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Statistical Tests for Detecting Granger Causality
Ribhu Chopra, Chandra R. Murthy, and Govindan Rangarajan

Abstract—Detection of a causal relationship between two or
more sets of data is an important problem across various scientific
disciplines. The Granger causality index and its derivatives
are important metrics developed and used for this purpose.
However, the test statistics based on these metrics ignore the effect
of practical measurement impairments such as subsampling,
additive noise, and finite sample effects. In this paper, we
model the problem of detecting a causal relationship between
two time series as a binary hypothesis test with the null and
alternate hypotheses corresponding to the absence and presence
of a causal relationship, respectively. We derive the distribution
of the test statistic under the two hypotheses and show that
measurement impairments can lead to suppression of a causal
relationship between the signals, as well as false detection of a
causal relationship, where there is none. We also use the derived
results to propose two alternative test statistics for causality
detection. These detectors are analytically tractable, which allows
us to design the detection threshold and determine the number
of samples required to achieve a given missed detection and
false alarm rate. Finally, we validate the derived results using
extensive Monte Carlo simulations as well as experiments based
on real-world data, and illustrate the dependence of detection
performance of the conventional and proposed causality detectors
on parameters such as the additive noise variance and the
strength of the causal relationship.

I. I NTRODUCTION

A. Motivation

Confirming the presence or absence of a causative relation-
ship between different observed phenomena is an important
problem across various disciplines of physical, biological, and
social sciences. It has been argued that if the phenomena
of interest can be represented as a time series, then the
corresponding relationship between them can be quantified
by directed mutual information [1]. It is also known that for
Gaussian distributed time series, the directed mutual infor-
mation reduces to the logarithm of ratio of the prediction
error variances of the time series of interest with and without
including the purported causing time series into the prediction
model [2]. This quantity, known as theGranger causality
index (GCI) [2], [3], has been applied extensively for the
detection of causal relationships across numerous research
areas such as neuroscience [4]–[11], physics [12], [13], climate
science [14], econometrics [15], etc. Most of the present
studies on Granger causality assume that the sampling process
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is noiseless and the sampling frequency is above the Nyquist
rate. As a consequence, the tests are not designed to achieve
a given false alarm/detection rate. It is also typically assumed
that the second-order statistics of the signals of interestare
perfectly known. However, in practice, the causality detector
has to estimate the second-order statistics from a finite number
of possibly undersampled and noisy measurements of the
signals of interest. In this paper, our main focus is on the
quantification of the effects of these measurement inaccuracies
on the performance of Granger causality detectors. This, in
turn, allows us to design the detector to achieve a desired
false alarm/detection probability.

The phenomenon of undersampling arises mainly due to the
inability of the signal acquisition unit to sample the signal of
interest above the Nyquist rate. As shown later in the paper,
under-sampling can lead to a weakening or even a complete
suppression of the causal relationship between two signals.
In addition to this, additive noise can lead to suppression of
an existing causal relationship, as well as may cause a false
detection [16], [17]. The effect of these inaccuracies is further
compounded by the fact that the second-order statistics of
the signal of interest, required to compute the GCI, are not
known, and have to be estimated using the acquired samples.
Therefore, finite sample effects, in addition to undersampling
and additive noise, also contribute to errors in the detection
of a causal relationship between the signals of interest. Inthis
paper, we model the problem of detection of Granger causality
as a binary hypothesis test, and evaluate the effects of the
measurement impairments listed above on the probabilitiesof
detection and false alarm.

B. Related Work

In the original formulation of Granger causality in [2], a
time seriesy[n] is said toGranger causeanother time series
x[n], when the past samples of they[n] can be used to improve
the estimate of thex[n] over ‘what can be predicted using all
other information in the universe’, conventionally considered
to be the past samples ofx[n]. Therefore, a causal relationship
betweenx[n] and y[n] can be inferred by comparing the
mean squared prediction error forx[n] with and without
including y[n] in the prediction model [18]. The prediction
model considering only the past samples ofx[n] is known
as the restrictive model (R-model), whereas the one including
the effects ofy[n] is known as the unrestricted model (U-
model). In addition to the GCI, several metrics for quantifying
Granger causality have been studied [19], [20]. The system
model with two time series [2] has been also generalized
to study causal relationships between more than two time
series [21]. However, all these studies assume the samples are
noiseless, and ignore the finite sample effects on the second-
order statistics being estimated.
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The effect of noise on Granger causality was first discussed
in [22], and was mathematically analyzed in [16] for a
bivariate VAR-1 process. These results were extended to a
generalized VAR(p) (pth order autoregressive process) in [17],
where a Kalman filtering based technique to alleviate the
detrimental effect of noise was also developed. An alternative
test statistic for causality detection, known as the phase slope
index, was introduced in [23] and was shown to be more
resilient to noise, as compared to the GCI. Another metric
for causality, known as the time reversed Granger causality,
has been discussed in [18], [24], [25]. The authors in [26] used
simulation techniques to compare the robustness of GCI, time
reversed Granger causality, and phase slope index to correlated
noise, and found that time reversed Granger causality is the
most noise resilient.

The problem of sub-sampling in Granger causality detection
has been studied in the literature [27]–[34]. In [27], [28],
the authors study the effects of the choice of the sampling
frequency on the detectability of a causal relationship between
neurological signals. In [28], these derived results are used
to identify favorable sampling rates for detecting Granger
causality. In [29], two methods, based on the expectation
maximization (EM) algorithm and the variational inference
framework, are proposed to detect causal relationships from
low resolution data, and their applicability to simulated and
practical data is tested. The problem of causal inference from
an under-sampled time series by using a general purpose
Boolean constraint solver has been discussed in [32]. It is
shown that the method considered in [32] is independent
of the modeling parameters, and can be conveniently scaled
to any number of variables. In [33], the authors propose
three sampling rate agnostic algorithms for the recovery ofa
causal relationship between observed time series. The authors
in [34] incorporate the effect of both down-sampling and
additive noise in their data model. However, none of these
studies consider the effect of finite samples on the detection
performance, or model the problem of detection of Granger
causality as a binary hypothesis testing problem. They alsodo
not analyze the effects of these physical impairments on the
probabilities of detection and false alarm.

The authors in [1] consider the related problem of estima-
tion of directed mutual information between two time series,
using a finite number of samples. Here, the test for a causal
relationship between two time series is modeled as a binary
hypothesis test, and it is shown that the probabilities of missed
detection and false alarm asymptotically converge to zero as
the number of samples is increased. In this paper, we propose
to extend the binary hypothesis testing framework for causality
detection to GCI.

C. Contributions

In the present work, we consider the problem of detecting
a causal relationship between two possibly sub-sampled time
series, in the presence of additive white Gaussian noise.
We model the time series as two independentpth order
autoregressive (AR(p)) processes in the absence of a causal
relation, and as a bivariate vector autoregressive (VAR(p))

process in the presence of a causal relationship. We model the
test for causality as a binary hypothesis testing problem with
the null hypothesis corresponding to the absence of a causal
relationship, and the alternate hypothesis to its presence. The
system model is described in detail in Section II. Following
this, the main objective of this paper is to evaluate the detection
performance of GCI for finite samples of the two time series
of interest. Our contributions in this direction are as follows:

1) We derive the effects of down-sampling on the causal
relationship between two signals. (See Section III.)

