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Abstract—Detection of a causal relationship between two or is noiseless and the sampling frequency is above the Nyquist
more sets of data is an important problem across various saiific  rate. As a consequence, the tests are not designed to achieve
disciplines. The Granger causality index and its derivaties 5 given false alarm/detection rate. It is also typicallyuased

are important metrics developed and used for this purpose. - . ;
However, the test statistics based on these metrics ignorked effect that the second-order statistics of the signals of inteaest

of practical measurement impairments such as subsampling, Perfectly known. However, in practice, the causality degec
additive noise, and finite sample effects. In this paper, we has to estimate the second-order statistics from a finiteoenm
model the problem of detecting a causal relationship betwee of possibly undersampled and noisy measurements of the
two time series as a binary hypothesis test with the null and signals of interest. In this paper, our main focus is on the

alternate hypotheses corresponding to the absence and perge tificati f the effects of th i .
of a causal relationship, respectively. We derive the distbution quantification of the efiects of these measurement iInac@sa

of the test statistic under the two hypotheses and show that On the performance of Granger causality detectors. This, in
measurement impairments can lead to suppression of a causalturn, allows us to design the detector to achieve a desired
relationship between the signals, as well as false deteatiof a false alarm/detection probability.

causal relationship, where there is none. We also use the deed The phenomenon of undersampling arises mainly due to the

results to propose two alternative test statistics for caudity inability of the sianal acquisition unit to samole the sibin&
detection. These detectors are analytically tractable, wibh allows Yy 9 q P b

us to design the detection threshold and determine the numbe interest above the Nyquist rate. As shown later in the paper,

of samples required to achieve a given missed detection andunder-sampling can lead to a weakening or even a complete

false alarm rate. Finally, we validate the derived results sing suppression of the causal relationship between two signals

extensive Monte Carlo simulations as well as experiments Bad |, aqdition to this, additive noise can lead to suppressibn o

on real-world data, and illustrate the dependence of detean . . .

performance of the conventional and proposed causality dettors an em_stmg causal relationship, as We"_ as may (_:au_se a false

on parameters such as the additive noise variance and the detection [16], [17]. The effect of these inaccuracies rshfer

strength of the causal relationship. compounded by the fact that the second-order statistics of
the signal of interest, required to compute the GCI, are not
known, and have to be estimated using the acquired samples.

|. INTRODUCTION Therefore, finite sample effects, in addition to undersamgpl
A. Motivation and additive noise, also contribute to errors in the dedacti

_ . .of a causal relationship between the signals of intereghiin
Confirming the presence or absence of a causative relat%

. . ) . per, we model the problem of detection of Granger caysalit
ship between d|ffer_ent ok_Jse_rv_ed phenom_ena IS an |_mport %Da binary hypothesis test, and evaluate the effects of the
problem across various disciplines of physical, biologiaad

. . . measurement impairments listed above on the probabitifies
social sciences. It has been argued that if the phenom

. . . %%?ection and false alarm.
of interest can be represented as a time series, then the
corresponding relationship between them can be quantifigd Related Work
by directed mutual information [1]. It is also known that for

Gaussian distributed time series, the directed mutualr-inf(E. In the_ or|g|na_\l for_mulaﬂon of Granger causal!ty " [2_]’ a
. . . .. lime seriesy[n] is said toGranger causeanother time series
mation reduces to the logarithm of ratio of the prediction

error variances of the time series of interest with and withox[n]’ when the past samples of th] can be used to improve

including the purported causing time series into the piéxfic the estimate of the[n] over what can be predicted using all

model [2]. This quantity, known as th&ranger causalit other information in the universe’, conventionally coresield
' q Y, 9 Y to be the past samples ofn|. Therefore, a causal relationship

index (GCI) [2], [3], has been applied extensively for theoetweenaz:[n] and y[n] can be inferred by comparing the
detection of causal relationships across numerous rdsearc ‘

areas such as neuroscience [4]-[11], physics [12], [1Bhate mean squared prediction error fafn] with and without

science [14], econometrics [15], etc. Most of the prese'rﬂCIUdIng y“’.‘] n the prediction model [18]. Thg prediction
model considering only the past samplesadf] is known

studies on Granger causality assume that the sampllngsnrocaes the restrictive model (R-model), whereas the one inctudi
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The effect of noise on Granger causality was first discussprbcess in the presence of a causal relationship. We moelel th
in [22], and was mathematically analyzed in [16] for dest for causality as a binary hypothesis testing probleth wi
bivariate VAR-1 process. These results were extended tahe null hypothesis corresponding to the absence of a causal
generalized VARp) (pth order autoregressive process) in [17]elationship, and the alternate hypothesis to its preseroe
where a Kalman filtering based technique to alleviate tlsystem model is described in detail in Section Il. Following
detrimental effect of noise was also developed. An alt@reat this, the main objective of this paper is to evaluate thealiete
test statistic for causality detection, known as the phasges performance of GCI for finite samples of the two time series
index, was introduced in [23] and was shown to be mod interest. Our contributions in this direction are asdals:
resilient to noise, as compared to the GCI. Another metric
for causality, known as the time reversed Granger causality
has been discussed in [18], [24], [25]. The authors in [2&Hus 2)

simulation techniques to compare the robustness of GCg tim the presence of additive noise assuming knowledge of

re\(ersed Granger causa_lllty, and phase slope index to ‘_imd_el the second-order statistics of the signals of interese (Se
noise, and found that time reversed Granger causality is the Section 1V.)

