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Abstract—This paper studies the design and analysis of a
pilot-assisted physical layer data fusion technique known as
Distributed Co-Phasing (DCP). In this two-phase scheme, sensors
first estimate the channel to the fusion center (FC) using
pilot symbols sent by the latter; and then they simultaneously
transmit their common data symbols by pre-rotating them by the
estimated channel phase, thereby achieving physical layer data
fusion. First, by analyzing the symmetric mutual information of
the system, it is shown that the use of higher order constellations
can significantly improve the throughput performance of DCP in
comparison with binary signaling considered heretofore. Using
a higher order constellation in the DCP setting requires the
estimation of the composite DCP channel at the FC for data
decoding. To this end, two blind algorithms are proposed: 1)
power method, and 2) modified K-means algorithm. The latter
algorithm is shown to be computationally efficient and converges
significantly faster than the conventional K-means algorithm.
Analytical expressions for the probability of error are derived,
and it is found that even at moderate to low SNRs, the proposed
modified K-means algorithm achieves a probability of error com-
parable to that achievable with perfect channel estimate at the
FC, while requiring no pilot symbols to be transmitted from the
sensor nodes. Also analyzed is the problem of signal corruption
due to imperfect DCP, and constellation shaping to minimize
the probability of signal corruption is proposed and analyzed.
The analysis is validated and the promising performance of DCP
for energy-efficient physical layer data fusion is illustrated using
Monte Carlo simulations.

Index Terms—Distributed co-phasing, K-means algorithm, sen-
sor networks, data fusion, mutual information, Nakagami-m
fading.

I. INTRODUCTION

Wireless sensor networks (WSN) are spatially distributed
sensors which are deployed to accomplish some specialized
task. To this end, they typically pass their information (e.g.,
data and/or channel state) among themselves, or cooperatively
transmit some common information to a fusion center (FC) [2].
In the latter context, Distributed Co-Phasing (DCP) has recently
been proposed as an energy-efficient physical layer technique
for data fusion [3], [4]. In DCP, the phase of the transmitted
signal from the sensor nodes are adjusted to ensure that the
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signals combine coherently at the FC. This leads to both
array gains as well as diversity benefits, resulting in a lower
probability of error, lower required transmit power, increased
communication range, robustness to node failures, etc. In pilot-
assisted DCP, a pilot signal is first sent from the FC to all
the sensor nodes, using which the nodes estimate the wireless
channel. In a Time Division Duplex (TDD) system with a
quasi-static and reciprocal channel, the nodes can exploit the
channel state information (CSI) obtained from the pilot signal
to cooperatively transmit their common information to the FC.
An interesting feature of this scheme is that with uncoded BPSK
modulation, CSI is not required at the FC for data detection.
Hence, there is no need to transmit any pilot symbols from
the power-starved sensor nodes prior to data transmission. We
note that transmission of pilots from the sensors to the FC is
inefficient, as it must necessarily occur in a round-robin fashion.
Also, since the transmit power of the sensors is typically low,
multiple pilot symbols may be necessary for accurate channel
estimation at the FC. On the other hand, the FC could be
connected to the mains, and have much better power resources
at its disposal to transmit high-power pilots, thereby facilitating
accurate channel estimation with only a small number of pilot
symbols. Hence, in this work, we consider the pilot-assisted
DCP scheme described above.

DCP has been investigated by various researchers in the
context of wireless sensor networks. Coherent communications
from multiple antennas to a distant stationary antenna was
perhaps first studied in [5], for AWGN channels. The authors
proposed a master-slave architecture to achieve clock synchro-
nization across distributed antennas. The feasibility of DCP in
fading channels, and practical issues such as carrier and symbol
synchronization under a master-slave architecture were further
studied in [3]. Carrier phase synchronization between two
transmitting nodes was practically demonstrated in [6], where
the authors proposed a consensus-based algorithm for achieving
global frequency synchronization. Other studies on distributed
phase synchronization across a wireless sensor network include
[7]–[13]. We also note that, while channel estimation has to
be performed at least once per channel coherence duration,
synchronization needs to be repeated only when sensors fall
out of sync. The latter could be much longer than the channel
coherence duration. Consequently, in our work, we assume
that such phase synchronization schemes are employed by
the sensors and FC to achieve the cophased transmission;
and we do not consider the cost of synchronization in our
analysis. Information sharing among nodes in a wireless sensor
network was studied in [14] and [15], where distributed
transmit beamforming (DTB) was employed as the underlying
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communication scheme. The distribution of the beam pattern
with DTB using uniform and Gaussian distributed sensor nodes
was studied in [16] and [17]. In [18], the authors studied the
use of DTB for communication between a multiple antenna
base station and a single antenna mobile receiver. The impact
of imperfect channel estimation on the BER performance of
transmit beamforming was studied in [19]. A comparative study
of DCP with other co-phasing transmission schemes such as
maximum ratio transmission (MRT) and truncated channel
inversion (TCI), in terms of performance metrics such as the
SNR and BER with BPSK modulation was presented in [20].
However, the DCP schemes considered in [20], by design, were
limited to using BPSK (or M -PSK) modulation as the signal
constellation. This is because knowledge of CSI at the FC,
which is required for data detection, is not directly available,
as no pilots are sent from the sensors to the FC. Another
drawback of the DCP scheme studied in [20] is the issue of
channel corruption. Due to the channel estimation errors at
the nodes, the co-phasing is imperfect, and the phase angle
of the effective DCP channel could exceed half the rotational
symmetry of the constellation (e.g., π2 with BPSK signaling).
When this happens, it results in catastrophic detection errors
at the FC. In this paper, we overcome both these drawbacks.

In this work, we start by analyzing the mutual information
performance of the DCP schemes with higher order constella-
tions, and show that higher order constellations far outperform
BPSK at moderate to high SNRs, even in the absence of
CSI at the FC. This motivates one to explore methods within
the framework of DCP that can support non-constant modulus
constellations. This, however, requires CSI at the FC in order to
set the decision boundaries for coherent data detection. Channel
knowledge at the CSI can be acquired either by sending a pilot
symbol from all sensors to the FC (reverse training) or by the
FC estimating the CSI from the received data itself, i.e., blind
channel estimation. In a typical WSN, the nodes are battery-
power driven, and have limited resources for computation and
communication. It is important, therefore, for the design to
account for both the time and power overhead incurred in the
training process. In particular, transmitting high-power pilots or
multiple pilot symbols on the reverse link for channel estimation
at the FC are both undesirable, as they could leave very low
power or time resources, respectively, for data transmission.
The FC, on the other hand, is typically connected to the power
mains and has significantly better resources at its disposal.
As will be shown in this paper, our proposed computationally
efficient algorithm for blind channel estimation at the FC
works well even at low data SNR, thus obviating the need for
spending valuable resources of the sensor nodes on reverse
channel training. For example, our simulation results show that
with N = 10 sensors, and with 16 QAM modulation, just 20
data symbols are sufficient to achieve a performance very close
to that of a genie-aided receiver with perfect CSI at the FC,
even at an SNR as low as −10 dB. This provides a strong
motivation for adopting blind channel estimation methods as
proposed in this paper.

