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On the Observability of a Linear System with a
Sparse Initial State

Geethu Joseph and Chandra R. Murthy Senior Member, IEEE

Abstract—In this paper, we address the problem of observabil-
ity of a linear dynamic system from compressive measurements
and the knowledge of its external inputs. Observability of a
high dimensional system state may require a large number
of measurements in general, but we show that if the initial
state vector admits a sparse representation, the number of
measurements can be significantly reduced by using random
projections for obtaining the measurements. We derive guar-
antees for the observability of the system using tools from
probability theory and compressed sensing. Our analysis uses
properties of the transfer matrix and random measurement
matrices to derive concentration of measure bounds, which lead
to sufficient conditions for the restricted isometry property of the
observability matrix to hold. Hence, under the derived conditions,
the initial state can be recovered by solving a computationally
tractable convex optimization problem.

I. INTRODUCTION

Observability is a major notion in control theory which is
concerned with the question of how well the state of a linear
dynamic system can be inferred from its observations and in-
puts [1]. The classical observability problem involves solving
a linear system of equations of the form: ỹ(K) = Ã(K)x0,
where the measurement vector y(K) and the observability ma-
trix Ã(K) are known, and the state x0 needs to be estimated.1

Standard results from linear algebra state that a discrete time
system is observable if the rank of the observability matrix
Ã(K) equals the system dimension [2]. Hence, in the general
formulation of the problem, a large number of measurements
are required to recover the initial state for systems with a high
dimensional state [3]–[5]. However, if the system is known to
admit only initial state with a specific structure, the number of
measurements required can be significantly brought down by
exploiting this additional information. For example, diffusion
processes in complex networks that model phenomena like
disease or epidemic spreading in the human society [6], [7],
air or water pollution [8], [9], virus spreading in computer and
mobile phone networks [10], [11], information propagation in
online social networks [12], [13], etc, are known to have sparse
initialization. Identifying the initial state of these processes
accurately is critical to control or eliminate the spreading
process [14]. Thus, an important problem in this context is
the recoverability of a spare initial state using as few measure-
ments as possible. Further, in some cases, the measurements
are obtained as random linear projections of the system
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1We discuss the detailed system model in Section II.

state. For example, in the problem of finding the source of
pollution in a water body or in the atmosphere, measurements
collected from sensors placed at spatially random locations
can be mathematically modeled as random linear projections
of the system state [15], [16]. The focus of this paper is on
providing guarantees on the observability of a system when
the observability matrix is possibly rank deficient and random,
and the initial state admits a sparse representation in some
suitable basis. Our work is motivated by the results from the
area of sparse signal recovery or compressive sensing which
studies the theory and algorithms for the reconstruction of
sparse solutions to linear underdetermined systems.

The tools from compressive sensing provide conditions
under which an underdetermined system of linear equations
admits a unique sparse solution that can be efficiently com-
puted [17]–[19]. One of the properties of the observability or
sensing matrix for guaranteeing the recovery is its restricted
isometric property (RIP) [20]. Some examples of RIP based
conditions that guarantee exact recovery of vectors with `0
norm at most s are: δ2s < 0.493 is sufficient for basis
pursuit (BP) [21]; δs < 0.307 is sufficient for BP [22];
δs < 1/3 is sharp for BP [23]; δ2s <

√
1/2, (or generally

δts <
√

(t− 1)/t for t > 4/3) is sharp for BP [24]; δ3s < 1/8
is sufficient for iterative hard thresholding (IHT) [25]; and
δs+1 < 1√

s+1
is sufficient for orthogonal matching pursuit

(OMP) [26], where δs denotes the restricted isometry constant
(RIC) of the measurement matrix of order s. The RIP also
ensures that the recovery process is robust to noise and is
stable when the unknown vector is not precisely sparse. Hence,
we analyze the RIP of the observability matrix of a linear
dynamical system.

