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ABSTRACT

We consider the problem of recovering the common support
of a set of k-sparse signals {x;}~_; from noisy linear under-
determined measurements of the form {®x; + w; }~ ; where
® € R™*N (m < N) is the sensing matrix and w; is the ad-
ditive noise. We employ a Bayesian setup where we impose
a Gaussian prior with zero mean and a common diagonal co-
variance matrix I across all x;, and formulate the support re-
covery problem as one of covariance estimation. We develop
an algorithm to find the approximate maximum-likelihood es-
timate of I" using a modified reweighted minimization proce-
dure. Empirically, we find that the proposed algorithm suc-
ceeds in exactly recovering the common support with high
probability in the £ < m regime with L of the order of m and
in the k£ > m regime with larger L. The key advantage of the
proposed algorithm is that its complexity is independent of L,
unlike existing sparse support recovery algorithms.

Index Terms— Sparse support recovery, covariance esti-
mation, multiple measurement vectors

1. INTRODUCTION

The problem of recovering joint-sparse signals from multiple
measurement vectors (MMVs) has received much attention in
the recent literature, as it has a variety of applications in next
generation communication systems such as channel estima-
tion [1], distributed source coding [2], cooperative spectrum
sensing [3], and sparse event detection in wireless sensor net-
works [4], to name a few. Formally, we are given observations
y: € R™ generated according to the linear model

yvi =®x; +w;, i€l (1

where ® € R™*N (m < N) is the measurement matrix, x; €
RY i € [L], are a set of k-sparse vectors, i.e., they have

at most k nonzero entries, and w; A (0,021I) is additive
noise. Further, x; are assumed to be jointly sparse vectors.
That is, they have a common support, where the support of
a vector is defined as the set of indices corresponding to its
nonzero entries. The goal of the MMV sparse vector/support
recovery problem is to determine the x;’s or their common
support from y; and ®. In this work, we propose a novel
covariance estimation based algorithm for the MMV sparse
support recovery problem.

Sparse signal/support recovery based on covariance match-
ing is a relatively new theme in the MMV literature. Al-
gorithms in this category include Co-LASSO [5] and RD-
CMP [6]. The M-SBL algorithm, introduced in [7], can
also be interpreted as performing covariance matching based
on the log-det Bregman divergence metric [8]. These al-
gorithms are based on a Bayesian modeling approach, and
have been empirically shown to significantly outperform the
so-called Type-1 MMV algorithms such as the ¢, » penalty
algorithm [9], simultaneous OMP [10], etc.

Most of the recovery algorithms for the MMV case focus
on the £ < m regime. It was shown recently in [5] that sup-
port recovery is possible even in the £ > m regime. The au-
thors propose a LASSO-based approach to recover the com-
mon support using correlation among the x;. The authors em-
pirically showed that support recovery is possible (with large
L) for support size k > m and conjectured that k£ can be
as large as O(m?) (it is assumed that m? < N). Similar
observations were made in [6] and [11] also, where M-SBL
and RD-CMP were shown to successfully recover the support
even when k > m, respectively. A theoretical understanding
of the success of M-SBL was recently developed in [8].

In this work, we show that a maximum likelihood (ML)
based technique that also uses the correlation information
among x; successfully recovers the common support in the
k < m case with “small” L (of the order of m) and requires
a larger L in the £ > m case. A key distinction between
our technique and M-SBL is that our technique estimates
the hyperparameters using the sample covariance matrix of
the observations. M-SBL, on the other hand, uses the entire
sequence of samples in every iteration of the expectation
maximization procedure, making it slow when L is large.
Further, we explicitly account for the approximation error in
constructing the covariance of the observation from a finite
number of measurements. We derive the statistics of this
error term and model it using a joint-Gaussian distribution,
whose covariance turns out to be dependent on the sparse
signal statistics. The makes the resulting support recovery
problem one of nonconvex optimization, and we propose a
modified reweighted minimization based iterative solution.
Finally, we empirically illustrate the performance of our al-
gorithm and compare it with state-of-the-art algorithms from
the literature. We find that the algorithm works well with L of
the order m when k£ < m, and requires larger L when k& > m.