Our main contributions are as follows:
• We analyze the mutual information achievable by the DCP

scheme. The analysis serves to underline the benefits of

higher order constellations over the binary transmission,
as the SNR increases.

• We propose two blind methods to estimate the effective
channel at the FC.

• We analyze the symbol error rate performance at the FC.
Our analysis is based on a Nakagami-m approximation
of the composite channel formed after imperfect DCP
from the sensors based on the estimated channel at the
individual sensor nodes. The analysis in [20] was based
on an improved Gaussian approximation [21], which is
valid only at very low data SNRs, and only for M -PSK
modulation. In contrast, the analysis in this paper is very
accurate for a wide range of data and pilot SNRs, as will
be shown through simulations.

• We explore the use of asymmetric signal constellations as
a remedy to the problem of channel corruption, which is
a major cause of error at low pilot SNRs. The asymmetric
constellations also require channel estimation at the FC,
for which we repurpose our proposed blind methods. We
also extend our probability of error analysis to asymmetric
signal constellations, and show that asymmetric signaling
can outperform symmetric constellations with the same
cardinality at low pilot SNRs.

• We corroborate our analytical expressions with Monte
Carlo simulations. The results (see Sec. VII) also provide
useful and interesting insights on the relative effects of
the operating parameters such as the data SNR, pilot SNR,
and number of sensors, on the performance of DCP.

Our conclusion is that DCP, along with the proposed modified
K-means based blind channel estimation method, is a promis-
ing candidate for reliable and energy-efficient physical layer
data fusion from a given set of sensor nodes. Furthermore,
the analytical expressions derived in this work can be of
independent interest, for example, in studying the effect of
channel estimation errors on the performance of equal gain
combining receivers.

The rest of the paper is organized as follows. In section II, we
introduce our system model. In section III, we derive the mutual
information between the sensors’ inputs and the FC output, to
show that there is a performance improvement in using a higher
order constellation compared to BPSK. Section IV proposes two
blind channel estimation methods for using DCP with higher
constellations. Section V analyzes the SER performance of the
proposed schemes, and Section VI compares the performance
of symmetric and asymmetric signal constellations in the DCP
setup. Section VII presents the Monte Carlo simulation results,
and finally, Section VIII concludes the paper. Some of the
detailed mathematical derivations are relegated to the Appendix.

II. SYSTEM MODEL

We consider N sensors that share some common information,
for example, a packet of data, that they wish to cooperatively
transmit to an FC. Such a common information can be acquired
by the sensors by observing a correlated random field and then
exchanging information to arrive at consensus. In this work, we
concentrate on the sensors-to-FC communication link, its design
and performance analysis. The baseband equivalent complex-
valued channel from the kth sensor to the FC is denoted by gk =
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Fig. 1. Two phases of DCP in a wireless sensor network.

αke
jθk , where the channel magnitudes αk are independent

Rayleigh distributed and θk are i.i.d. uniform random variables
(r.vs), 1 ≤ k ≤ N . The channel is assumed to be quasi-static
and block fading, i.e., it remains constant for the coherence
time of duration MT symbols, and changes in an i.i.d. fashion
from block to block.

We consider a TDD system, and a two stage communication
protocol between the sensors and FC, as illustrated in Fig. 1.
In the first stage, the FC transmits MP known pilot symbols
to the sensors, where 1 ≤ MP ≤ MT . The sensor nodes
use the pilot symbols to estimate their respective channels to
the FC, by reciprocity1 [20]. In the second stage, the sensors
simultaneously transmit their common data to the FC, for a
duration of MD = MT −MP symbols. The sensors attempt
to coherently combine their signals at the FC by pre-rotating
the data by their respective estimated channel phase angles.

The received signal at the kth sensor during the first stage
of pilot transmission from the FC to the sensors is

rk[n] = gk
√
EP + ηk[n], n = 1, . . . ,MP , (1)

where MP is the number of pilot symbols, EP is the pilot
power, ηk[n] is a complex Gaussian r.v with zero mean and
variance per dimension N0/2 and gk is the complex channel
gain between the kth sensor and the FC.

From this, the ML estimate of the channel phase can be
obtained at the kth sensor node as [20]

θ̂k = tan−1

(
={ 1

MP

∑MP

n=1 rk[n]}
<{ 1

MP

∑MP

n=1 rk[n]}

)
(2)

where <{·} and ={·} denote the real and imaginary parts of
the argument, respectively.

Note that sensor k uses its estimate θ̂k to compensate for
the phase offset introduced by the channel to the FC. With
ideal phase estimation, i.e., when θ̂k = θk, the signals from the
sensors combine coherently at the FC, leading to an improved
probability of error performance due to the diversity advantage

1Note that channel reciprocity requires well calibrated radio-frequency
chains, which is assumed here.

of the combining scheme. The received signal at the FC during
the second phase of DCP data transmission is

r[n] =

N∑
k=1

xk[n]e−jθ̂kgk+v[n], n = MP+1, . . . ,MT , (3)

where xk[n] is the data symbol from sensor k at time n and
v[n] is a complex Gaussian r.v with zero mean and variance
per dimension N0/2. Since all sensors have the same symbol
to transmit to the FC, i.e., xk[n] = x[n], (3) can be written as

r[n] = x[n]HDCP + v[n], n = MP + 1, . . . ,MT . (4)

In the above, HDCP is the effective DCP channel, defined as

HDCP ,
N∑
k=1

αke
jθe,k = |HDCP|ejφH (5)

where |HDCP | and φH are the magnitude and phase of the
effective channel, respectively, and θe,k , θ̂k− θk is the phase
estimation error at the kth sensor node.

Note that, when the channel is not estimated at the FC, the
ML detection of a constant modulus constellation such as BPSK
involves simply comparing the real part of the received signal
to zero [20]. In the next section, using a Mutual Information
(MI) based analysis, we show that one can achieve a larger
throughput if a higher order constellation is used instead of
BPSK, at moderate-to-high SNRs. This motivates one to explore
methods within the framework of DCP that can support higher
order constellations.

