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Iterative Sparse Channel Estimation and Data
Detection for Underwater Acoustic Communications
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Abstract—We present an iterative scheme for sparse-channel
recovery and data detection in cyclic-prefix orthogonal frequency
division multiplex (CP-OFDM) communication over doubly-
spread underwater acoustic channels. We consider the sequence
of observations from partial interval demodulators (PIDs), and
cast them into an observation model amenable for sparse channel
recovery. We propose a two-stage iterative algorithm for channel
estimation and data detection. In the first stage, we recover the
channel from pilot only observations and estimate the unknown
data symbols from the post-combined PID outputs. In the second
stage, we use the data symbols estimated in the first stage
to reconstruct the dictionary matrix corresponding to a full
interval demodulator, re-estimate the channel using the entire
observations including the data subcarriers, and use it to detect
the unknown data symbols from the PID outputs. We also
propose a computationally attractive algorithm for sparse signal
recovery, based on the minimum variance principle, that may
be of independent interest. Theoretically, we show that the PID
outputs help in tracking the time-varying channel better by
providing additional measurements to estimate the ICI due to
Doppler spread compared to full interval demodulation. Also, we
derive the Cramér-Rao lower bound on the mean squared error
in channel estimation, and empirically show that the proposed
two-stage algorithm meets the bound at high SNR. Numerical
studies on simulated channels and publicly available experimental
channel data in WATERMARK show that the proposed algorithm
considerably improves data detection performance, in terms of bit
error rate, over that from a traditional full length demodulator
output, in highly Doppler distorted scenarios.

Index Terms—Underwater acoustic communications, sparse
channel recovery, partial interval demodulator.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM)
achieves high data rates, even in doubly-distorted channels
with large delay spreads, due to its better resilience to inter
symbol interference (ISI). However, the orthogonality between
subcarriers is lost due to frequency offsets and the Doppler
distortion introduced by the channel, leading to inter carrier
interference (ICI). The Doppler distortion is particularly severe
in multipath channels prevalent in underwater acoustic (UWA)
communications, because different paths can potentially have
different Doppler shifts, leading to Doppler spread [2]. This
makes the problem of channel estimation and data detection
particularly challenging. On the other hand, the UWA channel
is known to be sparse in the lag-Doppler domain, because there
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are typically only a few significant multipath components in
the channel. Therefore, it is pertinent to develop techniques
that exploit the underlying structure in the channel to jointly
estimate the channel and data symbols in the presence of
severe ICI, which is the goal of this paper.

Sparsity based channel recovery techniques are well known
to produce significantly improved channel estimates, and
hence lead to better symbol detection on data subcarriers [3]–
[6]. UWA channels typically have large delay and Doppler
spreads but have only a few dominant paths [6]. This has
been used in [3] to characterize the channel impulse response
by using a path-based model, thereby facilitating channel
estimation using sparse signal recovery techniques.

In [7], an equalization scheme was proposed where an
iterative receiver progressively increases the so-called ICI
span parameter to improve the channel estimate in severe
ICI conditions. Both [3] and [7] require additional pilots to
estimate the channel in high Doppler spread environments.
An alternative approach to ICI mitigation using several partial
interval demodulators (PID), instead of a full interval demod-
ulator (FID), was proposed in [8]. The authors also develop
a recursive algorithm to compute the weights for combining
the output of PIDs so as to make the post-combined channel
matrix close to diagonal. While [8] used non-overlapping
rectangular windows over time for PID and applied coherent
detection, [9] extended the decomposition to other forms of
windowing and applied differentially coherent data detection.
The authors propose a stochastic gradient algorithm to estimate
the combiner weights. However, the inherent sparsity of the
channel is not exploited in [8] and [9].

In this paper, we consider a cyclic-prefix OFDM (CP-
OFDM) system [8], [10]. We propose a two-stage iterative
approach for channel estimation and data detection. We exploit
channel sparsity to estimate the path-dependent delay, Doppler
and amplitude parameters of the channel from pilot-only
observations of the PID outputs. An approximate dictionary,
initially constructed using only the pilot symbols, is used to
initiate the channel recovery. We refine the dictionary using
estimates of the data symbols and iterate between channel
estimation and data detection. The data symbols detected at the
end of the first stage are then used to initialize a second stage
that makes use of the entire observation vector, consisting
of both pilot and data subcarriers, at the output of the FID.
The second stage iteratively bootstraps the channel estimation
using the detected data symbols to construct the dictionary
matrix for the FID output, thereby reducing the channel
estimation error, and ultimately leading to better data detection
performance. Our specific contributions are as follows:
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1) We reformulate problem of estimating the doubly-spread
channel from the PID outputs in a manner that is
amenable to sparsity-based channel estimation.

2) We propose a two-stage iterative framework that recovers
the channel and detects the data symbols. For sparse
channel recovery, we present an improved low complexity
algorithm based on the minimum variance principle, that
may be of independent interest. The algorithm refines
the initial estimate produced by the Orthogonal Matching
Pursuit (OMP) algorithm, and is observed to converge
within a single iteration. Its performance is better than
OMP and is comparable to the computationally intensive
Sparse Bayesian Learning (SBL) algorithm.

3) We analytically show that using the PID outputs increases
the effective number of measurements compared to using
only the FID output. Further, in the context of `1 based
sparse signal recovery, we show that our scheme mini-
mizes a joint cost function of the channel estimation and
data detection error, and establish its convergence.

4) We derive a lower bound on the mean square error (MSE)
in channel estimation, and numerically show that the
bound corresponding to the PID outputs is strictly better
than that corresponding to the FID outputs.

5) Through extensive numerical studies, using synthesized
and measured channels, we demonstrate that the BER
of the proposed scheme is considerably lower than the
existing methods, in highly Doppler spread scenarios.

We develop the system model in Section II. In Section III,
we describe the two-stage iterative algorithm for data detection
and channel estimation. In Section IV, we show how our
proposed algorithm improves the channel estimation accuracy.
In the same section, we examine the Cramér Rao Bound (CRB)
for channel estimators that make use of the observations at the
output of the PID and contrast it with those that use only the
FID output. We present the results of our numerical studies in
Section V and conclude in Section VI.

II. SYSTEM MODEL

A. Transmitted and Received Signal

We consider a CP-OFDM system as in [8]. Let T denote the
OFDM symbol duration and Tg the guard interval (duration
of the cyclic prefix). When using a carrier frequency fc and
K subcarriers, the kth subcarrier is at frequency

fk = fc + k/T, k = −K/2, . . . ,K/2− 1. (1)

The transmitted symbol at the kth subcarrier is denoted by
s[k]. The disjoint sets of data subcarriers SD, pilot subcar-
riers SP , and null subcarriers1 SN partition the K available
subcarriers. The transmitted signal is given by

x̃(t) =
1√
T

Re

{[ ∑
k∈SD∪SP

s[k]ej2π
k
T t

]
ej2πfct

}
,

t ∈ [−Tg, T ]. (2)

1The null subcarriers are not crucial for the performance, but they are useful
for estimating the ICI, since the doubly-spread channel is no longer diagonal
in the frequency domain. They can also be used to estimate the noise variance.