most noise resilient. 3
The problem of sub-sampling in Granger causality detection

has been studied in the literature [27]-[34]. In [27], [28],

the authors study the effects of the choice of the sampling

frequency on the detectability of a causal relationshipveen order statistics of the two signals using a finite number

negrological signals. In [28], these derived reSL_JIts aredus of samples when the generative model is unknown. (See
to identify favorable sampling rates for detecting Granger  go.tion V)

causality. In [29], two methods, based on the expectation4)
maximization (EM) algorithm and the variational inference
framework, are proposed to detect causal relationships fro
low resolution data, and their applicability to simulateada
practical data is tested. The problem of causal infereraa fr
an under-sampled time series by using a general purpose
Boolean constraint solver has been discussed in [32]. It is
shown that the method considered in [32] is independent
of the modeling parameters, and can be conveniently scaled
to any number of variables. In [33], the authors propo@e results derived in this paper can be used to charactbaze
three sampling rate agnostic algorithms for the recovers ofPehavior of GCI and related detectors under different pfa}si
causal relationship between observed time series. Themutonditions. In addition to this, the two alternative caitgal
in [34] incorporate the effect of both down-sampling andetectors discussed in this work are easy-to-use repladsme
additive noise in their data model. However, none of theder the GCI. We next describe the system model considered
studies consider the effect of finite samples on the detectith this work.
performance, or model the problem of detection of GrangerNotation Boldface lowercase and uppercase letters repre-
causality as a binary hypothesis testing problem. Theyddso Sent vectors and matrices, respectively. Ftie column of A
not analyze the effects of these physical impairments on tisedenoted bya,. (.)* represents the Hermitian operation on
probabilities of detection and false alarm. a vector or a matrix, an(ﬂ.)T represents the Moore-Penrose
The authors in [1] consider the related problem of estim@seudoinverse of a matridy,0x and Oy represent the
tion of directed mutual information between two time seriegdentity matrix, the all-zero vector and the all-zero matri
using a finite number of samples. Here, the test for a caugaldimensionk, respectively. The/> norm of a vector and
relationship between two time series is modeled as a bindhg Frobenius norm of a matrix are denoted py> and
hypothesis test, and it is shown that the probabilities afsed |||, respectively.CA (1, 0%) represents a circularly sym-
detection and false alarm asymptotically converge to zero @etric complex Gaussian random variable with meaand
the number of samples is increased. In this paper, we prop¥ggiances?®. E[-] and vaf-) represent the mean and variance
to extend the binary hypothesis testing framework for chitysa of a random variable. In general,andz denote the MMSE

1) We derive the effects of down-sampling on the causal
relationship between two signals. (See Section Ill.)
We derive the GCI for the down-sampled time series in

We derive the statistics of the GCI under the two
hypotheses for finite number of samples, and use these
to derive the probabilities of detection and false alarm.
Our analysis accounts for the estimation of the second-

Based on the statistics of GCI, we propose two alterna-
tive test statistics to detect Granger causality and derive
the corresponding probabilities of detection and false
alarm. (See Section VI.)

Using detailed simulations and numerical experiments
based on real-world data, we validate the derived theory
and compare the performance of the two proposed test
statistics against the GCI. (See Section VII.)

detection to GCI. estimate and the corresponding estimation error of a random
variable x. Table | introduces the different symbols used in
this paper.

C. Contributions

In the present work, we consider the problem of detecting
a causal relationship between two possibly sub-sampleg tim Il. SYSTEM MODEL
series, in the presence of additive white Gaussian noise.
We model the time series as two independetit order We consider two complex valued discrete time zero mean
autoregressive (AR)) processes in the absence of a caus@aussian random processés| andd[n] having variances?
relation, and as a bivariate vector autoregressive (AR ando?, respectively, and expressed in the form of a bivariate



TABLE I: A list of notation followed in the paper. similarly rq.[r] andrqq[r], we can write

R, (7] | Thep x p correlation matrix between two q q
random vectors|n] andy|[n — 7] of reelt] =Y al yrelr—k]+ Y a5 yraclr—k]+ 02 d[7]. (3)
lengthp each. k=1 k=1
rzzp[7] | Thep x 1 correlation vector between the Letting regq[7] = [realr], - -, realr —q+1]]T, and similarly
scalarx[n] and itsp past values starting T'ec.q|7], €tC., the above becomes
from x[n — 7. ’

Ty (7] The correlation between the scalars reeT] = a1 e g[T — 1] + @y vacg[r — 1] + 07 0[7]. (4)
x[n] andy(n —7]. We can similarly write

o2 Variance of the WSS random proces)|.

d[n] A noiseless random process sampled at the red[r] = ay' reaq[r — 1] + a5 raaq[m — 1], )
Nyquist rate. and

c[n A noiseless random process, potentially _ H _ 2

" caused byi[n], sampled at the Nyquist rate. radlt] = aiTaaqlr = 1+ 03,917 ©

q The model order for the VAR model The above equations, along with the information thaf0] =

relating c[n] andd[n]. o2, andrqq[0] = o2 can be used to compute.[r], Tci[7],

A The weight matrix relating[n] andd[n]. andrqq[7] for different values ofr.

uln] A downsampled version affn]. Defining

v[n] A downsampled version af[n]. Recglr] 2 E [eqlnlct [n — 7], @)

P The model order for the VAR model ' ?

relatingu[n] andv|n). Redq[7] £ E [cqn]d) [n — 7], (8)

B The weight matrix relating:[n] andv[n| - . .

' ' and similarly definingR ., ,[7] andRgq 4[7], it can be shown
zln] A noisy observat!on Ofin]. using the Weiner-Hopf equations [35] that

y[n] A noisy observation ob[n].

z,[n] The concatenated observation vector of .

length 2p, { a } _ [ Recql0] Reagl0) ] { Fee.g[1] } @

w The weight vector relating[n] andz,[n]. az Rac,q[0]  Raa,q[0] Ted,q[1]

h The weight vector relating[n] and x,[n]. We can therefore calculate the regression coefficients from
the correlation coefficients when the latter are not knowre T
interested reader is referred to [35, Chapter 2] for a detail
derivation of the Wiener-Hopf equations. We can then use

VAR (¢) model as these to compute the estimation error variance as
q q 037 — 03—
c[n] = aj cn —k a5 dn —k e[nl, : _
[n] ; 1l ]+; 5 kd[n — k] + ne[n] [ roe[1] ]H { Roo 0] Reay0) } 1 [ reo[l]
q q Ted,q[1] Ric,q[0] Rad,q[0] Ted,q[1]
din] =Y ajcln— Kkl + > a}gdn -k +nalnl, (1) (10)

el
Il
—

k=1 Also, it can be observed from (2) that the causal dependence

with a; x, i € {1,2,3,4} being the regression coefficients, andf c[n] on d[n] is determined by the coefficient vectay, that
ne[n] andng[n] the innovation components iffn] andd[n], is, there exists a causal relationship onlyif # 0.
respectively. We assume thafn] and d[n] are sampled at Now, in the absence of a causal relationshif;| can
the Nyquist rate, and the temporally white innovation pescealternatively be expressed using a univariate(4Rmodel,

vectorn[n] = [n.[n],na[n]]T is distributed as efn] = g, — 1] + (o, 1)

oy D | _ |
n[n] ~ CN (0, 0 o2 . with ([n] being the zero mean temporally white complex
o sl ~ Gaussian innovation component having a varian@eCon-
For simplicity, we assume that only a unidirectional congli sequently,

from d[n] to c[n| can exist, i.e.as, = 0,forl <k <gq.