The outcome is an algorithm that provides competitive per-
formance and whose complexity is virtually independent of
L, the number of MMVs.

2. PROBLEM FORMULATION

We consider the MMV problem where we obtain observa-
tions y;, 4 € [L], as in (1), where the sparse vectors x; have a
common support T' C [N] with |T| < k. We further assume
that the nonzero entries of x; are uncorrelated. To capture the
latent structure in x;, we impose the following prior:

1
&

N
p(xi;y) = 2, (2)
]1;[1 \/ 27T’}/j

where x;; denotes the 4™ entry of x; and v; = 0 denotes
the common variance of x;;,¢ € [L]. In other words,
we have x; N(0,T) where I' = diag(v), with v =
[Y1,72, - -, y~]T. This type of prior to model sparsity was
first introduced in [12]. The observations y; are therefore
distributed as AN'(0, T'® " + o21). The goal is to estimate
the common support 7T from {y;}~ ;.

We observe that under the prior model above, T =
supp(x;) = supp(7y), since y; = 0 if and only if z;; = 0
almost surely. Hence, support recovery from MM Vs is equiv-
alent to recovering the support of . As we will see later, our
simulations show that under our prior model, we can recover
the support even when k£ > m.

3. GAUSSIAN-APPROXIMATION BASED SUPPORT
ESTIMATION

Let ¥ € R™*™ denote the covariance matrix of the obser-
vations. Then, in the noiseless case (i.e., when 2 = 0), we
have ¥ = ®I'® T, which can be rewritten as

vec(X) = (P © D)y, 3)

where © denotes the Khatri-Rao product [13]. Given the
formulation above, the goal is to estimate the sparse non-
negative vector - from Y. In [5], the authors formulate the
support recovery problem as the following convex problem:

min [[v([x
K “
st. (@O D)y = vec(D).

This model is analyzed in [14], and conditions under which
the model is identifiable are derived. If we had access to the
true covariance matrix > (which corresponds to the L — oo
case), then we could work with the system of equations in
(3) to recover the support of v which, in turn, would give us
the common support of x;’s. For finite L, we use an estimate
of 3, the sample covariance matrix P % Zf:l yiyl . It

can be easily shown that the sample covariance matrix Sisa
sufficient statistic for estimating I', but note that the “exact”
covariance matrix X is actually not available in practice. In
this paper, we derive the statistics of the “noise” arising be-
cause of the finite sample approximation to 3, and then find
the ML estimate of . More precisely, the sample covariance
matrix can be written as a noisy version of the true covariance
matrix, i.e.,

S =Y+F, (5)

where E represents the noise/error matrix. Equivalently, vec-
torizing the matrices on either side of (5), we get

r=(20®)y+e, (6)
where r £ vec(3) and e £ vec(E). We now proceed to
find the approximate ML estimate of +. To that end, we first

derive the statistics of the noise.

3.1. Noise Statistics

Our starting point is the following Lemma, which provides
the mean and covariance of the vectorized noise e.

Lemma 1. Consider {y;}Z ; drawn i.i.d. from N(0,%). Let
3> denote the sample covariance matrix and e = Vec(f) -X).
Further, let B = cov(vec(zz')) where z ~ N(0, I) and let
C be a matrix satisfying ¥ = CC'". Then,

Ee = 0, cov(e) = %(C ®C)B(CoC)T,

where ® denotes the Kronecker product.

Proof. Let E = ) — ¥. The mean computation is straightfor-
ward:

L
1
BE) = L3 Byyl —T 0.
i=1

The covariance of F is a tensor of size m x m x m2. It can
be computed as follows:

L
1 T
cov(E) = cov <L Eﬂ viy; — E)

1 1
= Ecov(yly;r -3¥) = ECOV(Y}’T)7

-
iy, _ X i
= L) are independent for

i =1,...,L. We now represent y as y = Cz, where z ~
N(0,1)and X = CCT. We can then calculate the covariance
matrix of the vectorized version of E as follows:

where we used the fact that (

cov(vec(E)) = %cov(vec(C’zzTC’T))

1
= Zcov((c ® C)vec(zz "))
_ %(C@@C)B(C’@C)T,

where B £ cov(vec(zz)). [ |



For our model, ¥ = ®T'® " + o2]. Letting C = ®D2,
with D = (I' + 02<I>TQ>T+), and using Lemma 1, we get

cov(vec(E)) = Z(@D% ® ®D?*)B(®D? @ DD?)
1

7(2©@)(D* ® D*)B(D: ® D*)(@® @),

@)

where the second step uses the property that UV @ XY =
(U® X)(V®Y). The N> x N? covariance matrix B of
vec(zz ") can be computed explicitly for a given N and it can
be verified that the entries of B lie in {0, 1, 2}.