At the receiver, the signal is resampled by a factor â
corresponding to a coarse Doppler estimate, leading to a
baseband received signal z̃(t) given by [3], [8], [11]–[13]

z̃(t) =

Np∑
p=1

Apx̃ ((1 + bp) t− τp) + ñ

(
t

1 + â

)
. (3)

where Ap and τp are the amplitude and delay, respectively,
of the pth path, Np is the number of significant paths in the
channel, and ñ(t) is the additive noise. The above assumes
that the path amplitudes are constant within the OFDM symbol
duration T , and that the time variation of the path delays due to
Doppler rate ap can be approximated as τp−apt, as in [3]. The
resampled signal is equivalent to a received signal obtained
through a channel with Doppler rate bp =

(
ap−â
1+â

)
. Note that,

in this work, the effect of Doppler spread is modeled as a
corresponding path dependent time compression/dilation.

We use the above z̃(t) to formulate the input-output model
and the sparse channel recovery model pertaining to the PID
output as follows. We divide the OFDM symbol interval
[0, T ] into M consecutive partial intervals of duration T/M

each. The output z(m)
k on the kth subcarrier, upon performing

demodulation for the mth partial interval, (m − 1) TM ≤ t ≤
m T
M ,m = 1, 2, · · · ,M , is given by

z
(m)
k =

Np∑
p=1

Ap
∑

l∈SD∪SP

%
(p)
k,l [m]e−j2πflτps[l] + η

(m)
k , (4)

where η(m)
k is the additive noise, and

%
(p)
k,l [m] = sinc

(
β
(p)
k,l T

M

)
ejπβ

(p)
k,l (2m−1)

T
M , (5)

β
(p)
k,l = (l − k)

1

T
+ bpfl. (6)

The above equations combine the models in [3] and [8]. The
channel model in the above is the same as in [3], which used
only the FID outputs and did not consider PID. On the other
hand, [8] used the PID outputs but did not parameterize the
channel in the delay-Doppler plane as in [3].

B. Input-Output Data Model

By stacking the received symbols across all the subcarriers
into z(m) ∈ CK , the data symbols into s ∈ CK , and the noise
into v(m) ∈ CK , we get the channel input-output equation as:

z(m) = H(m)s + v(m), (7)

for m = 1, . . . ,M, where the channel matrix H(m) can
be expressed as H(m) =

∑Np
p=1ApΛ

(m)
p Γp. Here, Λ

(m)
p is

a K × K matrix with (k, l)th entry [Λp]
(m)
k,l = %

(p)
k,l [m],

and Γp is a K × K diagonal matrix with (k, k)th entry
[Γp]k,k = e−j2πfkτp .

The output from a FID is obtained by summing up all
z(m),m = 1, 2, · · · ,M : z =

∑M
m=1 z(m) = Hs+v, where H

is the channel matrix corresponding to the FID output given
by H =

∑M
m=1 H(m), and v =

∑M
m=1 v(m).

If the additive noise in (3) is zero mean circularly symmetric
white Gaussian distributed, then the noise in FID output is
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also zero mean Gaussian with covariance N0I, where N0 is
the variance of each component of v and I is the K × K
identity matrix. The noise in (7) is not white, but it is also
zero mean Gaussian distributed with covariance given by:

E
[
η
(m)
k η

(m)∗
l

]
=
N0

M
e−

j2π(k−l)(2m−1)
2M sinc

(
k − l
M

)
, (8)

and E
[
η
(m1)
k η

(m2)∗
l

]
= 0 for m1 6= m2.

It is straightforward to see that when bp = 0, the channel
matrix H, as seen by the FID, is diagonal. When bp’s are
nonzero and high, due to heavy Doppler spread, the channel
matrix is no longer diagonal and this results in the mixing of
the symbols at the output corresponding to each subcarrier.
Within a partial interval, bpt can be approximated by bptm,
where tm , (2m − 1) T

2M is the mid-point of the mth partial
interval [8]. Then, we can write the channel matrices as

H(m) = J(m)

Np∑
p=1

ApΓ
(m)
p , (9)

where Γ
(m)
p is a diagonal matrix whose (k, k)th entry is given

by [Γp]
(m)
k,k = e−j2πfk(τp−bptm), and J(m) is a matrix with

(k, l)th element J
(m)
k,l = 1

M e−
j2π(k−l)(2m−1)

2M sinc
(
k−l
M

)
, for

k, l = 1, 2, . . . ,K. Henceforth, we consider the data model for
the PID outputs expressed by (7), where the channel matrix
is given by (9) and the noise vector is zero-mean with a
covariance matrix given by (8).

C. Sparse Channel Recovery Model

In the formulation above, the channel matrix H(m) is
defined by Np triplets (Ap, bp, τp). In this section, we cast
the problem of estimating these Np triplets as a sparse
channel recovery problem, given the sequence of PID outputs
z(m),m = 1, 2, . . . ,M . To this end, we construct a dictionary
consisting of the signals parameterized by a representative
selection of possible parameter values [3]. Since parameter
values that are not part of the solution will have the corre-
sponding coefficient as zero and a large number of parameter
values are needed to construct an accurate dictionary, the
vector of coefficients is sparse, thus making sparse vector
recovery algorithms applicable. The representative values of
(bp, τp) are chosen as

τp ∈
{
T

λK
,

2T

λK
, . . . ,

NτT

λK

}
, (10)

bp ∈ {−bmax,−bmax + ∆b, . . . , bmax} . (11)

The time resolution for τp is chosen as a multiple, λ, of the
sampling time T/K, with Nτ candidate delays such that NτTλK
is larger than the maximum delay spread of the channel. For
bp, we consider Nb = 2bmax/(∆b)+1 candidate Doppler rates.
Defining the coefficient vector corresponding to all delays

associated with Doppler scale bi as x
(i)
A =

[
A

(i)
1 , . . . , A

(i)
Nτ

]T
,

the stacked coefficient vector corresponding to all candidate
delays and Doppler rates is given by

x =

[(
x
(1)
A

)T
, . . . ,

(
x
(Nb)
A

)T]T
. (12)

Figure 1. Block diagram of the receiver processing chain and the dual stage
algorithm for iterative channel estimation and data detection.

Hence, (7) now takes the form:

z(m) = A(m)x + v(m), (13)

where A(m) = J(m)
[
Γ
(m)
1 s, . . . ,Γ

(m)
N s

]
, (14)

for m = 1, . . . ,M, with N = NτNb representing the total
number of grid points used in the delay-Doppler plane.

Although the channel vector x is sparse, the construction
of the dictionary matrix A(m) requires knowledge of the
transmitted symbol vector s, which is unknown at the receiver.
In the next section, we propose a two-stage iterative algorithm
to recover the channel vector x and the data vector s.

III. CHANNEL ESTIMATION AND DATA DETECTION

Our proposed two stage algorithm works as follows. In
stage 1, we use PID measurements from only the pilot
subcarriers to estimate the channel, and subsequently use
the estimated channel to detect the unknown data symbols.
In stage 2, we use the FID outputs on both the data and
pilot subcarriers, with the data symbols initialized using the
outcome of stage 1, to further reduce the channel estimation
error and improve the data detection performance. Figure 1
shows a block diagram for the proposed approach.

A. Stage 1

We start by constructing a vector ŝ ∈ CK by placing
the known pilot symbol at the pilot subcarrier locations and
zeros at the null subcarrier locations. Further, we initialize the
unknown data symbols at subcarrier locations SD to zero.2

By defining z
(m)
SP
∈ C|SP | to be a sub-vector of z(m) ∈ CK

that collects the symbols corresponding to the pilot subcarrier
locations SP , from (13) we have,

z
(m)
SP

= Â
(m)
SP

x + e
(m)
SP

, (15)

where

Â
(m)
SP

= ISP J(m)
[
Γ
(m)
1 ŝ, . . . ,Γ

(m)
N ŝ

]
∈ C|SP |×N , (16)

ISP ∈ R|SP |×K is the submatrix of the K × K identity
matrix consisting of its rows indexed by SP , and e

(m)
SP

,

2We find in our simulation studies that a random initialization of the data
symbols also works equally well.
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Figure 2. Left: Channel matrix seen at FID output. Right: Post-combined
channel matrix at (combined) PID output. (k, l) are (row, column) indices of
the channel matrix. Only indices from 80-120 are shown for clarity. Bright
yellow indicates high magnitude while dark black indicates low magnitude.
These matrices are obtained for the CP-OFDM system I in Table II, Section V,
and residual Doppler spread in [−bmax, bmax], where bmax = 5× 10−4.

