
Fundamental Limits of Communication in

Interference Limited Environments

A Thesis

Submitted for the Degree of

Doctor of Philosophy

in the Faculty of Engineering

by

Parthajit Mohapatra

Electrical Communication Engineering
Indian Institute of Science, Bangalore

Bangalore – 560 012 (INDIA)

February 2015



TO

My Parents

Smt. A. Mohapatra and Sri. P. K. Mohapatra

and

My Wife

Smt. S. Mishra



Acknowledgements

I would like to express my deep gratitude to my thesis advisor Dr. Chandra R. Murthy

whose continuous guidance and encouragement have been a driving force to reach my

goal. His commitment and dedication to work and patience has motivated me a lot

during my Ph. D. He has not only taught me how to pursue research but also how

to write research papers and present results in an elegant way. I would also like to

thank him for his support and advice, whenever I faced problems. I thank the faculty

members of ECE andMath departments, where I have attended many courses. I would
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Abstract

In multiuser wireless communications, interference not only limits the performance of

the system, but also allows users to eavesdrop on other users’ messages. Hence, in-

terference management in multiuser wireless communication has received significant

attention in the last decade, both in the academia and industry. The interference chan-

nel (IC) is one of the simplest information theoretic models to analyze the effect of in-

terference on the throughput and secrecy of individual messages in a multiuser setup.

In this thesis, the IC is studied under different settings with and without the secrecy

constraint. The main contributions of the thesis are as follows:

• The generalized degrees of freedom (GDOF) has emerged as a useful approxi-

mate measure of the potential throughput of a multiuser wireless system. Also,

multiple antennas at the transmitter and receiver can provide additional dimen-

sion for signaling, which can in turn improve the GDOF performance of the IC.

In the initial part of the thesis, aK-user MIMO Gaussian IC (GIC) is studied from

an achievable GDOF perspective. An inner bound on GDOF is derived using

a combination of techniques such as treating interference as noise, zero-forcing

receiving, interference alignment (IA), and extending the Han-Kobayashi (HK)

scheme toK users. Also, outer bounds on the sum rate of the K-user MIMO GIC

are derived, under different assumptions of cooperation and providing side infor-

mation to the receivers. The derived outer bounds are simplified to obtain outer

bounds on the GDOF. The relative performance of these bounds yields insight

into the performance limits of the multiuser MIMOGIC and the relative merits of

different schemes for interference management.

• Then, the problem of designing the precoding and receive filtering matrices for

IA is explored for K-user MIMO (M × N) GIC. Two algorithms for designing

iii



Abstract iv

the precoding and receive filtering matrices for IA in the block fading or constant

MIMO IC with a finite number of symbol extensions are proposed. The first algo-

rithm for IA is based on aligning a subset of the interfering signal streams at each

receiver. As the first algorithm requires global channel knowledge at each node,

a distributed algorithm is proposed which requires only limited channel knowl-

edge at each node. A new performance metric is proposed, that captures the pos-

sible loss in signal dimension while designing the precoders. The performance of

the algorithms are evaluated by comparing them with existing algorithms for IA

precoder design.

• In the later part of the thesis, a 2-user IC with limited-rate transmitter cooper-

ation is studied, to investigate the role of cooperation in managing interference

and ensuring secrecy. First, the problem is studied in the deterministic setting,

and achievable schemes are proposed, which use a combination of interference

cancelation, relaying of the other user’s data bits, time sharing, and transmission

of random bits, depending on the rate of the cooperative link and the relative

strengths of the signal and the interference. Outer bounds on the secrecy rate are

derived, under different assumptions of providing side information to receivers

and partitioning the encoded message/output depending on the relative strength

of the signal and the interference. The achievable schemes and outer bounds are

extended to the Gaussian case. For example, while obtaining outer bounds, for

the Gaussian case, it is not possible to partition the encoded message or output as

performed in the deterministic case, and the novelty lies in finding the analogous

quantities for the Gaussian case. The proposed achievable scheme for the Gaus-

sian case uses a combination of cooperative and stochastic encoding along with

dummy message transmission. For both the models, one of the key techniques

used in the achievable scheme is interference cancelation, which has two benefits:

it cancels interference and ensures secrecy simultaneously. The results show that

limited-rate transmitter cooperation can greatly facilitate secure communications

over 2-user ICs.



Glossary

AEP : Asymptotic Equipartition Property
AWGN : Additive White Gaussian Noise
BC : Broadcast Channel
DOF : Degrees of Freedom
GDOF : Generalized Degrees of Freedom
GIC : Gaussian Interference Channel
GMBC : Gaussian MIMO Broadcast Channel
GSIC : Gaussian Symmetric Interference Channel
HK-scheme : Han-Kobayashi scheme
IA : Interference Alignment
IB : Inner Bound
IC : Interference Channel
INR : Interference-to-Noise Ratio
LDIC : Linear Deterministic IC
MAC : Multiple Access Channel
MIMO : Multiple-Input Multiple-Output
OB : Outer Bound
RHS : Right Hand Side
SIMO : Single-Input Multiple-Output
SISO : Single-Input-Single-Output
SLDIC : Symmetric Linear Deterministic IC
SNR : Signal-to-Noise Ratio
ZF : Zero-Forcing
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Notation

Boldface lower case letters : Vectors
Boldface upper case letters : Matrices
C : Field of complex numbers
CN (µ, σ2) : Circularly symmetric complex Gaussian distribution

with mean µ and variance σ2

CN (µ,Σ) : Circularly symmetric complex Gaussian distribution
with mean vector µ and covariance Σ

E[.] : Expectation operator
F2 : Binary field
Hij : Nj ×Mi channel gain matrix for transmitter i to receiver j
H(x) : Shannon entropy of discrete random variable x
h(x) : Differential entropy of continuous random variable x
I(x;y) : Mutual information between random variables x and y

IN : Identity matrix of dimension N ×N
K : Number of users in the interference channel
M : Number of transmit antennas at the transmitter
Mi : Number of transmit antennas at the transmitter i
N : Number of receive antennas at the receiver
Nj : Number of receive antennas at the receiver j
Pi : Average power constraint at the ith transmitter
TN
ǫ : Weak typical set with respect to PX

[a : b] : Sequence of numbers from a, a+ 1, . . . , b and a ≤ b
1A : Indicator function, equal to 1 if A is

true, and equal to 0 otherwise
(.)T : Transposition
(.)H : Hermitian transposition
|.| : Determinant of a matrix
⊕ : XOR operation
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Chapter 1

Introduction

With the ever-increasing demand for high data rates and better quality of service in

a multiuser wireless communication system, interference is one of the major factors

limiting the performance of the system. Interference arises in a wireless environment,

whenmultiple uncoordinated users share a common resource and the users do not have

a priori information on the resource being shared. When the strength of interference is

higher than the strength of the thermal noise at the receiver, the impairments caused by

interference become more significant than that caused by noise. Under this condition,

the system is said to operate in the interference-limited regime, as the performance of

the system is mainly limited by interference rather than by noise. In order to mitigate

the effect of interference, most of the current wireless communication systems use the

following two techniques:

1. Orthogonalize the communication links: In this case, the communication links are or-

thogonalized in time/frequency, so that the transmitters do not cause interference

to unintended users. But, with increase in the number of users, the performance

of the system deteriorates. Also, this kind of scheme does not take strength of the

1
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interference into account.

2. Treat interference as noise: In this case, receiver treats interference as noise, and per-

forms decoding considering the sum of the interference and thermal noise as the

effective noise. However, this ignores the signal structure inherent in the interfer-

ence. In particular, when the interference is strong enough to be decodable at an

unintended receiver, the receiver can completely cancel the interference, which

could outperform treating interference as noise.

Hence, both of the above approaches can be suboptimal depending on the strength of

interference or the number of users present in the system. One way to improve the per-

formance of the system is to use multiple antennas at transmitter and receiver. These

multiple antennas can be used, among other things, to nullify interference by orthog-

onalizing users, to suppress noise, or to increase the data rate by transmitting multi-

ple parallel data streams. This leads to several interesting questions related to how

the available spatial resources in a multiuser multi-antenna system should be shared

among the users to effectively manage the interference, and thereby maximize the over-

all system performance.

Another important issue in multiuser wireless communications is that the users are

susceptible to eavesdropping due to the broadcast nature of the wireless medium.

Hence, interference not only limits the overall throughput of the system, but also al-

lows users to eavesdrop on other users’ messages. The interference channel (IC) is one

of the simplest information theoretic models to analyze the effect of interference on

the throughput and secrecy of individual messages in a multiuser setup. Recently, the

IC has been studied extensively without [7–10] and with secrecy constraints [6, 11, 12].
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This, in turn, has given useful insights on the fundamental limits of communication

and different techniques to manage interference for various communication models.

1.1 Background

A model of a K-user multiple-input multiple-output (MIMO) Gaussian IC (GIC) with

M antennas at each transmitter and N antennas at each receiver is shown in Fig. 1.1.

In this model, K transmitters communicate with K receivers, with each transmitter

having an independent message for its corresponding receiver. Let Hij represent the

N×M channel gain matrix from transmitter i to receiver j. The channel coefficients are

assumed to be drawn from a continuous distribution such as the Gaussian distribution.

The received signal at the j-th receiver, denoted by yj , is modeled as:

yj = Hjjxj +

K∑

i=1,i 6=j

Hjixi + zj , (1.1)

where zj is the complex symmetric Gaussian noise vector, distributed as zj ∼ CN (0, IN)

and xi is the signal transmitted by the i-th user.

1.1.1 Approximate capacity characterization

Generalized degrees of freedom (GDOF)

The study of an information theoretic model similar to IC dates back to 1961 [13], where

the two-way communication channel was studied. Since then, the IC has been studied

extensively, and under different scenarios (see, for example, [1,7–10,14]). However, the

capacity of the IC has remained an open problem even in the 2-user case, except for

some special cases like strong/very strong interference regimes [15, 16]. Due to this,
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Figure 1.1: The K-user MIMO Gaussian interference channel.

approximate characterization of the capacity has recently received significant research

attention. In turn, this has resulted in new, useful insights into the performance lim-

its of communication systems and how to achieve them. Towards this, the so-called

generalized degrees of freedom (GDOF), introduced in [8], has been used as an approx-

imation of capacity at high signal-to-noise ratio (SNR) and interference-to-noise ratio

(INR). The degrees of freedom (DOF), defined in [17], has been used as an approximate

measure of capacity at high SNR, when the signal and interference powers are linearly

related.

For a point-to-point MIMO system with M antennas at transmitter and N antennas
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at receiver, the DOF of the system is min{M,N}. For a 2-user Gaussian IC (GIC) with

Mi antennas at the i
th (i = 1, 2) transmitter and Ni antennas at the i

th receiver, the sum

DOF is given bymin{M1+M2, N1+N2,max{M1, N2},max{M2, N1}} [17]. Hence, for the

symmetric case, when the transmitters and receivers are equipped with M antennas,

then each user can achieve M
2
DOF by time sharing between the two user pairs. For the

K-user MIMO Gaussian symmetric IC, time sharing can only achieve a DOF of M
K

per

user, while IA can continue to achieve a DOF of M
2
per user regardless of K [9]. Many

other interesting results on the GDOF/DOF of the K-user IC can be found in [1, 2, 14].

The deterministic model

Another communication model which has been used as a high SNR approximation

for multiuser wireless communication systems is the so-called deterministic model, first

introduced in [18]. The deterministic model captures three key features of wireless

communication: channel strength, broadcast, and superposition. Initially, it was intro-

duced for a single source and a single destination with an arbitrary number of relay

nodes. The importance of the deterministic model is that it is sufficiently simple, so

that the tight achievable schemes and outer bounds can be obtained relatively easily,

and yet sufficiently accurate, so that the techniques and results translate well to yield

corresponding achievable schemes and outer bounds in the Gaussian channel case. The

deterministic model of a 2-user Gaussian symmetric IC (GSIC) for the symmetric case

is shown in Fig. 1.2. In this case, noise is modeled by truncation and interference is
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Figure 1.2: 2-user IC: (a) Gaussian case and (b) deterministic case.

modeled by XOR operation [18]. The signals at the receivers are modeled as:

y1 = Dq−mx1 ⊕Dq−nx2,

y2 = Dq−mx2 ⊕Dq−nx1, (1.2)

where summation and multiplication are in F2, xi and yi are binary vectors of length

q , max{m,n},D is a q×q downshift matrix with elements dj′,j′′ = 1 if 2≤ j′ = j′′+1 ≤q

and dj′,j′′ = 0 otherwise, and ⊕ stands for XOR operation.

The deterministic model is completely specified by the parameters m and n. These

parameters are related to GSIC in the following way: m , (⌊log SNR⌋)+ and n ,

(⌊log INR⌋)+, where SNR , Ph2d and INR , Ph2c . Here, for the Gaussian case, it is

assumed that P is the power in the signal xi (i = 1, 2) and that the noise is distributed

as CN (0, 1).

In recent years, the deterministic model has been used to study various communica-

tion scenarios to get insights into the achievable schemes and outer bounds for their

Gaussian counterparts [19, 20]. In [19], the capacity region of the deterministic IC is
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characterized. The study of the deterministic IC gives sound mathematical backing for

the near-optimality of some well-known achievable schemes in the Gaussian case [8].

In [20], the capacity of the deterministic model for 2-user IC with limited-rate transmit-

ter cooperation is characterized. Also, the deterministic model has been used to study

communication models with secrecy constraints [21–23].

1.1.2 Schemes for managing interference

Among different possible methods to mitigate the effect of interference, two major ap-

proaches have emerged:

1. The Han-Kobayashi (HK) scheme [7, 8]

2. Interference alignment (IA) [9, 24]

The above schemes are explained briefly in the following.