2) We derive the GCI for the down-sampled time series in
the presence of additive noise assuming knowledge of
the second-order statistics of the signals of interest. (See
Section IV.)

3) We derive the statistics of the GCI under the two
hypotheses for finite number of samples, and use these
to derive the probabilities of detection and false alarm.
Our analysis accounts for the estimation of the second-
order statistics of the two signals using a finite number
of samples when the generative model is unknown. (See
Section V.)

4) Based on the statistics of GCI, we propose two alterna-
tive test statistics to detect Granger causality and derive
the corresponding probabilities of detection and false
alarm. (See Section VI.)

5) Using detailed simulations and numerical experiments
based on real-world data, we validate the derived theory
and compare the performance of the two proposed test
statistics against the GCI. (See Section VII.)

The results derived in this paper can be used to characterizethe
behavior of GCI and related detectors under different physical
conditions. In addition to this, the two alternative causality
detectors discussed in this work are easy-to-use replacements
for the GCI. We next describe the system model considered
in this work.

Notation: Boldface lowercase and uppercase letters repre-
sent vectors and matrices, respectively. Thekth column ofA
is denoted byak. (.)H represents the Hermitian operation on
a vector or a matrix, and(.)† represents the Moore-Penrose
pseudoinverse of a matrix.IK ,0K and OK represent the
identity matrix, the all-zero vector and the all-zero matrix
of dimensionK, respectively. Theℓ2 norm of a vector and
the Frobenius norm of a matrix are denoted by‖·‖2 and
‖·‖F , respectively.CN (µ, σ2) represents a circularly sym-
metric complex Gaussian random variable with meanµ and
varianceσ2. E[·] and var(·) represent the mean and variance
of a random variable. In general,x̂ and x̃ denote the MMSE
estimate and the corresponding estimation error of a random
variablex. Table I introduces the different symbols used in
this paper.

II. SYSTEM MODEL

We consider two complex valued discrete time zero mean
Gaussian random processesc[n] andd[n] having variancesσ2

c

andσ2
d, respectively, and expressed in the form of a bivariate



3

TABLE I: A list of notation followed in the paper.

Rxy,p[τ ] The p× p correlation matrix between two
random vectorsx[n] andy[n− τ ] of
lengthp each.

rxx,p[τ ] The p× 1 correlation vector between the
scalarx[n] and itsp past values starting
from x[n− τ ].

rxy[τ ] The correlation between the scalars
x[n] andy[n− τ ].

σ2
x Variance of the WSS random processx[n].

d[n] A noiseless random process sampled at the
Nyquist rate.

c[n] A noiseless random process, potentially
caused byd[n], sampled at the Nyquist rate.

q The model order for the VAR model
relatingc[n] andd[n].

A The weight matrix relatingc[n] andd[n].
u[n] A downsampled version ofc[n].
v[n] A downsampled version ofd[n].
p The model order for the VAR model

relatingu[n] andv[n].
B The weight matrix relatingu[n] andv[n]
x[n] A noisy observation ofu[n].
y[n] A noisy observation ofv[n].
zp[n] The concatenated observation vector of

length2p.
w The weight vector relatingx[n] andzp[n].
h The weight vector relatingx[n] andxp[n].

VAR(q) model as

c[n] =

q
∑

k=1

a∗1,kc[n− k] +

q
∑

k=1

a∗2,kd[n− k] + ηc[n],

d[n] =

q
∑

k=1

a∗3,kc[n− k] +

q
∑

k=1

a∗4,kd[n− k] + ηd[n], (1)

with ai,k, i ∈ {1, 2, 3, 4} being the regression coefficients, and
ηc[n] and ηd[n] the innovation components inc[n] andd[n],
respectively. We assume thatc[n] and d[n] are sampled at
the Nyquist rate, and the temporally white innovation process
vectorη[n] = [ηc[n] , ηd[n]]

T is distributed as

η[n] ∼ CN
(

0,

[

σ2
ηc

0
0 σ2

ηd

])

.

For simplicity, we assume that only a unidirectional coupling
from d[n] to c[n] can exist, i.e.,a3,k = 0 , for1 ≤ k ≤ q.

Defining cq[n] , [c[n], c[n − 1], . . . , c[n − q + 1]]T ,
dq[n] , [d[n], d[n − 1], . . . , d[n − q + 1]]T , ai ,

[ai,1, ai,2, . . . , ai,q]
T , i ∈ {1, 2, 3, 4}, we can write (1) as,

[

c[n]
d[n]

]

=

[

aH1 aH2
0H
q aH4

] [

cq[n− 1]
dq[n− 1]

]

+

[

ηc[n]
ηd[n]

]

, (2)

with 0q being theq dimensional all zero vector. Defining
rcc[τ ] , E[c[n]c∗[n − τ ]], rcd[τ ] , E[c[n]d∗[n − τ ]], and

similarly rdc[τ ] andrdd[τ ], we can write

rcc[τ ] =

q
∑

k=1

a∗1,krcc[τ−k]+

q
∑

k=1

a∗2,krdc[τ−k]+σ2
ηc
δ[τ ]. (3)

Lettingrcd,q[τ ] = [rcd[τ ], . . . , rcd[τ−q+1]]T , and similarly
rcc,q[τ ], etc., the above becomes

rcc[τ ] = aH1 rcc,q[τ − 1] + aH2 rdc,q[τ − 1] + σ2
ηc
δ[τ ]. (4)

We can similarly write

rcd[τ ] = aH1 rcd,q[τ − 1] + aH2 rdd,q[τ − 1], (5)

and
rdd[τ ] = aH4 rdd,q[τ − 1] + σ2

ηd
δ[τ ]. (6)

The above equations, along with the information thatrcc[0] =
σ2
c , and rdd[0] = σ2

d can be used to computercc[τ ], rcd[τ ],
andrdd[τ ] for different values ofτ .

Defining

Rcc,q[τ ] , E
[

cq [n]c
H
q [n− τ ]

]

, (7)

Rcd,q[τ ] , E
[

cq[n]d
H
q [n− τ ]

]

, (8)

and similarly definingRdc,p[τ ] andRdd,q[τ ], it can be shown
using the Weiner-Hopf equations [35] that

[

a1
a2

]

=

[

Rcc,q[0] Rcd,q[0]
Rdc,q[0] Rdd,q[0]

]−1 [
rcc,q[1]
rcd,q[1]

]

. (9)

We can therefore calculate the regression coefficients from
the correlation coefficients when the latter are not known. The
interested reader is referred to [35, Chapter 2] for a detailed
derivation of the Wiener-Hopf equations. We can then use
these to compute the estimation error variance as

σ2
ηc

= σ2
c−

[

rcc,q[1]
rcd,q[1]

]H [
Rcc,q[0] Rcd,q[0]
Rdc,q[0] Rdd,q[0]

]−1 [
rcc,q[1]
rcd,q[1]

]

.