∆A
(m)
SP

x + v
(m)
SP

is the effective noise that includes the
dictionary estimation error given by:

∆A
(m)
SP

= ISP J(m)
[
Γ
(m)
1 (s− ŝ), . . . ,Γ

(m)
N (s− ŝ)

]
. (17)

The error s− ŝ affects z
(m)
SP

in as much as there is ICI captured
by the matrix J(m). Note that, the presence of null subcarriers
around each pilot subcarrier mitigates the ICI.

To recover the sparse channel vector x in (15), we propose
an improved algorithm that bootstraps from the channel esti-
mate produced by OMP and refines this estimate. We call our
proposed algorithm the Minimum Variance Recovery (MVR)
algorithm, and provide its details in Section III-C.

Once the sparse channel vector x is recovered, the channel
matrix Ĥ(m) for each PID output is constructed using (9).
The estimates Ĥ(m),m = 1, 2, . . . ,M, are then weighted and
combined so as to make the post-combined channel matrix
close to diagonal, as follows:

Ĥk,: =

M∑
m=1

w
(m)∗
k Ĥ

(m)
k,: , (18)

where the weights wk =
[
w

(1)
k , · · · , w(M)

k

]T
∈ CM are

chosen for each subcarrier k to minimize the interference
from other subcarriers as wk = R̂−1zk

ĥk,k/‖R̂−1zk
ĥk,k‖2, with

ĥk,l ,
[
Ĥ

(1)
k,l , · · · , Ĥ

(M)
k,l

]T
and R̂zk ,

∑K
l=1 ĥk,lĥ

H
k,l +

N0

M IM [8]. The post-combined observation z̃k is obtained by
weighting and adding the kth entry, z(m)

k , of z(m):

z̃k =

M∑
m=1

w
(m)∗
k z

(m)
k . (19)

Figure 2 contrasts an instance of the channel matrix obtained
by simply summing up the PID outputs with that obtained
by their weighted combination. The latter is clearly closer to
diagonal than the former, which simplifies the subsequent data
detection step, described next.

Since the weights in (18) are normalized to have unit 2-
norm, it follows from (8) and (19) that the variance of the
noise at the post-combiner output is E

{
|η̃k|2

}
= N0. A

minimum mean square error (MMSE) receiver is applied for
data demodulation, as follows:

ŝ = dec
[(

ĤHĤ +N0I
)−1

ĤH z̃

]
(20)

where z̃ ∈ CK is obtained by stacking z̃k, k = 1, . . . ,K,
and dec(·) is the hard-thresholding operation to the signal
constellation. We find in our simulation studies that zeroing
out all but diagonal entries of the post-combined channel
matrix, Ĥ, has negligible effect on data detection accuracy.
On the positive side, this approximation significantly reduces
the computational complexity involved in the matrix inversion
in (20). Using this approximation, the unknown data symbols
are estimated as follows:

ŝk ≈ dec

[
Ĥ∗k,k

|Ĥk,k|2 +N0

z̃k

]
, k ∈ SD, (21)

where Ĥk,k is the kth diagonal entry of Ĥ. Using ŝ, we recon-
struct the dictionary matrix Â

(m)
SP

, for m = 1, 2, · · · ,M , and
iterate through channel estimation and data symbol detection.

In stage 1, the channel vector is recovered using only the
pilot subcarriers in the output of the PID, and the data symbols
are detected from the post-combined demodulator output. The
detection of data symbols helps in accurately estimating the
ICI, which in turn helps in reducing ‖∆A

(m)
SP

x‖2 in (17),
leading to better channel estimates. However, the observations
on the data subcarriers are not used for channel estimation in
stage 1. In stage 2, we make use of the measurements from
both data and pilot subcarriers for channel estimation.

B. Stage 2

We start by constructing the dictionary matrix corresponding
to the FID as A =

∑M
m=1 A(m), using the data symbols ŝ

estimated at the end of stage 1. Then we proceed to re-estimate
the channel vector from:

z =

M∑
m=1

z(m) = Ax + v, (22)

as in stage 1, but now using the full set of observations
including data subcarriers at the output of the FID. From
the estimated channel vector, we construct the post-combined
channel matrix Ĥ, and the corresponding post-combined mea-
surement z̃, using (18) and (19) respectively, and apply the
MMSE receiver in (21) for data demodulation using the PID
outputs, as in stage 1. Further, we iterate between channel
estimation and data detection until convergence or till a fixed
number of iterations (Niter) have elapsed.

C. Minimum Variance Recovery (MVR) Algorithm

The proposed MVR algorithm, given in Algorithm 1, is
inspired by the minimum variance spectrum estimation princi-
ple [14] and works by refining the channel estimate produced
by OMP. We construct an estimate of the measurement covari-
ance matrix from a thresholded3 version of the sparse channel

3The thresholding operation sets the coefficients whose magnitude is
smaller than the threshold to zero. Empirically, we find that performance is
insensitive to the value of the threshold, so its choice is not critical.
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Algorithm 1 Minimum Variance Recovery
1: function MVR(A, z, x̂0, σ) .

A ∈ Cm×n: dictionary matrix, z ∈ Cm: measurement
vector, x̂0 ∈ Cn: initial estimate of the sparse channel
vector (obtained from OMP), σ: noise standard deviation

2: Threshold: γ = σ
√

m
n

3: Initial support: S = {i ∈ [1, 2 . . . n] : |x̂0,i| > γ}
4: Initial solution: x̂S = A†:,Sz, x̂Sc = 0
5: Cardinality: k = |S|
6: Measurement covariance: R =

∑
i∈S |x̂i|2aiaHi + δI

7: Weight vector: wi = R−1ai
aHi R−1ai

8: Minimum variance signal: x̃ = WHz
9: S = Set of indices of the largest k entries of |x̃|

10: Update solution: x̂S = A†:,Sz, x̂Sc = 0
11: Output: x̂
12: end function

estimate provided by OMP, and use it to compute an adaptive
minimum variance weight vector. We use the weight vector
to re-estimate each entry of the channel vector, and update
the solution to contain the indices of the k largest entries of
the minimum variance solution, where k is the cardinality of
the thresholded version of the initial channel estimate. This
form of support update helps to minimize the leakage of
interference from other nonzero coefficients while identifying
the location of a nonzero coefficient in the sparse channel
vector. Finally, a refined solution vector is constructed using
the updated support. We note that, in the context of synthetic
aperture radar imaging, an algorithm similar in flavor called
the iterative adaptive algorithm has been proposed in [15].