III. MUTUAL INFORMATION ANALYSIS OF THE DCP
SCHEME

In this section, we compute the MI between the sensors
and the FC, and use it to show that a larger constellation size
improves the achievable data rate as the SNR increases. For
simplicity, we consider equi-probable constellation symbols for
which the MI is also referred to as the symmetric MI. The MI
of the system model in (4) can be evaluated with and without
the channel knowledge at the FC, as follows [22]:
• With CSI at the FC:

I(x; r|HDCP) = EHDCP

{
M∑
i=1

1

M

∫
r∈C

p(r|HDCP, xi)

log
p(r|HDCP, xi)

p(r|HDCP)
dr

}
(6)

where I(x; r|HDCP) is used to denote the MI with perfect
CSI at the FC, xi is the ith element of the transmitted
constellation of cardinality M , C represents complex field
and EHDCP computes the expectation with respect to the
distribution of the effective DCP channel HDCP. Note that
p(r|HDCP, xi) is simply a circularly symmetric complex
Gaussian distribution with mean HDCPxi and variance
N0/2 per dimension. Also, due to equi-probable constel-
lation symbols, p(r|HDCP) =

∑M
m=1

1
M p(r|HDCP, xm).

• Without CSI at FC:

I(x; r) =

M∑
i=1

1

M

∫
r∈C

p(r|xi) log
p(r|xi)
p(r)

dr. (7)



4

−20 −15 −10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4
Ideal DCP on Rayleigh Channels with 5 Sensors

Channel SNR, ES/N0 (dB)

A
ve

ra
ge

 M
ut

ua
l I

nf
or

m
at

io
n 

(b
its

 p
er

 c
ha

nn
el

 u
se

)

 

 

16−QAM, Amp. CSI
16−QAM, No Amp. CSI
8−PSK, Amp. CSI
8−PSK, No Amp. CSI
QPSK, Amp. CSI
QPSK, No Amp. CSI
BPSK, Amp. CSI
BPSK, No Amp. CSI

Fig. 2. Comparison of mutual information for ideal DCP with no CSI and
perfect CSI for different constellations, with N = 5 sensors.

where I(x; r) is used to denote the MI without CSI at
the FC, p(r|xi) , EHDCP {p(r|xi, HDCP)} and p(r) ,
EHDCP {p(r|HDCP)} =

∑M
i=1

1
M p(r|xi).

The above MI expressions in (6) and (7) are hard to evaluate
in closed form, hence we compute them using Monte Carlo
simulations.

In Fig. 2, we plot the MI as a function of the transmit
energy per sensor (in dB, relative to the noise power spectral
density), for various signal constellations. We see that, as the
SNR increases, higher order constellations perform better than
BPSK. Also, there is only a marginal loss in MI due to the
absence of receiver CSI. This is because the effective channel
phase φH has zero mean, and, at reasonable pilot SNRs, its
distribution concentrates around the mean. As the number of
nodes increases, there is a channel hardening effect, so that
the instantaneous channel is often close to the average channel.
Due to this, the absence of CSI at the FC results in only a
small loss in MI. This suggests that one could possibly achieve
a performance close to the perfect CSI case with the help of a
blind demodulator at the FC.

IV. DCP FOR NON-CONSTANT MODULUS
CONSTELLATIONS

As seen in the previous section, higher-order constellations
can improve the spectral efficiency of a DCP system. However,
demodulation of a non-constant modulus constellation such
as 16-QAM requires knowledge of the effective DCP channel,
HDCP, at the FC, in order to determine the detection thresholds,
or, in the coded case, the bit log-likelihood ratios. Assuming all
the data symbols to be equally likely, the Maximum Likelihood
(ML) estimate of the CSI can be obtained at the FC using the
received data symbols as

ĤDCP,ML =arg max
H∈C

1

(Mπσ2)
MD

∑
x∈XMD

e−
∑MD
k=1

|r[k]−Hxk|
2

σ2 (8)

where x = [x1, x2, . . . , xMD
] is the transmitted message in the

MD data symbols, the set X is the signal constellation, and M

is the constellation size. As obtaining a closed-form expression
for the ML estimate is hard, we propose two computationally
simple methods for channel estimation at the FC: 1) A power-
based method, and 2) a modified K-means algorithm. We
elaborate upon these methods in the following subsections.

A. The Power Method

Note that, since the channel does not change for the duration
of MD symbols, it follows from (4) that

E{|r|2} = |HDCP|2ES +N0, (9)

where ES is the average power in the signal transmitted by
the individual sensors. Using the weak law of large numbers
to compute E{|r|2} in (9), we propose to use the following
channel estimate:

|ĤDCP| =

[
1
MD

∑MD

n=1 |r[n]|2 −N0

ES

] 1
2

. (10)

It can be seen that the above estimate satisfies E{|ĤDCP|2} =
|HDCP|2. Notice that, when the pilot power from the FC is
relatively high, and correspondingly, when the phase error in
the DCP is low, |ĤDCP| closely approximates HDCP, and hence
is sufficient for data detection at the FC.

B. The Modified K-means Algorithm

Here, we use the K-means clustering algorithm [23] to
perform joint channel estimation and data detection at the FC.
The joint ML estimate of the effective DCP channel and the
transmitted symbols can be written as(
ĤDCP,ML, x̂ML

)
= arg max
H∈C,X∈XMD

1

(πσ2)
MD

e−
∑MD
k=1

|r[k]−Hxk|
2

σ2 .

(11)
The K-means algorithm is an iterative method that involves
two steps: (a) a nearest neighbor step, which partitions a given
set of vectors into K groups such that their squared distances
to K centroids are minimized, and (b) a centroid update step,
which updates the centroids based on the given partition. In
our context, the received signal constellation constitute the
centroids, and the received data signal points constitute the
data to be decoded. Hence, the K-means clustering algorithm
can be used to perform the function of the joint ML estimator.

In the following, we present a modified K-means algorithm
that achieves more accurate and faster convergence than the
original K-means algorithm. The motivation for the modified
algorithm stems from the fact that the K-means algorithm is
designed to operate on arbitrarily located centroids. However,
in the case of DCP, centroids of the received data at the FC
are a scaled version of the transmitted constellation, and the
constellation itself is known to the FC. We can use this property
to improve the centroid update step in the original K-means
algorithm. Instead of updating the centroids individually, we
seek to find an optimum scaling factor β that minimizes the
mean squared error between the received data and a scaled
version of the transmitted constellation, as follows:

β̂ = arg min
β

J(β) (12)
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TABLE I
THE MODIFIED K-MEANS ALGORITHM

Input: received data r[n]
Outputs: channel estimate, demodulated data.
Initialize J(βold) =∞
Initialize βnew using power method; set J(βnew) = 106

while J(βold)− J(βnew) > ε
Nearest neighbor-based classification of data points:
R(i) =

{
r[j] : |r[j]− βnew si|2 ≤ |r[j]− βnew sl|2, ∀ l 6= i

}
Set Mi = |R(i)|
Set βold = βnew and J (βold) = J (βnew)
Centroid step:

βnew =
∑M
k=1 s∗k

∑Mk
l=1

rlk∑M
k=1

Mk|sk|2

Compute J(βnew) =
∑M

k=1

∑Mk
l=1 |βnewsk − rlk|2

end while

where J(β) ,
∑M
k=1

∑Mk

l=1 |βsk − rlk|
2 is the squared error

metric, sk is the kth point in the signal constellation, Mk is
the number of points in the kth group, and rlk is the lth point
(received signal) in the kth group.