(10)

Also, it can be observed from (2) that the causal dependence
of c[n] on d[n] is determined by the coefficient vectora2, that
is, there exists a causal relationship only ifa2 6= 0.

Now, in the absence of a causal relationship,c[n] can
alternatively be expressed using a univariate AR(q) model,

c[n] = gHcq[n− 1] + ζ[n], (11)

with ζ[n] being the zero mean temporally white complex
Gaussian innovation component having a varianceσ2

ζ . Con-
sequently,

rcc[τ ] = gHrcc,q[τ − 1] + σ2
ζδ[τ ], (12)

g = R−1
cc,q[0]rcc,q[1], (13)

and
σ2
ζ = σ2

c − rHcc,q[1]R
−1
cc,q[0]rcc,q[1]. (14)

It is to be noted that in the presence of a causal relationshipbe-
tweenc[n] andd[n] the mean squared prediction error forc[n]
using the bivariate model,σ2

ηc
, will be smaller than the mean
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squared prediction error using the univariate signal model, σ2
ζ ,

whereas, in the absence of such a causal relationship between
them,σ2

ζ = σ2
ηc

.
The GCI uses this property to quantify the causal relation-

ship, and is defined as [2]

TG , log

(

σ2
ζ

σ2
ηc

)

. (15)

In Granger causality, we say that a causal relationship exists
betweenc[n] andd[n] if TG > 0, and no causal relationship
exists if TG = 0.

However, bothc[n] and d[n] are assumed to be noiseless
and sampled at the Nyquist rate. Moreover, it also assumes
that the exact second-order statistics for bothc[n] and d[n]
are known. However, these assumptions do not hold in a
practical data acquisition system. Therefore, in the subse-
quent sections, we introduce these imperfections, viz. down-
sampling, measurement noise, and finite sample effects, into a
GCI based detector, and analyze their impact on the detection
performance. In the next section, we discuss the effect of
down-sampling on the GCI.

III. T HE EFFECT OFDOWN-SAMPLING ON GCI

Let u[n] andv[n] respectively be versions ofc[n] andd[n]
down-sampled by a factorM , such that,

u[n] = c[nM − l], v[n] = d[nM − l]. (16)

Since we use the second-order statistics of the observed wide
sense stationary random processes for detection, we can set
the offset parameterl to zero without loss of generality. We
can now expressu[n] andv[n] in the form of a bivariate linear
regression process of orderp as
[

u[n]
v[n]

]

=

[

bH
1 bH

2

0H
p bH

4

] [

up[n− 1]
vp[n− 1]

]

+

[

ǫu[n]
ǫv[n]

]

, (17)

with bi, i ∈ {1, 2, 4} representing new regression coeffi-
cients, andE [u[n− k]ǫ∗u[n]] = 0, E [v[n− k]ǫ∗v[n]] = 0,
E [u[n− k]ǫ∗v[n]] = 0, andE [v[n− k]ǫ∗u[n]] = 0 for k > 0.
It is important to note that the model orderp in this case may
be different from the model orderq considered in the previous
section due to down-sampling.

Since the GCI is a function of the second-order statistics of
c[n] andd[n], we need to derive the second-order statistics of
u[n] and v[n] in terms ofc[n] and d[n] in order to quantify
the effect of down-sampling on the GCI.

Let ruv[τ ] = E[u[n]v∗[n − τ ]], ruv,p[τ ] = E[up[n]v
∗[n −

τ ]], and Ruv,p[τ ] = E[up[n]v
H
p [n − τ ]], with the absence

of the index [τ ] indicating τ = 0. We can write,ruu[τ ] =
E[c[nM ]c∗[nM − τM ]] = rcc[τM ]. Similarly, ruu,p[τ ] =
[rcc[τM ], rcc[(τ + 1)M ], . . . , rcc[(τ + p)M ]]T , and

ruu[τ ] = bH
1 ruu,p[τ − 1] + bH

2 rvu,p[τ − 1] + σ2
ηc
δ[τ ], (18)

ruv[τ ] = bH
1 ruv,p[τ − 1] + bH

2 rvv,p[τ − 1], (19)

rvv[τ ] = bH
4 rvv,p[τ − 1] + σ2

ηd
δ[τ ], (20)

and

Ruu,p =










rcc[0] rcc[M ] . . . rcc[(p− 1)M ]
rcc[M ] rcc[0] . . . rcc[(p− 2)M ]
...

...
. . .

...
rcc[(p− 1)M ] rcc[(p− 2)M ] . . . rcc[0]











.

(21)

The weight vectorsb1, b2, andb4 can then be determined
via the Wiener-Hopf equations [35] as

[

b1

b2

]

=

[

Ruu,p Ruv,p

Rvu,p Rvv,p

]−1 [
ruu,p[1]
ruv,p[1]

]

, (22)

and b4 = R−1
vv,prvv[1]. (23)

We can then write,

ǫu[n] = u[n]− bH
1 up[n− 1]− bH

2 vp[n− 1], (24)

ǫv[n] = y[n]− bH
4 vp[n− 1]. (25)

Consequently,

rǫuǫu [0] = σ2
c

−
[

ruu,p[1]
ruv,p[1]

]H [
Ruu,p Ruv,p

Rvu,p Rvv,p

]−1 [
ruu,p[1]
ruv,p[1]

]

, (26)

rǫvǫv [0] = σ2
c − rHvv,p[1]R

−1
vv,prvv,p[1]. (27)

rǫuǫv [0] = rcd[0]

−
[

rHuu,p[1] r
H
uv,p[1]

]

[

Ruu,p Ruv,p

Rvu,p Rvv,p

]−1 [
ruv,p[1]
rvv,p[1]

]

− rHuv,p[1]R
−1
vv,prvv,p[1] +

[

ruu,p[1]
rvv,p[1]

]H

×
[

Ruu,p Ruv,p

Rvu,p Rvv,p

]−1 [
Ruv,p

Rvv,p

]

R−1
vv,prvv,p[1]. (28)

Hence, the covariance matrix of the innovation process need
not be diagonal after down-sampling.

Similarly, the single variable linear regression model forthe
down-sampled signalu[n] can be written as

u[n] = fHup[n− 1] + ξ[n], (29)

with ξ[n] being the innovation component. Therefore, we get

f = R−1
uu,pruu,p[1], (30)

and rξξ[0] = σ2
u − rHuu,p[1]R

−1
uu,pruu,p[1]. (31)

A causal relationship betweenu[n] and v[n] can now be

determined by considering the ratioTG = log2

(

rξξ[0]
rǫuǫu [0]

)

.

To illustrate the effect of down-sampling on the GCI,
consider the simple special case:c[n] = ad[n − 1] + ηc[n],
andd[n] = ηd[n]. Letting M = 2, we can write

u[n] = c[2n] = aηd[2n− 1] + ηc[2n], (32)

v[n] = d[2n] = ηd[2n]. (33)
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Consequently,ruu[1] = rcc[2] = 0, ruv[1] = rcd[2] = 0,
ruv[0] = rcd[0] = 0, andrξξ[0] = rǫxǫx [0] = σ2

c . We see that
there exists a causal relationship betweenc[n] and d[n] for
anya 6= 0, but no causal relationship exists betweenu[n] and
v[n]. Thus, down-sampling can suppress an existing causal
relationship between two signals. However, the degree of
suppression of the causal relationship depends on the structure
of the VAR model followed by the signals. We next analyze
the effect of additive noise on the performance of the GCI.