In Figure III-C, we show the phase transition curves of
OMP, SBL and MVR on the m/n-k/n plane. At all operating
points below the curve, the signal to reconstruction error
ratio (SRR) exceeds 15 dB for at least 90% of the 1000
trial runs, where m is the number of measurements, k is the
number of nonzero entries in the sparse vector and n = 50
is the ambient dimension of the sparse vector. The m × k
measurement matrices are drawn independent and identically
distributed (i.i.d.) from a standard Gaussian distribution with
i.i.d. entries. The sparse vector is generated with k nonzeros at
uniformly random locations and with i.i.d. entries, uniformly
distributed on [−2,−1]∪[1, 2]. The additive noise is zero mean
Gaussian with a standard deviation chosen to achieve a signal
to noise ratio (SNR) of 30 dB. The phase transition curves
of SBL and MVR nearly coincide, and are superior to OMP.
However, SBL is a computationally demanding algorithm and
it takes a large number of iterations to converge. For the MVR
algorithm, while steps from lines 6 to 10 in Algorithm 1 can
be iterated multiple times, we find, in our simulations, that
the channel estimation error reduces significantly in just one
pass of the algorithm. Thus, MVR offers a computationally
attractive alternative to SBL with comparable performance
for our application. Empirically, we have observed a similar
relative performance behavior at other SNRs also.
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Figure 3. OMP, SBL & MVR phase transition curves at SNR = 30 dB.

Table I
SUMMARY OF COMPUTATIONAL COMPLEXITY.

Computation Stage 1 Stage 2
Dictionary Matrix O(M |SP |KN) O(K2N)

OMP (per iteration) O(M |SP |N) O(KN)
SBL (per iteration) O(M2|SP |2N) O(K2N)

MVR O(M2|SP |2N) O(K2N)

Channel Matrix O(K2N̂p) O(K2N̂p)
Combining Weights O

(
KM3

)
O(KM3)

Post-Combined Channel Matrix O(K2M) O(K2M)
Data Demodulation O(K) O(K)

D. Computational Complexity

Table I shows the computational complexity, based on float-
ing point operation (FLOP) count for matrix-vector operations
[16], [17], per iteration, of stage 1 and stage 2. Note that
the near-diagonal nature of the post-combined channel matrix
was utilized to reduce the computational complexity of data
demodulation in stage 1. We iterate OMP for N̂p times, where
N̂p is an integer exceeding the number of paths, SBL for a
fixed number of times, κ, and MVR just once. Stage 1 has a
complexity of O(K2(N̂p+M)+KM3 +(K+N̂p)NM |SP |)
per iteration when using OMP, O(K2(N̂p + M) + KM3 +
KNM |SP |+κM2|SP |2N) per iteration when using SBL, and
O(K2(N̂p+M)+KM3 +(K+ N̂p)NM |SP |+M2|SP |2N)
per iteration when using MVR. Stage 2 has a complexity of
O(K2(N̂p +M) +KM3) per iteration when using OMP and
MVR, and O(K2(N̂p+M)+κKM3) per iteration when using
SBL for sparse channel recovery.

In the proposed algorithm, the construction of dictionary
matrices in (14) consumes most of the CPU time, especially
for large K and N . Also, the dictionary matrix must be
recomputed in every iteration during stage 1 and stage 2 since
the data symbols get updated after the data detection step. We
perform a recursive update of the dictionary matrix during the
ν th iteration according to

A(m)(ν) = A(m)(ν − 1) + ∆A(m)(ν), (23)

where ∆A(m)(ν) = J(m)
[
Γ
(m)
1 ∆s(ν), . . . ,Γ

(m)
N ∆s(ν)

]
and

∆s(ν) = s(ν) − s(ν−1) is the change in the data symbols
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between iterations. As the iteration progresses, ∆s(ν) will
contain many zero elements and the corresponding columns
of ∆A(m)(ν) will be all zero vectors. Thus, only the columns
of A(m)(ν) corresponding to the nonzero entries in ∆s(ν) need
to be computed, making the dictionary update fast.

IV. ANALYSIS

Recall that the PID outputs are obtained from the same
OFDM receiver output as the FID outputs. Yet, using the PID
outputs in stage 1 leads to better data detection performance.
First, we analyze this behavior and show that using the PID
leads to a larger number of effective measurements compared
to the FID, which explains its better performance.

A. Effective Number of Measurements

We compare the number of linearly independent rows in the
measurement matrices corresponding to the PID and the FID
outputs for pilot only measurements in the stage 1. It is easy
to see that:

rank

(
M∑
m=1

A
(m)
SP

)
≤ rank

(
ÃSP

)
≤ min (M |SP |, N),

(24)
where ÃSP is the augmented matrix obtained by vertically
stacking A

(m)
SP

,m = 1, 2, · · · ,M . Therefore, there are at least
as many linearly independent pilot only measurements at the
output of the PID, whose sensing matrix is ÃSP , as the FID,
whose sensing matrix is ASP ,

∑M
m=1 A

(m)
SP

. We proceed
to show that it is possible to obtain strictly more linearly
independent measurements from the PIDs than from the FID.

In the first iteration of stage 1, we set all the entries of
ŝ, except pilot locations, to zero. If all the pilot symbols are
equal to, say, s0, then, the dictionary matrix constructed in the
first iteration of stage 1 is given by:

A
(m)
SP

= s0ISP J(m)ITSP ISPΓ(m), (25)

where,
Γ(m) ,

[
Γ
(m)
1 1K . . .Γ

(m)
NτNb

1K

]
, (26)

1K ∈ RK is a column vector of K ones and ISP is as defined
after (16). The matrix Γ(m) can be decomposed as:

Γ(m) = Γ
(m)
b ⊗ Γτ , (27)

Γ
(m)
b = ej2πfb

T tm ∈ CK×Nb , (28)

Γτ = e−j2πfτ
T

∈ CK×Nτ , (29)

where ⊗ denotes the Khatri-Rao product,4 eB finds element-
wise exponentiation of a matrix B, and

f = [f1, . . . , fK ]
T ∈ RK , (30)

τ =

[
T

λK
,

2T

λK
, . . . ,

NτT

λK

]T
∈ RNτ , (31)

b = [−bmax,−bmax + ∆b, . . . , bmax]
T ∈ RNb . (32)

4The Khatri-Rao product is formed by taking the row-wise Kronecker
products of Γ(m)

b ∈ CK×Nb and Γτ ∈ CK×Nτ .

It readily follows from (27) and the definition of the Khatri-
Rao product that,

ISPΓ(m) = ISPΓ
(m)
b ⊗ ISPΓτ . (33)

Let Γ̃SP ∈ CM |SP |×NτNb and Γ̃b,SP ∈ CM |SP |×Nb de-
note the augmented matrices obtained by vertically stacking
ISPΓ(m),m = 1, . . . ,M, and ISPΓ

(m)
b ,m = 1, . . . ,M,

respectively. Similarly, let Γ̃τ,SP ∈ CM |SP |×Nτ be the aug-
mented matrix obtained by vertically stacking ISPΓτ M -
times. We then have:

Γ̃SP = Γ̃b,SP ⊗ Γ̃τ,SP . (34)

We now state two properties of the Khatri-Rao product that
are useful in the sequel. We denote k-rank(B) to be the row
Kruskal-rank5 of a matrix B.

Lemma 1. The rank (k-rank) of the Khatri-Rao product of
two matrices, both having at least one of the columns with
all its entries nonzero, is never less than the rank (k-rank)
of the two matrices, i.e., if B ∈ Cr×p and C ∈ Cr×q are
two matrices such that for some n ∈ {1, 2, . . . , p} and n′ ∈
{1, 2, . . . , q}, we have [B]m,n 6= 0 and [C]m,n′ 6= 0 for every
m ∈ {1, 2, . . . , r}, then:

rank (B⊗C) ≥ max (rank (B) , rank (C)), (35)
k-rank (B⊗C) ≥ max (k-rank (B) , k-rank (C)).(36)

Proof. See Appendix.