Since J(β) is a convex function of β, taking the derivative
of J(β) with respect to β, setting to zero and solving, we get
the optimum value of β for a given partition of received points
into the M constellation points as

β̂ =

∑M
k=1 s

∗
k

∑Mk

l=1 rlk∑M
k=1Mk|sk|2

. (13)

A reasonable initialization for β is β̂ = ĤDCP, where ĤDCP
is the estimate of the channel obtained using the power method
in the previous subsection. The modified K-means algorithm
is summarized in Table I.

The convergence of the modified K-means algorithm to a
local minimum follows directly from the convergence properties
of the original K-means algorithm [24]. As a consequence of
exploiting the signal constellation structure, the modified K-
means algorithm converges faster, and estimates the effective
DCP channel more accurately, compared to the conventional
K-means algorithm. This confirmed by the simulation results
presented in Sec. VII. We note that a two step, non-iterative
algorithm is presented in [25] for detection of On-Off Keying
(OOK) signaling constellation in burst-mode optical receivers.
The algorithm consists of an initial partition and a partition
adjustment step. However, the algorithm presented above is
applicable to general signal constellations; and its iterative
nature results in much better performance.

Note that, one could also perform joint channel estimation
and soft data detection at the FC by using an EM framework
[26], [27]. This approach would result in soft detection of
the data symbols rather than hard detection in the K-means
algorithm, leading to better coded BER performance [28].
However, we do not pursue this approach in this paper due
to lack of space, and also because our purpose is simply to
show that reliable data detection is possible at the FC even
without using explicit pilot signals from the sensors to the FC
for channel estimation.

V. PERFORMANCE ANALYSIS

In this section, we derive the probability of symbol error for
data detection at the FC based on the estimated channel using

the modified K-means algorithm proposed in Section IV.
First, note that, at low pilot SNR, the phase angle of the

effective channel, φH , could be large due to the channel
estimation errors at the individual nodes. If φH is more than half
the angle of rotational symmetry of the signal constellation, it
leads to catastrophic detection errors due to the phase ambiguity
at the FC. This problem exists for all blind detection algorithms
operating on rotationally symmetric constellations, and we
refer to it as channel corruption. When channel corruption
occurs, since all the symbols are detected incorrectly, the
probability of symbol error is (M − 1)/M which can be
upper bounded by 1. We note that channel corruption occurs
due to the channel estimation errors at the individual nodes,
while the performance of the modified K-means based channel
estimation depends on the signal power from the sensors to
the FC. Hence, at reasonable data SNRs, even under channel
corruption, the K-means based channel estimate converges,
in mean-squared sense, to the true magnitude of the effective
DCP channel |HDCP|: it still finds the optimum scale factor β,
whose magnitude is independent of φH . Hence, in the analysis
to follow, we assume that the K-means channel estimate
converges to ĤDCP such that |ĤDCP| = |HDCP|. This simplifies
the analysis while retaining its accuracy, as will be shown via
simulation results in Sec. VII. Further, we will see that, at
moderate-to-high pilot SNR the probability of error of a system
using the K-means based channel estimate is almost the same
as that of a system having perfect CSI at the FC. This implies
that ĤDCP in fact converges, in mean-square sense, to HDCP
at moderate-to-high pilot SNR as the number of data symbols
increases.

In light of the above, there are two possible events that lead
to a symbol error: either channel corruption occurs, or the FC
obtains a perfect estimate of the composite DCP channel from
the K-means algorithm. In the former case, the probability of
symbol error is approximated to be unity, while in the latter
case, it is the same as the probability of error of a genie-aided
system with perfect CSI at the FC. Hence, the probability of
symbol error can be well approximated as

Pe ≈ Pcc + (1− Pcc)Pe,CSIR, (14)

where Pcc is the probability of channel corruption and Pe,CSIR
is the probability of error with perfect knowledge of HDCP at
the FC. We derive expressions for Pcc and Pe,CSIR for M -ary
and PAM and square QAM constellations below. Extensions
to other constellations is straightforward.

A. Probability of Symbol Error for M -PAM Signaling

1) Derivation of Pe,CSIR,PAM : Probability of error for a
general M -PAM constellation with perfect CSIR is [29]

Pe,CSIR,PAM =
2(M − 1)

M
EH {Q (R)} , (15)

where R =
√

6ES
(M2−1)N0

|HDCP|, and Q(x) =

1/
√

2π
∫∞
x
e−u

2/2du is the complimentary cumulative
distribution function of the standard Gaussian random variable.

The expectation above is over the distribution of |HDCP|. As
this distribution is not available in closed-form, it is hard to
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compute an exact solution for the probability of error. However,
note that, with ideal DCP, i.e., when the phase estimate at
the sensors is error-free, HDCP =

∑N
k=1 αk can be well-

approximated as a Nakagami-m distributed r.v. [30]. Therefore,
even in the presence of phase estimation errors, we propose
to approximate the r.v. R with a Nakagami-m r.v. with its
parameters chosen using the moment matching method. For
simplicity, and to facilitate tractable performance analysis, the
estimated Nakagami parameter is rounded to the nearest integer
(denoted by d·c). With this, the Nakagami fading parameters
mR and γ̄R can be written in terms of the moments of R
as [31]

mR =

⌈
(E{R2})2

var{R2}

⌋
=

⌈(
E
{
|HDCP|2

})2
var {|HDCP|2}

⌋
, (16)

γ̄R = E{R2} =
6ES

(M2 − 1)N0
E
{
|HDCP|2

}
. (17)

Computing the above requires the mean and variance of
|HDCP|2, which is given by Lemma 5.1 below for i.i.d. channels.
The interested reader is referred to [32] for the result on
independent but non-identical fading.

Lemma 5.1: Let HDCP be defined as in (5). When the
channels from the sensors to the FC are i.i.d. Rayleigh
distributed, the mean and variance of |HDCP|2 are given by

E{|HDCP|2} =
NΩ [4 + (4 + (N − 1)π) γpΩ]

4(1 + γpΩ)
, (18)

where Ω = E
{
α2
k

}
and γp = EPMP

N0
, and

var{|HDCP|2} = E{H4
R,DCP}+ E{H4

I,DCP}

+ 2E{H2
R,DCPH

2
I,DCP} −

(
E{|HDCP|2}

)2
, (19)

where HR,DCP , <{HDCP} and HI,DCP , ={HDCP} are the
real and imaginary parts of HDCP, respectively. The terms in
(19) are given by

E{H4
R,DCP} = NE

{
α4
k cos4 θek

}
+N(N − 1)(N − 2)(N − 3) [E {αk cos θek}]4

+ 3N(N − 1)
[
E
{
α2
k cos2 θek

}]2
+ 6N(N − 1)(N − 2)E

{
α2
k cos2 θek

}
[E {αk cos θek}]2

+ 4N(N − 1)E
{
α3
k cos θ3

ek

}
E {αk cos θek} . (20)

E{H4
I,DCP} = NE

{
α4
k sin4 θek

}
+ 3N(N − 1)

[
E
{
α2
k sin2 θek

}]2
. (21)

E{H2
R,DCPH

2
I,DCP} = NE

{
α4
k cos2 θek sin2 θek

}
+N(N − 1)E

{
α2
k cos2 θek

}
E
{
α2
k sin2 θek

}
+ 2N(N − 1)E

{
α3
k sin2 θek cos θek

}
E {αk cos θek}

+N(N − 1)(N − 2) [E {αk cos θek}]2 E
{
α2
k sin2 θek

}
.