The connection between the compressed sensing and the
observability of a linear system has received little attention
in the literature. The design of control algorithms based on
sparsity in the state using tools from compressive sensing
is presented in [27]. However, this paper does not discuss
guarantees for recoverability of the system state in the pro-
posed framework. Guarantees on the observability of the linear
system based on the RIP of the observability matrix are derived
in [28], [29]. A drawback of these approaches is that one has
to keep collecting observations until the observability matrix
satisfies the RIP, which in turn is hard to verify in practice.
To overcome this difficulty, another paper characterizes the
number of measurements required for the exact recovery of the
initial state in a stochastic setting [15]. However, the results are
useful only under somewhat overly restrictive conditions such
as the system transfer matrix being unitary, the observation
matrices being i.i.d. Gaussian, and the initial state being sparse
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in the canonical basis.
In this work, we derive guarantees on the system ob-

servability under a stochastic setting when the observation
matrices are i.i.d. subgaussian random matrices and the system
transfer matrix is nonzero. The key novelty in the results is
the derivation of a concentration of measure bound for the
norm of a sparse vector transformed using the observability
matrix, which in turn allows us to characterize the number of
measurements required for sparse state recovery. We show that
Km should scale as s ln

(
eN
s

)
to ensure exact recoverability of

an s-sparse state with high probability, where m is the number
of observations per time instant and K is the number of time
steps over which observations are collected.

II. SYSTEM MODEL

We consider the following discrete-time linear system:

xk+1 = Dxk yk = A(k)xk, (1)

for discrete time instants k = 0, 1, . . . ,K − 1. Here, D ∈
RN×N is a nonzero system transfer matrix and A(k) ∈
Rm×N ,m� N is the observation matrix of the system at time
instant k. We are interested in the observability of the system
when the initial state x0 is sparse, i.e., ‖x0‖0 ≤ s, s � N .
We make the following points before proceeding further:

1) Observability of the initial state x0 implies the observ-
ability of xk for all k.

2) In (1), we do not include an innovation term. Since we
are considering the problem of system observability, the
system input is assumed to be known. We can therefore
simply subtract its effect from the system evolution as
well as observation equations, resulting in the system
model given by (1).

3) The system equations do not consider measurement noise
or model mismatch. However, in the presence of these im-
pairments, our results can be extended to robust recovery
of the initial state; we discuss this in Section IV-C.

Our starting point is the following equivalent linear system:

ỹ(K) = Ã(K)x0, (2)

where the measurement vector ỹ(K) ∈ RKm and the observ-
ability matrix Ã(K) ∈ RKm×N are defined follows:

ỹ(K) =


y0

y1
...

yK−1

 , Ã(K) =


A(0)

A(1)D
...

A(K−1)D
K−1

 . (3)

In order to ensure the recovery of x0 from (2) using sparse
signal recovery techniques, we need to analyze the RIP of the
structured observability matrix Ã(K), which is not available
in the literature. Using our analysis of the RIP of Ã(K), we
present bounds on the number of measurement vectors and
observations required to recover any sparse initial state.

III. PRELIMINARIES

In this section, we define a subgaussian random matrix and
summarize some of its properties.

Definition 1 (Subgaussian random variable and matrix). A
random variable A is said to be subgaussian with parameter
c if, for any θ ∈ R, E {exp (θA)} ≤ exp

(
cθ2
)
. A random

matrix A ∈ Rm×N is said to be a subgaussian random matrix
if its entries are independent zero mean and unit variance
subgaussian random variables with common parameter c.

The subgaussian random matrix includes a large class of
random matrices including independent and identically dis-
tributed (i.i.d.) Gaussian random matrices, and i.i.d. Bernoulli
random matrices, etc. Next, we present two results that are
necessary for the derivation of the main results in the paper.

Lemma 1. If A is a subgaussian random variable with
parameter c, then A2 − E

{
A2
}

is a subexponential random
variable with parameter 16c, i.e., for |θ| ≤ 1

16c , we have

E
{

exp
[
θ
(
A2 − E

{
A2
})]}

≤ exp
(
128θ2c2

)
. (4)

Proof: See [30, Lemma 1.12].

Proposition 1 (Bernstein-type inequality). Let {Al}l=1,2,...,m

be independent subexponential random variables such that
amin ≤ E {Al} ≤ amax. That is, for all t ≥ 0,

P {|Al − E {Al}| ≥ t} ≤ c1 exp (−c2t) , (5)

for l = 1, 2, . . . ,m, and some constants c1, c2 > 0. Then, for
any t > mmax {amax,−amin},

P

{∣∣∣∣∣
m∑
l=1

Al

∣∣∣∣∣ ≥ t
}
≤ exp

(
− c22(t−mamax)2/2

m(2c1 + c2amax) + c2t

)
+ exp

(
− c22(t+mamin)2/2

m(2c1 + c2amin) + c2t

)
. (6)

Proof: See Appendix A.