For the noiseless case, we have D = I' and we can further
simplify (7) by exploiting the structure of B. Specifically, it
can be shown that B can be expressed as I,,,2 + ), where @
denotes a permutation matrix and I,,,> denotes the m? x m?
identity matrix. Using this fact and the structure of Iz @2,
we get

W £ cov(vec(E))
= %(@@ )2 ©I2)(Iye + Q)7 @T7) (2 ©P)T

= (@e)BraT) @) ®)

In the next section, we use these statistics to derive an approx-
imate ML estimate of .

3.2. Maximum Likelihood Estimation of ~

We consider the model derived in the previous section:
r=Avy+e, ©)

where A £ (® ® ®). We seek the ML estimate of ~ from r.
Note that the statistics of the noise e also depends on ~.

Since r, A~y and e are vectorized versions of m x m sym-
metric matrices, they lie in an m(“;ﬂ) dimensional subspace
of R™. We therefore restrict our attention to the W
linearly independent equations in (9). This can be done by
pre-multiplying (9) by a projection matrix P € R™=FH xm? ,
formed using a subset of the rows of I,,2 that picks the
W independent entries. Thus,

rp = Apy t+ep,

where rp 2 Pr, Ap £ PA, and ep £ Pe. Further,
we approximate the distribution of ep by N (0, Wp), where
Wp = PWPT and W is the noise covariance matrix derived
in the previous section. This Gaussian approximation is mo-
tivated from the fact that the noise vector e is a sum of i.i.d.
random vectors, i.e.,

L L
1 1
=1 (ZVGC(Yisz —Eylle)> = fZ“i-
=1 =1

.. d
So, from the central limit theorem, as L — oo, % Zle u; —

N(0,W). Using this, the approximate ML estimate of =,
which we denote ~,, , can be found by solving the following
optimization problem:

Y = argmax p(rp;7y), (10)
=0

where

—1
1 _G@p—Apm T Wilp-apy)
2

p(rp;y) =

m(m+1)

e
(2m) 5 [Wp| b
Simplifying (10), we get

Yo = arginoin log |We|+ (rp — Apy) W' (xp — Apy).
Y=
(11

The objective function in (11) is nonconvex in ~ since
Wp also depends on <, and is difficult to optimize directly.
In the next section, we propose a heuristic technique to solve
the optimization problem.

3.3. Modified Reweighted Minimization

In this section, we propose a modified reweighted minimiza-
tion approach to solve (11). We fix Wp, solve the resulting
convex non-negative quadratic problem, re-compute Wp us-
ing the new =y, and iterate.

Now, to solve the convex non-negative quadratic program
(NNQP)

argmin (rp — Apy) W5t (rp — 4,7),
720

we use the iterative technique of [15], which gives the follow-
ing entry-wise update for - in the (i + 1)™ iteration:

—bj + /B2 + 4Q ), (@),
2(Q ), ’

7](@'—0—1) _ %(@)

where b = —AITDWIerp, Q = A;W;lAP, QT =
max(@,0), @~ = max(—Q,0), with max(A,0) repre-
senting the entry-wise maximum of the elements of A and 0.

Thus, our approach is as follows: we approximate the
noise covariance Wp by its zeroth-order Taylor expansion
around a previous estimate of + and then minimize the re-
sulting cost function over « keeping Wp fixed. This can
be viewed as an iterative reweighted minimization [16] tech-
nique where we only consider the zeroth order term in the
Taylor expansion, since gradient computation is difficult. The
steps are summarized in Algorithm 1. Also, the computa-
tional complexity of the different steps in the algorithm is
summarized in Table 1. Note that the complexity is indepen-
dent of L, the number of MM Vs.