(22)

In Appendix A, we provide closed-form expressions for the
various expectations in (20)-(22), and the proof of the above
Lemma.

Under the Nakagami-m approximation for the distribution
of |HDCP|, Pe,CSIR,PAM can now be obtained in closed-form
using straightforward integration as [33]

Pe,CSIR,PAM =

(
M − 1

M

)
φ(γ̄R,mR)√

π

Γ
(
mR + 1

2

)
Γ (mR + 1)

2F1

(
1,mR +

1

2
;mR + 1;

2mR

2mR + γ̄R

)
. (23)

where φ(γ̄R,mR) =
(

1 + γ̄R
2mR

)−mR− 1
2

, Γ(n) is the gamma
function, and 2F1 (a, b; c;x) is the Gauss hypergeometric
function [34].

2) Derivation of Pcc,PAM : For the M -PAM constellation,
from (5), channel corruption occurs whenever |φH | > π

2 , since
the constellation is rotationally symmetric with period π. This
is same as the event HR,DCP < 0. That is,

Pcc,PAM = P{HR,DCP < 0}. (24)

Again, since the exact pdf of HR,DCP is hard to compute in
closed-form, we use the central limit theorem to approximate
it as a real Gaussian r.v., N

(
µR, σ

2
R

)
, where µR and σR are

respectively the mean and variance of the r.v. HR,DCP, and are
worked out in [20] as

µR , E {HR,DCP} = N

√
2ES
N0

√
πΩ

4

γpΩ

(1 + γpΩ)
(25)

σ2
R , var {HR,DCP} =

NESΩ (2 + (4− π)γpΩ)

2N0(1 + γpΩ)
. (26)

Under this approximation, Pcc,PAM can be simplified to

Pcc,PAM ≈ Q
(
µR
σR

)
. (27)

The probability of error for M -PAM signaling can now
computed by substituting these expressions in (14), to get

Pe,PAM ≈ Q

(
µR
σR

)
+

(
1−Q

(
µR
σR

))(
M − 1

M

)
×φ(γ̄R,mR)√

π

Γ
(
mR + 1

2

)
Γ (mR + 1)

×2F1

(
1,mR +

1

2
;mR + 1;

2mR

2mR + γ̄R

)
. (28)

It will be shown via simulations in the next section that the
above expression is accurate for a wide range of values for the
data and pilot SNR, and the number of sensors.

B. Probability of Error for Square M -QAM Signaling

As with the PAM constellation, we compute the probability
of error with square M -QAM signaling by decomposing
it as the sum of the two terms; the first term, denoted
Pe,CSIR,QAM , corresponding to the probability of error when
the K-means channel estimate is accurate, and the second term,
denoted Pcc,QAM , corresponding to the probability of channel
corruption. The derivation of these two terms is detailed below.
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1) Derivation of Pe,CSIR,QAM : The probability of error
with CSI HDCP at the FC for the square M -QAM constellation
can be computed from Section V-A, by decomposing the
M -ary QAM constellation into two orthogonal

√
M -PAM

constellations, as:

Pe,CSIR,QAM (HDCP) = 2Pe,CSIR,PAM (HDCP)

−P 2
e,CSIR,PAM (HDCP), (29)

where

Pe,CSIR,PAM (HDCP) =
2(
√
M − 1)√
M

×Q

(√
3ES

(M − 1)N0
|HDCP|

)
. (30)

The average error probability is obtained by taking the
expectation of (30) over the distribution of the r.v. HDCP.
Following the analysis in Section V-A, the first term in (30)
can be evaluated in closed-form by using in (23)

√
M in place

of M , and ̂̄γR in place of γ̄R, where

̂̄γR =
3ES

(M − 1)N0
E
{
|HDCP|2

}
. (31)

However, the expectation of the second term in (29) can be
worked out by using the alternate expression for Q2(x) which
is given by [35]

Q2(x) =
1

π

π
4∫

0

exp

(
− x2

2 sin2 θ

)
dθ, x ≥ 0. (32)

Upon using (32), the expectation of the second term in (29)
using the Nakagami approximation for HDCP simplifies to

E
[
P 2
e,CSIR,PAM (HDCP)

]
=

4

π

(
1− 1√

M

)2

×

π
4∫

0

E
[
e
− 3ES

2N0(M−1) sin2 θ
|HDCP|2

]
dθ

=
4

π

(
1− 1√

M

)2
π
4∫

0

(
1 +

̂̄γR
2mR sin2 θ

)mR
dθ

=
4

π

(
1− 1√

M

)2
{

1

4
− α

π

[ (π
2
− arctanα

)
×
mR−1∑
k=0

(
2k

k

)
1

4k (1 + c)
k
− sin arctanα

×
mR−1∑
k=1

k∑
i=1

Ti,k
(1 + c)k

cos2(k−i)+1 arctanα
]}
, (33)

where the final simplification in (33) is due to [35] and c =̂̄γR
2mR

, α =
√

c
1+c , and Ti,k =

(2k
k )

(2(k−i)
k−i )4i[2(k−i)+1]

. Finally,

upon using (33) along with the aforementioned changes to (23),
we arrive at a closed-form expression for the average symbol
error probability of M -QAM constellation with Nakagami
approximation to the effective DCP channel HDCP.

2) Derivation of Pcc,QAM : For the square M -QAM con-
stellation, channel corruption occurs when |φH | > π

4 , since its
rotational symmetry is π

2 . Thus, Pcc,QAM can be written as

Pcc,QAM = P
{
|φH | >

π

4

}
. (34)

Computation of the above probability requires the joint pdf
of (HR,DCP, HI,DCP), which is hard to evaluate in closed-form.
Hence, we use the central limit theorem to approximate it
as a bivariate Gaussian random variable. The mean vector
m = [E [HR,DCP] ,E [HI,DCP]]

T , from (25) and [20], is given
by m = [µR, 0]

T . Also, since the conditional pdf of θe,k given
αk is an odd function of θe,k, we have

E [HR,DCPHI,DCP] =

N∑
i=1

N∑
j=1

E [αi cos θe,iαj sin θe,j ]

=
1

2

N∑
i=1

E
[
α2
i sin 2θe,i

]
+

N∑
i=1

N∑
j=i+1

E [αi cos θe,i]E [αj sin θe,j ]

= 0. (35)

With the above, the covariance matrix of (HR,DCP, HI,DCP) is

C =

[
σ2
R 0

0 σ2
I

]
, (36)

where σ2
R is the variance of HR,DCP which is given by (26)

and σ2
I is the variance of HI,DCP, which is given by

σ2
I =

NΩ

2(1 + γpΩ)
. (37)