7] =g T — 28T
Defining c,[n] 2 [e[n],c[n — 1],....¢[n — q + 1]]7, Tee[T] = 8" Tee [T — 1] + 0¢0[7], (12)
dgn] 2 [dn),dln — 1],....d[n — q + 1%, a; 2 g =R, [0]rceq[1], (13)
[ain,aioy ... aiq)t i €{1,2,3,4}, we can write (1) as, and
[ c[n] ] _ [ all  all ] [ cyln — 1] } [ ne[n] } 2) ol =0l -l 1R, [0]rcc q[1]. (14)
d[n] 0; ai || dy[n—1] naln] |

It is to be noted that in the presence of a causal relatioriship
with 0, being theg dimensional all zero vector. Definingtweenc[n] andd[n] the mean squared prediction error fn]

rect] £ Elc[n]c*In — 7]], realr] £ Elc[n]d*[n — 7]], and using the bivariate modet? , will be smaller than the mean



squared prediction error using the univariate signal mot)fel and
whereas, in the absence of such a causal relationship betwee

them,o—? = O'%C. Ruup =
The GCI uses this property to quantify the causal relationf 7..[0] Tee|M] o Teel(p— 1)M]
ship, and is defined as [2] Tee[M] Tee|O] oo Tee[(p = 2)M]
2 . . . .
T 2 log | 25 ) | . ' ' :
G =108 07276 ' Teel(p = )M] 7recl(p —2)M] ... Teel0]

(21)

%‘he weight vectord, bs, and by can then be determined
via the Wiener-Hopf equations [35] as

In Granger causality, we say that a causal relationshipsexi
betweenc[n] andd[n] if T > 0, and no causal relationship
exists if Tz = 0.

However, bothe[n] and d[n] are assumed to be noiseless b | [ Ruup Ruwyp -1 Tyupl]
and sampled at the Nyquist rate. Moreover, it also assumes [ bs ] - [ } [ ] ’ (22)
that the exact second-order statistics for bojth] and d[n] .
are known. However, these assumptions do not hold in a and by =R, ,ru[l]. (23)
practical data acquisition system. Therefore, in the subsge can then write,
guent sections, we introduce these imperfections, viz.nrdow
sampling, measurement noise, and finite sample effectsaint eu[n] = uln] = bi'uyln — 1] = bilv,[n — 1], (24)
GCI based detector, and analyze their impact on the detectio eo[n] = yn] — bHv,[n — 1]. (25)
performance. In the next section, we discuss the effect of Y P
down-sampling on the GCI. Consequently,

Riup Rovp Tuv,p

T‘Eufu [O] = Ug

H -1
[1l. THE EFFECT OFDOWN-SAMPLING ON GCI B { Tuup[1] ] [ Ruup Ruvp } { Toup[1] ] . (26)
. . ruv,p[l] R'Uu,p RU’U,p ruv,p 1]
Let u[n] andv[n] respectively be versions efn] andd[n]
down-sampled by a facta¥/, such that, Teye,[0] = 02 — il 1R, roup[l]- (27)
u[n] = e[nM —1],v[n] = d[nM —1]. (16) Tee, [0] = real0]

Since we use the second-order statistics of the_ observesl wid (e 1) (1] Ruup Ruvp -1 Typp[l]
sense stationary random processes for detection, we can set L uwu.pl™ uv,p Roup Ruvyp Tyup[l]

the offset parametdrto zero without loss of generality. We n %
can now express[n] andv[n] in the form of a bivariate linear — ri,p[l]R;U{prvv,p[l] i [ ruu,p[l] }
regression process of ordgras Tvv,p
Ruu Ruv ! Ruv —1
uln] _ bl bl up[n — 1] n €uln] (17) X [ R P R P ] { R P ] Rwyprw_,p[l]. (28)
v[n] Of b vpln —1] eln] |’ vu,p vY,p vo,p

Hence, the covariance matrix of the innovation process need

with b;,i € {1,2,4} representing new regression c:oeffl—not be diagonal after down-sampling.

cients, andF [u[n — k]ei[n]] = 0, E[v[n — Kk]eX[n]] = 0,
E [u[ln — Eklei[n]] = 0, and E [v[n — kel [n]] = 0 for k > 0. Similarly, the single variable linear regression modeltfa
It is important to note that the model ordein this case may down-sampled signal[n] can be written as
be different from the model ordgrconsidered in the previous I

uln] = % ay[n — 1] +¢n), (29)

section due to down-sampling.

Since the GCl is a function of the second-order statistics wfith £[n] being the innovation component. Therefore, we get
¢[n] andd[n], we need to derive the second-order statistics of .
u[n] andwv[n] in terms of¢[n] andd[n] in order to quantify f=Rouptonpll]; (30)
the effect of down-sampling on the GCI. and reel0] = 02 — i [1RL ruu (1] (31)
Let ryy[7] = Eu[n]v*[n — 7]], tuvp[r] = Elup[njo*[n —

wu,p
7]l, and Ry, 7] = Eluyln]v [n — 7]], with the absence A causal relationship between[n] and v[n] can now be

of the index|[r] indicating 7 = 0. We can write,r,,[r] = determined by considering the rafi¢; = log, (Trjfio[]o])
ElcinM]c*[nM — TM]] = re[rM]. Similarly, ry, 7] = _ .
[Fec[rM], ree[(T + D)M], ..., ree|(r + p)M]]T, and To illustrate the effect of down-sampling on the GCI,

consider the simple special casén] = ad[n — 1] + 7.[n],
PuulT] = by Puup [T — 1] + by 1y p[r — 1] + 07 6[7], (18) andd[n] = n4[n]. Letting M = 2, we can write