IV. GCI WITH DOWNSAMPLING AND ADDITIVE NOISE

Let us definex[n] and y[n] as the down-sampled signals
u[n] andv[n] corrupted by AWGN, such that,

x[n] = u[n] + νx[n],

y[n] = v[n] + νy[n], (34)

whereνx[n] ∼ CN (0, σ2
νx
) andνy[n] ∼ CN (0, σ2

νy
).

Using (17), we can write,
[

x[n]
y[n]

]

=

[

bH
1 bH

2

0H
p bH

4

] [

up[n− 1]
vp[n− 1]

]

+

[

ǫu[n] + νx[n]
ǫv[n] + νy[n]

]

.

(35)
If a causal relationship exists betweenc[n] and d[n], and is
preserved inu[n] andv[n] after down-sampling, it should also
exist betweenx[n] and y[n], and therefore, the past samples
of x[n] and y[n] can be used to predictx[n] better than its
prediction by using the past samples ofx[n] alone. Letting
z[n] = [x[n] y[n]]T and zp[n] = [xT

p [n] yT
p [n]]

T , we can
expressx[n] as

x[n] = wHzp[n− 1] + ϕ2[n], (36)

with ϕ2[n] being the prediction error for the bivariate VAR
model, andw being the weight vector minimizing the mean
squared value ofϕ2[n].

Defining σ2
ϕ2

, E[|ϕ2[n]|2] = E[|x[n] −wHzp[n − 1]|2],
it can be shown that [35],

σ2
ϕ2

= σ2
x −wHrzx,p[1]− rHzx,p[1]w+wHRzz,pw, (37)

where
σ2
x = E[x[n]x∗[n]] = σ2

c + σ2
νx
, (38)

rzx,p[τ ] = E[zp[n]x
∗[n− τ ]] = [rHxx[τ ] r

H
yx[τ ]]

H , (39)

and
Rzz,p = E

[

zp[n]z
H
p [n]

]

. (40)

Since the additive noise is independent of bothu[n] and
v[n], it can be shown that

rxx[τ ] = ruu[τ ] + σ2
νx
δ[τ ], (41)

rxy[τ ] = ruv[τ ], (42)

ryy[τ ] = rvv[τ ] + σ2
νy
δ[τ ]. (43)

Substituting equations (18)-(20) into (41)-(43) we obtain

rxx[τ ]=bH
1 ruu,p[τ − 1] + bH

2 rvu,p[τ − 1] + (σ2
ǫu
+σ2

νx
)δ[τ ],

(44)
rxy[τ ] = bH

1 ruv,p[τ − 1] + bH
2 rvv,p[τ − 1], (45)

ryy[τ ] = bH
4 rvv,p[τ − 1] + (σ2

ǫv
+ σ2

νy
)δ[τ ], (46)

and similarly,

Rzz,p =

[

Rxx,p Rxy,p

Ryx,p Ryy,p

]

=

[

Ruu,p Ruv,p

Rvu,p Rvv,p

]

+

[

σ2
νx
Ip 0p

0p σ2
νy
Ip

]

. (47)

The optimal weight vector minimizingσ2
ϕ2

can be obtained
via the Wiener-Hopf equations as

w = R−1
zz,przx,p[1]. (48)

The minimized value ofσ2
ϕ2

is

σ2
ϕ2

= σ2
x − rHzx,p[1]R

−1
zz,przx,p[1]. (49)

However, in case no causal relationship exists betweenc[n]
andd[n], and consequently betweenx[n] and y[n], x[n] can
be expressed using the single variable AR model as

x[n] = hHxp[n− 1] + ϕ1[n], (50)

with ϕ1[n] being the single variable prediction error, andh
being the optimal weight vector, computed as

h = R−1
xx,prxx,p[1]. (51)

Similar to the two variable case, the minimized value of the
prediction error takes the form

σ2
ϕ1

= σ2
x − rxx,p[1]

HR−1
xx,prxx,p[1]. (52)

The GCI therefore becomes

TG = log2

(

σ2
ϕ1

σ2
ϕ2

)

= log2

(

σ2
x − rHxx,p[1]R

−1
xx,prxx,p[1]

σ2
x − rHzx,p[1]R

−1
zz,przx,p[1]

)

.

(53)

To demonstrate the effects of noise on the GCI, we again
consider our running example,d[n] = ǫv[n], c[n] = u[n] =
ad[n− 1]+ bd[n− 2]+ ǫc[n]. Downsampling these by a factor
M = 2, we obtain,v[n] = ǫv[n], u[n] = bv[n − 1] + ǫu[n],
with, σ2

v = σ2
ǫv

, andσ2
u = |b|2σ2

ǫv
+ σ2

ǫu
, and consequently,

σ2
x = |b|2σ2

ǫv
+ σ2

ǫu
+ σ2

νx
, σ2

y = σ2
ǫv

+ σ2
νy
, (54)

rxy[0] = 0, rxy[1] = bσ2
ǫv
. (55)

Therefore,

Rzz,1 =

[ |b|2σ2
ǫv

+ σ2
ǫu

+ σ2
νx

0
0 σ2

ǫv
+ σ2

νy

]

, (56)

σ2
ϕ2

= σ2
ǫu

+ σ2
νx

+
|b|2σ2

ǫv
σ2
νy

σ2
ǫv

+ σ2
νy

, (57)

and
σ2
ϕ1

= σ2
x = |b|2σ2

ǫv
+ σ2

ǫu
+ σ2

νx
. (58)

We can simplify the GCI as

TG = log2







|b|2σ2
ǫv

+ σ2
ǫu

+ σ2
νx

|b|2σ2
ǫv

(

σ2
νy

σ2
ǫv

+σ2
νy

)

+ σ2
ǫu

+ σ2
νx






. (59)

In the absence of additive noise in bothx[n] and y[n],
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TG reduces toTG = log2

(

|b|2σ2

ǫv
+σ2

ǫu

σ2
ǫu

)

, as in the previous

section. However, as eitherσ2
νx

, or σ2
νy

get large, the second
term in the expression forTG converges to zero. Thus, additive
noise can also lead to the suppression of a causal relationship
between two signals.

The discussion till now assumed that the second-order
statistics of both the signals of interest are available at the
detector. However, in practice, we have to estimate the second-
order statistics using a finite number of samples ofx[n] and
y[n]. The effects of the use of estimated second-order statistics
on the detection of Granger causality in an under-sampled
noisy environment are discussed in the next section.