Using the transformation of r.vs, X , 1√
2

(HR,DCP −HI,DCP)

and Y , 1√
2

(HR,DCP +HI,DCP), Pcc,QAM can be expressed
in terms of the joint cumulative distribution function FXY (x, y)
of the bivariate normal r.v. (X,Y )T [30] as

Pcc,QAM ≈ 2Q

(
µR
σR

)
− FXY (0, 0) , (38)

with the mean and covariance of (X,Y )T given by

µXY =

[
µR√

2
,
µR√

2

]T
(39)

ΣXY =

[
σ2
R+σ2

I

2
σ2
R−σ

2
I

2
σ2
R−σ

2
I

2
σ2
R+σ2

I

2

]
. (40)

Finally, the probability of error with M -QAM signaling can
be computed by substituting these expressions in (14) to get

Pe,QAM ≈ 2Q

(
µR
σR

)
− FXY (0, 0)

+

(
1− 2Q

(
µR
σR

)
+ FXY (0, 0)

)
× E [Pe,CSIR,QAM (HDCP)] , (41)

where E [Pe,CSIR,QAM (HDCP)] is as derived earlier in this
section.
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VI. ROBUST SIGNALING SCHEMES

At low pilot SNR, the phase estimation at the sensor nodes
is unreliable, which could result in large offsets in the phase of
the effective channel to the fusion center. As mentioned earlier,
whenever the phase of the effective channel exceeds half the
rotational symmetry of the constellation (e.g., π

2 for BPSK),
it results in catastrophic demodulation errors at the FC. One
possible solution to the problem of channel corruption is to
use an asymmetric constellation, such as energy shift keying
or OOK. Such constellations are naturally immune to channel
corruption, as there is no phase ambiguity in blindly estimating
the channel due to the signal asymmetry. However, asymmetric
constellations come at the cost of a lower separation between
the constellation points compared to symmetric constellations,
as they are nonzero mean signals. This makes them more
vulnerable to noise and signal fading. To get insight into the
effect of the constellation on the performance, we compare the
performance of symmetric BPSK {−1,+1} and OOK {0,

√
2}

constellations. We use the analysis in the previous section to
determine which constellation offers the best performance at a
given pilot and data SNR. The probability of error for the two
signaling schemes can be written as

Pe,BPSK = Pcc,PAM + (1− Pcc,PAM )Pe,CSIR,BPSK

Pe,OOK = Pe,CSIR,OOK . (42)

In the above, Pe,CSIR,BPSK and Pe,CSIR,OOK are both given
by Pe,CSIR,PAM in (23) with M = 2, and with γ̄ = γ̄BPSK
and γ̄ = γ̄OOK for BPSK and OOK, respectively, where

γ̄BPSK =
ES
N0

NΩ [4 + (4 + (N − 1)π) γpΩ]

4(1 + γpΩ)

γ̄OOK =
ES
2N0

NΩ [4 + (4 + (N − 1)π) γpΩ]

4(1 + γpΩ)
, (43)

with Ω = E
{
α2
k

}
and γp , EPMP

N0
.

Finally, the expression for probability of error in both cases
can be written as

Pe,BPSK = Q

(
µR
σR

)
+

(
1−Q

(
µR
σR

))
φ(γ̄BPSK ,mR)

2
√
π

Γ
(
mR + 1

2

)
Γ (mR + 1)

2F1

(
1,mR +

1

2
;mR + 1;

2mR

2mR + γ̄BPSK

)
, (44)

and Pe,OOK =
φ(γ̄OOK ,mR)

2
√
π

Γ
(
mR + 1

2

)
Γ (mR + 1)

2F1

(
1,mR +

1

2
;mR + 1;

2mR

2mR + γ̄OOK

)
, (45)

where µR, σR and mR are given in (25), (26), and (16),
respectively.

The above expressions can be used to determine which of
the two signal constellations performs the best, for a given
data/pilot SNR and the number of sensor nodes. The simulation
results in the next section show the accuracy of the above
expressions and illustrate the interesting trade-off that occurs
as the data and pilot SNRs are varied.
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Fig. 3. Probability of symbol error vs. the data SNR for the 4-PAM
constellation; pilot SNR = 5dB.
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Fig. 4. Probability of symbol error vs. the data SNR for the 4-PAM
constellation, using K-means algorithm for channel estimation at the FC.

VII. SIMULATION RESULTS

In this section, we present Monte Carlo simulation results
to validate the theoretical expressions derived in the previous
sections and illustrate the performance of the proposed blind
channel estimation and data detection schemes.

Simulations were carried out for different values of pilot and
data SNR at the FC and with the number of sensors varying
from 2 to 8. A single training symbol is sent from the FC to
the sensors, followed by MD data symbols from the sensors to
the FC using DCP based on the estimated channel phase angles.
The probability of symbol error performance was evaluated by
averaging the performance over 1, 000 channel instantiations.

Figure 3 compares the SER performance of the proposed
algorithms against the perfect CSI case, where HDCP is known
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Fig. 5. Probability of symbol error vs. the data SNR, 4-PAM, using K-means
algorithm for channel estimation at the FC, with MD = 20 and 200. Pilot
SNR = 10 dB for channel phase estimation at the nodes.
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Fig. 6. Probability of symbol error vs. the data SNR, 16-QAM constellation,
using K-means for channel estimation at the FC; pilot SNR = 0 dB for
channel phase estimation at the nodes.

perfectly at the FC, for N = 5 and 10 sensors, and with a pilot
SNR of 5 dB. The modified K-means algorithm outperforms
the power method and performs very close to the perfect CSI
case. This justifies the assumption in Sec. V, that the K-means
algorithm can correctly estimate the channel with a small
number of data symbols.

Figure 4 shows the SER plot for different pilot SNRs and
number of sensors, and with the 4-PAM constellation. The plot
shows that the theoretical expressions closely match with the
simulation results for a wide range of pilot SNR, data SNR
and number of sensors.

The number of data transmissions MD is important in
determining the performance of the K-means algorithm. The
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Fig. 7. Performance of symmetric BPSK and OOK with varying pilot SNR
and number of sensors, data SNR = 0 dB.
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Fig. 8. Comparison of mean number of iterations for the modified K-means
algorithm and the conventional K-means algorithm, MD = 200.

more the number of data points, the better the channel
estimation accuracy. Figure 5 compares the performance of
the K-means algorithm for different values of MD = 20
and 200 as a function of the data SNR. We note that the
performance is nearly the same, irrespective of the value of
MD. This substantiates our approach of excludingMD from
the probability of error analysis.

Figure 6 shows the performance of the K-means algorithm
based approach with 16-QAM constellation. The plot shows that
the theoretical expressions closely match with the simulation
results over a wide range of N and data SNR. The flooring of
the curves is due to the effect of channel corruption at the FC,
which dominates the performance at high data SNR. Hence, the
plot also verifies the accuracy of our analysis of the probability
of channel corruption.