Han-Kobayashi (HK) scheme

TheHK-scheme, proposed in [7], is known to achieve the largest possible rate region for

the 2-user single-input-single-output (SISO) IC. The HK-scheme is based on splitting

themessage into private and common parts. The private part of the message is required

to be decodable at the intended receiver, whereas the common part of the message is

required to be decodable at both the receivers. The HK-scheme allows arbitrary splits

of each user’s transmit power over the private and common part of the message, as

well as time sharing between multiple such splits. However, the optimization over

different power splits and time sharing is not completely understood. Also, exactly

how close the achievable scheme can come to the capacity of the channel is not known.
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Recently, in [8], it was shown that a special case of the HK-scheme can achieve a rate

within 1 bits/s/Hz of the capacity for all values of the channel parameters. One of the

important aspects of this scheme is that the power of the private part of the message is

chosen such that it is received at the noise floor of the unintended receiver. Hence, the

interference caused by the private part of the message will have a relatively small effect

on the performance. If the direct channel is strong, then the private part of the message

can convey a significant amount of information to the intended receiver. The common

part of the message can be decoded, and its effect can be canceled at the unintended

receiver. The outer bounds derived in [8] help to establish that the HK-scheme can

achieve within 1 bits/s/Hz of the capacity for all values of the channel parameters, and

also, that the scheme is GDOF optimal. Some of the works analyzing the performance

of the HK scheme for an IC and under different settings include [1–3].

Interference alignment (IA)

Interference alignment (IA) is a precoding technique that attempts to align interfering

signals to a reduced dimensional subspace at each receiver. The interference can be

aligned in space, time, or, frequency. It was recently shown that with IA, the sum rate

achieved in the K-user IC scales linearly with the number of users [9, 25]. In [9], it is

shown that the sum DOF for the K-user GIC withM ≥ 1 antennas at each transmitter

and receiver is KM
2
, if the channel coefficients are time-varying and drawn from a con-

tinuous distribution. Hence, with IA, every user can achieve half the DOF that can be

achieved without interference, irrespective of the number of users. More results on IA

used in various communication models can be found in [14, 26–28].

Most of the aforementioned achievable DOF results require long symbol extensions
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(that is, the interference is aligned when one considers a large number of symbols to-

gether) or global channel knowledge at each node, which make these methods unsuit-

able for practical implementation. Hence, an important problem is to devise algorithms

for computing the transmit precoding matrices and the receive filtering matrices for

aligning the interference at all receivers that require a limited number of symbol ex-

tensions, or require only local channel state information at each node. Some of the

algorithms which approximately achieve IA can be found in [29–31].

1.1.3 Information theoretic secrecy

The notion of information theoretic secrecy was first introduced in [11], where secure

communication is considered between a legitimate transmitter and receiver pair, in the

presence of an eavesdropper. The transmitter and receiver share a secret key, which

is unknown at the eavesdropper. It is shown that perfect secrecy of the message can

be ensured if and only if the length of the key is greater than or equal to the length of

the message. This is a negative result, since it implies that the length of the key, and

therefore the compulsory overhead in communicating in sharing it securely, increases

as the length of the data increases. In this model, both the legitimate receiver and eaves-

dropper listen through the same channel. But, in most physical scenarios of interest, the

channel to the legitimate receiverwill be different from the channel to the eavesdropper.

In [32], a wiretap channel is considered, where the legitimate receiver and eavesdrop-

per receive their signals through different channels. In this case, a nonzero secrecy rate

is achieved without sharing a secret key, when the channel to the eavesdropper is more

noisy than the channel to the legitimate receiver. More results on wiretap channel with
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different settings can be found in [6, 33–35].

The interference channel has been analyzed under different eavesdropper settings,

to understand the impact of interference on the achievable rate performance and se-

crecy of the system [12, 21, 36, 37]. In [12], the broadcast and IC with independent and

confidential messages are considered. The achievable scheme for the IC is based on

stochastic encoding, and the achievable scheme for the broadcast channel (BC) uses

double-binning scheme. In [36], the communication limits of the 2-user IC is investi-

gated in the presence of an external eavesdropper. In this case, both the users design

their randomized codebooks cooperatively. Also, IA precoding along with the secrecy

constraint is considered in [37], and the goal is to ensure secrecy of individual messages

in the case of a frequency/time selective K-user GIC with confidential messages. The

role of cooperative relaying in ensuring secrecy under different communication models

can be found in [38–40].

1.1.4 Outer bounds on capacity

An important step in characterizing the capacity of any communication system, when

the exact capacity is intractable, is to derive tight outer bounds. These outer bounds

provide limits on the rate-tuples of the users in the system beyond which it is not possi-

ble to achieve arbitrarily low probabilities of decoding error at the receivers. Deriving

outer bounds thus helps in obtaining insights into the performance limits of the sys-

tem, and to establish the optimality or otherwise of any proposed achievable scheme.

Most of the existing literature uses the celebrated Fano’s inequality [41] to obtain outer

bounds on the rates achievable in a given communication system. Mathematically,
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Fano’s inequality is stated as follows.

Theorem 1 ( [41]). Given an arbitrary code (2nR, n) consisting of code words x(1),x(2), . . . ,

x(2nR), let X = (X1, X2, . . . , Xn) be a random vector that equals x(i) with probability p(x(i)),

i = 1, 2, . . . , 2nR, where
2nR∑

i=1

p(x(i)) = 1. LetY = (Y1, Y2, . . . , Yn) be the corresponding output

sequence when X is transmitted over a channel. If p(e) is the probability of error of the code,

computed for the given input distribution, then

H(X|Y) ≤ H(p(e)) + p(e) log
(
2nR − 1

)
, (1.3)

where H(p(e)) = −p(e) log p(e) − (1 − p(e)) log(1 − p(e)) and H(X|Y ) is the conditional

entropy.

Along with Fano’s inequality, obtaining outer bound typically involves bounding the

entropy terms or providing side information to receiver. The side information provided

to receiver depends on the systemmodel under consideration. Determining the form of

side information to be provided to transmitter/receiver plays a crucial role in obtaining

tight outer bounds. Giving too much side information to transmitter/receiver may

result in a loose outer bound. Giving too little information may render the outer bound

analytically intractable.

A seminal paper on deriving outer bounds on the 2-user IC is [8], which helps to

establish that a simple variant of the HK-scheme can achieve rate within 1 bits/s/Hz

of the outer bound for all values of the channel parameter. Outer bounds on the DOF

and GDOF for multiuser ICs can be found in [1, 9, 14, 17, 25]. In [17], the outer bound

helps to establish that a zero-forcing (ZF) receiving/precoding can achieve the optimal
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sum DOF. In [9], the outer bound helps to establish the optimality of IA for the K-

user SISO GIC. Also, outer bounds on DOF for the K-user MIMO GIC can be found

in [14,25]. Outer bounds on DOF/GDOF for other communication models can be found

in [2, 26, 42].

For communication models where secrecy of the message is also an issue, the basis

for developing outer bounds are the twin considerations of data recoverability at the

intended receiver and the security constraints at the unintended receivers. In general,

the derivation of the outer bound on the secrecy rate involves use of Fano’s inequal-

ity along with imposing the constraints imposed by the secrecy requirement. Outer

bounds for different communication models with the secrecy constraint can be found

in [6, 12, 36, 43].

1.2 Challenges in interference-limitedmultiuserwireless

communication systems

As mentioned earlier, the capacity of 2-user IC is not known even in the Gaussian case.

The difficulty lies in obtaining capacity achieving schemes and deriving tight outer

bounds. One of the ways to make headway into this problem is to approximate the

capacity, rather than attempting an exact characterization. In this thesis, the following

key issues are addressed:

• In a multiuser MIMO setup, the use of multiple antennas at the transmitters and

receivers can provide additional dimensions for signaling, which can, in turn,

improve the GDOF performance of the IC. Characterizing the GDOF performance

of a multiuser MIMO IC is therefore an important problem (Chapters 2-4).
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• Linear precoding at the transmitters and zero-forcing filtering at the receivers is

oneway to achieve the sumDOF promised by IA. An important problem is thus to

devise algorithms for computing the transmit precoding matrices and the receive

filtering matrices that align the interferences at all the receivers (Chapter 5).

• As mentioned earlier, wireless communication is susceptible to eavesdropping

owing to the broadcast nature of the medium. The past works on IC have shown

that cooperation between the transmitters/receivers can increase the achievable

rate significantly [20, 44]. However, the effectiveness of transmitter cooperation

in managing interference and ensuring secrecy has not been analyzed in the lit-

erature. Hence, exploring the role of transmitter cooperation in managing inter-

ference and ensuring secrecy in 2-user IC is of significant importance and can

provide useful insights into system performance (Chapters 6-9).

1.3 Outline of the thesis and summary of contributions

Chapter 2 of this dissertation proposes achievable schemes for theK-user MIMOGSIC.

TheK-user MIMO GSIC where each transmitter hasM antennas and each receiver has

N antennas is studied from a generalized degrees of freedom (GDOF) perspective. An

inner bound on the GDOF is derived using a combination of techniques such as treat-

ing interference as noise, zero forcing (ZF) at the receivers, IA, and extending the HK-

scheme to K users, as a function of the number of antennas and the log INR/ log SNR

level. Several interesting conclusions are drawn from the derived bounds. It is shown,

for example, that whenK > N
M

+ 1, a combination of the HK and IA schemes performs

the best among the schemes considered.
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Chapter 3 of the thesis proposes outer bounds on the sum rate for the K-user MIMO

GIC. Three outer bounds are derived, under different assumptions of cooperation and

providing side information to receivers. The novelty in the derivation lies in the careful

selection of side information, which results in the cancellation of the negative differ-

ential entropy terms containing signal components, leading to a tractable outer bound.

The overall outer bound is obtained by taking the minimum of the three outer bounds.

The derived bounds are simplified for the MIMO GSIC to obtain outer bounds on the

GDOF.

Chapter 4 of the thesis compares the achievable schemes derived in Chapter 2 with

the outer bounds derived on the GDOF in Chapter 3. The bounds yield insight into

the performance limits of multiuser MIMO GICs and the relative merits of different

schemes for interference management. These insights are confirmed by establishing the

optimality of the bounds in specific cases using an inner bound on the GDOF derived

in the second chapter. It is also shown that many of the existing results on the GDOF

of the GIC can be obtained as special cases of the bounds, e.g., by setting K = 2 or the

number of antennas at each user to 1.

Chapter 5 of the thesis proposes novel precoder design algorithms for IA in the case of

theK-user MIMO (M ×N) GIC. A new performance metric for evaluating the efficacy

of IA algorithms is proposed, which measures the extent to which the desired signal

dimensionality is preserved after zero-forcing the interference at the receiver. Inspired

by the metric, two algorithms are proposed for designing the linear precoders and re-

ceive filters for IA in the constant MIMO IC with a finite number of symbol extensions.
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The first algorithm uses an eigenbeamformingmethod to align sub-streams of the inter-

ference to reduce the dimensionality of the interference at all the receivers. The second

algorithm is iterative, and is based on minimizing the interference leakage power while

preserving the dimensionality of the desired signal space at the intended receivers. The

improved performance of the algorithms is illustrated by comparing themwith existing

algorithms for IA using Monte Carlo simulations.

Chapters 6-9 of the thesis explore the role of cooperation on managing interference

and ensuring secrecy of individual messages in the case of IC. Chapter 6 of the thesis

presents novel achievable schemes for the 2-user symmetric linear deterministic inter-

ference channel (SLDIC) with limited-rate transmitter cooperation and perfect secrecy

constraints at the receivers. The proposed achievable scheme uses a combination of

interference cancelation, relaying of the other user’s data bits, time sharing, and trans-

mission of random bits, depending on the rate of the cooperative link and the relative

strengths of the signal and the interference. The results show, for example, that the pro-

posed scheme achieves the same rate as the capacity without the secrecy constraints,

in the initial part of the weak interference regime. Also, sharing random bits through

the cooperative link can achieve a higher secrecy rate compared to sharing data bits,

in the very high interference regime. The results highlight the importance of limited

transmitter cooperation in facilitating secure communications over 2-user interference

channels.

In the seventh chapter, outer bounds are presented for the 2-user SLDIC with limited-

rate transmitter cooperation and perfect secrecy constraints at the receivers. Five outer
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bounds are derived, under different assumptions of providing side information to re-

ceivers and partitioning the encodedmessage/output depending on the relative strength

of the signal and the interference. The usefulness of these outer bounds is shown by

comparing the bounds with the inner bound on the achievable secrecy rate derived in

the previous chapter. Also, the outer bounds help to establish that sharing random bits

through the cooperative link can achieve the optimal rate in the very high interference

regime.

Chapter 8 proposes achievable schemes for the 2-user GSIC with limited-rate trans-

mitter cooperation andweak secrecy constraints at the receivers. The achievable schemes

are derived using the intuitions gained from studying the SLDIC in Chapter 6. The pro-

posed achievable scheme uses a combination of cooperative and stochastic encoding,

along with dummy information transmission. The schemes differ in their construction

depending on the interference regime (weak/moderate/high), and the chapter pro-

vides details of the differences as well as their corresponding performance. For exam-

ple, in contrast to the achievable scheme for the weak/moderate interference regime,

the dummymessage sent by one of the users i is required to be decodable at the receiver

j in the high interference regime.

Chapter 9 presents the outer bounds for the 2-user GSIC with limited-rate transmitter

cooperation and weak secrecy constraints at the receivers. The difficulty in deriving

these bounds lies in translating the ideas from the deterministic case to the GSIC. Three

outer bounds are derived on the achievable secrecy rate in this chapter. In some of the

cases, it is not possible to partition the encodedmessage or output as done in the case of

SLDIC, and, hence, the side-information provided to the receivers is modified to obtain
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analytically tractable and tight outer bounds. Finally, the achievable secrecy rates are

compared with the outer bounds to illustrate the benefits of transmitter cooperation for

ensuring secrecy and achieving high throughput.

A birds eye view of the thesis is shown pictorially in Fig. 1.3. In summary, this the-

sis studies a variety of related problems in multiuser information theory, and explores

the fundamental limits of communication in each case, through the lenses of determin-

istic approximations and degrees of freedom characterizations. These limits are then

translated to the corresponding Gaussian channels, leading to new and important in-

sights into near-optimal transmission schemes, their corresponding performance, and

fundamental limits of communications in multiuser interference-limited environments.
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Chapter 2

Inner Bound on the GDOF of the

K-User MIMO Gaussian Symmetric

Interference Channel

Approximate capacity characterization of the interference channel has recently received

considerable research attention, both as a means to analyze the capacity scaling behav-

ior as well as to obtain guidelines for interference management in a multi-user envi-

ronment. Towards this, the concept of generalized degrees of freedom (GDOF) was

introduced in [8] as a means of quantifying the extent of interference management in

terms of the number of interference-free signaling dimensions in a 2-user interference

channel (IC). In a multiuser MIMO setup, the use of multiple antennas at the transmit-

ters and receivers can provide additional dimensions for signaling, which can, in turn,

improve the GDOF performance of the IC. Characterizing the GDOF performance of a

multiuser MIMO IC is therefore an important problem, and is the focus of this chapter.