V. FINITE SAMPLE EFFECTS ON THEGCI

In case onlyN samples of each ofx[n] and y[n] are
observed, and the generative model is unknown, we need to
estimate the optimal predictors for the single and two variable
cases, the corresponding prediction error variances, and the
GCI or an equivalent test statistic using these samples. In this
section, we first discuss the properties of the optimal predictor
weights for the one variable and two variable prediction
models. Then, we use these weights to calculate the statistics
of the finite sample estimates of the corresponding mean
square prediction errors, and finally derive expressions for the
performance of GCI with finite number of observations.

A. Properties of Optimal Predictor Weights

It is known that given a finite number of observations, the
least squares estimate is the best linear unbiased estimator for
x[n] [35]. Letting x[1], . . . , x[N ] be theN available samples
of x[n], y[1], . . . , y[N ] be theN available samples ofy[n],
and x̂[n] = ŵHzp[n − 1] be the least squares (LS) estimate
of x[n] generated using the two variable model, we can write

xN−p[N ] = x̂N−p[N ] + x̃N−p[N ], (60)

wherex̃N−p[N ] is the error term orthogonal to the measure-
ment space. Also,̂w is the least squares estimate of the weight
vector, given as [35]

ŵ = Z†
p[N ]xN−p[N ]. (61)

Here,ŵ is a finite sample estimate of the true weight vector
w with Zp[N ] = [zp[N − 1], zp[N − 2], . . . , zp[p]]

H , and
()† represents the Moore-Penrose inverse of a matrix. Since
the innovation process and the measurement noise are white
and zero mean, it can be shown thatŵ has the following
properties [35]:

1) ŵ is a an unbiased estimator ofw.

2) The covariance matrix of̂w is cov(ŵ) =
σ2

ϕ2

N−p
R−1

zz,p.

Therefore,ŵ = w + w̃, with w̃ ∼ CN
(

0,
σ2

ϕ2

N−p
R−1

zz,p

)

.

Similarly, considering the single variable prediction model,
we can writexN−p[N ] in terms of its projection,̄xN−p[N ] on
the data matrix, ,Xp[N ] = [xp[N−1],xp[N−2], . . . ,xp[p]]

H ,
and the error componentẋN−p[N ] = xN−p[N ] − x̄N−p[N ].

Again, x̄N−p[N ] = Xp[N ]ĥ with ĥ = X†
p[N ]xN−p[N ], and

ĥ ∼ CN
(

h,
σ2
ϕ1

N − p
R−1

xx,p

)

. (62)

We next use the above properties of the estimated regression
weights to derive the statistics of the finite sample estimate of
the mean squared error for the two prediction models.

B. Mean Squared Prediction Errors

First, considering the prediction error for the two variable
model, we can express̃x[n] as

x̃[n] = x[n]− x̂[n]

= x[n]−wHzK [n− 1]− w̃HzK [n− 1]. (63)

Since the innovation process ofu[n] and the additive noise are
white, x̃[n] is zero mean i.i.d. Gaussian with variance

E[|x̃[n]|2] = σ2
ϕ2

+ E[w̃Hzp[n− 1]zHp [n− 1]w̃]

− 2ℜ{E[w̃Hzp[n− 1]x∗[n]]}
− 2ℜ{E[w̃Hzp[n− 1]zHp [n− 1]w]}. (64)

It is common in the adaptive filtering literature to assume the
weight error vector to be independent of the regression vectors
as well as the desired output [35]. Hence,

E[w̃Hzp[n− 1]x∗[n]] = E[w̃Hzp[n− 1]zHp [n− 1]w] = 0,
(65)

and

E[w̃Hzp[n− 1]zHp [n− 1]w̃]

= Tr(E[zp[n− 1]zHp [n− 1]E[w̃w̃H ])

= Tr

(

Rzz,p

σ2
ϕ2

N − p
R−1

zz,p

)

= σ2
ϕ2

2p

N − p
. (66)

Substituting these in (64), we can write

E[|x̃[n]|2] = σ2
ϕ2

(

1 +
2p

N − p

)

. (67)

We can similarly argue, for the one variable model, that
ẋ[n] is also zero mean i.i.d. Gaussian distributed, with

E[|ẋ[n]|2] = σ2
ϕ1

(

1 +
p

N − p

)

. (68)

Thus, the estimates of the prediction error variances from
the one variable and two variable regression models of the
system can be expressed as

t1 =
1

N − p

N
∑

n=p+1

|ẋ[n]|2, (69)

t2 =
1

N − p

N
∑

n=p+1

|x̃[n]|2. (70)

These can now be used to calculate the GCI as

TG = log2

(

t1

t2

)

, (71)
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However, sinceTG is a logarithm of ratios of random variables,
its statistics become hard to determine. Instead, we define
TE , 2−TG = t2

t1
as a test statistic, for simplicity of analysis.

Sincex̃[n] andẋ[n] are the measurement errors for the same
process,t1 andt2 cannot be considered independent. However,
since botht1 andt2 are sums of a large number of i.i.d. random
variables, we can use the central limit theorem to approximate
these as Gaussian r.v.s [36]. Note that this approximation is
valid when the number of samplesN is much larger than the
model orderp. Now

E[t2] = σ2
ϕ2

(

1 +
2p

N − p

)

, (72)

and

var(t2) =
1

N − p
σ4
ϕ2

(

1 +
2p

N − p

)2

. (73)

Similarly,

E[t1] = σ2
ϕ1

(

1 +
p

N − p

)

. (74)

However, in the presence of a causal relationship between
y[n] andx[n], wHzp[n− 1] will be a better estimate ofx[n]
than hHxp[n − 1], therefore,wHzp[n − 1] can be written
as wHzp[n − 1] = hHxp[n − 1] + x́[n], such that,x́[n] is
orthogonal tohHxp[n− 1]. Consequently,

ϕ1[n] = ϕ2[n] + x́[n], (75)

with E[x́[n]ϕ∗
2[n]] = 0, and

σ2
ϕ1

= σ2
ϕ2

+ σ2
x́, (76)

whereσ2
x́ , var(x́2).

Now, sincex́[n] = wHzp[n] − hHxp[n], it can be shown
thatE[x́[n]] = 0, and,

E[|x́[n]|2] = wHRzz,pw+ hHRxx,ph− 2ℜ{wHRzxh}
= rHzz,pR

−1
zz,przz,p + rHxx,pR

−1
xx,prxx,p

−2ℜ{rHzz,pR−1
zz,pRzx,pR

−1
xx,prxx,p}. (77)

Therefore,ẋ[n] = x̃[n] + x́[n]− h̃Hxp[n− 1] and

E[t1] =
(

σ2
ϕ2

+ σ2
x́

)

(

1 +
p

N − p

)

= E[t2] + σ2
x́2

(

1 +
p

N − p

)

− σ2
ϕ2

N − p
. (78)

Similarly,

E[t21] = E2[t1] +
1

N − p
(σ2

ϕ2
+ σ2

x́)
2

(

1 +
p

N − p

)2

, (79)

and,

var(t1) =
1

N − p

(

σ4
ϕ2

+ σ4
x́ + 2σ2

ϕ2
σ2
x́

)

×
(

1 +
p2

(N − p)2
+

2p

N − p

)

= var(t2) +
1

N − p

(

σ4
x́ + 2σ2

ϕ2
σ2
x́

−σ4
ϕ2

(

3p2

(N − p)2
+

2p

N − p

))

. (80)

Consequently, it can be shown that

cov(t1, t2) =
σ4
ϕ2

N − p
. (81)

The GCI can therefore be approximated as the ratio of two
correlated Gaussian r.v.st1 andt2 whose statistics are derived
above. In the next subsection, we use the above statistics to
calculate the probabilities of detection and false alarm.

