conference papers to his credit.
He was an Associate Editor of the IEEE SIGNAL PROCESSING LETTERS
from 2012 to 2016. He is a Past Chair of the IEEE Signal Processing Society,
Bangalore Chapter. He is currently serving as an Associate Editor for the IEEE
TRANSACTIONS ON SIGNAL PROCESSING and the IEEE TRANSACTIONS ON

INFORMATION THEORY, and as an Editor for the IEEE TRANSACTIONS ON
COMMUNICATIONS.

Mihaela van der Schaar (F’09) is currently a John
Humphrey Plummer Professor of machine learning,
artificial intelligence and medicine with the Univer-
sity of Cambridge and also a Turing Fellow with The
Alan Turing Institute, London, where she leads the
effort on data science and machine learning for per-
sonalised medicine. She has received the Oon Prize
on Preventative Medicine from the University of
Cambridge (2018). She has also been a recipient of
the NSF Career Award, three IBM Faculty Awards,
the IBM Exploratory Stream Analytics Innovation
Award, the Philips Make a Difference Award and several best paper awards,
including the IEEE Darlington Award. She holds 35 granted USA patents.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