Lemma 2. If B ∈ Cr×p and C ∈ Cr×q then

k-rank (B⊗C) ≥ min (k-rank (B) + k-rank (C)− 1, r).
(37)

Proof. See Appendix.

All entries of the matrices ISPΓ
(m)
b and ISPΓτ , in (34),

have unit magnitude and therefore satisfy the conditions in
Lemma 1. Also, it is straightforward to see that

rank
(
Γ̃τ,SP

)
= rank (ISPΓτ ) , (38)

k-rank
(
Γ̃τ,SP

)
= 1, (39)

and therefore it follows from Lemma 1 that

rank
(
Γ̃SP

)
≥ max

(
rank

(
Γ̃b,SP

)
, rank (ISPΓτ )

)
,

(40)

k-rank
(
Γ̃SP

)
≥ k-rank

(
Γ̃b,SP

)
. (41)

We are now ready to state a sufficient condition that results
in strictly larger number of independent measurements from
the PID output than the FID. We say that a collection of
subspaces S = {Si ∈ V : i = 1, 2, · · · , n} of a vector space
V forms a virtually disjoint partition if V is a direct sum of
its subspaces Si, i = 1, 2, · · · , n, i.e., if ⊕ni=1Si = V and
∩ni=1Si = {0}, where the operator ⊕ denotes the subspace
sum [18].

5The row Kruskal-rank (k-rank) of a matrix is r if every subset of its r
rows is linearly independent and at least one subset of r+ 1 rows is linearly
dependent.
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Theorem 1. If the number of grids Nb used for representing
the Doppler parameter, and the augmented matrix Γ̃b,SP
generated by the representative Doppler values forming the
grid, satisfy:

Nb +Nτ ≥M |SP |+ 1, (42)

k-rank
(
Γ̃b,SP

)
= min (Nb,M |SP |), (43)

and the pilot locations in SP are chosen such that

rank
(
ISP J(m)ITSP

)
= |SP |,m = 1, . . . ,M, (44)

then:

|SP | = rank

(
M∑
m=1

A
(m)
SP

)
< rank

(
ÃSP

)
= M |SP |. (45)

Proof. See Appendix.

Discussion: The result in Theorem 1 indicates that the pilot
only measurements from the PID outputs can potentially lead
to better channel estimates compared to that from the FID.
The conditions (42) and (43) are not necessary; we find in
our simulation studies that far fewer number of grid points
Nb in the Doppler parameter leads to (45) being satisfied.
To illustrate this point, Figures 4 and 5 show the distribution
of singular values of the stacked up dictionary matrix ÃSP

corresponding to the PID output for pilot subcarriers when
the Doppler spreads are bmax = 5 × 10−4 and bmax = 10−3,
respectively, and when pilot carriers are chosen as in the
numerical case study in Section V. Also shown in this figure
is a plot of the singular values of the dictionary matrix ASP

corresponding to FID observation of pilot subcarriers. It is
clear that the numerical rank of the stacked up dictionaries of
the PID is greater than that of the FID, especially, when the
dictionaries are designed for high Doppler spread. Therefore,
using the sequence of observations from PIDs, which is
tantamount to oversampling the OFDM receiver output, helps
estimate the channel better.

We have shown that the sparse channel estimation from the
PID output provides a good initial estimate of the channel
matrix. Next, we justify that the proposed two stage algorithm
that iterates between the sparse channel estimation and data
detection steps in each stage can only improve the channel
estimation and data detection accuracy with every iteration.

B. Convergence

Recall that our channel estimation is based on the sparse
vector recovery framework expressed by (15) and (22) for
stage 1 and stage 2, respectively. We recapitulate the channel
estimation framework in the following form:

z = A(s)x + v, (46)

where A(s) indicates the dependence of dictionary matrix on
the data symbols s. Similarly, the data detection problem in
the stage 1 and stage 2 is given by

z = H(x)s + v, (47)

where the dependence of the channel matrix on the vector x
is indicated via H(x). Note that A(s)x = H(x)s.
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Figure 4. Singular values of the dictionary matrices corresponding to PID
and FID outputs. Doppler spread bmax = 0.5× 10−3.
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Figure 5. Singular values of the dictionary matrices corresponding to PID
and FID outputs. Doppler spread bmax = 10−3.

Ideally, for estimating the sparse channel, we would like to
minimize ‖x‖0 subject to ‖z −H(x)s‖2 ≤ η. This problem
is NP-hard, and, therefore, we consider its convex relaxation:

C(x, s) = ‖x‖1 + λ‖z−H(x)s‖22, (48)

over x, s ∈ C.
Let x(ν) denote the sparse channel vector estimated in the

ν th iteration. For a given x(ν), choosing

s(ν+1) = arg mins∈C‖z−H(x(ν))s‖2, (49)

ensures that C(x(ν), s(ν+1)) ≤ C(x(ν), s(ν)). For a given
s(ν+1), choosing

x(ν+1) = arg minx∈CC(x, s(ν+1)), (50)

ensures that C(x(ν+1), s(ν+1)) ≤ C(x(ν), s(ν)). Therefore, the
cost C(x, s) reduces with every iteration and is bounded below
by 0. Hence, the iterations in stage 1 and stage 2 converge
to a local minimum of the `1 regularized joint cost function.
We can show that, by associating a Laplacian prior to the
channel vector x, the solution (x, s) which minimizes C(x, s)
is also a solution to joint channel estimation and maximum
a posteriori probability (MAP) data detection problem. Note
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that the above recipe of iterating between channel estimation
and data detection is unlike joint receivers that provide a low
complexity approximation to MAP detection [19], [20].

C. Lower Bound on the MSE

We obtain a lower bound on the MSE in the estimate of
the channel matrix (see remark below) for the two classes of
unbiased estimators: one that makes use of the observations
at the output of the PID, and the other that uses only the
observations from the FID. We have the following theorem.

Theorem 2. For the PID measurement model in (13), the MSE
in the channel matrix H, which is a function of the channel
vector x, can be lower bounded as

E{‖H− Ĥ‖2F } ≥ tr

(
F−1S,S

∂h

∂xS

H ∂h

∂xS

)
, (51)

S is the support of the channel vector x, FS,S ∈ C|S|×|S|
is the submatrix of the Fisher Information Matrix (FIM) F ∈
CN×N , corresponding to the rows and columns indexed by S,
for the observation model in (13), given by

F =

M∑
m=1

A(m)HC†mA(m), (52)

Cm is the covariance of the noise at the output of the PID,
whose entries are given by (8), h(x) , vec (H) ∈ CK2×1,
the columns of the matrix ∂h

∂x ∈ CK2×N are given by

∂h(x)

∂xk
=

{
vec

(∑M
m=1 J(m)Γ

(m)
k

)
, k ∈ S,

0K2 , otherwise,
(53)

and ∂h
∂xS

is the submatrix of ∂h∂x consisting of only the columns
indexed by S.

Proof. See Appendix.

Theorem 3. A lower bound on the MSE of the unbiased
estimators of the channel matrix H, that uses the observations
from the FID measurement model in (22), is given by

E{‖H− Ĥ‖2F } ≥ tr

(
G−1S,S

∂h

∂xS

H ∂h

∂xS

)
, (54)

where S is the support of the channel vector x, G ∈ CN×N
is the FIM for the FID observation model in (22), given by:

G =
1

N0
AHA, (55)

h(x) , vec (H) ∈ CK2×1, and the columns of the matrix
∂h
∂x ∈ CK2×N are given as in Theorem 2.

Proof. Similar to Theorem 2.