C. Performance of GCI

Now, we declare a causal relationship to exist between the
two signals if the ratioTE = t2

t1
is below a thresholdλ. Since

t1 is the sum of non-negative terms, it is almost surely positive,
and therefore

Pr{TE < λ} = Pr{λt1 − t2 > 0}. (82)

Sincet1 andt2 are approximated as correlated Gaussian r.v.s,
therefore, from (78),TD , λt1− t2 can also be approximated
as a Gaussian r.v. with mean and variance

E[TD] = (λ−1)E[t2]+λσ2
x́

(

1 +
p

N − p

)

−λσ2
ϕ2

p

N − p
,

(83)

and

var(TD) = λ2 var(t1) + var(t2) − 2λ cov(t1, t2), (84)

respectively.

Now, under the null hypothesis,H0, σ2
ϕ1

= σ2
ϕ2

and
σ2
x́|H0

= 0. Hence, underH0, the above simplify to

µTD ,0 , E[TD|H0] =

(λ− 1)σ2
ϕ2

(

1 +
p

N − p

)

− σ2
ϕ2

(

p

N − p

)

, (85)

σ2
TD ,0 , var(TD|H0)

= (λ2 + 1)
σ4
ϕ2

N − p

(

1 +
2p

N − p

)2

− λ2
σ4
ϕ2

N − p

(

3p2

(N − p)2
+

2p

N − p

)

− 2λ
σ4
ϕ2

N − p
. (86)

Similarly, under the alternate hypothesis,H1, σ2
ϕ1

> σ2
ϕ2

,
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and therefore,

µTD ,1 , E[TD|H1] = λσ2
x́

(

1 +
p

N − p

)

+ (λ− 1)σ2
ϕ2

(

1 +
p

N − p

)

− σ2
ϕ2

p

N − p
, (87)

σ2
TD ,1 , var(TD|H1) = (λ2 + 1)

σ4
ϕ2

N − p

(

1 +
2p

N − p

)2

+ λ2 σ4
x́

N − p

(

1 +
p

N − p

)2

+ 2λ2
σ2
ϕ2
σ2
x́2

N − p

(

1 +
p

N − p

)2

− λ2
σ4
ϕ2

N − p

(

3p2

(N − p)2
+

2p

N − p

)

− 2λ
σ4
ϕ2

N − p
. (88)

Based on these, the probability of false alarm can be
calculated as

PFA = Pr{TD > 0|H0} = Q

(

µTD,0

σTD ,0

)

. (89)

Similarly, the probability of correct detection of a causal
relationship,PD, can then be calculated as

PD = Pr{TD > 0|H1} = Q

(

µTD,1

σTD ,1

)

. (90)

Using (89), a detector providing a given false alarm rate of
P ∗

FA can be designed by selecting a thresholdλ that satisfies

[

σ2
ϕ2
(λ− 1)

(

1 +
p

N − p

)

− λσ2
ϕ2

p

N − p

]2

= Q−1(P ∗
FA)

[

(λ2 + 1)
σ4
ϕ2

N − p

(

1 +
p

N − p

)2

− λ2
σ4
ϕ2

N − p

(

3p2

(N − p)2
+

2p

N − p

)

− 2λ
σ4
ϕ2

N − p

]

. (91)

The above reduces to a quadratic equation inλ that can be
solved to obtain the detection threshold for the detector.

As an example, considerN samples of signalsu[n] and
v[n] corrupted by AWGN and observed asx[n] and y[n],
respectively, such thatv[n] = ǫv[n] and

u[n] =

{

ǫu,0[n] H0

aǫv[n] + ǫu,1[n] H1
, (92)

with var(ǫv) = σ2
ǫv

, var(ǫu,1) = σ2
ǫu

, and var(ǫu,0) =
|a|2σ2

ǫv
+ σ2

ǫu
. Then,K = 1, σ2

ϕ1
is given by (58), and

σ2
ϕ2

=

{

σ2
ϕ1

H0

σ2
ǫu

+ σ2
νx

+
|a|2σ2

ǫv
σ2

νy

σ2
ǫu

+σ2
νy

= σ2
ϕ1

−∆ H1
, (93)

with ∆ = |a|2σ2
ǫv

(

1− σ2

νy

σ2
ǫv

+σ2
νy

)

.

Therefore,

µTD ,0 = σ2
ϕ1

(

λ− 1 +
λ− 2

N − 1

)

, (94)

and

σ2
TD ,0 =

1

N − 1

[

(λ2 + 1)σ4
ϕ1

(

1 +
2

N − 1

)2

− λ2σ4
ϕ1

(

3

(N − 1)2
+

2

N − 1

)

− 2λ
σ2
ϕ1

N − 1

]

. (95)

Consequently, the probability of false alarm is given as (96)
at the top of the next page.

Under the alternate hypothesis,

E[TD|H1] = (λ− 1)σ2
ϕ1

(

1 +
1

N − 1

)

−∆

(

1 +
1

N − 1

)

− (σ2
ϕ1

−∆)
1

N − 1
, (97)

and

var(TD|H1) =
1

N − 1

[

(λ2 + 1)σ4
ϕ1

(

1 +
1

N − 1

)2

+∆2

(

1 +
2

N − 1

)2

− 2σ2
ϕ2
∆

(

1 +
2

N − 1

)2

+ σ4
ϕ1

(

3

(N − 1)2
+

2

N − 1

)

]

. (98)

The probability of detection can thus be expressed as (99) in
the next page.

We observe from (99) that the probability of detection
depends on the ratio∆

σ2
ϕ1

, which can in turn be viewed as
the relative difference between the variances of the prediction
error under the one variable and the two variable models. Con-
sequently, the difference between the mean square prediction
error for the single and two variable prediction models, i.e.,
t1 − t2 can be used as a test statistic to detect the presence of
a causal relationship. We inspect the use oft1 − t2 as a test
statistic in the next section.

VI. GRANGER CAUSALITY DETECTION BASED ON THE

DIFFERENCE OFERROR TERMS

Let TC , t1− t2 denote the difference in the finite sample
estimates of the mean squared errors of the one variable and
the two variable prediction models. It can be argued thatTC is
the difference of two correlated Chi-squared r.v.s., each with
2(N − p) degrees of freedom. Therefore, the pdf ofTC can
be written as [37]

fTC
(y) =

|y|N−p−1

(m− 1)![2var(t1)var(t2)− cov2(t1, t2)γ](N−p)

×exp

(

1

4
α−y

)N−p−1
∑

i=0

(N − p+ i− 1)!

(N − p− i− 1)!