Among the different possible methods to mitigate the effect of interference, two main

21
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approaches have typically been adopted in the literature. The first is based on the no-

tion of splitting the message into private and public parts (also known as the Han-

Kobayashi (HK) scheme) [7], [8]. The second is based on the idea of interference align-

ment [9, 10, 24]. These schemes are based on different ideas: the former allows part of

the interference to be decoded and canceled at the unintended receivers, while the lat-

ter makes the interfering signals cast overlapping shadows [9] at the unintended receivers,

allowing them to project the received signal in an orthogonal direction and remove the

effect of interference.

The HK-scheme proposed in [7] is known to achieve the largest possible rate region

for the 2-user single input single output (SISO) IC. Further, it can achieve a rate that is

within 1 bit/s/Hz of the capacity of the channel for all values of the channel parameters

in the case of GIC [8]. Different variants of the HK-scheme for the 2-user IC can be

found in [3, 45, 46]. The concept of interference alignment (IA) originated from the

work of Maddah-Ali et al. in [24], and was subsequently used in the DOF analysis of

theX-channel in [10] and [47]. This notion of IAwas crystallized by Cadambe and Jafar

in [9]. Here, the precoding matrix is designed such that the interfering signals occupy a

reduced dimension at all of the unintended receivers, while the desired signal remains

decodable at the intended receiver. The idea of IA was extended to the K- user MIMO

scenario in [14]. Other recent studies on IA include [26–28, 48, 49].

The GDOF performance of the 2-user MIMO IC was characterized in [3]. It was ex-

tended to the X-channel and the K-user SISO IC in [50] and [1], respectively. In [2],

the idea of message splitting was used to derive the GDOF in a SIMO setting when

K = N + 1, where N is the number of receive antennas at each user. However, none
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of the existing studies consider the GDOF performance of the K-user MIMO Gaussian

IC for K > 2. Moreover, the achievable GDOF performance of the HK-scheme and IA

has not been contrasted in the literature. These are the main issues addressed in this

chapter.

In this chapter, an inner bound on the GDOF performance is derived for the MIMO

Gaussian symmetric IC (GSIC) as a combination of the HK-scheme, IA, zero forcing

(ZF)-receiving, and treating interference as noise. Such a compilation of results would

be useful to a system designer faced with having to make a choice between the different

techniques. Together, they represent the tightest known inner bound on the GDOF

performance of the K-user time-varying MIMO GSIC. In particular, the extension of

the HK-scheme to K-users (where K > 2) is non-trivial and non-unique. Here, the

GDOF performance of the HK-scheme is derived and the conditions under which it is

GDOF optimal are studied. To the best of the authors’ knowledge, the extension of the

HK-scheme to the multiuser MIMO scenario presented here is new. Also, the interplay

between the HK-scheme and IA is explored from an achievable GDOF perspective.

2.1 Preliminaries

2.1.1 System model

Consider a MIMO Gaussian IC with K transmitter-receiver pairs, with M antennas at

each transmitter and N antennas at each receiver shown in Fig. 2.1. Let Hji represent

the N × M channel gain matrix from transmitter i to receiver j. The channel coeffi-

cients are assumed to be drawn from a continuous distribution such as the Gaussian
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Figure 2.1: TheK-user MIMO interference channel model.

distribution. The received signal at the j-th receiver, denoted yj , is modeled as

yj =
√
ραjjHjjxj +

K∑

i=1,i 6=j

√
ραjiHjixi + zj, (2.1)

where zj is the complex symmetric Gaussian noise vector, distributed as zj ∼ CN (0, IN)

and xi is the signal transmitted by the i-th user, satisfying E
{
xH
i xi

}
= 1. In deriving

the inner bounds, it is assumed that E
{
xix

H
i

}
is full rank. The primary utility of the

full rank condition is that it helps in simplifying the achievable GDOF expressions.

Moreover, in many of the cases, it maximizes the achievable GDOF, because log det(·)
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is an increasing function on the cone of positive-definite Hermitian matrices. Also, ραji

represents the received signal power relative to the noise power at receiver j due to the

signal from user i. In this chapter, for analytical tractability, attention is restricted to the

Gaussian Symmetric IC (GSIC), where αjj = 1, and αji = α, i 6= j, for i, j = 1, . . . , K.

This assumption has been made in past work also [1–3]. Here, α > 0 represents the

ratio of the logarithm of the Interference to Noise Ratio (INR) to the logarithm of the

SNR. For simplicity, it is assumed thatM ≤ N .

2.1.2 Generalized degrees of freedom

The generalized degrees of freedom (GDOF), introduced in [8], is an asymptotic quan-

tity in the limit of high SNR and INR. For symmetric case, the per-user GDOF is de-

fined as

d(α) =
1

K
lim
ρ→∞

CΣ(ρ, α)

log ρ
, (2.2)

andCΣ(ρ, α) is the sum capacity of theK-userMIMOGSIC defined above. When α = 1,

the GDOF reduces to the degrees of freedom (DOF) defined in [14].

2.2 Inner bound

In this section, an inner bound is derived for the K-user MIMO (M ≤ N and KM >

N)1 GSIC. The main results are stated as theorems; and the proofs are provided in the

Appendix. The detailed discussion and interpretation of the results is relegated to the

1Note that, if KM ≤ N , one can trivially achieve the interference-free GDOF of M per user, by using
a ZF receiver.
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Chapter 4. For vector space IA, the channel is required to be time-varying [14]. The re-

sults for the HK-scheme, treating interference as noise and ZF-receiving are applicable

in both the time-varying and the constant-channel cases.

Before stating the inner bounds, the following known results on the achievable DOF

using IA and ZF-receiving are recapitulated.

2.2.1 Known results

Interference alignment

In [14], it is shown that using vector space IA, the achievable per user DOF for aK-user

MIMO GSIC is

dIA =
R

R + 1
min {M,N} , when K > R, and R ,

⌊
max {M,N}
min {M,N}

⌋
. (2.3)

Zero-forcing (ZF) receiving

The achievable DOF by ZF-receiving is given by:

dZF = min

{
M,

N

K

}
. (2.4)

Note that, for vector space IA and ZF-receiving, the relative strength between the signal

and interference does not matter, and hence the above DOF is achievable for all values

of α. Also, vector space IA requires global channel knowledge at every node.

2.2.2 Treating interference as noise

The following theorem summarizes the GDOF obtained by treating interference as

noise.
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Theorem 2. The following per user GDOF is achievable for the K-user MIMO GSIC when

interference is treated as noise:

d(α) ≥





M + (N −KM)α for N
M
< K ≤ N

M
+ 1

M(1 − α) forK > N
M

+ 1.
(2.5)

Proof. See Appendix A.1.

2.2.3 Han-Kobayashi (HK) scheme

In this section, an achievable GDOF is derived by extending the HK-scheme to the K-

user MIMOGSIC. As in past work in the two-user and SIMO case [2,3,8], three different

interference regimes are considered: strong, moderate, and weak interference. A key

idea in the proof is to minimize the achievable GDOF per user from the common part

of the message over all possible subsets of users, which does not enter into the picture

in the 2-user case considered in past work. Also, the results stated in this subsection are

applicable even when N
M

is not an integer.

Strong interference case (α ≥ 1)

When α ≥ 1, each receiver can decode both the unintended messages as well as the

intended message. Hence, a K-user MAC channel is formed at each receiver, and the

achievable rate region is the intersection of the K MAC regions obtained. This results

in the following inner bound on the per user GDOF.

Theorem 3. In the strong interference case (α ≥ 1), the following per user GDOF is achievable



Chapter 2. 28

by the HK-scheme:

d(α) ≥





min
{
M, 1

K
[(K − 1)Mα +N − (K − 1)M ]

}
for N

M
< K ≤ N

M
+ 1

min
{
M, Nα

K

}
for K > N

M
+ 1.

(2.6)

Proof. See Appendix A.2.

Moderate interference case (1/2 ≤ α ≤ 1)

In the moderate interference regime, an achievable scheme based on HK-type message

splitting is as follows. The transmitter j splits its messageWj into two sub-messages: a

common message Wc,j that is decodable at every receiver, and a private message Wp,j

that is required to be decodable only at the desired receiver. The common message

is encoded using a Gaussian code book with rate Rc,j and power Pc,j. Similarly, the

private message is encoded using a Gaussian code book with rate Rp,j and power Pp,j.

Further, it is assumed that the rates are symmetric, i.e., Rc,j = Rc and Rp,j = Rp. Also,

Pc,j = Pc and Pp,j = Pp. The powers on the private and common messages satisfy the

constraint Pc + Pp = 1. The codewords are transmitted using superposition coding,

and hence, the transmitted signal Xj is a superposition of the private message and the

public message.

Similar to [3], the power in the private message is set such that it is received at the

noise floor of the unintended receivers, resulting in INRp = 1. Coupled with the trans-

mit power constraint at each of the transmitters, the SNRs of the common and private

parts at the desired receiver (denoted SNRc and SNRp) and the INRs of the common

and private parts at unintended receivers (denoted INRc and INRp) are given by

SNRc = ρ− ρ(1−α), SNRp = ρ(1−α), INRc = ρα − 1, and INRp = 1. (2.7)
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The transmit covariance of the common message is assumed to be the same as that of

the private message. The decoding order is such that the common message is decoded

first, followed by the private message. While decoding the common message, all the

users’ private messages are treated as noise (including its own private message). The

rate achievable from the private message is obtained by treating all the other users’

private messages as noise.

The GDOF is contributed by both the private and public parts of the message:

d(α) , dp(α) + dc(α), (2.8)

where dp(α) and dc(α) are the GDOF contributed by the private and public parts of the

message, respectively. The following theorem summarizes the per user GDOF achiev-

able by this scheme.

Theorem 4. In the moderate interference regime (1/2 ≤ α ≤ 1), the proposed scheme achieves

the following per user GDOF for theK-user MIMO GSIC

d(α) ≥





M(1 − α) + min

{
Nα
K
, [M{(2K−1)α−K}+N(1−α))]

K−1

}
for N

M
< K ≤ N

M
+ 1

M(1 − α) + min
{

Nα
K
, [Nα−M(1−α)]

K−1

}
forK > N

M
+ 1.

(2.9)

Proof. See Appendix A.3.

Weak interference case (0 ≤ α ≤ 1/2)

In this case, the received SNR and INR of the common and private messages are set

the same way as in the moderate interference regime. The per user GDOF achieved is

summarized in the following theorem.
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Theorem 5. In the weak interference regime
(
0 ≤ α ≤ 1

2

)
, the proposed scheme achieves the

following per user GDOF for the K-user MIMO GSIC

d(α) ≥M(1 − α) +
1

K − 1
(N −M)α. (2.10)

Proof. See Appendix A.4.

Remark: The expressions for the GDOF in (2.9) and (2.10) are different because α ≥

1 − α in the former case while α ≤ 1 − α the latter case, and this has been used to

simplify the equations.

2.2.4 Achievable GDOF as a combination of the HK-scheme, IA, ZF-

receiving and treating interference as noise

In this subsection, the performance of the various schemes considered above is con-

solidated in terms of the parameters α, K, M and N . Here, the channel is assumed

to be time-varying in order to include IA along with the other schemes considered in

this chapter. Further, to simplify the presentation, it is assumed that N
M

is an integer in

Theorems 6, 7 and 8. It is straightforward to extend the result to non-integer values of

N
M
; however, the expressions become cumbersome with the floor of N

M
appearing in the

expressions, and offer little additional insight on the achievable GDOF. In Theorem 9,

the achievable GDOF for the case whereK ≥ N
M
+4 is presented without assuming that

N
M

is an integer.

Theorem 6. The achievable per user GDOF in the strong interference case (α ≥ 1) obtained by

taking the maximum of all the schemes considered in this chapter is
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1. When N
M
< K ≤ N

M
+ 1,

d(α) ≥





1
K
[α(K − 1)M +N − (K − 1)M ] for 1 ≤ α < M(2K−1)−N

M(K−1)

M for α ≥ M(2K−1)−N
M(K−1)

.
(2.11)

2. WhenK > N
M

+ 1,

d(α) ≥






MN
M+N

for 1 ≤ α ≤ KM
M+N

Nα
K

for KM
M+N

< α < KM
N

M for α ≥ KM
N
.

(2.12)

Proof. See Appendix A.5.

Theorem 7. The achievable per user GDOF in the moderate interference case
(
1
2
≤ α ≤ 1

)

obtained by taking the maximum of all the achievable schemes considered in this chapter is

1. When N
M
< K ≤ N

M
+ 1,

d(α) ≥





M(1 − α) + M(α(2K−1)−K)+N(1−α)

K−1
for 1

2
≤ α ≤ K

2K−1

M(1 − α) + Nα
K

for K
2K−1

≤ α ≤ 1.
(2.13)

2. When N
M

+ 1 < K ≤ N
M

+ 2,

d(α) ≥





M(1− α) + Nα−M(1−α)
K−1

for 1
2
≤ α ≤ KM

N+KM

M(1− α) + Nα
K

for KM
N+KM

≤ α ≤ KM2

(M+N)(KM−N)

MN
M+N

for KM2

(M+N)(KM−N)
< α ≤ 1.

(2.14)

3. WhenK > N
M

+ 2, d(α) ≥ MN
M+N

.

Proof. See Appendix A.6.

Theorem 8. The achievable per user GDOF in the weak interference case
(
0 ≤ α ≤ 1

2

)
obtained

by taking the maximum of all the achievable schemes considered in this chapter is
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1. WhenK > N
M

+ 2,

d(α) ≥





M(1 − α) + 1
K−1

(N −M)α for 0 ≤ α ≤ M2

M(N+M)−N2−M2

K−1

NM
N+M

for M2

M(N+M)−N2−M2

K−1

< α ≤ 1
2
.

(2.15)

2. When N
M
< K ≤ N

M
+ 2,

d(α) ≥M(1 − α) +
1

K − 1
(N −M)α. (2.16)

Proof. See Appendix A.7.