IV. MAIN RESULTS AND DISCUSSION

In this section, we present the main results of the paper and
discuss their implications.

Theorem 1 (Independent random measurement matrices).
Suppose A(k), k = 0, 1, . . . ,K − 1 are independent subgaus-
sian random matrices with parameter c. Then, if

Km
(
δ − 1 + λ2(K−1)

)2
≥ c̃
[
9s ln

(
eN

s

)
+ 2 ln(2ε−1)

]
,

(7)
the RIC δs of Ã(K) satisfies δs < δ for all δ > 1 − λ2(K−1)
with probability at least 1−ε. Here, c̃ is a constant dependent
only on c, and λ ≤ 1 is the ratio of the smallest to the largest
singular values of D. When (7) holds, the system is observable
for sufficiently large λ with high probability.

Proof: See Appendix B.
In the above, the phrase sufficiently large λ refers to the

λ required to meet the upper bound on the RIC set by the
RIP based guarantees of different algorithms, as discussed in
Section I. We discuss this further in the next subsection.
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A. Discussion

• Theorem 1 shows that Km ≥ O(s ln(N/s)) is sufficient
for observability. Further, `1 minimization can be posed
as a linear program and solved in polynomial time
complexity in N [25]. In contrast, O(N) measurements
are necessary for observability of a non-sparse initial state
vector.

• Suppose D is a scaled unitary matrix. Then, λ = 1,
and Theorem 1 simplifies to the recovery condition
for the standard compressed sensing problem with Km
measurements. Since the RIP of a matrix is invariant to
multiplication by a unitary matrix, each new observation
vector adds m new measurements to (2) as K increases.

• Suppose D is rank-deficient. Then, λ = 0, and (7) does
not hold for any δ < 1, unless

m ≥ 2

3c̃δ2

[
9s ln

(
eN

s

)
+ 2 ln(2ε−1)

]
. (8)

Intuitively, if x0 lies in the null space of D, yk = 0
for k ≥ 1. Hence, the system is observable for all sparse
x0 if it is observable from y0. By following a different
approach based on the RIP properties of D, one can
derive sufficient conditions that improve with K even
when D is rank-deficient, but a proof of this result is
beyond the scope of this paper.

• Suppose that D is an ill-conditioned matrix, i.e., λ is
close to zero. Then, the upper bound on δ required
to guarantee observability may not hold [21]–[23]. For
example, using the necessary and sufficient condition for
`1 based recovery: δs ≤ 1/3 [23], (7) reduces to

K
(
λ2(K−1) − 2/3

)2
≥ 2

3c̃m

[
9s ln

(
eN

s

)
+ 2 ln(2ε−1)

]
, (9)

for λ2(K−1) ≥ 2/3. In other words, if (9) is satisfied for
some K ≤ b(ln(2/3))/(2ln(λ))c+ 1, then the system is
observable. This is intuitive, because right multiplication
by an ill-conditioned matrix may severely degrade its RIP.
We also note that the ratio of the smallest to the largest
singular values of DK decreases, i.e., DK becomes ill-
conditioned as K increases. This results in an upper
bound on K as mentioned above. However, note that, if
the system is observable for K1 measurements, it remains
observable for K > K1.

• For K = 1, Theorem 1 reduces to the recovery condition
of the standard compressed sensing problem [25]. Also,
if the system is observable with m measurements (for ex-
ample, when (8) is satisfied), the conditions in Theorem 1
hold for K = 1, as expected.

Suppose we carry out a similar analysis for the case
when all observation matrices are identical A(k) = A for
k=0, 1, . . . ,K−1, where A is a subgaussian random matrix
with parameter c. The sufficient condition then obtained shows
that the system is recoverable if (8) is satisfied. However,
this condition implies that the system is observable with
K = 1. This is a weak result, as the sufficient condition for

observability does not improve when additional measurements
are available. This is indeed true when D = αI , for some
α ∈ R, as we are only adding scaled versions of the rows of
A to Ã(K), as K increases. Unfortunately, the current tools
from concentration of measure used for characterizing the RIP
of a random matrix are inadequate for bounding the number
of measurements required for the general D case. This an
interesting direction for future work.