Remarks:
1) It is tempting to consider the MSE in the estimate of the

sparse channel vector x, in (12), defined on the delay-
Doppler grid. While the MSE in the channel vector x
relates to the MSE in the channel matrix H, we assert
that the latter is more meaningful for our problem. This
is because, a small mismatch in support estimation (i.e.,
when the recovered support returns indices near the true
support) can lead to a large MSE in the sparse vector
x, but need not translate to a large MSE in the channel.
However, the data detection performance primarily de-
pends on the fidelity in the estimation of H, and not as
much on x. Hence, we consider the MSE in the channel
matrix H as the performance metric in this work.

2) Theorems 2 and 3 allow us to compare the bounds on
the MSE of unbiased estimators that use the PID outputs
and those that use the FID outputs. Numerical evaluation
shows that the bound on the MSE for the estimators
that make use of PID outputs is indeed better. Also, our
proposed two-stage data detection and channel estimation
algorithm, that makes use of the PID outputs in stage 1
and the FID outputs in stage 2, approaches the lower
bound at high SNR. See Section V for details.

V. NUMERICAL SIMULATIONS

We simulate the performance of the proposed algorithm for
the CP-OFDM system whose parameters are listed in Table II.
The specifications of the system matches with the settings used
in the SPACE’08 experiment and is widely used for simulation
studies in several past works, for example, [3], [7], and [8].
Pilot symbols are spaced uniformly. Half the null carriers
are placed at the band edges and the remaining are inserted
between the data as specified in [3], [7].

We consider two simulation models for the underwater
acoustic communication channel. In model I, adopted from [3],
[7], we generate sparse channels with a few discrete paths
whose inter-arrival times are exponentially distributed with a
mean of 1 ms. The path amplitudes are Rayleigh distributed
with the average power decreasing exponentially with delay,
where the difference between the beginning and the end of
the guard time is 20 dB. The residual Doppler rate for each
path is uniformly distributed in [−bmax, bmax], where channels
with bmax = 5 × 10−4 and 1 × 10−3 are considered to be
severely Doppler distorted in the underwater communication
literature [21]. In model II, we simulate the time-varying
stochastic channel response according to the model proposed
in [2]. Model II incorporates the effect of frequency dependent
attenuation, the surface/bottom scattering and other random
fluctuations in the medium and source-receiver position. The
authors report a good match of their theoretical model with
the experimental data collected from four different deployment
sites of varying degrees of mobility. We use model II to
demonstrate the relatively strong performance of the proposed
algorithm to mismatches in the model assumptions.

We finally show the performance of our proposed algorithm
on the measured time varying channel impulse response data
available in WATERMARK [22]. We consider two channel
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Table II
CP-OFDM PARAMETERS USED IN THE SIMULATION.

Carrier frequency (fc) 13 kHz
Bandwidth (B) 9.77kHz

No. of subcarriers (K) 1024
No. of pilots (|SP |) 256
No. of nulls (|SN |) 96

Symbol duration (T ) 104.86 ms
Subcarrier spacing (∆f ) 9.54 Hz

Guard interval (Tg) 24.6 ms

measurements corresponding to a low Doppler spread channel
and a high Doppler spread channel. These measured responses
in WATERMARK include the effect of system hardware and the
real world acoustic propagation as well.

We define the signal to noise ratio (SNR) as SNR =
E{‖Hs‖22}
E{‖v‖22}

, and the normalized MSE in channel estimation as

NMSE =
E{‖H−Ĥ‖2F }
E{‖H‖2F }

, where H ∈ CK×K and Ĥ ∈ CK×K
are the true and the estimated channels, respectively.

A. Simulations using Model I

We first consider coded 16-QAM transmissions, and chan-
nels generated according to model I with Np = 15 discrete
paths and bmax = 10−3. The turbo code uses two rate-1/2
convolutional encoders with feedback and an interleaver of
length 232 bits [23]. The bit error rate (BER) and normalized
MSE are averaged over 1000 independent instantiations. For
constructing the dictionary matrix, grids are formed using
Nb = 15 points for the Doppler rate and Nτ = 480 points for
the delay resolution corresponding to an oversampling factor
of λ = 2 over the guard interval. The PID and FID dictionary
matrices are, therefore, of size 1024× 7200.

For the sparse channel recovery, we experiment with
OMP [24] and MVR. For OMP, we set the number of nonzero
entries to be recovered to N̂p = 25. The number of propaga-
tion paths need not be known precisely; as long as N̂p > Np,
simulation studies show good channel recovery. The MVR
algorithm is iterated only once. We compare our proposed
dual stage algorithm that uses PID outputs in stage 1 against
the algorithms in [3], [7], the least squares based channel
estimation and data detection, and genie-aided data detection
which uses the channel state information. For simulating the
algorithm in [7], we use the ICI-aware receiver with an ICI
depth parameter of D = 6.

In Figure 6, we show the normalized MSE in the channel
matrix estimate for the different algorithms. For the proposed
dual-stage algorithm, we iterate for Niter = 3 through both
stage 1 and stage 2. We use M = 4 PIDs in our simulations.6

For the value of M used here, from equation (8), the noise
at the output of the PID is uncorrelated among the pilot-only
observations. The MVR algorithm leads to a lower MSE in the
channel matrix estimate compared to OMP. The normalized
MSE performance of the algorithms in [3], [7], that use the

6Increasing M will in general improve the performance due to additional
measurements being made available, but will also increase the computational
complexity. Also, increasing M beyond a certain point will not yield signifi-
cantly more effective measurements.

FID output for pilot-only measurements, is shown in Figure 6.
The algorithm in [7] is similar to [3] but iterates to improve
the data symbol detection; we use Niter = 6 in the simulations
of the iterative algorithm in [3]. Also included in Figure 6
are the normalized MSE performances of two least square
channel estimation algorithms labeled LS CDD (FID) and
LS CDD (PID, Optm. Wt.) in the plot. LS CDD (FID)
estimates the channel using pilot measurements at FID out-
put. LS CDD (PID, Optm. Wt.) estimates the channel using
pilot measurements at optimally combined PID output. Only
the combiner weights, for LS CDD (PID, Optm. Wt.), are
computed using the true channel matrix (genie aided). Note
that the performance of [8], in which combiner weights are
estimated through an adaptive algorithm, cannot be better
than LS CDD (PID, Optm. Wt.). Stage 1 recovers the channel
better than the existing FID and PID based algorithms and
hence provides a good estimate of unknown data symbols
to initialize stage 2. The MSE in the channel matrix further
reduces at the end of stage 2, especially at high SNR, which
leads to better symbol detection performance. Figure 7 shows
the reduction in MSE for the iterative algorithms compared
above, as the number of iterations is increased to Niter = 10
at an SNR of 16 dB. It is seen that the proposed dual
stage algorithm, at the end of stage 2, has settled in about
3 iterations.

Figure 8 compares the bit error rate (BER) versus SNR
curves of the proposed dual stage algorithm with the least
squares based channel estimation and coherent data detection
algorithms LS CDD (FID) and LS CDD (PID, Optm. Wt.),
the sparse channel recovery based algorithms reported in [3],
[7] and the genie-aided data detection as a baseline. Note
that LS CDD (FID) and LS CDD (PID, Optm. Wt.) perform
coherent data detection at the FID and optimally combined
PID outputs, respectively. The dual stage iterative algorithm
proposed in this paper clearly outperforms the existing sparse
channel recovery based algorithms and the least squares chan-
nel estimation based data detection algorithms, at all SNRs.
Also, compared to the OMP based sparse channel recovery
algorithm, the BER curve of the MVR based sparse channel
recovery is closer to that of the genie aided data detection at
the end of the stage 2.