From the expressions in the previous section, it is easy to see that the maximum of

the achievable GDOF from the HK-scheme and IA outperforms the achievable GDOF

from treating interference as noise or ZF-receiving for all values of M , N , K and α.

The following result follows from carefully comparing the achievable GDOF from the

HK-scheme and IA in the weak, moderate, and strong interference cases.

Theorem 9. Recall that R ,
⌊
N
M

⌋
. When K ≥ N

M
+ 4, the proposed scheme for the K-user

MIMO GSIC achieves the following per-user GDOF.

1. When R = 1:

(a) The HK-scheme is active in the weak interference case and in the initial part of the

moderate interference case, and achieves

d(α) ≥





M(1− α) + (N−M)α
K−1

for 0 ≤ α ≤ 1
2

M(1− α) + Nα−M(1−α)
K−1

for 1
2
< α ≤ (K−1)−(R+1)

(R+1)((K−1)−µ)
,

(2.17)

where µ , N
M

+ 1.
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(b) IA is active in the later part of the moderate interference case and the initial part of

the strong interference case, and achieves

d(α) ≥ MR

R + 1
for (K−1)−(R+1)

(R+1)((K−1)−µ)
< α ≤ MKR

N(R+1)
.

(c) The HK-scheme is active in the later part of the strong interference case, and achieves

d(α) ≥





Nα
K

for MKR
N(R+1)

< α ≤ MK
N

M for α > MK
N
.

(2.18)

2. When R > 1:

(a) The HK-scheme is active in the initial part of the weak interference case, and achieves

d(α) ≥M(1 − α) +
(N −M)α

K − 1
for 0 ≤ α ≤ (K−1)

(R+1)

(

K−
N
M

) .

(b) IA is active in the later part of the weak interference case, in the moderate interference

case, and in the initial part of the strong interference case, and achieves

d(α) ≥ MR

R + 1
for (K−1)

(R+1)

(

K−
N
M

) < α ≤ MKR
N(R+1)

. (2.19)

(c) The HK-scheme is active for the later part of the strong interference case, and achieves

d(α) ≥





Nα
K

for MKR
N(R+1)

< α ≤ MK
N

M for α > MK
N
.

(2.20)

Proof. See Appendix A.8.

The above theorem is interesting because it exactly characterizes the regimes of α

where the HK-scheme and IA are active forK ≥ N
M

+ 4, even when N
M

is not an integer.
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It can be used, for example, to study the effect of varying the number of transmit and

receive antennas on the achievable GDOF, or the scaling of the achievable GDOF as the

number of transmit and receive antennas per user is increased while keeping their ratio

fixed.

2.3 Conclusions

In this chapter, a K-user MIMO GSIC was considered where each transmitter and re-

ceiver hadM and N antennas, respectively. Inner bounds on the GDOF for the K-user

MIMOGSICwere derived using a combination of ZF-receiving, treating interference as

noise, IA, and extending the HK-scheme to K users, as a function of the number of an-

tennas and α. Also, the relative performance of these schemes were characterized from

an achievable GDOF perspective, when K > N
M

(N
M

is an integer) and K ≥ N
M

+ 4. The

usefulness of these derived bounds and their relation to the past results are discussed

in Chapter 4. In the following chapter, outer bounds on the sum rate for the K-user

MIMO GIC and GDOF per user for the K-user MIMO GSIC are derived.
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Outer Bounds on the Sum Rate of the

K-User MIMO Gaussian Interference

Channel

As mentioned earlier, IC is an information theoretic model where K transmitters com-

municate with K receivers, with each transmitter having an independent message for

its corresponding receiver. Although the GIC is one of the best studied models in net-

work information theory, its capacity region remains an open problem even in the 2-

user case, except in the so-called strong interference regime [15]. Due to this, there has

been an active research interest in approximately characterizing the capacity in terms of

the number of interference-free signaling dimensions accessible in the GIC, also known

as the generalized degrees of freedom (GDOF) [8]. The GDOF is typically characterized

by deriving inner or outer bounds on the capacity, and analyzing their behavior when

the INR and SNR go to infinity, but their ratio in the log-domain is held constant. In

particular, outer bounds have been derived in the literature for several cases of two-

user ICs and the K-user single- input single-output (SISO) IC. This chapter focuses on

35
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developing outer bounds on the sum rate for the K-user MIMO GIC, and, using them,

obtaining bounds on the GDOF in the symmetric case.

In the seminal work by Etkin, Tse, and Wang [8], the capacity of a 2-user GIC was

characterized to within 1 bit/s/Hz of the capacity. The key to the characterization

lies not only in devising novel achievable schemes, but also in deriving tight outer

bounds. The outer bound was obtained by providing receivers with side information,

and deriving outer bounds on the capacity of the resulting improved GIC. Other outer

bounds for the 2-user discrete memoryless channel and GIC were presented in [51–53].

One of the bounds in [53] is obtained by using a genie to provide one of the receivers

with just enough information to decode both messages. Among the 2-user sum rate

outer bounds, the bounds in [8] are tightest, followed by [53], which is tighter than

those in [51, 52]. Outer bounds on the sum rate and GDOF for the 2-user MIMO GIC

can be found in [54] and [42], respectively. The sum rate and GDOF outer bound for the

N + 1 user single-input multiple-output (SIMO) GIC with N receive antennas at each

user can be found in [2].

Past work by several researchers has provided bounds on the degrees of freedom

(DOF) and GDOF for multiuser ICs (e.g., [1, 9, 14, 17, 25]). In [17], a MIMO multiple

access channel (MAC) outer bound on the sum capacity of the MIMO GIC was de-

rived, and simplified to obtain a bound on the DOF. It was also shown that zero forc-

ing (ZF) receiving/precoding is sufficient to achieve all the available DOF. In [9], an

outer bound on the DOF for the K-user SISO GSIC was presented, and the novel idea

of interference alignment (IA) developed in this work was found to be DOF optimal.
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Subsequently, in [14], an outer bound on the DOF for the K-user MIMO GSIC was de-

veloped, and shown to be tight whenR = max(M,N)
min(M,N)

is an integer, whereM andN are the

number of transmitting and receiving antennas, respectively. The outer bound in [14]

was improved in [25] by considering multiple ways of cooperation among users. The

achievable scheme derived in [25] was shown to be tight when K ≥ M+N
gcd(M,N)

, where

gcd(M,N) denotes the greatest common divisor ofM andN . Recently, some results on

the GDOF of the 3-user MIMO GIC were reported in [55]. However, although several

outer bounds have been derived for the DOF/GDOF, general outer bounds on the sum

rate for the K-user MIMO GIC for K > 2 that are valid for all values of the channel

parameters are not available in the existing literature. Deriving such bounds can of-

fer important insight into the performance limits of multiuser ICs, and is therefore the

focus of this chapter.

In this chapter, three new outer bounds on the sum rate are proposed, which are valid

for all values of channel parameters. Further, these outer bounds are simplified to ob-

tain outer bounds on the GDOF in the symmetric case. The overall outer bound on the

GDOF is obtained by taking the minimum of the three bounds and the interference-free

GDOF of min(M,N) per user. The first outer bound is based on using a combination

of user cooperation similar in flavor to [25], in conjunction with providing a subset of

receivers with side information. The other two outer bounds are based on providing

carefully selected side information to the receivers in such a way that the the negative

differential entropy terms in the sum rate bound that contain a signal component cancel

out, due to which, it is possible to obtain a single letter characterization.

The three bounds on the GDOF perform differently, depending on the values of the
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parameters α, M,N and K. Further, the outer bounds are compared with the inner

bounds presented in Chapter 2. This, in turn, provides insights into the performance

limits of different schemes for interference management. In summary, the main contri-

butions of this chapter are:

• Three outer bounds on the sum rate are derived, presented as Theorems 10, 11 and

12. These theorems apply to all channel conditions when the channel coefficients

are drawn from a continuous distribution.

• The three theorems are specialized to the MIMO GSIC to obtain outer bounds

on the per user GDOF, stated as Lemmas 1, 2 and 3. To the best of the authors’

knowledge, result derived here represents the tightest known outer bound on the

per user GDOF of theK (K > 2) user MIMO GSIC, except for some specific cases

mentioned in Section 4.1.

• The scheme for providing side information employed in Theorem 11 is new. The

corresponding GDOF result in Lemma 2 establishes that treating interference as

noise is GDOF optimal when M = N and for all K, in the weak interference

regime.

• Lemmas 1 and 3 are used to establish the optimality of the achievable scheme in

Chapter 2, when N
M
< K ≤ N

M
+ 1.

The following notation is used in this chapter. Lower case or upper case letters are

used to represent scalars. Small boldface letters represent vectors, whereas capital

boldface letters represent matrices. xn =
[
xT
1 ,x

T
2 , . . . ,x

T
n

]T
represents a long vector

consisting of the sequence of vectors xi, i = 1, 2, . . . , n. h(.) represents differential
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entropy, I(·; ·) represents mutual information, IL is the L × L identity matrix, and

blkdiag(H11,H22, . . . ,HL,L) represents a matrix which is obtained by the block diag-

onal concatenation of matrices H11,H22, . . . ,HL,L.

3.1 Preliminaries

Consider a MIMO GIC with K transmitter-receiver pairs, withMi antennas at the i-th

transmitter andNj antennas at the j-th receiver. LetHji represents theNj ×Mi channel

gain matrix from transmitter i to receiver j. The channel coefficients are assumed to be

drawn from a continuous distribution such as the Gaussian distribution. The received

signal at the j-th receiver, denoted yj , is modeled as

yj = Hjjxj +
K∑

i=1,i 6=j

Hjixi + zj , (3.1)

where zj is the complex symmetric Gaussian noise vector, distributed as zj∼CN (0, INj
),

and xi is the signal transmitted by the i-th user, satisfying the power constraint E
{
xH
i xi

}

= Pi. As in past work on the MIMO GIC, global channel state information is assumed

to be available at every node. For the symmetric case considered later in the chapter,

with a slight abuse of notation, Hji (j 6= i) is replaced with
√
ραHji and Hjj is replaced

with
√
ρHjj . The symmetric model considered here, is same as mentioned in Chapter 2.

3.2 Outer bounds

In this section, three outer bounds on the sum rate of the K-user MIMO GIC are stated

as Theorems 10, 11 and 12. The bounds are general in the sense that they are valid

for all values of the channel parameters. Then, the bounds are specialized to the case
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of the MIMO GSIC to obtain outer bounds on the per user GDOF; these are stated

as Lemmas 1, 2 and 3. Finally, the overall outer bound on the GDOF is obtained by

taking the minimum of the three outer bounds and the interference free GDOF bound

of min(M,N) per user.

The first outer bound is obtained by considering cooperation among subsets of users.

The idea of using cooperation among users has been explored in [25] for obtaining outer

bounds on the DOF of the K-user MIMO GIC. However, it turns out that cooperation

by itself is not sufficient for obtaining outer bounds on the sum rate of the K-user

MIMO GIC. When α 6= 1, the symmetric assumption on the resulting 2-user GIC is

no longer valid when the users are allowed to cooperate among themselves. Hence,

this technique cannot be directly used to obtain an outer bound on the GDOF or the

sum rate. It is necessary to provide a judiciously chosen signal as side information to

a subset of the receivers in addition to cooperation, to convert the system into a MIMO

Z-GIC, whose capacity cannot be worse than the original MIMO GIC. Then, an outer

bound on the Z-GIC is derived. Taking the minimum of the outer bounds obtained by

considering all possible combinations of cooperating users results in an outer bound on

the sum rate of the MIMO GIC.

Thus, the K-user system is divided into two disjoint groups; group-1 containing L1

(0 ≤ L1 ≤ K) users, and group-2 containing L2 (0 ≤ L2 ≤ K) users, with L , L1 +

L2 such that 0 < L ≤ K. Users not in either group are provided globally known,

predetermined sequences for transmission, and hence, they play no role in the sum

rate. The receivers within a given group are provided the messages of the other users in

the same group, due to which, interference between users within a group is eliminated.
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In group-1, all L1 users are allowed to cooperate among themselves but they experience

interference from group-2. Similarly, users in group-2 are allowed to cooperate among

themselves. In group-2, all the receivers are given the messages of users 1, . . . , L1 by

a genie as side information. As a result, group-2 does not see any interference from

the users in group-1. To simplify the equation, it is assumed that each transmitter is

equipped with M antennas and each receiver is equipped with N antennas, in stating

Theorem 10.

Theorem 10. The sum rate of the K-user MIMO GIC is upper bounded as follows:

L∑

i=1

Ri ≤ log
∣∣∣IL1N +H11P1H

H

11 +H12P2H
H

12

∣∣∣

+ log

∣∣∣∣IL2N +H22P
1/2

2

{
IL2M +P

1/2

2 H
H

12H12P
1/2

2

}−1

P
1/2

2 H
H

22

∣∣∣∣ , (3.2)

where

H11 , blkdiag(H11, . . . ,HL1,L1),H22,blkdiag(HL1+1,L1+1, . . . ,HL,L),Hij∈C
LiN×LjM ,

Hij∈C
N×M ,Pj ∈ C

LjM×LjM ,P1 , blkdiag(P1, . . . ,PL1),P2 , blkdiag(PL1+1, . . .PL2),

Pj ∈C
M×M : input covariance matrix of jth(j = 1, 2) user, L1 + L2 , L ≤ K,

0 < L1, L2 ≤ K, and H12 ,




H1,L1+1 H1,L1+2 · · · H1,L

...
...

HL1,L1+1 HL1,L1+2 · · · HL1,L


 .

Proof. See Appendix B.1.

Recall that, in order to obtain (3.2), L1 and L2 users are allowed to cooperate in groups-

1 and 2, respectively. There are 3K−1ways of choosing the user groups for cooperation.

Hence, the minimum sum rate obtained out of all possible ways of cooperation leads to

the tightest outer bound on the sum rate obtainable from this method. Since the users
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have different power constraints and users see different SNRs and INRs, obtaining a

closed-form outer bound becomes a formidable task. However, for the symmetric case,

a simplified solution exists, as given by the following Lemma.