B. RIP of the product of matrices

We can derive a sufficient condition for the product of a
subgaussian matrix and a deterministic matrix to satisfy the
RIP property as follows:

Corollary 1. Suppose A ∈ Rm×N is subgaussian random
matrix with parameter c. Then, if

m
(
δ − 1 + λ2

)2 ≥ 2

3c̃

[
9s ln

(
eN

s

)
+ 2 ln(2ε−1)

]
, (10)

the RIC δs of AD satisfies δs < δ, for all δ > 1 − λ2, with
probability at least 1−ε. Here, c̃ is a constant dependent only
on c, and λ ≤ 1 is the ratio of the smallest and the largest
singular values of D.

Corollary 1 is an immediate by-product of the proof of
Theorem 1, but is an interesting result in its own right,
as it provides conditions under which right-multiplication of
a subgaussian random matrix by a deterministic matrix D
preserves its RIP.

C. Extension to Robust Recovery

The RIP based analysis allows us to extend Theorem 1 to
bound error in recovering x0 under bounded noise and model
mismatch, that is, when the measurements are noisy and the
initial state is not exactly sparse, respectively. In this case, the
system model modifies as follows:

xk+1 = Dk+1(x0 + x̌0) (11)
yk = A(k)xk + wk, (12)

for discrete time instants k = 0, 1, . . . ,K−1. Here, wk ∈ Rm
denotes the bounded measurement noise: ‖wk‖ ≤ W . x̌0 ∈
RN represents the bounded noise in the initial state. Here,
x0 denote s the s−sparse approximation of the initial state:
x0 = arg min

v∈RN :‖v‖0≤s
‖x0 + x̌0 − v‖. Therefore, the overall set

of equations can be written as

ỹ(K) = Ã(K)(x0 + x̌0) + w̃, (13)

where bounded noise w̃ ∈ RKm satisfies ‖w̃‖ ≤ KW .

Corollary 2. Suppose A(k), k = 0, 1, . . . ,K−1 are indepen-
dent subgaussian random matrices with parameter c. Then,
for some integer p > 0 and positive real number Cth, suppose

Km
(
Cth − 1 + λ2(K−1)

)2
≥ c̃
[
9ps ln

(
eN

ls

)
+ 2 ln(2ε−1)

]
,

(14)
and λ2(K−1) > 1−Cth. Here, c̃ is a constant dependent only
on c, and λ ≤ 1 is the ratio of the smallest to the largest
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singular values of D. When (14) holds, with probability at
least 1 − ε, the initial vector x0 + x̌0 can be recovered with
errors bounded as follows:

‖x0 + x̌0 − x̂0‖1 ≤ c1 ‖x̌0‖1 + c2
√
sKW (15)

‖x0 + x̌0 − x̂0‖ ≤ c1 ‖x̌0‖1 /
√
s+ c2KW, (16)

where x̂0 is the estimate of the initial vector obtained from
a sparse recovery algorithm, and c1, c2 > 0 are universal
constants. The constants p and Cth are dependent on the
recovery algorithms as follows: for BP, p = 2 and Cth = 4√

41
;

for IHT, p = 6 and Cth = 1√
3

; and for compressive sampling
matched pursuit (CoSAMP), p = 8 and Cth = 0.478.

Proof: Follows from the upper bound on the RIC required
by the different algorithms to ensure robust recovery [25,
Theorem 6.12, 6.21, 6.28].

V. CONCLUSIONS

We derived sufficient conditions for a linear dynamical
system to be observable when its initial state is sparse. Our
results are applicable under the stochastic setting where the
observation matrices are independent and subgaussian random
matrices. We showed that systems that are unobservable using
classical control theory can be observable under the sparsity
constraints. We also presented an extension of the results to
the robust recovery of the system state under model mismatch
and noisy observations. Deriving similar results for the case
when all observation matrices are identical is an interesting
direction for future work.

.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Using [25, Corollary 7.32] and [25, Theorem
7.30], we can show that, for t > 0,

P

{
m∑
l=1

(Al − E {Al}) ≥ t

}
≤ exp

(
− c22t

2/2

2c1m+ c2t

)
,

P

{
m∑
l=1

(−Al + E {Al}) ≥ t

}
≤ exp

(
− c22t

2/2

2c1m+ c2t

)
.