Algorithm 1 Modified Reweighted NNQP (MRNNQP)

1: Input: Measurement matrix ¢, vectorized sample co-
variance r, initial value v*) = (1,...,1)T, 'O =
diag(~@),i =1
While (not converged) do

W5« LP(@®o®)BIi—Dri-D)(ded)T PT

b@ « —ATWD rp

. N—1

QW «— ATWE Ap

7@ < NNQP(Q®, b®)

'@ < diag(y®)

1 1+1
end While
Output: support of ~(?)

R A A o

H
e

Table 1. Computational complexity of MRNNQP

’ Operation \ Computational complexity ‘
Computing Wp O(m*N?)
Computing Q O(m?N?)
Computing b O(m*N)
Computing W, ' O(mb)

4. DISCUSSION

The statistics of the noise term e depends on L as well as
on the parameter « that has to be estimated, as can be seen
from (8). As a result of this parameter-dependent noise, the
maximum likelihood cost function is nonconvex in ~ and dif-
ficult to optimize. The Co-LASSO algorithm [5], which also
uses the sample covariance matrix to estimate -y, does not ac-
count for the statistics of the noise/error arising because of
the difference between the true covariance and its finite sam-
ple based estimate. Therefore, the algorithm performs well
only when L is large, i.e., when the noise term is negligible.
As we illustrate in the next section, the proposed algorithm
performs well at a much smaller L. Also, under our genera-
tive model for the inputs, the ¢; > penalty algorithm [9] and
simultaneous OMP [10] perform poorly in the k¥ > m regime.

Another interesting feature of our algorithm is that the
key step, namely, Step 6 in Algorithm 1, involves solving a
non negative quadratic program. In particular, no sparsity-
promoting penalty is required. Similar observations were
made in [17], where the authors note that a non negative least
squares program can be used for recovering non negative
sparse vectors without explicit sparsity-inducing regulariza-
tion, under certain conditions on the measurement matrix.

5. SIMULATION RESULTS

For a given set of (N, m, k, L) values, we generate the fol-
iid

lowing: an m x N measurement matrix ® with entries ®;; ~

-
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(a) N=40, m=20, k=25 (b) N=70, m=20, L=50, 1000

Fig. 1. Support recovery performance of different algorithms.

N(0,-L), asupport T C [N] with |T'| = k chosen uniformly
at random from () possibilities, v € {0,1}" with support
T, {x;}£ | drawn independently from N'(0,T"). For each
trial, The algorithm is provided with ® and {y; }%_, generated
according to the linear model (1). We run the algorithm 200
times, and a trial is declared successful if the algorithm ex-
actly recovers the true support. The objective value decreases
as the iterations proceed and stabilizes after about 20 itera-
tions. Hence, we stop the algorithm after 20 iterations.

Figures 1(a) and 1(b) show the probability of success-
ful recovery of the proposed algorithm, the Co-LASSO ap-
proach from [5], the M-SBL algorithm [7], simultaneous
OMP (SOMP) [10], and the ¢; o penalty algorithm [9], as a
function of L and k, respectively. Both the proposed algo-
rithm and M-SBL, which use a maximum likelihood based
approach to estimate < show similar performance, with the
proposed algorithm performing slightly better in the low L
regime. The Co-LASSO approach requires much larger L for
reliable support recovery, while SOMP and ¢; 5 minimization
perform well only in the & < m regime. Thus, our pro-
posed algorithm provides competitive performance with the
attractive benefit that its complexity is independent of L, the
number of MM Vs.

6. CONCLUSIONS

We proposed a novel algorithm to find the common support
of a set of k-sparse signals from their noisy underdetermined
linear measurements. The algorithm is based on matching
the sample covariance of the measurements with the covari-
ance induced by a parametrized Gaussian prior. We proposed
a modified iterative reweighted minimization procedure for
covariance matching, that uses a non-negative quadratic pro-
gram as its inner optimization problem. Empirical results sug-
gest that exact support recovery is possible in the & < m
regime with L of the order of m and in the & > m regime
with higher L. Future work could involve convergence anal-
ysis of the algorithm and extending the approach to handle
other kinds of structure, such as intra- and inter-vector corre-
lation, and slowly varying support.
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