Tup[T] = bflruv,p[T -1+ bfrvvm [T —1], (19) u[n] = ¢[2n] = ang[2n — 1] + n.[2n], (32)
Tou|T] = bfrw,p[T -1+ of]d(S[T], (20) v[n] = d[2n] = ng[2n)]. (33)



Consequentlyy,,[1] = r..[2] = 0, ru[l] = 7ea[2] = 0, and similarly,
Tuw]0] = real0] = 0, andree[0] = re, . [0] = 02. We see that

there exists a causal relationship betweén and d[n| for R.., = { Ruzp Rayp }

any a # 0, but no causal relationship exists betwegn] and '

v[n]. Thus, down-sampling can suppress an existing causal B { Ruup Ruvp } N [ o2 1, 0, ] 7)
relationship between two signals. However, the degree of 0, a,%yIp '
suppression of the causal relationship depends on thesteuc

of the VAR model followed by the signals. We next analyze The optimal weight vector minimizing?, can be obtained
the effect of additive noise on the performance of the GCI.Vvia the Wiener-Hopf equations as

_ —1
IV. GCI wiTH DOWNSAMPLING AND ADDITIVE NOISE w= szrzw[l}' (48)

Let us definez[n] andy[n] as the down-sampled signalsThe minimized value ob?, is

u[n] andwv[n] corrupted by AWGN, such that, 03)2 N rﬁ‘;,p[l]RZzl,przm,p[ll (49)
elnl = uln]+velnl, However, in case no causal relationship exists betwgeh
yln] = wln]+vy[n], (34)  anddfn], and consequently betweern] and y[n], z[n] can

wherev,[n] ~ CN'(0,02 ) andu,[n] ~ CA(0, 02 ). be expressed using the single variable AR model as

Using (17), we can vf/rite, !
] ] _ [bf b [wln—1]], [ euln]+valn] z[n] = b5, [n = 1] + @1 [n], (50)

[y[n] ] B {Of by } {Vp[n —1] ] + { evln] + Vy[n]J " with ¢1[n] being the single variable prediction error, ahd

(35) being the optimal weight vector, computed as

If a causal relationship exists betweem| and d[n], and is

preserved inu[n] andv[n] after down-sampling, it should also h =R, Lo p[1]. (51)
exist between[n] andy[n], and therefore, the past samplegjmjjar 1o the two variable case, the minimized value of the
of x[@]_and y[n] can be used to prediat[n] better than its prediction error takes the form

prediction by using the past samples «f:| alone. Letting

aln] = [x[n] yln]]” and zy[n] = [x[[n] yZ[n]]”, we can 0%, = 0% — vaa (1R rea 1] (52)

express[n] as The GCI therefore becomes

z[n] = WHZ;D[” — 1]+ pa[n], (36) L o?pl ) 03 — r;gc p[l]R;zl_prm,p[l]
with @2[n] being the prediction error for the bivariate VAR ¢ >2 o2, ] 082 02—l [RZ,r..p[1] )
model, andw being the weight vector minimizing the mean (53)
squared vaIuQe 0502 [n]. ) " ) To demonstrate the effects of noise on the GCI, we again
~ Defining og,, = Elw2[n]|*] = Ef|z[n] —w"z,[n —1][*], consider our running examplé[n] = €,[n], c[n] = u[n] =
it can be shown that [35], ad[n — 1] + bd[n — 2] + ¢[n]. Downsampling these by a factor
o2 —o? —whr, M —v Mlw+w'R.. ,w, (37 M = 2 we obtain wln] = en], uln] = bvn — 1] + €,[n],
g2 ol = w1l o, (37 with, 02 = 02 , anda? = [b|?02 + 02 , and consequently,
Where 2 b2 2 2 2 2 54
02 = E[z[n]z*[n]] = o2 —l—ol,, (38) z = [bloc, +o¢ +0V’ Oy = Oc, +UV’ (54)
v (7] = Elzy[n)a*n — 7)) = k7] e 7], (39) rayl0] =0, ray[l] = bo?, . (59)
and Therefore,
R..p = E [z,[n]z, [n]. (40) R b]*0? + 02 + ol 0 (56)
Since the additive noise is independent of bef] and =m0 o, +op |7
v[n], it can be shown that 1b]20
2 2 Ev Vy
raalr] = ruslr] + 02, 317, (@1) Tor = e H Ot &7
Tay[T] = ruo[7], (42) and
2 2 _ 2 2 2 2
TyylT] = Tou[T] + U?,y&[T]. (43) Opy =0z = |b|“cf +o0l 4o . (58)

Substituting equations (18)-(20) into (41)-(43) we obtain We can simplify the GCI as

Tz [T] :b{iruum [T —1]+ bgrvu,p [T —1]+ (Ufu +03,)5[T]7 |b|2052U + Ugu + UzQ/m
(44) TG = 1Og2 5 012/ ) ) (59)
raylr] = bHrayplr — 1 + blro,lr — 1],  (45) 20, (7 ) + 0%, + 2,

ryylT] = bl rp p[r — 1] + (02 + 07 )0[r],  (46)  In the absence of additive noise in battin] and y[n],



2 2 2 N ) N

T reduces tdlg = log, (W}% , as in the previous Again, Xy _,[N] = X,[N]h with h = XJ[N]xy_,[N], and
section. However, as eithet?, , or o, get large, the second 2

term in the expression fdf; converges to zero. Thus, additive h~CN <h, #1 R;j_p) . (62)
noise can also lead to the suppression of a causal relafonsh N-p '

between two signals. We next use the above properties of the estimated regression
The discussion till now assumed that the second-ordggights to derive the statistics of the finite sample estnudt

detector. However, in practice, we have to estimate thergkco

order statistics using a finite number of samples:pf] and o
y[n]. The effects of the use of estimated second-order statist® Mean Squared Prediction Errors

on the detection of Granger causality in an under-sampledrirst, considering the prediction error for the two var@bl
noisy environment are discussed in the next section. model, we can expresan| as

V. FINITE SAMPLE EFFECTS ON THEGCI zln] = z[n] - 2[n]

H H

=zn]—w'zgn—1]—Ww"zg[n—1]. (63)