Therefore, for t > mmax {amax,−amin},

P

{
m∑
l=1

Al ≥ t

}
≤ exp

(
− c22(t−mamax)2/2

2c1m+ c2(t−mamax)

)
,

P

{
m∑
l=1

−Al ≥ t

}
≤ exp

(
− c22(t+mamin)2/2

2c1m+ c2(t+mamin)

)
.

We get the desired result by combining the above inequalities
using the union bound.

APPENDIX B
PROOF OF THEOREM 1

Proof: First, we note that an overall scaling does not
affect the RIP of a matrix. Hence, without loss of generality,
we assume that the largest and the smallest singular values of

D 6= 0 are 1 and λ, respectively. For any z ∈ RN such that
‖z‖2 = 1 and t ∈ (0, 1), we have

P
{∣∣∣∣ 1

Km

∥∥∥Ã(K)z
∥∥∥2 − ‖z‖2∣∣∣∣ ≥ t}

= P

{∣∣∣∣∣
K−1∑
k=0

m∑
l=1

(
ak,l +

∥∥∥Dkz
∥∥∥2 − ‖z‖2)∣∣∣∣∣ ≥ Kmt

}
, (17)

where ak,l ,
∣∣∣(AT

(k))
T
lD

kz
∣∣∣2 − ∥∥∥Dkz

∥∥∥2, where (AT
(k))

T
l is

the lth row of the matrix A(k). Here, the term (AT
(k))

T
lD

kz is
the inner product between a row of Ã(K) and z. It is easy to
see that (AT

(k))
T
lD

kz is a subgaussian random variable with

parameter c
∥∥∥Dkz

∥∥∥2. Also, using the independence and unit

variance property of the entries of (AT
(k))l, we have E {ak,l} =

0. Thus, from Lemma 1, for |θ| ≤ 1

16c‖Dkz‖2 and hence for

|θ| ≤ 1
16c , we have

E {exp (θak,l)} ≤ exp

(
128θ2c2

∥∥∥Dkz
∥∥∥4) ≤exp

(
128θ2c2

)
,

which follows since the largest singular value of D is 1. Note
that this holds true even if D is not invertible. Hence, using
the Chernoff bound, for all t > 0,

P {|ak,l| ≥ t} ≤ 2 min
0<θ≤ 1

16c

exp
(
128θ2c2

)
exp (−θt) (18)

≤ 2 exp (1/8) e−t/(32c) (19)

where (19) is obtained by setting θ = 1/(32c). Further,
independence of the rows of A(k) for k = 1, 2, . . . ,K implies

that ak,l are independent. Therefore, ak,l +
∥∥∥Dkz

∥∥∥2 − ‖z‖2
satisfies the conditions required to apply Proposition 1. Thus,

(17), along with the fact λ2(K−1) − 1 ≤
∥∥∥Dkz

∥∥∥2−‖z‖2 ≤ 0

yields, for t ∈ (1− λ2(K−1), 1)

P
{∣∣∣∣ 1

Km

∥∥∥Ã(K)z
∥∥∥2 − ‖z‖2∣∣∣∣ ≥ t}

≤ exp

(
− c22(Kmt)2/2

2c1Km+ c2Kmt

)
+ exp

(
−
c22
[
Kmt+Km

(
λ2(K−1) − 1

)]2
/2

2c1Km+ c2Km
(
t+ λ2(K−1) − 1

)) (20)

≤ exp

(
− c22Kmt

2

2 (2c1 + c2t)

)
+ exp

(
−
c22Km

(
t+ λ2(K−1) − 1

)2
2 (2c1 + c2t)

)
(21)

≤ 2 exp

(
−c̃Km

(
t− 1 + λ2(K−1)

)2)
, (22)

where c1 = 2 exp (1/8), c2 = 1/(32c) and c̃ =
c22

2(2c1+c2)
.

Also, the last step follows because when t ∈ (1−λ2(K−1), 1),
we have t2 ≥

(
t+ λ2(K−1) − 1

)2
. Now, using the proof

technique in [25, Theorem 9.11], we get that if (7) holds,
the RIC δs of A satisfies δs < δ, for all δ > 1 − λ2(K−1),
with probability at least 1− ε. This completes the proof.
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