Figure 9 shows the CRBs corresponding to the PID and
the FID output, computed using (51) and (54), respectively.
The CRB on the MSE of estimators that use only the FID
output is higher than those that makes use of the output from
the PID. Moreover, among the two sparse channel recovery
algorithms, MVR based channel estimation achieves the CRB
corresponding to PID observation at an SNR of about 30 dB,
at the end of stage 2.

Figure 10 shows the BER performance when the Doppler
scale is varied. While all the schemes perform nearly identical
at zero Doppler spread, the performance gap of between the
proposed scheme and other schemes widens as the Doppler
scale increases, highlighting the significance of PID based
channel estimation in high Doppler spread scenarios.

Next, we examine the effect of pilot density on the
BER performance [25], [26]. Figure 11 depicts the BER
performance as the number of pilots used is varied while
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keeping the SNR constant at 12 dB and bmax = 10−3. We
consider a pilot arrangement of sub-arrays of pilots, where
each sub-array consists of 32 pilots at a regular spacing of
4. Also, the sub-arrays are spaced uniformly. For example,
when |SP | = 96, we form 3 sub-arrays each comprising of
32 pilots, and the spacing between the first elements of two
consecutive sub-arrays is 128 subcarriers. We see that the
gap between the proposed and existing algorithms increases
dramatically with pilot density, implying that the proposed
algorithm can achieve a given performance at a significantly
lower pilot density.

B. Simulations using Model II

Now we examine the performance when the channel is
simulated according to the model proposed in [2]. The time
varying frequency response of the channel is modeled as

H̃(f, t) = H̄0(f)

Np∑
p=1

hpγ̃p(f, t)e
−j2πfτp , (56)
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Figure 8. BER of various sparse channel recovery based algorithms and the
genie-aided perfect CSI lower bound. Doppler spread bmax = 10−3.
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where H̄0(f) is the nominal frequency response of the direct
path between the source and receiver that results in a frequency
dependent propagation loss, hp is the nominal channel coeffi-
cient of the pth path that arrives at a nominal delay of τp, and
the stochastic term γ̃p(f, t) = γp(f, t)e

2πap(t)ft is composed
of the small-scale fading γp(f, t) and the Doppler scale factor
ap(t) corresponding to the pth propagation path. The small-
scale fading γp(f, t) of the pth path, arises from scattering
at the rough sea surface and bottom that leads to a bunch
of micro-paths whose amplitudes and delays are randomly
distributed around that of the nominal ray path. The Doppler
scale factor ap(t) is a composite effect of the vehicular motion,
surface wave perturbations, and relative source-receiver drifts.
The received signal for this channel is given by

ỹ(t) =

∫ T

0

c̃(τ, t)x̃(t− τ)dτ + ñ(t), (57)

where c̃(τ, t) = F−1f {H̃(f, t)} is the time-varying channel
impulse response and F−1f is the inverse Fourier transform.

Note that the frequency dependence of the stochastic term
γ̃p(f, t) distinguishes the channel model in (56) from the
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channel model implicit in (3). The model in (3) is widely
used in the underwater communication literature for design-
ing algorithms and benchmarking performance. In this work,
additionally, we test the robustness of our proposed algorithm
by evaluating its performance under the received signal given
by (57) instead of (3).

Figure 12 shows a sample realization of the effective chan-
nel impulse response c̃r(τ, t) = c̃(τ, t

1+â ) after resampling
at the receiver. The channel is generated using the acoustic
channel simulator code available in [27]. Table III shows the
environmental parameters and source-receiver geometry used
in this simulation. The transmitter and receiver are in a shal-
low water environment overlying a soft bottom. Small-scale
surface variations, and relative drifts between the source and
receiver, cause the channel taps to randomly fluctuate about
their slowly varying mean. Specifically, the Doppler scales
for this channel vary between [−8.75 × 10−4, 10.0 × 10−4].
Figure 13 shows the Doppler spectrum of the simulated
channel averaged across the channel taps. A sample plot of
an instantaneous channel response across frequency, obtained
at subcarrier spacing, is shown in Figure 14. Significant vari-

Table III
UNDERWATER CHANNEL SIMULATION PARAMETERS.

Ocean depth (m) 100
Transmitter depth (m) 90
Receiver depth (m) 50
Channel distance (m) 1000
Spreading factor 1.7
Sound speed in water, cw (m/s) 1500
Sound speed in bottom, cb (m/s) 1200
Surface variance, σ2

s (m2) 1.125
Bottom variance, σ2

b (m2) 0.5
3 dB width of the PSD of intra-path delays, Bδ,p (Hz) 0.05
Number of intra-paths, Sp 20
Mean of intra-path amplitudes, µp 0.3
Variance of intra-path amplitudes, νp 10−4

Transmitter drifting speed, vtd (m/s) 0.3
Transmitter drifting angle, θtd (rad) U(0, 2π)
Receiver drifting speed, vrd (m/s) 0.1
Receiver drifting angle, θrd (rad) U(0, 2π)
Transmitter vehicular speed, vtv (m/s) N (0, 1)
Transmitter vehicular angle, θtv (rad) U(0, 2π)
Receiver vehicular speed, vrv (m/s) -3
Receiver vehicular angle, θrv (rad) U(0, 2π)
Surface variation amplitude, Aw (m) 0.9
Surface variation frequency, fw (mHz) 0.6

ations are noticed between adjacent subcarriers for a typical
instance.

The channel parameters (path delays, Doppler scales, and
amplitudes) vary smoothly between the successive OFDM
symbols, for the acoustic channel simulator. For such channels,
pilots need to be inserted only in the first OFDM block where
the stage 1 runs in the pilot assisted mode followed by stage 2
that uses both pilot and data subcarrier measurements.7 In the
subsequent blocks, where no pilots are available, the algorithm
switches to a decision directed mode where the pilots are now
replaced with tentative estimates of data symbols. The tentative
symbol estimates are formed using channel parameters found
at the end of stage 2 in the previous block. An iteration of
stage 1 and stage 2 tracks the channel and updates the symbols
for the current block. More generally, the schemes in [28], [29]
exploit the channel coherence between the OFDM blocks to
reduce the pilot overhead. They can be applied to improve the
initial symbol estimates at the beginning of a new block in
our algorithmic framework also. However, here we implement
the simple approach just described.

Figure 15 shows the BER of the different algorithms for this
channel. Pilots are employed only in the first OFDM block.
While there are only about five significant ray paths in the
channel impulse response, each ray path is in turn a bundle of
several micro-paths. Therefore, we set the OMP based sparse
channel estimator to recover a higher number of paths. We set
the number of nonzero entries to be recovered to N̂p = 46
and use the same dictionary as before with bmax = 10−3. The
proposed algorithm maintains a strong relative performance
even in this difficult environment.

7A pilot overhead of 30%, as in [3] and [7], is required for the previous
channel model because the channel parameters were drawn independently in
successive OFDM symbols.
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Figure 12. Acoustic channel impulse response based on model in [2].
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Figure 13. Doppler spectrum of the simulated acoustic channel.
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Figure 14. Instantaneous frequency response of the simulated channel.

C. Performance on WATERMARK Data

WATERMARK is a recently proposed benchmark for com-
paring the performance of physical layer algorithms for un-
derwater acoustic communications [22], [30], [31]. WATER-
MARK comes packaged with real world records of time-
varying channel impulse response measurements for different
environments and source-receiver geometries. The measured
responses include the acoustic propagation effects and the
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Figure 15. BER of various channel estimation and data detection algorithms
on simulated acoustic channel.

system hardware effects such as clock frequency offset. The
replay facility allows for transmitting any communication
waveform in the frequency band of measured responses.
These features make WATERMARK a realistic and reproducible
performance assessment tool.