Lemma 1. In the symmetric case, the upper bound of Theorem 10 can be expressed as an upper

bound on the per user GDOF as follows:

1. WhenM ≤ N ,

d(α) ≤ min
L1,L2





1
L
[L1M +min {r, L1(N −M)}α + Lr

+min {r, L2N − Lr} (1− α)] for 0 ≤ α ≤ 1

1
L
[rα +min {L1M,L1N − r}+ Lr] for α > 1.

2. WhenM > N ,

d(α) ≤ min
L1,L2





1
L
[L1N + L

′
+min{L′

, L2N − L
′}(1− α)] for 0 ≤ α ≤ 1

1
L
[L1N + r(α− 1) + L

′
] for α > 1,

where r , min {L2M,L1N} , Lr , L2M − r, L
′
, min {L2N,Lr} , 0 ≤ L1, L2 ≤ K, and

L1 + L2 , L ≤ K.

Proof. See Appendix B.2.

The result below provides another outer bound on the sum rate, by providing side in-

formation in the form of a noisy version of the intendedmessage at the receivers. To the

best of the authors’ knowledge, the scheme for providing side information employed

here is new. It leads to the tightest known bounds for some parameter values as men-

tioned in Theorem 13. Let sj,B ,
∑

i∈B

Hjixi+zj ,where B ⊆ {1, 2, . . . , K} is a subset users.

Then, user 1 is provided s2,1 and user K is provided sK−1,K . Users i = 2, 3, . . . , K − 1

are provided si−1,i and si+1,i in succession to obtain two sets of rate bounds. It turns
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out that, by doing so, all the negative differential entropy terms containing a signal

component cancel out, leading to the outer bound given by Theorem 11 below. Further

remarks on the choice of side information are offered in Chapter 4.

Theorem 11. For the K-user MIMO GIC, the following rate bound is applicable:

Rs ≤
K−1∑

i=1

log

∣∣∣∣∣INi
+

K∑

j=1, j 6=i

φi,j +ψi,i+1

∣∣∣∣∣+
K∑

i=2

log

∣∣∣∣∣INi
+

K∑

j=1, j 6=i

φi,j +ψi,i−1

∣∣∣∣∣ , (3.3)

where Rs , R1 + 2

K−1∑

i=2

Ri + RK , ψi,j , HiiP
1/2
i (IMi

+ P
1/2
i HH

ijHijP
1/2
i )−1P

1/2
i HH

ii , and

φi,j , HijPjH
H
ij .

Proof. See Appendix B.3.

Remark: Note that the above theorem presents a bound onR1+2
∑K−1

i=2 Ri+RK , rather

than on the sum rate, i.e.,
∑K

i=1Ri. Clearly, one can obtain K(K−1)
2

inequalities of the

form (3.3), for each possible choice of the first and K th user. Bounds on the sum rate

can then be obtained from the above by summing all such inequalities and dividing by

3K(K−1)
2

.

Lemma 2. In the symmetric case, the upper bound of Theorem 11 can be reduced to the follow-

ing per user GDOF upper bound:

d(α) ≤






rmin(1− α) + min{r′
, rmax − rmin}α for 0 ≤ α ≤ 1

2

r
′
α +min{rmin, rmax − r

′}(1− α) for
1

2
≤ α ≤ 1,

(3.4)

where rmin , min {M,N}, rmax , max {M,N}, and r′
, min {N, (K − 1)M}.

Proof. See Appendix B.4.
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Theorem 12. For the K-user MIMO GIC, the following rate bound is applicable:

Rs ≤ log

∣∣∣∣∣IN1 +
K∑

j=1, j 6=i

φ1,j +ψ1,K

∣∣∣∣∣+
K−1∑

i=2

log

∣∣∣∣INi
+Hi1P

1/2

i1

{
IMri

+P
1/2

i1 H
H

KiHKiP
1/2

i1

}−1

P
1/2

i1 H
H

i1 +Hi,i+1P
1/2

i2

{
IMsi

+P
1/2

i2 H
H

1,i+1H1,i+1P
1/2

i2

}−1

P
1/2

i2 H
H

i,i+1

∣∣∣∣

+
K−1∑

i=2

log

∣∣∣∣INi
+HiKP

1/2

i3

{
IM ′

ri

+P
1/2

i3 H
H

1iH1iP
1/2

i3

}−1

P
1/2

i3 H
H

iK+Hi,K−1P
1/2

i4

{
IM ′

si

+P
1/2

i4 H
H

K,i+1HK,i+1P
1/2

i4

}−1

P
1/2

i4 H
H

i,K−1

∣∣∣∣+log

∣∣∣∣∣INK
+

K−1∑

j=1

φK,j+ψK,1

∣∣∣∣∣ , (3.5)

where

Hi1 , [Hi1 Hi2 . . .Hii] , Hi,i+1 , [Hi,i+1 Hi,i+2 . . .HiK ] ,HKi , [HK1 HK2 . . .HKi] ,

H1,i+1 , [H1,i+1 H1,i+2 . . .H1K ] ,H1i , [H1K H12 . . .H1i] ,HiK , [HiK Hi2 . . .Hii] ,

HK,i+1 , [HK1 HK,i+1 . . .HK,K−1] ,Hi,K−1 , [Hi1Hi,i+1 . . .Hi,K−1] ,

Pi1 , blkdiag (P1 P2 . . .Pi) ,Pi2 , blkdiag (Pi+2 Pi+3 . . .PK) ,Pi3 , blkdiag (PK P2

. . .Pi) ,Pi4 , blkdiag (P1 Pi+1 . . . PK−1) ,Mri ,

i∑

j=1

Mj ,Msi ,

K∑

j=i+1

Mj ,

M
′

ri
,

i∑

j=2

Mj +MK , M
′

si
, M1 +

K−1∑

j=i+1

Mj, Rs , R1 + 2
K−1∑

i=2

Ri +RK ,φi,j , HijPjH
H
ij ,

and ψi,j , HiiP
1/2
i (IMi

+P
1/2
i HH

ijHijP
1/2
i )−1P

1/2
i HH

ii . (3.6)

Proof. See Appendix B.5.

Remark: A bound on the sum rate (
∑K

i=1Ri) can be obtained in a similar manner as in

Theorem 11.

The above result can be used to obtain an outer bound of the GDOF of the K-user

MIMO GSIC only for N
M

< K ≤ N
M

+ 1, because the form of the above outer bound
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results in rank deficient matrices whenK > N
M
+1, which make finding the inverse and

computing the GDOF analytically intractable.

Lemma 3. In the symmetric case, when N
M

< K ≤ N
M

+ 1, the sum rate upper bound of

Theorem 12 can be expressed as an upper bound on the per user GDOF as follows:

d(α) ≤





M(1− α) + 1
K−1

(N −M)α for 0 ≤ α ≤ 1

2

Mα + 1
K−1

(N −M)(1 − α) for
1

2
≤ α ≤ 1.

(3.7)

Proof. See Appendix B.6.

The overall outer bound is obtained by taking minimum of the outer bounds in Lem-

mas 1, 2 and 3. Due tominimization involved in Lemma 1, analytical characterization of

the outer bound is not possible in all cases. However, in Theorem 13 below, an expres-

sion for the combined outer bound is obtained whenK ≥ N +M and N
M
< K ≤ N

M
+1.

Also, a unified expression is presented for case N
M

+ 1 < K < M + N , when N
M

is

integer-valued. In stating the theorem, three interference regimes are considered, as in

the past work [2, 3, 8]. The result follows by first analytically solving the minimization

in Lemma 1 and then carefully comparing the three outer bounds to determine which

bound is tightest for different K,M,N and α.

Theorem 13. The outer bound on the per user GDOF of the K-user MIMO (M ≤ N) GSIC,

obtained by taking the minimum of the outer bounds derived in this chapter, is

1. When (K ≥M +N) or (N
M

+ 1 < K < M +N , where N
M

is an integer):

(a) Weak interference regime (0 ≤ α ≤ 1
2
): WhenMN < N2−M2, Lemma 1 is active,
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otherwise Lemma 2 is active, and the outer bound is of the following form:

d(α) ≤





M − M2α
M+N

forMN < N2 −M2

M(1− α) + (N −M)α forMN ≥ N2 −M2.
(3.8)

(b) Moderate interference regime (1
2
≤ α ≤ 1):

i. When MN < N2 − M2, Lemma 1 is active, and the outer bound is of the

following form:

d(α) ≤M − M2α

M +N
. (3.9)

ii. WhenMN ≥ N2 −M2, Lemma 2 is active for 1
2
≤ α ≤ M(M+N)

N(M+N)+M2 , whereas

Lemma 1 is active for M(M+N)
N(M+N)+M2 < α ≤ 1, and the outer bound becomes

d(α) ≤





Nα for 1
2
≤ α ≤ M(M+N)

N(M+N)+M2

M − M2α
M+N

for M(M+N)
N(M+N)+M2 < α ≤ 1.

(3.10)

(c) High interference regime (α ≥ 1): In this case, Lemma 1 is active and the outer

bound is of the following form:

d(α) ≤






MNα
M+N

for 1 ≤ α ≤ M+N
N

M for α > M+N
N

.
(3.11)

2. When N
M
< K ≤ N

M
+ 1:

(a) Weak interference regime (0 ≤ α ≤ 1
2
): In this case, Lemma 3 is active and the outer

bound is of the following form:

d(α) ≤M(1 − α) +
1

K − 1
(N −M)α. (3.12)

(b) Moderate interference regime (1
2
≤ α ≤ 1): Lemma 3 is active for 1

2
≤ α ≤ K

2K−1
,
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and Lemma 1 is active for K
2K−1

< α ≤ 1. The outer bound becomes

d(α) ≤





Mα + 1
K−1

(N −M)(1− α) for 1
2
≤ α ≤ K

2K−1

M(1− α) + Nα
K

for K
2K−1

< α ≤ 1.
(3.13)

(c) High interference regime (α ≥ 1): In this case, Lemma 1 is active and the outer

bound is of the following form:

d(α) ≤





1
K
[N + (K − 1)M(α− 1)] for 1 ≤ α ≤ 2KM−(M+N)

(K−1)M

M for α ≥ 2KM−(M+N)
(K−1)M

.
(3.14)

Proof. See Appendix B.7.

3.3 Conclusions

This chapter derived outer bounds on the sum rate of the K-user MIMO GIC. The

outer bounds were simplified for the MIMO GSIC to obtain the GDOF as a function of

α = log INR/ log SNR. The outer bound was obtained by taking the minimum of three

bounds, one of the bounds being derived using the notion of cooperation and provid-

ing side information, and the other two based on providing carefully selected partial

side information at the receivers. The novelty of the derivation lies in the careful se-

lection of the side information, which results in the negative differential entropy terms

containing signal components canceling out from the sum rate bounds. The usefulness

of these outer bounds and their relation to the past results are discussed from a GDOF

perspective in the next chapter.
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Discussion on the Bounds on the GDOF

for the K-User MIMO GSIC

In this chapter, the proposed achievable schemes in Chapter 2 are compared with the

outer bounds on the per user GDOF derived in the previous chapter. For example, in

the weak interference regime (0 ≤ α ≤ 1
2
), when M = N , the outer bound in Theo-

rem 11 that provides each receiver with a noisy version of the interference caused by

only one unintended transmitter is the tightest, and its GDOF coincides with that of

the achievable scheme where each receiver treats interference as noise. Hence, treat-

ing interference as noise is GDOF optimal in the weak interference regime. When

N
M

< K ≤ N
M

+ 1, the outer bound coincides with the inner bound for all values of

α. This indicates that decoding part of the interference as in the Han-Kobayashi (HK)

scheme ([7, 8]) is optimal for this range of K; and how much of interference to decode

depends on the interference level. This, in turn, provides insights into the performance

limits of different schemes for interference management. Note that all the comparisons

are against the special case of the HK-scheme where the interference is leveled against

noise.

48
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The results also bring out the improvement in the achievable GDOF that can be ob-

tained by adding antennas at the transmitters or receivers and can be used to answer

questions related to the allocation of antennas between the transmitters and receivers

to maximize the achievable GDOF. For example, when K > N
M

+ 1, neither the HK-

scheme nor IA can uniformly outperform the other; which scheme is the better of the

two depends on the log INR/ log SNR level and the values of M , N and K. In particu-

lar, these insights do not follow from past work on the 2-user SISO/MIMO [3,8] or the

K-user SISO/SIMO [1, 2] cases. Also, relation of the derived bounds with past results

are discussed in this chapter.

4.1 Comparison with existing results

Some observations on how the bounds on the GDOF derived in Chapters 2 and 3 in

relation to existing work are as follows:

1. WhenM = 1 andK = N +1, the HK-scheme in Section 2.2.3 in Chapter 2 and the

outer bound in Lemma 3 in Chapter 3 reduce to the corresponding SIMO GDOF

result in [2] (see Fig. 4.1 and 4.2).

2. When K = 2, the inner bound derived in Section 2.2.3 in Chapter 2 and the outer

bound in Chapter 3 reduce to the corresponding 2-user symmetric GDOF result

in [3].

3. WhenM = N = 1 and K = 2, the inner bound in Section 2.2.3 in Chapter 2 and

the outer bound in Chapter 3 reduce to the corresponding GDOF result for the

symmetric case in [8] (see Fig. 4.1 and 4.2).
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4. When M = N = 1, the inner bound matches with the result in [1] only in the

weak interference regime. In [1], under the SISO constant channel setting, a

higher GDOF is achieved using multi-level coding with a nested lattice structure.

However, the outer bound derived in chapter 3 reduces to the K-user SISO GSIC

GDOF result in [1].

5. When α = 1, the cooperative outer bound of Lemma 1 matches with the DOF

outer bound in [25] for many cases of K, M and N (e.g., K = 3,M = 2, N = 5).

Theorem 1 uses genie-aidedmessage sharing in addition to cooperation, to handle

the α 6= 1 cases. The bound in [25] only requires cooperation, due to which it is

lower for some values of M,N and K. Hence, when α = 1, the minimum of the

outer bound derived here and the one in [25] is plotted in the graphs presented

in the next subsection. The outer bound derived here does not match with the

DOF-optimal outer bound in [56] for the K = 3 and N
M

+ 1 < K ≤ M+N
gcd(M,N)

case.

The outer bound in [56] uses the concept of subspace alignment chains to identify

the extra dimension to be provided by a genie to a receiver, which does not easily

generalize to arbitrary K,M , N and α.