In case onlyN samples of each of[n] and y[n| are
observed, and the generative model is unknown, we needSivce the innovation process ofn] and the additive noise are
estimate the optimal predictors for the single and two \meia White, Z[n] is zero mean i.i.d. Gaussian with variance
cases, the corresponding prediction error variances, laad t R ) i I B
GCl or an equivalent test statistic using these samplesis$n t El[z[n]["] = op, + E[W" zp[n — 1]z, [n — 1]W]
section, we first discuss the properties of the optimal jgtedi —2R{E[Wz,[n — 1]z*[n]]}
weights for the one variable and two variable prediction —2R{E[W z,[n — 1]z [n — 1]w]}. (64)
models. Then, we use these weights to calculate the statisti
of the finite sample estimates of the corresponding me#ris common in the adaptive filtering literature to assume th
square prediction errors, and finally derive expressionghie Weight error vector to be independent of the regressiorovect
performance of GCI with finite number of observations. ~ as well as the desired output [35]. Hence,

E[Ww"z,[n — 1]a*[n]] = E[Ww"z,[n — 1)z]/[n — 1]w] =0,

A. Properties of Optimal Predictor Weights ) (65)
an
It is known that given a finite number of observations, the

least squares estimate is the best linear unbiased estifoato  E[w" z,[n — 1]sz [n —1]w]

x[n] [35]. Letting [1],...,z[N] be theN available samples THE 1z 1 — 11ENvwH

of z[n], y[1],...,y[N] be the N available samples of[n], (Elzsn Q]Z” In = 1]EWwT])

and 2[n] = wfz,[n — 1] be the least squares (LS) estimate —1rlRr To R-1 | = 42 2p (66)

of z[n] generated using the two variable model, we can write PN —pT P 2N —
XN—p[N] =RXN_p[N]| + Xn_p[N], (60) Substituting these in (64), we can write

wherexy_,[N] is the error term orthogonal to the measure- El#n]2] = o2, (1+ 2p 67)

ment space. Alsoy is the least squares estimate of the weight 2 N-p)’

vector, given as [35] We can similarly argue, for the one variable model, that

#[n] is also zero mean i.i.d. Gaussian distributed, with
W = Z[ [N)xn—p[N]. (61)

. - . . 11121 A2 p
Here,w is a finite sample estimate of the true weight vector Elj&[n]]"] = oy, <1 Ty o p> : (68)
w with Z,[N] = [z,[N — 1],2,[N — 2],...,2,[p]]*, and i o .
() represents the Moore-Penrose inverse of a matrix. Sincel hus, the_estlmates of the predlcuon error variances from
the innovation process and the measurement noise are wi@ one variable and two variable regression models of the
and zero mean, it can be shown thathas the following SYSt€m can be expressed as

properties [35]: 1 N
. 2
1) w is a an unbiased estimator of. . h=x — Z |Z[n]]%, (69)
2) The covariance matrix of is coMWw) = v22 R} . e
pURZ,P N
“ o o _ _ 1 1112
Therefore,% = w + W, with W ~ CN (0, g2 R} ). t2 = 57— 5 n;rlkf[n]l : (70)
Similarly, considering the single variable prediction rebd -
we can writexy_,[N] in terms of its projectiongy_,[N] on These can now be used to calculate the GCI as
the data matrix, X,[N] = [x,[N—1],x,[N—2],...,x,[p]]?, T —1 th (71)
and the error componetty_,[N] = xy_p[N] — Xny_p[N]. G = 108 to )’



However, sincé ¢ is a logarithm of ratios of random variables, and,
its statistics become hard to determine. Instead, we define 1
Ty =277 = 12 as a test statistic, for simplicity of analysis. var(ty)

(o, + 0% + 202,0%)

2
P 2p >
x| 1+ +
< (N-p)? N-p

1
Val’(tz) + N——p <0;l 19202 o2

SinceZz[n] andi[n| are the measurement errors for the same
process¢; andts cannot be considered independent. However,
since both; andt, are sums of a large number of i.i.d. random
variables, we can use the central limit theorem to approtéma

Y27 T

these as Gaussian r.v.s [36]. Note that this approximaton i ! ( 3p* n 2p )) (80)
valid when the number of sampléé is much larger than the A\ (N-p2 N-p/]°
model orderp. Now

5 Consequently, it can be shown that

Elts] = 02, <1 + 5 fp) , (72) e,
(t1,t9) = —22—. (81)
and ) N-p
var(ty) = L (1 + 2p ) _ (73) The GCI can therefore be approximated as the ratio of two
N —p ¥ N-p correlated Gaussian r.\ts andt, whose statistics are derived
Similarly, above. In the next subsection, we use the above statistics to
calculate the probabilities of detection and false alarm.
Elt] = 02, <1+ Np_p) . (74)

However, in the presence of a causal relationship between

y[n] andz[n], wHz,[n — 1] will be a better estimate of[n]

than hx,[n — 1], therefore,wz,[n — 1] can be written
aswiz,[n — 1] = hflx,[n — 1] + £[n], such that,[n] is

orthogonal toh’x,[n — 1]. Consequently,

p1[n] = pa[n] + £[n], (75)

with E[Z[n]e3[n]] = 0, and

2 _ 2 2
Tpy = Oy, + 0%,

(76)

whereo? £ var(#?).

Now, since#[n] = wfz,[n] — hflx,[n], it can be shown
that E[£[n]] = 0, and,

E[|#[n]|?] wiR.. ,w+h"R,, )h—2R{wlR.,h}

_ H —1 H —1
- rzz,pRzz,prZZ#? + rww,pRmm,prI%P

—2R{rL R R..,R.) Tewp}.  (77)
Therefore,i[n] = Z[n] + £[n] — h¥x,[n — 1] and
P
Elti] = (02, +03) (1 + 5 _p)
2 p o
= Elt 2 (1 - £ (78
402, (14 52 ) - 2. 79
Similarly,
E[t?] = E?[t,] + ! (02, +02)% (1+-2— 2 (79)
! N—p % ¢ N-p) "’

C. Performance of GCI

Now, we declare a causal relationship to exist between the
two signals if the ratidl’y = i—f is below a threshold. Since
t; is the sum of non-negative terms, it is almost surely pasitiv

and therefore
PI‘{TE < /\} = Pr{)\tl —to > 0} (82)

Sincet; andt, are approximated as correlated Gaussian r.v.s,
therefore, from (78)7p £ \t; — t, can also be approximated
as a Gaussian r.v. with mean and variance