Figure 7 shows a comparison of BPSK and OOK in terms of
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the probability of bit error as a function of the pilot SNR, with
the data SNR fixed at 0 dB. As expected from the analysis in the
previous section, at low pilot SNR, where channel corruption
is the major cause of error, OOK has better performance. At
higher pilot SNR, where noise and fading are the dominant
factors, it is better to use symmetric BPSK as it has a higher
separation between the constellation points compared to OOK.
We also note the accuracy of the expressions derived for the
probability of error with OOK in the previous section.

In Fig. 8, we compare the performance of our modified
K-means algorithm to the conventional K-means algorithm,
in terms of the mean number of iterations required for conver-
gence. The proposed modified K-means algorithm outperforms
the conventional algorithm for all ranges of SNR and number
of sensors N . Typically, a reduction in number of iterations
of the order of 50% is observed for the modified K-means
algorithm.

VIII. CONCLUSION

In this work, we showed that using a higher order constel-
lation for transmission improves the performance of a DCP-
based transmission scheme for data fusion from multiple sensor
nodes. We proposed two methods, a power based method
and a modified K-means algorithm, for blindly estimating
the composite channel at the FC. We derived closed-form
expressions for the probability of symbol error performance of
the proposed DCP and modified K-means based data detection
scheme based on a Nakagami-m approximation. We presented
results from an extensive simulation study to validate the
theoretical results. We showed, through simulations, that the
performance of the K-means algorithm based approach is
almost the same as that of a system having perfect CSI at the
fusion center. Hence, transmission of a training signal from
the sensors to the FC is not necessary. We also considered the
problem of error flooring due to channel corruption at low pilot
SNR inherent to symmetric constellations, and investigated the
use of asymmetric constellations such as OOK as a solution.
Future work could consider designing the signal constellation
for maximizing the throughput from the sensors to the FC,
and the design and analysis of power control schemes, in
conjunction with DCP-based transmission.

APPENDIX

A. Moments of |HDCP| with I.I.D. Fading

In this section, we derive the second and fourth moments
of |HDCP| with i.i.d. fading. We use the following notation:

γk = α2
k; Ω = E{α2

k}; γp =
EPMP

N0
and s =

γp
2
. (46)

1) Derivation of the Second Moment of |HDCP|: We have

E{|HDCP|2} = E

[
N∑
k=1

αk cos θek

]2

+ E

[
N∑
k=1

αk sin θek

]2

= NE
[
α2
k cos2 θek

]
+N(N − 1)E2 [αk cos θek]

+NE
[
α2
k sin2 θek

]
+N(N − 1)E2 [αk sin θek] . (47)

The first two terms in (47) are worked out in [20] and the third
term can be easily derived from the first term. The fourth term
in (47) simply reduces to zero, since fθek|αk(θek|αk) [36] is
an even function of θek. Therefore, after simplification, we get

E{|HDCP|2} =
NΩ [4 + (4 + (N − 1)π) γpΩ]

4(1 + γpΩ)
. (48)

2) Derivation of The Variance of |HDCP|2: The variance of
|HDCP |2 can be obtained as follows:

var{|HDCP|2} = E{H4
R,DCP}+ E{H4

I,DCP}

+ 2E{H2
R,DCPH

2
I,DCP} −

(
E{|HDCP|2}

)2
(49)

where HR,DCP and HI,DCP are the real and imaginary parts
of HDCP, respectively. We find the expectations of the first
three terms of the above equation as follows. Using a binomial
expansion and grouping similar terms, we obtain:

E{H4
R,DCP} = E


[
N∑
k=1

αk cos θek

]4


= NE
{
α4
k cos4 θek

}
+ 3N(N − 1)

[
E
{
α2
k cos2 θek

}]2
+N(N − 1)(N − 2)(N − 3) [E {αk cos θek}]4

+ 6N(N − 1)(N − 2)E
{
α2
k cos2 θek

}
[E {αk cos θek}]2

+ 4N(N − 1)E
{
α3
k cos θ3

ek

}
E {αk cos θek} . (50)

In a similar manner, using the even symmetry of
fθek|αk(θek|αk),

E{H4
I,DCP} = E


[
N∑
k=1

αk sin θek

]4
 = NE

{
α4
k sin4 θek

}
+ 3N(N − 1)

[
E
{
α2
k sin2 θek

}]2
. (51)

and

E{H2
R,DCPH

2
I,DCP}

= E


[
N∑
k=1

αk cos θek

]2 [ N∑
k=1

αk sin θek

]2


= NE
{
α4
k cos2 θek sin2 θek

}
+N(N − 1)E

{
α2
k cos2 θek

}
E
{
α2
k sin2 θek

}
+ 2N(N − 1)E

{
α3
k sin2 θek cos θek

}
E {αk cos θek}

+N(N − 1)(N − 2) [E {αk cos θek}]2 E
{
α2
k sin2 θek

}
.

(52)

We now derive analytical expressions for all the terms involved
in (50), (51) and (52).

1) Derivation of E{α4
k cos4 θek}: Using a trigonometric

identity from [37]

E{α4
k cos4 θek} =

1

8

[
E
{
α4
k cos 4θek

}
+4E

{
α4
k cos 2θek

}
+ 3E{α4

k}
]
. (53)
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We derive the conditional expectations as

E{cos 4θek|αk} = E{cos(|4θek|)|αk}

=

∫ π

θ=0

cos 4θek f(|θek||αk)dθek

=

∫ π

θ=0

cos 4θ

[
e−γpα

2
k

π
+
γpα

2
k sin 2θ

π∫ π−θ

x=0

e−
γpα

2
k sin2 θ

sin2 x

sin2 x
dx

]
dθ

=
γpα

2
k

π

∫ π

x=0

1

sin2 x

∫ π−x

θ=0

cos 4θ sin 2θ

e−
γpα

2
k sin2 θ

sin2 x dθdx (54)

where f(|θek||αk) is from [36]. Substituting sin2 θ = t
and simplifying

E{cos 4θek|αk} =
γpα

2
k

π

∫ π

x=0

1

sin2 x∫ sin2 x

t=0

(
8t2 − 8t+ 1

)
e−

γpα
2
kt

sin2 x dtdx. (55)

Integrating by parts

E{cos 4θek|αk} = 1 +
6

γ2
pα

4
k

− 4

γpα2
k

− 6

γ2
pα

4
k

e−γpα
2
k − 2

γpα2
k

e−γpα
2
k . (56)

Hence,

E{α4
k cos 4θek} = E

{
6

γ2
p

− 4α2
k

γp
+ α4

k −
6

γ2
p

e−γpα
2
k

−2α2
k

γp
e−γpα

2
k

}
. (57)