6. When K = 2, the outer bound in Lemma 1 reduces to the DOF outer bound on

MIMO Z-GIC in [57].

In Figs. 4.1 and 4.2, the inner bound and outer bound derived in previous chapters are

compared with some of the existing results mentioned above. In Fig. 4.1, the achievable

per-user GDOF is plotted against α for the K = 3 user GSIC with various antenna con-

figurations and compared with existing results. The inner bound derived in Chapter

2 is compared with the result in [1] for the SISO GSIC case and with the result in [2]
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Figure 4.1: The achievable GDOF for the K = 3 user GSIC with different antenna con-
figurations. In the legend, MM stands for inner bound derived in Chapter 2, JV stands
for the achievable GDOF in [1], GJ stands for the achievable GDOF in [2], and OB stands
for the outer bound derived in Chapter 3.

for the SIMO GSIC with K = N + 1. Since the achievable GDOF in [1] is discontin-

uous at α = 1, it is represented by the filled circle in the plot. Note that the scheme

in [1] assumes that the channel remains constant over time. Hence, the performance of

IA is not included in the comparison. Further, the achievable GDOF is plotted for the

2 × 3, 2 × 4, 2 × 5 and 2 times6 antenna configurations. Also, the outer bound derived

in Chapter 3 is plotted for these antenna configurations to verify the optimality of the

inner bound.
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Figure 4.2: Outer bound on per user GDOF for MIMO GSIC with different antenna
configuration and number of users. In the legend, MM stands for the outer bound
derived in Chapter 3, PBT stands for the outer bound on GDOF in [3], GJ stands for the
outer bound on GDOF in [2], and JV stands for the outer bound on GDOF in [1].

4.2 Numerical examples

Now, some numerical examples are considered to get better insight into the bounds

for various values of K,M,N , and α. The channel is assumed to be time-varying since

IA is considered, except for Fig. 4.1, which considers a constant channel to facilitate

comparison with past work.

In Fig. 4.3, the outer bounds on the per user GDOF in Lemmas 1, 2 and 3 are contrasted

as a function α, for (M,N) = (2, 2) and (2, 4). When K = 3 and (M,N) = (2, 2),
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the outer bound in Lemma 2 is active in the weak interference regime and the initial

part of the moderate interference regime. The outer bound in Lemma 1 is not tight

in this regime, as a result of the genie giving too much information to the receiver.

As the interference level increases, it is necessary to provide the unintended message

completely as in Theorem 10 to obtain a tractable outer bound; and hence Lemma 1 is

active in the later part of the moderate interference regime and the high interference

regime. As the number of receive dimensions increases (N = 4), the outer bound in

Lemma 2 is found to be loose. Hence, another outer bound is derived, where a carefully

chosen part of the interference is provided as side information to the receiver, as in

Theorem 12. The corresponding GDOF outer bound in Lemma 3 is tight in the weak

interference regime (0 ≤ α ≤ 1
2
) and in the initial part of the moderate interference

regime (1
2
≤ α ≤ 3

5
). For α > 3

5
, the outer bound in Lemma 1 is active, as in the previous

case.

Figure 4.1 illustrates the benefits of having additional antennas at the transmitter and

receiver in improving the achievable GDOF. For the SISO GSIC, the proposed inner

bound matches with the result in [1] in the weak interference case. There exists a gap

between the two schemes in the moderate interference case and in the initial part of the

strong interference case, as noted in the previous subsection. For the SIMO case, the

achievable GDOF of the proposed scheme matches with that of the scheme in [2] and is

also GDOF optimal. As receive antennas are added, in the strong interference regime,

the HK-scheme achieves the interference-free GDOF at a smaller value of α. In the 2×6

system, as N = KM , ZF-receiving achieves the interference free GDOF for all values

of α. Finally, note that the inner bound is GDOF optimal for the 2 × 4, 2 × 5 and 2 × 6



Chapter 4. 54

0 0.5 1 1.5 2
1

2

3

4

5

6

7

8

α (logINR/logSNR)

G
D

O
F

 p
er

−u
se

r

 

 

2 × 2 (Lemma 1)
2 × 2 (Lemma 2)
2 × 4 (Lemma 1)
2 × 4 (Lemma 2)
2 × 4 (Lemma 3)

Figure 4.3: Comparison of the different outer bounds on per user GDOF for the K = 3
user GSIC with (M,N) = (2, 2) and (2, 4).

MIMO GSIC cases.

In Fig. 4.4, the per user GDOF is plotted against α for K = 3 and M = N = 2. In

the weak interference regime, treating interference as noise coincides with the outer

bound in Chapter 3. In this case, treating interference as noise performs as well as the

HK-scheme. IA is seen to be GDOF optimal at α = 1/2 and 1. In the strong interference

regime, IA initially performs the best, and as α increases, the HK-scheme performs the

best, and finally achieves the interference free GDOF. There exists a gap between the

inner and outer bounds in the moderate and strong interference regimes.

In Figs. 4.5 and 4.6, the outer bound on the per user GDOF is plotted against α for
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Figure 4.4: The achievable GDOF for the K = 3 user GSIC withM = N = 2. The figure
shows the achievable GDOF by IA (curve labeled as IA), the HK-scheme (curve labeled
as HK-scheme), treating interference as noise (curve labeled as Intf. as noise)
and ZF-receiving (curve labeled as ZF-receiving), alongwith the outer bound (curve
labeled as Outer bound).

K = 3 and 4, respectively, and for various values ofM andN . The outer bound is com-

pared with the inner bound on the per user GDOF. In the high interference regime, the

outer bound increases linearly with α until it saturates atmin(M,N). Such a behavior is

exhibited by the achievable scheme based on decoding the interference. As α increases,

more and more of the interference becomes decodable, until it achieves the interference

free GDOF. Hence, decoding the interference may be necessary to obtain optimal per-

formance in high interference regime. In the moderate interference case, there is a gap

between the inner bound and the outer bound, when (M,N) = (2, 2) and (3, 6). The
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Figure 4.5: Outer bound (OB) and inner bound (IB) on the per user GDOF for K = 3
user MIMO GSIC with different antenna configurations.

best achievable scheme is based on IA, and is known to be optimal at α = 1 [14] when

N
M

is an integer. For other regimes of α, it may be useful to employ an HK-type scheme

([7, 8]) where the message is split into private and public parts. On the other hand,

in the weak interference regime, treating interference as noise is GDOF optimal when

(M,N) = (2, 2). Hence, in this regime, the achievable GDOF decreases as α increases.

The figures also show several cases, e.g., (M,N) = (2, 4), (2, 5) and (3, 10), where the

inner and outer bounds match.

In Figs. 4.7 and 4.8, the per user achievable GDOF performance is compared for differ-

ent antenna configurations with a total of 7 and 10 antennas per user pair, respectively.
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Figure 4.6: Outer bound (OB) and inner bound (IB) on the per user GDOF for K = 4
user MIMO GSIC with different antenna configurations.

The figures illustrate the effect of different combinations of the number of antennas at

the transmitter and receiver on the achievable GDOF. When the interference is either

low or very high, an equal or nearly equal (in Fig. 4.7) distribution of antennas achieves

the best GDOF. The behavior for intermediate values of α depends on the specific val-

ues ofM , N , K and α.
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Figure 4.7: The achievable GDOF for the K = 3 user GSIC with different antenna con-
figurations such thatM +N = 7.

4.3 Further remarks

From the derived bounds, the following useful observations can be made. In particular,

these insights are not be obtainable from the existing results for the 2-user MIMO GSIC

or the K-user SIMO GSIC.

1. Treating interference as noise was known to be GDOF optimal in the weak in-

terference regime in the 2-user SISO case [8], 2-user symmetric MIMO case [3]

and the K-user SISO real-valued constant channel case [1]. The outer bound in

Lemma 2 establishes that treating interference as noise is GDOF optimal in the

weak interference regime for all K, whenM = N . When N > M , the HK-scheme
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Figure 4.8: The achievable GDOF for the K = 3 user GSIC with different antenna con-
figurations such thatM +N = 10.

performs better. Moreover, the maximum of the HK-scheme and IA outperforms

treating interference as noise and ZF-receiving for all values ofM , N , α and K.

2. WhenK > 3 andM = N , IA outperforms the HK-scheme for 1
2
≤ α ≤ 1. Also, IA

is GDOF optimal at α = 1
2
whenM = N .

3. WhenK > N
M
+1, depending on the value of α, one or the other of the HK-scheme

and IA performs the best. WhenK ≥ N
M
+4, Theorem 9 characterizes the interplay

between the two schemes and determines the range of α for which either scheme

is active.

4. When N
M

< K ≤ N
M

+ 1, Theorem 13 establishes that the HK-scheme is GDOF

optimal. Moreover, the HK-scheme does not assume a time-varying channel, and
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hence it is optimal even for the constant channel case.

5. When N
M
< K ≤ N

M
+ 1, ZF-receiving coincides with the HK-scheme only at α = 1

when K > 2. In contrast, when K = 2, ZF-receiving is optimal for α = 1
2
and 1

(see [3]).

6. The outer bounds on the sum rate in Theorems 11 and 12 hold for any number

of transmit and receive antennas. Although Theorem 10 was presented for M

antennas at each transmitter andN antennas at each receiver, it is straightforward

to extend it to the case of arbitrary number of antennas at each transmitter and

receiver. These results are new as there are no existing outer bounds on the sum

rate of the MIMO GIC for K ≥ 3.

7. No single outer bound on the GDOF is universally the tightest among the three.

Theorem 13 characterizes the performance of the outer bounds as a function ofK,

M ,N and αwhenK ≥ M+N and N
M
< K ≤ N

M
+1, andwhen N

M
+1 < K < N+M

for integer-valued N
M
.

In general, it is found that IA performs well over a fairly wide range of parameters

around α = 1, and it offers a performance that does not depend on the interference

level. Hence, it may be a good approach for managing the interference, especially when

the number of receive antennas is comparable to the number of transmit antennas. As

the number of receive dimensions increases, the HK-scheme becomes a better choice

for interference management.
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4.4 Conclusions

In this chapter, several interesting insights were obtained from the inner and outer

bounds derived in Chapters 2 and 3. The outer bound was shown to be tight in the

weak interference case (0 ≤ α ≤ 1
2
) whenM = N for anyK, and for all values of αwhen

N
M
< K ≤ N

M
+ 1. The tightness of the bounds led to interesting insights on the perfor-

mance limits of multiuser MIMO GIC and the relative efficacy of different techniques

for interference management. For example, it was found that when M = N , treating

interference as noise performs as well as the HK-scheme and outperforms both IA and

ZF-receiving. However, when N > M , treating interference as noise is always subop-

timal. The maximum of the HK-scheme and IA outperforms both treating interference

as noise and ZF-receiving, for all values of M , N , α and K. When N
M
< K ≤ N

M
+ 1,

the HK-scheme is GDOF optimal for all values of α. Also, the relation of the derived

bounds to existing work were discussed. In the next chapter, a specific value of α is

considered, i.e., α = 1 and two algorithms are proposed for designing the linear pre-

coders and receive filters for IA in the constant K-user MIMO IC. The α = 1 case is

interesting as both the signal power and interference power are equally strong.
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Interference Alignment Algorithms for

the K-User Constant MIMO

Interference Channel

As mentioned earlier, interference management is one of the key issues that need to

be addressed in current and future wireless networks. One measure of the potential

throughput of a wireless network with multiple transmitters and receivers is the de-

grees of freedom (DOF) [9, 10, 24], [47], [17], which is obtained as a special case of

GDOF as mentioned in Chapter 2. It represents the number of interference-free sig-

naling streams that are simultaneously admissible in the system. The goal of IA is to

align the interferences caused at each receiver from all the transmitters into a common

subspace of the total receive signal space, and to keep the interference subspace lin-

early independent of the desired signal subspace. In this case, a simple ZF receiver

that projects the desired signal onto an interference-free subspace suffices for signal

detection and decoding.

It is well-known that the DOF for a MIMO system with one transmitter and receiver

62
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pair andM antennas at the transmitter and N antennas at the receiver ismin(M,N). In

the 2-user symmetric MIMO (M×N) IC (i.e., where both transmitters haveM antennas

and both receivers have N antennas), the maximum symmetric DOF achievable by

each user with single-user zero-forcing receivers is min (max(M,N)/2,M, N) [17]. In

[9], Cadambe and Jafar introduced the idea of IA for a K-user SISO IC and showed

that a sum DOF ofK/2 is achievable, which represents a significant improvement over

the single DOF achievable using orthogonal transmission schemes. This novel idea of

overlapping interference spaces originated from the work of Maddah-Ali et al. in [24],

[58]. This was subsequently used in the DOF analysis for the 2-user X channel in [10],

[47]. Recent works that consider the DOF of wireless networks under different network

settings include [59], [26], [60] and [61]. Outer bounds on the DOF were derived in

[14] and [25]. Other aspects such as the feasibility of IA, the performance with limited

feedback and imperfect channel knowledge, etc have been studied in [62–67].

In [14], Gou and Jafar proposed an IA scheme for aK-user symmetric MIMO (M×N)

time varying IC and derived an inner bound and outer bound on the total DOF. Their

proposed scheme requires a long symbol extension to achieve the IA. The achievable

symmetric DOF per user using IA was shown to be

d =
R

R + 1
min(M,N), (5.1)

where R ,

⌊
max(M,N)
min(M,N)

⌋
. For the K-user IC, the authors showed that using µn , (R +

1)(n + 1)Γ symbol extensions, where Γ = KMR(KM − R − 1), one can obtain the

DOF given by (5.1) as n → ∞. The achievable DOF for a constant SISO and MIMO

channel was characterized in [68] and [25]. However, the extent to which the DOF can
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be achieved using linear beamforming schemes with finite symbol extensions is not yet

fully known [62].

Linear precoding at the transmitters and zero-forcing filtering at the receivers is one

way to achieve the sum DOF promised by IA. The idea is to find a pre-coding matrix

at each user that aligns the interference at all receivers to within N − d dimensions per

symbol, while keeping the d-dimensional desired signal space linearly independent of

the interference subspace, for an appropriately chosen d. An important problem is thus

to devise algorithms for computing the transmit precoding matrices and the receive fil-

tering matrices that align the interferences at all the receivers, given the channel state

information. Iterative algorithms for designing precoders that approximately achieve

IA were proposed in [29] and [30]. The two algorithms are similar in that they itera-

tively minimize the trace of the interference covariance matrix at the receivers and the

covariance of the interference caused due to the precoding at the transmitters. In [31], a

least squares method for designing the precoding matrices was proposed by writing a

sufficient condition for IA as a set of linear equations. An iterative algorithm based on

this has appeared in [69].