Np >—)\02 P

E[Tp] = (A\-1)E[ta]+\o3 <1 +

—p 2N —p’
(83)
and
var(Tp) = Mvar(t;) + var(ty) — 2\cov(ty,t2), (84)
respectively.
Now, under the null hypothesisky, o2, = o2, and

U%\Ho = 0. Hence, undef,, the above simplify to

pirp.0 = E[Tp|Ho) =
_ 2 p _ 2 p
(A —1)02, (1 T _p) o2, (—N _p) . (85)

ol 2% 2
_ )\2 1 w2 1
A"+ )N -p ( N —p)
ol 3p? 2p ol
_ AQ p2 ( 4 > _ P2 . (86)
N-p\(N-p3? N-p N—p
Similarly, under the alternate hypothesi;, ¢2 > 032,

Y1



and therefore, and

s = A2 P 2 _ 1 2 2 Y\
o & BT ] =0 (14 2 ) o= 3 |02 Do, (14
p 2 p 2
+(A—1) (1—!——)—0 — (87) 3 2 o
N 2N —p’ — 2ot —2A=2_ | (95
b P AC’*"l((N—1)2+N—1> Ao ©9
4 9 - o
2p Consequently, the probability of false alarm is given as) (96
2 L 2
07,1 = Var(Tp|Hi) = (A + 1)N — (1 N _p> at the top of the next page.
4 2 2 g2 2 Under the alternate hypothesis,
a2 (14 L yox2Zeli (q P
N—p N — N — N—p 1
2 D ( W ) S % (g Fpltal = (3~ 1), (1 TN- 1)
N-p\(N-p3? N-p N-p af1s — (0 —A) 1 ©7)
N-1) Ve UN-T

Based on these, the probability of false alarm can lend
calculated as

1 ) 1 \?

Pea = Pr{Tp > 0[Ho} = Q (ZT_DaZ> . (89) varnTp|H.) = N_1 (A2 +1) <1 +5 7 1>

D

2 2

Similarly, the probability of correct detection of a causal + A2 <1+ 2 > —952 A <1+ 2 >

relationship,Pp, can then be calculated as N -1 2 N —
3 2
_ _ HTp,1 4

Using (89), a detector providing a given false alarm rate @he probability of detection can thus be expressed as (99) in
P, can be designed by selecting a threshblthat satisfies the next page.

2 We observe from (99) that the probability of detection
{aiz()\ -1) < Np— ) o—f,ZNp_ } depends on the raties-, which can in turn be viewed as
P 4 P ) the relative difference %etween the variances of the ptiedic
= QY (Pr)| (A2 +1) ©? (1 + P ) error under the one variable and the two variable models- Qqn
N — N-—p sequently, the difference between the mean square piadicti
ol 3,2 9 4 error for the single and two variable prediction models,, i.e
2__¥2 ( P 5+ P ) —2X ] (91) t1 —to can be used as a test statistic to detect the presence of
N-p\(N-p3? N-p a causal relationship. We inspect the use of ¢, as a test

The above reduces to a quadratic equation ithat can be Statistic in the next section.
solved to obtain the detection threshold for the detector.

As an example, consideN samples of signals|n| and
v[n] corrupted by AWGN and observed asn] and y[n],

respectively, such that[n] = ¢,[n] and V1. GRANGER CAUSALITY DETECTION BASED ON THE
DIFFERENCE OFERROR TERMS
uln] = { ol 7o (92)
aep[n] + ey a[n] Hi

H _ 2 _ 2 —
\|N'|t2h 2va4r_(ev2) '_I'hearivkv—argemz) < K/ o bant(ng)a (;‘1’3) - Let T 2 ¢, — t, denote the difference in the finite sample
U0, T e, =0, 150 y (59, estimates of the mean squared errors of the one variable and
gil Ho the two variable prediction models. It can be argued Thats
0—32 = { 2 g2 la|*o? o2 A A (93) the difference of two correlated Chi-squared r.v.s., eaith w
Tew T, T 523527 = o1 — ! 2(N — p) degrees of freedom. Therefore, the pdff can
2 be written as [37]
H _ 2 2 vy
with A = |CL| Uev <1 - m) |y|N_p_1
fre(y) = (m — )'[2var(t1)var(t2) — COVA(ty,ta)y| (N —P)
Therefore,

N— i
1 "(N—pti-1) [ 2
A-2 xexp(—a y) Y TR (—) , Yy <0;
[Tp,0 = 05, (/\—1+ N 1) (94) 4 — (N—p—i—1!\y|



V-1 (A-1+432)

Pa=Q - = (96)
\/(/\2 + 1)Ué2 (1 + %) o A20é2 ((Nil)2 + %) B 2/\N‘ill
N-1((A=102 (1+5) - A(1+ 55 ) — (02, — A)xg
P — ( ® ( 1) ( 1 @ N 1) (99)
2 4 1 2 2 2 ? 2 2 2 4 3 2
(/\ +1)U¢1 (1+ﬁ) +A (1+——1) _20902A 1+——1) +0¢1 ((N—1)2 +m)
fre(y) = R detection threshold is well approximated by
N (m — 1)![2var(t;)var(ty) — COV2(tq, to)y] (N —P)
N—p—1 ; \/QQ%(PFA)O?%Q
1 (N—p+i—1!/ 2\ A= ; (107)
xexp _?fy > N —p—i—1! 3y , Y >0, N—1
—p—1— 1)
i=0 p R 00 and the probability of detection as a function of the targéte
(100) alarm probabilityP;. , can be approximated as
with

Q' (Ppa) V203, — VN —po

4 2 2
\Jop+ 20@20352

Based on the above, the number of samples required to attain
i [(var(t;) — var(ts))] a given pair of probabilities of detection and false alarm ca
=~ . (102) .
var(ty )var(ta) — CoV?(t1,t2)) be approximated as

[(var(ty) + var(ts))? — 4cO(t1, £5)]
- var(ti)var(te) — cov(t1,t2)) ’

(108)

o1 =@

and

2
. . . . . 2 2
The p.d.f. of T is in the form of a series, which makes it o, . Qil(PD) 14 2%22

- -1
difficult to obtain the probabilities of detection and faldarm N~p+ (Q (PFA)\/i o2
in closed form. However, for larg&', T~ can be approximated