The fourth and fifth terms in the above expectation can
be computed for a Rayleigh fading channel as follows.
First, note that since αk is Rayleigh distributed, α2

k is
exponentially distributed with mean Ω. Then, the Laplace
transform of γk = α2

k and its derivative are given by

Lγk(u) = E{e−uγk} =
1

1 + uΩ
(58)

∂

∂u
Lγk(u) = −E{γke−uγk} = − Ω

(1 + uΩ)2
.(59)

This implies that

E{α4
k cos 4θek} = 2Ω2 +

6

γ2
p

− 4Ω

γp
− 6

γ2
p

1

(1 + γpΩ)

− 2

γp

Ω

(1 + γpΩ)2
. (60)

and

E{α4
k cos 2θek} = E

{
α4
kE{cos 2θek|αk}

}
= E

{
γ2
k

[
1− 1− e−γpγk

γpγk

]}
= 2Ω2 − Ω

γp
+

Ω

γp(1 + γpΩ)2
, (61)

where the second equality follows from [20]. From (53),

E{α4
k cos4 θek} =

1

8

[
E{α4

k cos 4θek}

+4E{α4
k cos 2θek}+ 3E

{
α4
k

}]
= 2Ω2 − Ω2

4

(5 + 4γpΩ)

(1 + γpΩ)2
. (62)

2) Derivation of E{α4
k sin4 θek}: Using a trigonometric

identity from [37], we have

E{α4
k sin4 θek} =

1

8

[
E{α4

k cos 4θek}

−4E{α4
k cos 2θek}+ 3E{α4

k}
]

=
3

4

[
1

γ2
p

− 1

γ2
p(1 + γpΩ)

− Ω

γp(1 + γpΩ)2

]
=

3

4

Ω2

(1 + γpΩ)2
(63)

where the second term in the above is obtained from [20].
3) Derivation of E{α3

k cos3 θek} We write

E{α3
k cos3 θek} = E{α3

k E{cos3 θek|αk}}. (64)

Using the expression for fθek|αk (θek |αk ) from [36], the
conditional expectation can be written as

E{cos3 θek|αk} =

∫ 2π

0

cos3 θekfθek|αk(θek)dθek

=

∫ 2π

0

cos3 θek

[
e−γpα

2
k

2π
+

√
γpα2

k

π
cos θek

e−γpα
2
k sin2 θekφ

(√
2γpα2

k cos θek

)]
dθek

=

√
γpα2

k

π

∫ 2π

0

cos4 θeke
−γpα2

k sin2 θek

φ

(√
2γpα2

k cos θek

)
dθek

=

√
γpα2

k

π
e−

γpα
2
k

2

∫ π
2

−π2
cos4 θeke

γpα
2
k cos 2θek

2 dθek

=

√
γpα2

k

π
e−

γpα
2
k

2

∫ π
2

−π2

(
3

8
+

cos 4θek
8

+
cos 2θek

2

)
e
γpα

2
k cos 2θek

2 dθek

=

√
γpα2

k

π
e−

γpα
2
k

2

[
3π

8
I0

(
γpα

2
k

2

)
+
π

2
I1

(
γpα

2
k

2

)
+
π

8
I2

(
γpα

2
k

2

)]
, (65)

where φ(x) is the cumulative distribution function
of a standard Gaussian random variable, In(x) ,
1

2π

∫ π
−π e

x cos θ cos(nθ)dθ is the nth order modified Bessel
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function of the first kind [37]. By a change of variables,
this can be written as

I0(z) =
1

π

∫ 1

−1

e−tz√
1− t2

dt (66)

I1(z) =
z

π

∫ 1

−1

e−tz
√

1− t2dt (67)

and I2(z) =
1

π

∫ 1

−1

e−zt(2t2 − 1)√
1− t2

dt. (68)

Using the above, the expectation of α3
k cos3 θek can be

simplified as

E{α3
k cos3 θek} =

√
γpπ E

{
α4
ke
− γpα

2
k

2

[ 3

8π

∫ 1

−1

e−sα
2
kt

√
1− t2

dt

+
1

2π
sα2

k

∫ 1

−1

e−sα
2
kt
√

1− t2dt

+
1

8π

∫ 1

−1

e−sα
2
kt

2t2 − 1√
1− t2

dt
]}
. (69)

The expectations in the above equation can be computed
for the Rayleigh fading channel as follows:

E{γ2
ke
−uγk} =

∂2

∂u2
Lγk(u) =

2Ω2

(1 + uΩ)3
(70)

E{γ3
ke
−uγk} = − ∂3

∂u3
Lγk(u) =

6Ω3

(1 + uΩ)4
.(71)

The following results are used for further simplification
of (69) [37]:

∫ 1

−1

1

(a+ t)3

1√
1− t2

dt =
π

2

1 + 2a2

(a2 − 1)
5
2

(72)∫ 1

−1

√
1− t2

(a+ t)4
dt =

π

2

a

(a2 − 1)
5
2

(73)

and
∫ 1

−1

√
1− t2

(a+ t)3
dt =

π

2

1

(a2 − 1)
3
2

. (74)

After some algebraic manipulations, we arrive at

E{α3
k cos3 θek} =

3Ω2√γpπ
4
√

1 + γpΩ
. (75)

4) Derivation of E{α3
k cos θek}: From [20], we have

E{cos θek|αk} = αk

√
γpπ

4
e−

γpα
2
k

2

[
I0

(
γpα

2
k

2

)
+I1

(
γpα

2
k

2

)]
(76)

E{α3
k cos θek} = E{α3

k E{cos θek|αk}}

= E
{
α4
k

√
γpπ

4
e−

γpα
2
k

2

[
I0

(
γpα

2
k

2

)
+I1

(
γpα

2
k

2

)]}
=

√
γp
4π

[∫ 1

−1

1√
1− t2

E
{
γ2
ke
−sγk(t+1)

}
dt

+s

∫ 1

−1

√
1− t2E

{
γ3
ke
−sγk(t+1)

}
dt

]
. (77)

The integrals in the above equation have already been
evaluated in the previous subsection. In particular, using
(72) and (73) and simplifying the resulting expressions,
we get

E{α3
k cos θek} =

√
γpπ

4

Ω2 (4 + 3γpΩ)

(1 + γpΩ)3/2
. (78)

5) Derivation of E{α4
k sin2 θek cos2 θek}

E{α4
k sin2 θek cos2 θek} =

1

8
E
{
α4
k − α4

k cos 4θek
}

=
1

4

[
2Ω

γp
− 3

γ2
p

+
3

γ2
p(1 + γpΩ)

+
Ω

γp(1 + γpΩ)2

]
(79)

where the second term in the first step follows from (60).
6) Derivation of E{α3

k sin2 θek cos θek}

E{α3
k sin2 θek cos θek} = E

{
α3
k cos θek − α3

k cos3 θek
}
.

(80)
These terms are derived in (75) and (78). It follows that

E{α3
k sin2 θek cos θek} =

√
γpπ

4

Ω2

(1 + γpΩ)3/2
. (81)
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