We show the performance on two datasets, NOF1 and
NCS1, corresponding to a low Doppler spread and high
Doppler spread channel in the Norwegian shallow water and
continental shelf, respectively (Table 2.1, [22]). The frequency
band of both datasets is 10-18 kHz. Figure 16 shows an
instantaneous channel response across frequency, obtained at
subcarrier spacing, typical of the NOF1 and NCS1 channels.
The Doppler spectrum of NOF1 has a sharp peak around zero
frequency, with sidelobes less than −20 dB relative to the
peak. On the other hand, the Doppler spectrum of NCS1 is
significantly spread out within [−15, 15] Hz (see Figure 3 in
[30]). Doppler frequency spread of δf = ±15 Hz in NCS1
corresponds to a Doppler scale of bmax ≈ |δf |fc = 1.1× 10−3,
where fc = 14 kHz is the band center frequency. While NOF1
is considered to be a benign channel, the NCS1 channel is
more challenging due to its smaller coherence time.

The CP-OFDM system parameters used in this study are
as follows. Center frequency and bandwidth are 14 kHz and
8 kHz, respectively, to match the frequency band of measured
channel responses in NOF1 and NCS1. A guard interval of
32 ms is used, considering the power delay profiles for NOF1
and NCS1, beyond which the channel response is attenuated
significantly. The symbol interval for the 1024 subcarrier
system is 128 ms and the subcarrier spacing is 7.8125 Hz. As
with the acoustic channel simulation model, pilots are used
only in the first OFDM block for training and the algorithm
switches to a decision directed mode thereafter. Symbols are
drawn from the QPSK constellation to enable a performance
comparison with the algorithm in [9].

Figure 17 shows the BER performance on NOF1 channel.
The algorithm DCDD (PID) performs differentially coherent
data detection, as in [9], after combining the PID outputs.
The combining weights are computed using channel estimate
obtained through sparse channel recovery. The algorithms in
[3], [7] and the proposed algorithm perform almost equally
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Figure 16. Instantaneous frequency response typical of the WATERMARK
channels NOF1 and NCS1.

well on this low Doppler spread channel. Figure 18 shows
the BER performance on NCS1 channel. In this high Doppler
spread channel, the proposed algorithm clearly outperforms
the other algorithms.

VI. CONCLUSIONS

In this paper, we considered sparse channel estimation and
data detection in a time-varying underwater acoustic channel
for a CP-OFDM system. We used the measurements from the
PID to track the time-variations within the OFDM symbol du-
ration. We proposed a two-stage algorithm, where, in stage 1,
we use the pilot-only measurements to estimate the channel
and also detect the unknown data symbols. The MSE in the
channel matrix estimation is reduced by iterating between
the channel estimation and data detection for a fixed number
of times. Thereafter, in stage 2, we use all the observations
including data subcarriers to enhance the performance. We
proposed a sparse channel recovery algorithm based on the
minimum variance principle that bootstraps from the initial
estimate provided by the OMP and refines this estimate.

We showed that using the output from the PID in the
stage 1 indeed provides a good initial estimate of the channel
matrix in a high Doppler spread scenario and is therefore key
to the improved data detection performance of the proposed
algorithm. We showed that the PID provides a larger number
of effective measurements than the FID, and, hence, a lower
MSE in the channel matrix estimate is achievable when using
measurements from the PID. Our simulation results confirmed
that the proposed two-stage algorithm significantly reduces
the BER in time-varying channels. For sparse signal recovery,
we considered the OMP and MVR algorithm. MVR provided
better estimates of the channel than OMP. MVR exhibits a
performance similar to SBL in just one pass through the
algorithm, while the latter takes several iterations to converge.
Results for the experimental channel data in WATERMARK
reaffirm the strong performance of the proposed scheme in
harsh channel conditions. In this work, we considered a grid
based recovery of the Doppler and delay parameters; future
work can consider gridless compressed sensing recovery meth-
ods and their performance. Extending the proposed approach
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Figure 17. BER comparison of various channel estimation and data detection
algorithms in the low Doppler spread WATERMARK channel NOF1.
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Figure 18. BER comparison of various channel estimation and data detection
algorithms in the high Doppler spread (bmax ≈ 10−3) WATERMARK channel
NCS1.

to the case where the receiver is equipped with an array of
hydrophones is also an interesting direction for future work.

APPENDIX

Proof of Lemma 1: The Khatri-Rao product B⊗C ∈ Cr×pq
houses a submatrix (and another submatrix) whose rows
are scaled versions of the rows of B ∈ Cr×p (respectively
C ∈ Cr×q) and hence its rank, and the k-rank, must be at
least that of B ∈ Cr×p (C ∈ Cr×q). The results follow.

Proof of Lemma 2: Let R denote a set of
rk = k-rank (B⊗C) + 1 indices of the rows of B ⊗ C
that are linearly dependent. It follows from the definition of
k-rank that there exists a vector d ∈ Crk with all entries
nonzero such that dT (BR ⊗CR) = 0, where BR = IRB
and CR = IRC. Therefore, we have BT

RDCR = 0 ∈ Cp×q
where D = diag (d). D is non-singular since all entries
of d are nonzero and hence, by the Sylvester inequality,
0 = rank

(
BT
RDCR

)
≥ rank (BR) + rank (CR) − rk =⇒

rk ≥ rank (BR) + rank (CR). The rows of BR and
CR are dependent by construction, and hence appending
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more rows to these matrices cannot increase their k-
rank: rank (BR) ≥ k-rank (BR) ≥ k-rank (B) and
rank (CR) ≥ k-rank (CR) ≥ k-rank (C). Thus, we find
rk = k-rank (B⊗C) + 1 ≥ k-rank (B) + k-rank (C), from
which the result follows.

Proof of Theorem 1: From (42) and (43), we get

M |SP | ≥ rank
(
Γ̃SP

)
≥ k-rank

(
Γ̃SP

)
≥ min (Nb +Nτ − 1,M |SP |)
= M |SP |, (58)

where the last inequality follows from Lemma 2, and hence

rank
(
Γ̃SP

)
= M |SP |. (59)

Therefore, the row spaces of ISPΓ(m),m = 1, . . . ,M, form
a virtually disjoint partition of the M |SP |-dimensional row
space of Γ̃SP . Due to equation (25) and the condition
in (44), the row space of A

(m)
SP

is equal to that of
ISPΓ(m) for m = 1, . . . ,M . Hence, the row spaces of
A

(m)
SP

,m = 1, . . . ,M, also form a virtually disjoint partition
of the M |SP |-dimensional row space of Γ̃SP . The result in
(45) follows.

Proof of Theorem 2: First, we note that the channel matrix
H can be related to the entries of the channel vector x, defined
in (12), by making use of (9). This allows us to express
the channel matrix H as a function of the channel vector x.
The MSE of any unbiased estimator of H that makes use
of the output from the PID, given by (13), cannot be better
than the Cramér Rao bound (CRB) [32] of the subclass of
unbiased estimators which know the true dictionary matrices
A(m),m = 1, 2, . . . ,M , i.e., where a genie provides the
estimator with the knowledge of the data symbols. The CRB,
given the true dictionary matrices in (13), is the same as the
MSE of an oracle estimator that knows the support S of the
channel vector x [33]. The result follows.
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