T 0%

109)
as a Gaussian r.v., such that,
s D Reuvisiting the example considered in the previous sections
E[Tc|Ho) = —og, N—p (103) e observe thaty? = o2, 02, = o7 — A, using which, it
is easy to obtain the expressions for the probabilities Iskfa
E[Tc|H1] = 0925 <1 4 p > — gfaz p , (104) alarm and detection. We omit writing out the expressions for
N-—p N-—=p the sake of brevity.
and
) We can also use the mean squared value of the difference of
1 4 2p error terms as a test statistic to detect the presence ofsalcau
var(To[Ho) = N —p [2%2 (1 TN —p) relationship between[n] andy|[n]. Lettingi[n] = &[n]—z[n],
2,2 5 and N
_ 4 P P o 4 1 5
T, ((N_p)Q + N—p) 20«:21' (105) Ty 2 N Zl|x[n]|2, (110)
n=p+

it can be shown that

N — N—»p E[Ta|Ho] = o2, (N?’f p) : (111)
+ o} (1+NL—;))2+2U%2"20§2 (1+Np—p)2 and
_ . H p-1 H 1
e e L T g
(N —p) —-p —2R{rR R.R,, Towp) + ﬁ + N“’—ip. (112)

Using the above statistics, it is now straightforward tagies
the detector to achieve a given probability of false alarm, However, the higher order statistics and the exact distribu
and obtain closed-form expressions for the probabilityatdd tion of 7'y cannot be found in closed form. Therefore, we
alarm and detection, similar to (89) and (90), respectiviely evaluate its performance via simulations. To the best of our
particular, whenV > p, i.e., the number of samples is muctknowledge, the test statisti¢g~ and 7’4 have not been used
larger than the model order, it can be easily shown that thethe literature to detect Granger causality.
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Fig. 1: Value ofT's at different SNRs, fou = 0.5, with known
second-order statistics.

VII. SIMULATION RESULTS 0.6 |Line:Theory
Marker: Simulation o N=100

In this section, we use Monte Carlo simulations to ct N=150
roborate our analytical expressions and illustrate thatixel A N=200
performance of different test statistics for detecting rigjex
causality. We also illustrate the causality detection querf
mance ofT¢ using real-world data with known ground trutt ‘
available in [38] 11 1.2

For the simulation-based study, we consider a system moael (b)
similar to the example discussed in the previous sections,
for different values of the variance of the additive noisel arig. 2: Probabilities of (a) detection and (b) false alarnmaas
Varying number of Samp|es_ The probabi“ties of detectiod afunction of the detection threshold for the test statisti(TE.
false alarm are obtained by averaging ol&r000 independent

realizations of the signals of interest.
detection threshold becomes sharper with an increase in the

A Effect of Additive Noise numt_)er of sample;,_ and gsymptotically appro>_<imates a step
function. The transition point of the step function occuts a
In Fig. 1, we plot the mean value of the test statigicfor  the mean of the test statistic under the respective hypeshes
the example considered in Section IV, with= 0.5. Here we \hich corresponds to the 50% probability of detection/dals
inspect the effects of noise on the GCI. We define* ;77“1 alarm point on Figs. 2a and 2b. Therefore, the threshotd1
gives a zero error rate when infinite samples of the two sgynal
of interest are available. However, in case of a finite number

to zero as the noise variance increases. The reduction in mesamples,)\ has to be chosen carefully to achieve reliable

SNR will make it harder to detect the presence of a Caug‘lﬁrformance. . . .
relationship between the signals of interest. In Fig. 3, we compare the theoretical and simulated receiver

operating characteristics (ROCs) for the example constter
» in Section V fora = 0.25 with different values ofN, at
B. Finite Sample Effects an SNR of0 dB. It is observed that for a small number of
We now consider the effects of using a finite number cfamples, the ROC is close to ti&-4 = Pp line, whereas,
samples on the GCI, as discussed in Section V. In Figs. e a large number of samples, the probability of detection
and 2b, we compare the simulated detection and false aldsecomes almost independent®f 4. This is in line with the
probability obtained by using the test statisfig as a function behavior predicted in (96) and (99).
of the detection thresholdh and for different number of Having established that the use of finite samples indeed
samples, witha = 0.25 and~; = 2 = 0 dB. The simulated causes a deterioration in the performance of the CGI, we now
performance ofl’r is found to be in close agreement withdiscuss the performance of the other two test statistiesvi
the values computed using our analytical expressions ip (¥hd74, as discussed in Section VI. In Fig. 4a, we compare the
and (99). It is also observed that the behavior of both thkeoretical and simulated ROCs for the example considered i
probability of detection and false alarm as a function of th®ection VI, witha = 0.25, for different number of samples,

A

and v, = ;—3 as the observation SNRs farin] and y[n].
We see that the mean value 6 converges to a value close
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0.6 O N=1000
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, O N=50 0.2 Line: Theory
Line: Theory o .
0.25 Marker: Simulation Marker: Simulation
s 0 ‘ ‘ ‘ ‘
i 0 0.2 0.4 0.6 0.8 1
o | | | |
0 0.2 0.4 06 08 1 Pea
PFA (@)
Fig. 3: ROC for detection based df, at an SNR of0 dB,
for different number of samples. 1  ennnrg
o ,;iﬁwy
and at an SNR of) dB. We observe that the ROC fdf 08 ! ﬁ_{?f 7
shows a behavior similar to that fa'y with an increase in q v

the number of samples. Therefore, an appropriate choice
the detection threshold becomes important fdf as well.

In practice, one is typically provided a given number of o
samples of a pair of time-series data to perform detectiol
In this case, there is a trade-off between the window siz
N and the quality of the ROC obtained. Using a largér
improves the reliability of detection, but the resulting R@as
more “jumps” because it is computed by averaging over fewe
instantiations. We illustrate this in Fig. 4b, where we glog ‘ ‘ ‘ ‘
ROC for the setup of Fig. 4a with the total number of available 0 0.2 0.4 0.6 0.8 1

O N=1000, 10 Instantiations| -

O N=500, 20 Instantiations
N=200, 50 Instantiations

Vv N=100, 100 Instantiations

samples fixed at0, 000. We see that the ROC witlv = 100 Pea
(averaged overl00 instantiations) matches well with the (b)

corresponding curve in Fig. 4a, wheté, 000 instantiations

were used. For higheW, the performance improves, but thef r different number of samples\{) (a) averaged over 10,000

quahty_ of .the ROC deteriorates, becausg the probability PRalizations in all cases, (lmbtained for a fixed data record
detection is averaged over a correspondingly fewer numl?gr

of instantiations. Thus, given a data record of a given saze, hgth (10,000) divided into windows of lengfi.
good choice forN is thus the largest one such that the ROC
is averaged over abouf0 instantiations.