(

2

γ|y|

)i

, y < 0;



9

PFA = Q









√

(N − 1)
(

λ− 1 + λ−2
N−1

)

√

(λ2 + 1)σ4
ϕ2

(

1 + 2
N−1

)2

− λ2σ4
ϕ2

(

3
(N−1)2 + 2

N−1

)

− 2λ
σ4
ϕ1

N−1









. (96)

PD = Q









√
N − 1

(

(λ− 1)σ2
ϕ1

(

1 + 1
N−1

)

−∆
(

1 + 1
N−1

)

− (σ2
ϕ1

−∆) 1
N−1

)

√

(λ2 + 1)σ4
ϕ1

(

1 + 1
N−1

)2

+∆2
(

1 + 2
N−1

)2

− 2σ2
ϕ2
∆
(

1 + 2
N−1

)2

+ σ4
ϕ1

(

3
(N−1)2 + 2

N−1

)









. (99)

fTC
(y) =

|y|N−p−1

(m− 1)![2var(t1)var(t2)− cov2(t1, t2)γ](N−p)

×exp

(

−1

4
α+y

)N−p−1
∑

i=0

(N − p+ i− 1)!

(N − p− i− 1)!

(

2

γ|y|

)i

, y ≥ 0,

(100)

with

γ =
[(var(t1) + var(t2))2 − 4cov2(t1, t2)]

1

2

var(t1)var(t2)− cov2(t1, t2))
, (101)

and

α± = γ ± [(var(t1)− var(t2))]
var(t1)var(t2)− cov2(t1, t2))

. (102)

The p.d.f. ofTC is in the form of a series, which makes it
difficult to obtain the probabilities of detection and falsealarm
in closed form. However, for largeN , TC can be approximated
as a Gaussian r.v., such that,

E[TC |H0] = −σ2
ϕ2

p

N − p
, (103)

E[TC |H1] = σ2
x́

(

1 +
p

N − p

)

− σ2
ϕ2

p

N − p
, (104)

and

var(TC |H0) =
1

N − p

[

2σ4
ϕ2

(

1 +
2p

N − p

)2

− σ4
ϕ2

(

3p2

(N − p)2
+

2p

N − p

)

− 2σ4
ϕ2

]

. (105)

var(TD|H1) =
1

N − p

[

2σ4
ϕ2

(

1 +
2p

N − p

)2

+ σ4
x́

(

1 +
p

N − p

)2

+ 2σ2
ϕ2
σ2
x́2

(

1 +
p

N − p

)2

− σ4
ϕ2

(

3p2

(N − p)2
+

2p

N − p

)

− 2σ4
ϕ2

]

. (106)

Using the above statistics, it is now straightforward to design
the detector to achieve a given probability of false alarm,
and obtain closed-form expressions for the probability of false
alarm and detection, similar to (89) and (90), respectively. In
particular, whenN ≫ p, i.e., the number of samples is much
larger than the model order, it can be easily shown that the

detection thresholdλ is well approximated by

λ =

√
2Q−1(PFA)σ

2
ϕ2√

N − 1
, (107)

and the probability of detection as a function of the target false
alarm probabilityP ∗

FA can be approximated as

PD ≈ Q





Q−1 (P ∗
FA)

√
2σ2

ϕ2
−√

N − pσ2
x́

√

σ4
x́ + 2σ2

ϕ2
σ2
x́2



 . (108)

Based on the above, the number of samples required to attain
a given pair of probabilities of detection and false alarm can
be approximated as

N ≈ p+

(

Q−1(PFA)
√
2
σ2
ϕ2

σ2
x́

+Q−1(PD)

√

1 + 2
σ2
ϕ2

σ2
x́

)2

.

(109)

Revisiting the example considered in the previous sections,
we observe that,σ2

ϕ1
= σ2

x, σ2
ϕ2

= σ2
x − ∆, using which, it

is easy to obtain the expressions for the probabilities of false
alarm and detection. We omit writing out the expressions for
the sake of brevity.

We can also use the mean squared value of the difference of
error terms as a test statistic to detect the presence of a causal
relationship betweenx[n] andy[n]. Letting x̌[n] , x̂[n]−x̄[n],
and

TA ,
1

N − p

N
∑

n=p+1

|x̌[n]|2, (110)

it can be shown that

E[TA|H0] = σ2
ϕ1

(

3p

N − p

)

, (111)

and

E[TA|H1] = rHzz,pR
−1
zz,przz,p + rHxx,pR

−1
xx,prxx,p

− 2ℜ{rHR−1
zz,pRzxR

−1
xx,prxx,p}+

2σ2
ϕ2
p

N − p
+

σ2
ϕ1
p

N − p
. (112)

However, the higher order statistics and the exact distribu-
tion of TA cannot be found in closed form. Therefore, we
evaluate its performance via simulations. To the best of our
knowledge, the test statisticsTC andTA have not been used
in the literature to detect Granger causality.
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Fig. 1: Value ofTE at different SNRs, fora = 0.5, with known
second-order statistics.

VII. S IMULATION RESULTS

In this section, we use Monte Carlo simulations to cor-
roborate our analytical expressions and illustrate the relative
performance of different test statistics for detecting Granger
causality. We also illustrate the causality detection perfor-
mance ofTC using real-world data with known ground truth,
available in [38]

For the simulation-based study, we consider a system model
similar to the example discussed in the previous sections,
for different values of the variance of the additive noise and
varying number of samples. The probabilities of detection and
false alarm are obtained by averaging over10, 000 independent
realizations of the signals of interest.

A. Effect of Additive Noise

In Fig. 1, we plot the mean value of the test statisticTG for
the example considered in Section IV, withb = 0.5. Here we
inspect the effects of noise on the GCI. We defineγ1 ,

σ2

u

σν1

,

and γ2 ,
σ2

v

σν2

as the observation SNRs forx[n] and y[n].
We see that the mean value ofTG converges to a value close
to zero as the noise variance increases. The reduction in the
SNR will make it harder to detect the presence of a causal
relationship between the signals of interest.

B. Finite Sample Effects

We now consider the effects of using a finite number of
samples on the GCI, as discussed in Section V. In Figs. 2a
and 2b, we compare the simulated detection and false alarm
probability obtained by using the test statisticTE as a function
of the detection thresholdλ and for different number of
samples, witha = 0.25 andγ1 = γ2 = 0 dB. The simulated
performance ofTE is found to be in close agreement with
the values computed using our analytical expressions in (96)
and (99). It is also observed that the behavior of both the
probability of detection and false alarm as a function of the
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1

P
D N=500
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N=50

(a)

0.8 0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

N=50
N=100
N=150
N=200

Line: Theory
Marker: Simulation

(b)

Fig. 2: Probabilities of (a) detection and (b) false alarm asa
function of the detection thresholdλ for the test statisticTE.

detection threshold becomes sharper with an increase in the
number of samples, and asymptotically approximates a step
function. The transition point of the step function occurs at
the mean of the test statistic under the respective hypotheses,
which corresponds to the 50% probability of detection/ false
alarm point on Figs. 2a and 2b. Therefore, the thresholdλ = 1
gives a zero error rate when infinite samples of the two signals
of interest are available. However, in case of a finite number
of samples,λ has to be chosen carefully to achieve reliable
performance.