In general, the aforementioned algorithms are based on minimizing a performance

metric that quantifies the interference signal leakage into the desired signal subspace

of each receiver, and therefore may not guarantee exact IA in all cases. Another draw-

back is that they do not explicitly consider the desired signal dimensionwhile designing

the precoders, which is the key to determining the DOF achieved. To this end, this

chapter proposes the use of another metric – the relative power of the weakest data
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stream, in addition to the interference leakage into the desired signal space, to quanti-

tatively evaluate the performance of IA algorithms. In addition, this chapter proposes

two algorithms for designing the precoding and receive filtering matrices for IA in the

block fading or constant MIMOM × N IC with a finite number of symbol extensions.

Restricting the number of symbol extensions is important from the point of view of

design complexity and fast convergence of iterative algorithms. The first algorithm is

based on expressing a sufficient condition for sub-stream IA at each receiver as a set of

linear equations similar to [31], but without the loss of signal dimension in that method.

The second algorithm is iterative in nature, and requires the same channel knowledge

as the distributed algorithms proposed in [29] and [30] at the transmitters and receivers,

but again with the advantage that the desired signal dimension is preserved. The con-

vergence of the algorithm to a locally optimum solution is established. The simulation

results illustrate the performance benefits offered by the proposed algorithms relative

to existing IA algorithms in terms of performance metrics such as the fraction of the

interference power in the desired signal space, the relative power in the weakest data

stream and the achieved sum rate.

The following notation is used in this chapter. A vertical stacking of matrices A and

B with the same number of columns is written using a semi-colon, as [A;B]. The d× d

identity matrix is denoted Id, and AH denotes the conjugate-transpose of A.

5.1 System model

Consider the symmetricK-user MIMO (M×N) complex GIC. There areK transmitter-

receiver pairs withM antennas at each transmitter andN antennas at each receiver. The
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receiver of user k only needs to correctly decode the signal from transmitter k, using

zero forcing. There are therefore K − 1 interfering signals at every receiver. The signal

yk(n) ∈ C(N×1) received at kth receiver at time n can be expressed as

yk(n) =
K∑

t=1

Hkt(n)xt(n) + zk(n), k = 1, 2, . . . , K. (5.2)

In the above, the additive noise at the receiver, zk(n) ∈ C(N×1), is modeled as a spatially

and temporally white process with independent and identically distributed (i.i.d.), zero

mean and unit variance circularly symmetric complex Gaussian entries. xt(n) ∈ C(M×1)

is the signal from transmitter t and Hkt(n) ∈ C
(N×M) represents the complex channel

gain matrix from transmitter t to receiver k.

One way to achieve a fractional DOF in a constant MIMO IC is through symbol exten-

sion. With an S symbol extension of the channel, S consecutive symbols each of length

dk at transmitter and receiver k are collected to form a super symbol of length Sdk. The

extended channel matrix from transmitter j to receiver k is a block diagonal matrix of

sizeNS×MS with the nth−(N×M) block containingHkj(n). Also, the channel output

yk and the additive noise zk at receiver k both have a dimension NS × 1. For a time

varying MIMO IC, the channel matrix at each time slot n is different, so each block in

the extended channel matrix is different. For the constant MIMO IC considered here,

the channel matrix is assumed to remain constant for the duration of one extended

symbol, i.e., each block in the extended channel matrix is the same. The constant chan-

nel assumption can be relaxed, when the channel is frequency selective and the symbol

extension can be done across the carriers. Thus, the algorithms developed in Secs. 5.2

and 5.3 can be applied in the case of multicarrier modulations (OFDM). The channel
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coefficients are assumed to be drawn i.i.d. from a continuous distribution such as the

complex Gaussian distribution, which implies that the IC is fully connected with prob-

ability one. Initially, all transmitters and receivers are assumed to have global channel

knowledge of all links.

The receiver k pre-multiplies yk(n) with a linear filterWH
k ∈ CSdk×NS to obtain

ŷk = WH
k Hkkxk +

K∑

j=1,j 6=k

WH
k Hkjxj +WH

k zk, (5.3)

where the time index n has been dropped for simplicity.1 The first term in the above

represents the desired signal, the second term represents the interference from the other

transmitters, and the last term is due to the AWGN at the receiver. Finally, the receiver

estimates the transmitted symbols from ŷk.

5.1.1 Problem setup

Consider assigning dk ≤ min(M,N) DOF to transmitter k. Then, associating a linearly

independent set of dk beamforming vectors with the dk data streams, the transmitted

signal is represented as

xk =

dk∑

d=1

Vd
ks

d
k = Vksk, (5.4)

whereVk = [V1
k,V

2
k, . . . ,V

dk
k ] is theM × dk precoding matrix of transmitter k, and sk =

[s1k; s
2
k; . . . ; s

dk
k ] is the dk × 1 set of symbols at transmitter k. The desired signal subspace

of the kth user receiver is spanned by the columns ofHkkVk with dimension dk and the

interfering signal subspace is spanned by the columns of HkjVj, j = 1, 2, . . . , K, j 6= k.

1Note that, with a slight abuse of notation, Hkj in (5.3) represents the NS × MS block diagonal
channel matrix when S symbol extensions are employed.
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The interfering signal is restricted to occupy a total dimension up to N − dk, and the

desired signal subspace is required to be linearly independent of the interfering signal

subspace. Then, it would be possible to recover the dk independent streams at the k-th

receiver using a zero-forcing beamforming matrix. Thus, the problem is to construct a

set of matrices Vk, k = 1, 2, . . . , K, such that the above conditions are satisfied.

5.1.2 Performance measure

The performance of the proposed IA algorithms can be evaluated and compared with

existing algorithms using the following two metrics. The choice of the metrics is intu-

itive; they provide insight into the efficacy of the IA algorithms in terms of the inter-

ference leakage and the preservation of the desired signal dimensions. The need for a

performance measure arises because practical IA algorithms rarely align interferences

perfectly, most commonly due to numerical round-off errors in the matrix computa-

tions.

Performance measure 1

This measure has been proposed in [29]. Let (d1, d2, ...., dK) denote the DOF of the users

1, 2, . . . , K, respectively. If the receive filter at the kth receiver projects the signal onto

the subspace spanned by the dk smallest eigenvalues of the received interference covari-

ance matrix, the fraction of the interfering signal power in the desired signal subspace

is defined as

pavg ,
1

K

K∑

k=1

pk, where pk ,

∑dk
j=1 λj [Qk]

trace (Qk)
, (5.5)
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where Qk is the interference covariance matrix at receiver k, and λj [Qk] denotes the

jth smallest eigen value ofQk. It is clear that the above represents a lower bound on the

fractional interference power in the desired signal space, i.e., if the receive filter projects

the signal into any dk dimensional subspace, the fraction of the interference power in

the desired signal space would be at least as large as pk. Note that pk ∈ [0, 1], and when

the IA is perfect, pk = 0. A small value of pavg thus indicates a better IA. However, one

limitation of this performance measure is that it does not reflect the dimension of the

desired signal space, which is captured by the metric below.

Performance measure 2

The effective channel for the desired signal at receiver k, after receive filtering, is given

by WH
k HkkVk. The power of the dthk data stream of the desired signal of user k is given

by the square of the dthk largest singular value of WH
k HkkVk. Thus, the relative power

of the weakest desired data stream, denoted qavg, can be written as

qavg ,
1

K

K∑

k=1

qk, where qk ,
σ2
dk

[
WH

k HkkVk

]
∑dk

j=1 σ
2
j [W

H
k HkkVk]

(5.6)

where σl [A] represents the lth largest singular value ofA. Note that qk ∈ [0, 1/dk], and a

large value of qk indicates that approximately the same data rate can be achieved in all

the dk data streams. When qk = 0, there is a loss of signal dimension due to the receive

filtering, and the DOF achieved by the kth user is strictly less than dk.

The next two sections propose two algorithms for the IA precoder design. It will be

seen that they provide better performance in aligning and suppressing the interference
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than existing algorithms, while at the same time preserving the desired signal dimen-

sions, compared to previous methods. The first algorithm provides an IA solution that

reduces the total dimension occupied by the interfering signals at all receivers by align-

ing some of the interfering signal sub-streams. The second is a distributed algorithm

that can approximately align any number of interferers, as it designed only to minimize

the interference leakage power, while maintaining the dimensionality of the desired

signal at the receiver.

5.2 Algorithm 1: The eigenbeamforming method

This algorithm considers the case where M ≤ N and starts by writing the sufficient

conditions for the IA as a set of linear equations. At every receiver, one of the interfering

signal streams is aligned to lie in the span of the other K − 2 interfering signals. The

form of the solution obtained here is similar to the algorithms in [66] and [31]; but

it differs from them in the following way. The algorithm proposed in [66] requires

M = N , K = N + 1 and d = 1 whereas the proposed algorithm is applicable when

M ≤ N and for a range of values for K and d (the feasible combinations are derived

below). Also, in [31], the entire interference subspace from one user is aligned to the

interference subspace from another user, whereas the proposed algorithm is based on

aligning a subset of the data streams transmitted by a given interfering user within

the span of the interference caused by the other K − 2 interfering signals. First, a few

examples are presented, to illustrate the central idea in the proposed method.
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A sufficient condition for one data stream IA for the K = 4 user IC can be written as

H14V
(1)
4 = H12V

(3)
2 +H13V

(3)
3 ,

H21V
(1)
1 = H23V

(2)
3 +H24V

(2)
4 ,

H32V
(1)
2 = H31V

(2)
1 +H34V

(3)
4 ,

H43V
(1)
3 = H41V

(3)
1 +H42V

(2)
2 . (5.7)

The four equations above correspond to the IA conditions at receivers 1, 2, 3 and 4,

respectively. Note that the above equations require at least three data streams to be as-

signed to each user. If the users are assigned more than three streams each, the remain-

ing beamforming vectors can be chosen to be arbitrary linearly independent vectors, as

long as they are linearly independent of the beamforming vectors determined from the

equations above. This ensures that the rank condition on the desired data signal is sat-

isfied, while still aligning one of the data streams from each user in the space spanned

by the other interfering users. The system of equations in (5.7) can be written in the

form

H̃V = 0, (5.8)

where V , [V
(1)
1 ; V

(2)
1 ; V

(3)
1 ; V

(1)
2 ; V

(2)
2 ; V

(3)
2 ; V

(1)
3 ; V

(2)
3 ; V

(3)
3 ; V

(1)
4 ; V

(2)
4 ; V

(3)
4 ], and

H̃ ,




0 0 0 0 0 H12 0 0 H13 −H14 0 0

−H21 0 0 0 0 0 0 H23 0 0 H24 0

0 H31 0 −H32 0 0 0 0 0 0 0 H34

0 0 H41 0 H42 0 −H43 0 0 0 0 0



(5.9)

A non-trivial solution to (5.8) is given by any linear combination of the eigenvectors
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corresponding to the zero eigenvalue of H̃HH̃. Note that for an IA solution to be feasi-

ble with this method, H̃HH̃ must be rank deficient, i.e., its smallest eigenvalue should

be equal to zero. A feasibility condition for this is derived in the next subsection.

In a similar manner, the two stream alignment for theK = 4 user case can be described

as follows:

H14

[
V

(1)
4 V

(2)
4

]
= H12

[
V

(5)
2 V

(6)
2

]
+H13

[
V

(5)
3 V

(6)
3

]
,

H21

[
V

(1)
1 V

(2)
1

]
= H23

[
V

(3)
3 V

(4)
3

]
+H24

[
V

(3)
4 V

(4)
4

]
,

H32

[
V

(1)
2 V

(2)
2

]
= H31

[
V

(3)
1 V

(4)
1

]
+H34

[
V

(5)
4 V

(6)
4

]
,

H43

[
V

(1)
3 V

(2)
3

]
= H41

[
V

(5)
1 V

(6)
1

]
+H42

[
V

(3)
2 V

(4)
2

]
. (5.10)

Again, the four equations above correspond to the IA conditions at the four receivers.

The above can now be expressed in the following compact form:

H̄V̄ = 0, (5.11)

where H̄ is in a form similar to (5.9), V̄ , [V11; V13; V15; V21; V23; V25; V31; V33; V35;

V41; V43; V45], and Vkl ,

[
V

(l)
k V

(l+1)
k

]
.

As a final example, the one stream alignment in the K = 5 user case is described

below.

H15V
(1)
5 = H12V

(4)
2 +H13V

(4)
3 +H14V

(4)
4 , (5.12)

H21V
(1)
1 = H23V

(2)
3 +H24V

(2)
4 +H25V

(2)
5 , (5.13)

H32V
(1)
2 = H31V

(2)
1 +H34V

(3)
4 +H35V

(3)
5 , (5.14)
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H43V
(1)
3 = H41V

(3)
1 +H42V

(2)
2 +H45V

(4)
5 , (5.15)

H54V
(1)
4 = H51V

(4)
1 +H52V

(3)
2 +H53V

(3)
3 . (5.16)

As before, each of the above equations correspond to the IA condition at each of the

five receivers.

Generalizing the above, consider an S symbol extension of the channel. Let V
(j)
i ∈

CMS×1 represent the beamforming vector corresponding to the jth data stream of the ith

user. Then, a set of equations for aligning p data streams per user within the interference

subspace spanned by the remaining interfering users in theK-user IC can be written as

Rx 1: H1KV
(n)
K =

K−1∑

j=2

H1jV
((K−2)p+n)
j , (5.17)

Rx 2: H21V
(n)
1 =

K∑

j=3

H2jV
(p+n)
j , (5.18)

Rx j = 3 to K: Hj(j−1)V
(n)
j−1=Hj1V

((j−2)p+n)
1 +

j−2∑

r=2

HjrV
((j−3)p+n)
r

+

K∑

r=j+1

HjrV
((j−1)p+n)
r , (5.19)

for n = 1, 2, . . . , p. To obtain the above equations, each user must be assigned at least

(K − 1)p streams, and p of these streams are aligned with the remaining interference

at each receiver. If each user is assigned more than (K − 1)p streams, the remaining

streams can be chosen at random from any continuous distribution to ensure their lin-

ear independence from the first (K−1)p streams. The above equations can be re-written

to obtain the IA conditions for all cases are expressed in the form

H̃Ṽ = 0, (5.20)
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where H̃ and Ṽ are obtained by appropriately stacking the channel and beamforming

matrices, respectively. A non-trivial solution to (5.20) is given by any linear combina-

tion of the eigenvectors corresponding to the null space of H̃HH̃. The necessary condi-

tions under which a solution exists to the above is derived in the following subsection.