In Fig. 5, we repeat the experiment considered in Fig. &NRs. In this case, we use the Neyman-Pearson criterion to
by fixing the number of samples af[n] and y[n] at 100 fix the probability of false alarm at 10%. As expected, an
and varying the SNRs. Again, the theoretical and simulatédfFrease in the number of samples leads to improved detectio
plots are in close agreement, with the concavity of the RORErformances for the same SNR. Therefdfg, can also be

Fig. 4: ROC for detection based dft, at an SNR of0 dB,

increasing with the SNR. used to detect a causal relationship between a pair of signal
In Figs. 6 and 7, we evaluate the performancelafas a " the finite sample regime.
test statistic for detection of a causal relation betwegr In Fig. 8, we compare the simulated performancel®f

and y[n] for a setup similar to the example considered idc andT’s for the example considered previously, with=
Section V, witha = 0.25. Since theoretical expressions fo)-25, at an SNR of 0 dB and for 100 samples. We observe
the behavior ofl’y are not derived, these are not considerdfiatT’4, despite being theoretically intractable, offers the best
here. In Fig. 6, we plot the ROC &, for different SNRs for Performance among the three test statistics considereusn t
100 samples of each afn] andy[n] being used for detection. Paper, followed byI'> and Tz respectively. It is interesting
The performance df’4 under different SNRs is seen to mimicto note that if the exact knowledge about the second-order
that of T and T, with the concavity of the ROC increasingstatistics is available, then the performance of the these t
with the SNR. In Fig 7, we plot the probabilities of detectiotatistics should be identical.

for different numbers of samples as a function of the signal
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* SNR=6dB
¢ SNR=3dB
SNR=0dB | |
O SNR=-3dB 4
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0/ | | | | Fig. 7: Probability of detection using, at a fixed false alarm
0 0.2 0.4 0.6 0.8 1 rate of 10% as a function of the SNR.

PFA

Fig. 5: ROC for detection based of, with N = 200
samples, for various values of the SNR.

0.8

0.6
Q_D # SNR= 6dB
A SNR=3 dB
0.4% SNR=0dB
0 SNR=-3 dB
O SNR=-6 dB L L . .
0.2/ 0 0.2 0.4 0.6 0.8 1
Pea
o ‘ ‘ ‘ ‘ Fig. 8: ROC of test statistic§z, Tc and T4 for N = 100
0 0.2 0.4 0.6 0.8 1 samples at an SNR of 0 dB.

PFA

Fig. 6: ROC for detection based ofi4, with N = 100 ) )
samples, for various values of the SNR. For generating the experimental results, we assumed that

the data was uniformly sampled at Nyquist rate. However,
neither the model parameters of the data nor the additive
noise variance are known. Hence, an order 1-VAR generative
model is assumed, and each data set is preprocessed to make

In Figs. 9 and 10, we plot the performance obtained frofhzero mean. The detection threshold for a given false alarm
the test statisticTo on a real-world dataset with known'ate (Pra) is calculated assuming the two sequences to be
ground truth, available in [38]. Fig 9 corresponds to dat@dependent and white, and using the sample variance of the
pairs 65 — 67 of this database. These data pairs consist 6fUsed sequence a$, in (107).
the returns from related stocks over a period of five years.The data pairs are divided into windows of length and
Similarly, Fig 10 corresponds to data pé of the database, the test statisti@ is calculated and compared to the threshold
containing temperature measurements from inside anddeutdn (107). The results of these comparisons are averaged over
a room taken every five minutes. These four data sets w@lethe sample windows to obtain the probability of detestio
selected out of the08 available data sets because: for a given probability of false alarm. The jitters in the tslo
OarF due to the averaging_ over the relatively small number
system model ot s_amples that were available. The performance of data set
5 ' . . . 62 is poorer than data sets 65-67, for the same valu®’ of

) The number of samples in these time series were suf-. . . .
- . e . ~Indicating either a weaker causal relationship, or largeoant

ficiently large to estimate of probabilities of detec'uonf dditive noise. or both. Nonetheless. the ROC. follows a

and false alarm with good accuracy. o a . ' y '

pattern similar to that predicted by (108).

C. Detection Performance df- with Real World Data

1) They represent time series data, in accordance with
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Fig. 9: Performance of the test statisti¢: on the real-world
dataset$7 — 69 in [38] for different numbers of samples.

0 . . . .
0.2 0.4 0.6 0.8 1

PFA

Fig. 10: Performance of the test statisfi¢: on the real-world
dataset59 in [38] for different numbers of samples.

In Fig. 11, we plot the performance @f- for real-world

data used in Fig. 10 with different amounts of added noise for
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1.2

0.8f
206t

A No added noise

0.4 ¢ SNR=20 dB
O SNR=10 dB
O SNR=0 dB
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0 0.2 0.4 0.6 0.8 1
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Fig. 11: Performance ofls for the dataset considered in
Fig. 10 for N = 200 with different amounts of added noise.

sentation, and in particular the simulation results in thpg.

VIII. CONCLUSIONS

In this work, we derived the effects of different data
acquisition impairments on the detection of a causal kafati
between two signals. We showed that these effects, viz. down
sampling, additive noise, and finite sample effects, coeidl|
to a significant deterioration in the performance of the GCI,
both individually as well as cumulatively. We derived the
probabilities of detection and false alarm for the GCI urttier
impairments. Following this, we proposed two alternatiest t
statistics, based on the difference of mean squared erroste
and the mean squared value of the difference of error terms.
Via extensive simulations, we showed that the derived tesul
corroborate the simulated as well as real-world data, vhiéh t
test statistic based on the mean squared value of the differe
of error terms outperforming the other two statistics. A enor
precise analysis of this test statistic is an interestimgation
for future research.
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