In Fig. 3, we compare the theoretical and simulated receiver
operating characteristics (ROCs) for the example considered
in Section V for a = 0.25 with different values ofN , at
an SNR of0 dB. It is observed that for a small number of
samples, the ROC is close to thePFA = PD line, whereas,
for a large number of samples, the probability of detection
becomes almost independent ofPFA. This is in line with the
behavior predicted in (96) and (99).

Having established that the use of finite samples indeed
causes a deterioration in the performance of the CGI, we now
discuss the performance of the other two test statistics, viz.TC

andTA, as discussed in Section VI. In Fig. 4a, we compare the
theoretical and simulated ROCs for the example considered in
Section VI, witha = 0.25, for different number of samples,
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Fig. 3: ROC for detection based onTE , at an SNR of0 dB,
for different number of samples.

and at an SNR of0 dB. We observe that the ROC forTC

shows a behavior similar to that forTE with an increase in
the number of samples. Therefore, an appropriate choice of
the detection thresholdλ becomes important forTC as well.

In practice, one is typically provided a given number of
samples of a pair of time-series data to perform detection.
In this case, there is a trade-off between the window size
N and the quality of the ROC obtained. Using a largerN

improves the reliability of detection, but the resulting ROC has
more “jumps” because it is computed by averaging over fewer
instantiations. We illustrate this in Fig. 4b, where we plotthe
ROC for the setup of Fig. 4a with the total number of available
samples fixed at10, 000. We see that the ROC withN = 100
(averaged over100 instantiations) matches well with the
corresponding curve in Fig. 4a, where10, 000 instantiations
were used. For higherN , the performance improves, but the
quality of the ROC deteriorates, because the probability of
detection is averaged over a correspondingly fewer number
of instantiations. Thus, given a data record of a given size,a
good choice forN is thus the largest one such that the ROC
is averaged over about100 instantiations.

In Fig. 5, we repeat the experiment considered in Fig. 4a
by fixing the number of samples ofx[n] and y[n] at 100
and varying the SNRs. Again, the theoretical and simulated
plots are in close agreement, with the concavity of the ROC
increasing with the SNR.

In Figs. 6 and 7, we evaluate the performance ofTA as a
test statistic for detection of a causal relation betweenx[n]
and y[n] for a setup similar to the example considered in
Section V, witha = 0.25. Since theoretical expressions for
the behavior ofTA are not derived, these are not considered
here. In Fig. 6, we plot the ROC ofTA for different SNRs for
100 samples of each ofx[n] andy[n] being used for detection.
The performance ofTA under different SNRs is seen to mimic
that ofTC andTE, with the concavity of the ROC increasing
with the SNR. In Fig 7, we plot the probabilities of detection
for different numbers of samples as a function of the signal
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(b)

Fig. 4: ROC for detection based onTC , at an SNR of0 dB,
for different number of samples (N ) (a) averaged over 10,000
realizations in all cases, (b)obtained for a fixed data record
length (10,000) divided into windows of lengthN .

SNRs. In this case, we use the Neyman-Pearson criterion to
fix the probability of false alarm at 10%. As expected, an
increase in the number of samples leads to improved detection
performances for the same SNR. Therefore,TA can also be
used to detect a causal relationship between a pair of signals
in the finite sample regime.

In Fig. 8, we compare the simulated performance ofTE,
TC andTA for the example considered previously, withb =
0.25, at an SNR of 0 dB and for 100 samples. We observe
thatTA, despite being theoretically intractable, offers the best
performance among the three test statistics considered in this
paper, followed byTC and TE respectively. It is interesting
to note that if the exact knowledge about the second-order
statistics is available, then the performance of the three test
statistics should be identical.
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Fig. 6: ROC for detection based onTA, with N = 100
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C. Detection Performance ofTC with Real World Data

In Figs. 9 and 10, we plot the performance obtained from
the test statisticTC on a real-world dataset with known
ground truth, available in [38]. Fig 9 corresponds to data
pairs 65 − 67 of this database. These data pairs consist of
the returns from related stocks over a period of five years.
Similarly, Fig 10 corresponds to data pair69 of the database,
containing temperature measurements from inside and outside
a room taken every five minutes. These four data sets were
selected out of the108 available data sets because:

1) They represent time series data, in accordance with our
system model.

2) The number of samples in these time series were suf-
ficiently large to estimate of probabilities of detection
and false alarm with good accuracy.
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Fig. 7: Probability of detection usingTA at a fixed false alarm
rate of 10% as a function of the SNR.
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Fig. 8: ROC of test statisticsTE , TC and TA for N = 100
samples at an SNR of 0 dB.

For generating the experimental results, we assumed that
the data was uniformly sampled at Nyquist rate. However,
neither the model parameters of the data nor the additive
noise variance are known. Hence, an order 1-VAR generative
model is assumed, and each data set is preprocessed to make
it zero mean. The detection threshold for a given false alarm
rate (PFA) is calculated assuming the two sequences to be
independent and white, and using the sample variance of the
caused sequence asσ2

ϕ2
in (107).

The data pairs are divided into windows of lengthN , and
the test statisticTC is calculated and compared to the threshold
in (107). The results of these comparisons are averaged over
all the sample windows to obtain the probability of detection
for a given probability of false alarm. The jitters in the plots
are due to the averaging over the relatively small number
of samples that were available. The performance of data set
69 is poorer than data sets 65-67, for the same value ofN ,
indicating either a weaker causal relationship, or larger amount
of additive noise, or both. Nonetheless, the ROC follows a
pattern similar to that predicted by (108).
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Fig. 9: Performance of the test statisticTC on the real-world
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dataset69 in [38] for different numbers of samples.

In Fig. 11, we plot the performance ofTC for real-world
data used in Fig. 10 with different amounts of added noise for
a window length ofN = 200. Noisy samples are obtained
by adding real valued white Gaussian noise to the caused
sequence, suitably scaled to achieve a given SNR. These
samples are used to calculate the test statisticTC , which is
then compared against the detection threshold in (107), with
σ2
ϕ1

as the sample variance of the corrupted caused signal. It is
observed that for a fixed number of samples per window, the
addition of noise worsens the detection performance ofTC ,
and the variation in the detection performance approximately
matches with theQ-function of the square root of the SNR,
as expected.
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sentation, and in particular the simulation results in the paper.

VIII. C ONCLUSIONS

In this work, we derived the effects of different data
acquisition impairments on the detection of a causal relation
between two signals. We showed that these effects, viz. down-
sampling, additive noise, and finite sample effects, could lead
to a significant deterioration in the performance of the GCI,
both individually as well as cumulatively. We derived the
probabilities of detection and false alarm for the GCI underthe
impairments. Following this, we proposed two alternative test
statistics, based on the difference of mean squared error terms,
and the mean squared value of the difference of error terms.
Via extensive simulations, we showed that the derived results
corroborate the simulated as well as real-world data, with the
test statistic based on the mean squared value of the difference
of error terms outperforming the other two statistics. A more
precise analysis of this test statistic is an interesting direction
for future research.
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