5.2.1 Feasibility conditions

The size of the matrix H̃ is KNSp × K(K − 1)MSp, where p is the number of data

streams aligned at each receiver. First, for H̃ to have a non-trivial null space, it must be

column rank-deficient, which leads to

K >
N

M
+ 1. (5.21)

Second, there must be sufficiently many linearly independent beamforming vectors at

the transmitters to achieve the desired DOF. Since each user must be assigned at least

(K − 1)p data streams, this requires

(K − 1)p ≤ dS ≤MS,

or p ≤ dS

K − 1
≤ MS

K − 1
. (5.22)

In the above equation, MS is the maximum possible DOF that can be assigned to a

user, and dS is the DOF assigned to the user, both over the S symbol extension of the

channel. Third, there must be sufficiently many linearly independent receive beam-

forming vectors to be able to separate the desired signal from the interference. The

number of dimensions available at each receiver is NS, and the number of dimensions

occupied by the desired signal is dS. The remaining number of dimensions, (N − d)S
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must be greater than or equal to the number of interfering signal dimensions, which is

(K − 1)dS − p. This results in the condition

p ≥ (Kd−N)S, (5.23)

on the number of streams that need to be aligned to achieve dDOF per user per symbol

extension. Combining (5.22) and (5.23), one obtains,

(Kd−N)S ≤ dS

K − 1
. (5.24)

Finally, incorporating the condition d ≤ M , the maximum DOF achievable by this

scheme is upper bounded by the following quantity:

d ≤ min

(
(K − 1)N

K(K − 1)− 1
,M

)
. (5.25)

Note that achieving the DOF given by the right hand side in the above equation requires

S = K(K−1)−1 symbol extensions. For example, whenM = 3, N = 7 andK = 4, (5.1)

achieves a DOF of d = 2with a very long symbol extension and a time-varying channel,

while the eigenbeamforming method achieves d = 1.91with S = 11 symbol extensions

and even for constant MIMO channels. However, the achievable DOF decreases with

K, making this method more suitable when the number of users K is relatively small.

More examples on this are provided in Sec. 5.4.

Note that in the above eigenbeamforming method, global knowledge of all K2 links

is required in order to compute the precoding matrices. This computation could hap-

pen at a central controller, which then shares the optimum precoding matrices with the

K transmitters and the optimum receive filtering matrices with the K receivers. In the
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next section, a distributed algorithm that only requires knowledge of the received inter-

ference covariance matrix at each receiver and knowledge of the reciprocal interference

covariance matrix obtained by reversing the direction of all links at each transmitter,

is presented. The interference covariance matrix is reflective of the interference caused

by each transmitter at all the receivers. The price paid for not requiring global channel

knowledge is that the algorithm is iterative in nature.

5.3 Algorithm 2: Iterative algorithm for IA

In this section, a distributed and iterative algorithm is presented for designing the IA

precoding matrices for a constant IC, such that the necessary and sufficient conditions

for IA are satisfied. The algorithm is similar in flavor to the distributed IA algorithms

in [29] and [30]. It iterates between two objective functions with a common interference

leakage term, to find the locally optimumVk andWk. One key difference between this

and past work is that the minimization of the interference leakage is performed subject

to a constraint on the dimension of the desired signal subspace. For example, although

the Max-SINR algorithm proposed in [29] tries to maximize the received SINR at the

desired user, there is no guarantee that the signal dimension is preserved when symbol

extension is considered over a constant channel. Yet another difference is that previous

iterative algorithms impose a quadratic constraint on the Vk and Wk matrices, while

the algorithm below imposes a linear constraint on them to preserve the desired signal

dimensionality. For clarity, the derivation mentioned below assumes S = 1 and its

extension to any finite number of symbol extensions is straightforward.

First, consider the design of the receive filter matrices Wk, for a fixed Vk at all the



Chapter 5. 77

transmitters. The interference and the noise term at the receiver k after receive filtering

is given by,

IRk =
K∑

j=1,j 6=k

Wk
HHkjVjsj +Wk

Hzk. (5.26)

When all the interfering signals are aligned, one needs to find a Wk such that
∑K

j=1,j 6=k

Wk
HHkjVj = 0. A judicious choice for Wk is one that minimizes the interference leak-

age power at receiver k. There is also a constraint on the dimensionality of the desired

signal: rank
(
WH

k HkkVk

)
= dk, where dk is the DOF assigned to kth transmitter. Thus,

given the channel matrices Hkk and the precoding matrices Vk, the optimal receive

filter Wk is designed to minimize the cost function

Jk , trace(WH
k QkWk) subject to WH

k HkkVk = αIdk , (5.27)

where Qk is the interference plus noise covariance matrix at receiver k, given by,

Qk =
K∑

j=1,j 6=k

Pj[HkjVj][HkjVj]
H + IN , (5.28)

and α > 0 is selected such that trace
(
WH

k Wk

)
= 1. Here, Pj is the transmit power of

user j. The solution to (5.27) is given by

W
opt
k = αQ−1

k Uk[U
H
k Q

−1
k Uk]

−1, (5.29)

where Uk = HkkVk is the desired signal subspace of the kth user, and

α =
1√

trace
(
[Q−1

k Uk[U
H
k Q

−1
k Uk]−1]H [Q−1

k Uk[U
H
k Q

−1
k Uk]−1]

) . (5.30)

The proof of the above is stated as Lemma 4 below.
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Lemma 4. For the constrained optimization problem,

min
G

J(G) , trace
(
GHQG

)
subject to AG = αId, (5.31)

whereG is anM ×d matrix,Q is anM ×M positive definite matrix andA is a d×M matrix,

the optimum solution is given by

G0 = αQ−1AH [AQ−1AH ]−1. (5.32)

Proof. It is sufficient to show that J(G0) = trace
(
GH

0 QG0

)
is the minimum value of

the objective function, subject to the constraint. Suppose the optimum solution isGp =

G0 +∆,∆ 6= 0. Then, the objective function becomes,

J(Gp) = trace
(
[G0 +∆]HQ[G0 +∆]

)
,

= trace
(
GH

0 QG0 +∆HQ∆+∆HQG0 +GH
0 Q∆

)
. (5.33)

From the constraint AGp = αI, one obtains A∆ = 0, and the cross terms get simplified

as,

∆HQG0 = α∆HQQ−1AH [AQ−1AH ]−1 = 0, (5.34)

and similarly, GH
0 Q∆ = 0. Now, the quadratic term trace(∆HQ∆) ≥ 0 since Q is

positive definite. Hence, J(G0) ≤ J(Gp), which is a contradiction. Hence, G0 is the

optimum solution.

Now consider designing the precoding matrices Vk at the K transmitters, given the

receive filtering matrices Wk at the receivers. The interfering signal due to transmitter
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k at the unintended receivers is given by

Tkj = WH
j HjkVksk, j = 1, 2, . . . , K, j 6= k. (5.35)

From the feasibility condition for perfect IA, one requires

WH
j HjkVk = 0, j = 1, 2, . . . , K, j 6= k. (5.36)

Again, a judicious choice for the precoding matrices would be to selectVk such that the

total interference power at the unintended receivers due to transmitter k is minimized.

The interference power due to transmitter k at receiver j is obtained from the squared

Frobenius norm of WH
j HjkVk as,

Lkj = trace
(
PkV

H
k [W

H
j Hjk]

H [WH
j Hjk]Vk

)
. (5.37)

Thus, the total interference power due to the transmitter k is given by

L′
k = trace

(
VH

k R
′
kVk

)
, (5.38)

where

R′
k = Pk

K∑

j=1,j 6=k

[WH
j Hjk]

H [WH
j Hjk]. (5.39)

The objective here is to choose Vk such that L′
k is minimized, subject to the desired

signal dimension constraint, i.e., rank
(
WH

k HkkVk

)
= dk. Including a regularization
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term,2 the objective function is modified as,

Lk = trace
(
VH

k R
′
kVk +VH

k Vk

)
. (5.40)

Thus, the constrained optimization is given by,

min
Vk

Lk = trace
(
VH

k RkVk

)
, subject to WH

k HkkVk = βIdk , (5.41)

where β > 0 is selected to obtain trace
(
VH

k Vk

)
= 1, and

Rk = Pk

K∑

j=1,j 6=k

[WH
j Hjk]

H [WH
j Hjk] + IM . (5.42)

Notice that Rk is the reflected covariance matrix of a virtual channel obtained by in-

terchanging the transmitters and receivers. The optimum solution for Vk is obtained

using Lemma 4 as

V
opt
k = βR−1

k TH
k [TkR

−1
k TH

k ]
−1, k = 1, 2, . . . , K, (5.43)

where Tk = WH
k Hkk and

β =
1√

trace
(
[R−1

k TH
k [TkR

−1
k TH

k ]
−1]H [R−1

k TH
k [TkR

−1
k TH

k ]
−1]
) . (5.44)

The iterative precoder design algorithm is summarized in Table 5.1. The algorithm

requires knowledge ofQk andUk at the k
th receiver andRk andTk at the k

th transmitter

rather than full information of all K2 channels.

One issue that needs to be addressed is the convergence of the above algorithm; this

2The purpose of the regularization term is merely to guarantee the invertibility of Rk. In practice, if
R

′

k is invertible, the regularization can be eliminated.
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Step. No. Action

1 InitializeVk, k = 1, 2, . . . , K to be arbitrary precoding matrices
2 Compute the matrix Qk in (5.28) for k = 1, 2, . . . , K
3 Obtain Wk, k = 1, 2, . . . , K using (5.29)
4 Compute the matrix Rk from (5.42)
5 Obtain Vk, k = 1, 2, . . . , K using (5.43)

6 Repeat steps 2− 5 until convergence of
∑K

k=1 Jk and
∑K

k=1 Lk

Table 5.1: The iterative precoder design algorithm

is discussed next.

5.3.1 Convergence of the algorithm

First, it can be shown that the objective functions to be minimized in the algorithm

at Step 3 and Step 5 are identical. The objective function minimized in the Step 3 is the

total interference plus noise power at receiver k. The total interference plus noise power

across all the receivers is obtained as,

PR =

K∑

k=1

trace

(
WH

k

[
K∑

j=1,j 6=k

Pj[HkjVj][HkjVj]
H + IN

]
Wk

)
. (5.45)

As the trace is a linear operator, the above reduces to

PR = trace

(
K∑

k=1

[
K∑

j=1,j 6=k

PjW
H
k [HkjVj][HkjVj]

HWk +WH
k Wk

])
,

= trace

(
K∑

k=1

[
K∑

j=1,j 6=k

Pj[W
H
k HkjVj][W

H
k HkjVj]

H

])
+K. (5.46)

The objective function minimized at Step 5 of the algorithm is the total interference

power due to transmitter k, with a regularization term. The total interference power
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due to all the transmitters is given by,

PT =
K∑

k=1

trace

(
VH

k

[
Pk

K∑

j=1,j 6=k

[WH
j Hjk]

H [WH
j Hjk] + IM

]
Vk

)
. (5.47)

Again, using the linearity property of the trace, the above is simplified as,

PT = trace

(
K∑

k=1

[
K∑

j=1,j 6=k

PkV
H
k [W

H
j Hjk]

H [WH
j Hjk]Vk +VH

k Vk

])
,

= trace

(
K∑

k=1

[
K∑

j=1,j 6=k

Pk[W
H
j HjkVk]

H [WH
j HjkVk]

])
+K. (5.48)

Since the objective functions in both PT and PR are the same, minimizing one does not

increase the other objective function. Moreover, at each iteration, the objective functions

decrease, and are bounded below by zero. This proves the convergence of both the

objective functions across all transmitter-receiver pairs to a local optimum.

Note that the algorithm may not result in a zero objective function, even when the in-

terferences are aligned perfectly and noise variance is zero, because of numerical round

off errors. However, the numerical issues encountered are similar to other algorithms

proposed in the literature that attempt to align interferences. Also, in the above, the

constraint on the desired signal dimension is key to ensuring that there is no loss in

DOF when the interfering signals are aligned.

5.4 Simulation results

Now, the performance of the proposed IA algorithms are evaluated in terms of pavg

and qavg in (5.5) and (5.6), respectively, and are compared with existing algorithms. In

addition, the algorithms are compared in terms of the sum rates of the users at different
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values of SNR.

The setup consists of a symmetric MIMO (M×N) constant IC. The channel coefficients

were generated from the i.i.d. complex circularly symmetric Gaussian distribution with

zero mean and unit variance. The values of pavg and qavg were averaged using 1000

independent channel realizations, and the results were plotted as a function of the DOF

obtained per user, per symbol extension. The solution from the eigenbeamforming

method in (5.20) is plotted as the curve labeled Eig-bf. The iterative algorithm in

Table 5.1 is plotted as the curve labeled Iterative algorithm. These algorithms

are compared to the alternatingminimization based IA (curves labeled Alter-IA) [30],

the distributed IA (curves labeled Dist-IA) [29], the least-squares IA (curves labeled

Least squares algo) [31] algorithms.

Figures 5.1, 5.2 and 5.3 show the fraction of the interference power in the desired

signal (denoted pavg above), versus the DOF per user for the 4-user (Figs. 5.1, 5.2) and

5-user (Fig. 5.3) IC withM×N = 3×6, 3×7, and 2×6, andK = 4, 4 and 5, respectively.

The rank of the desired signal subspace,HkkVk, k = 1, 2, . . . , K, gives the DOF achieved

by the user k. In terms of performance measure pavg, the iterative algorithm gives a

low value of the leakage for the DOF values considered. The distributed IA algorithm

exhibits a similar performance in terms of pavg. However, its performance is poor in

terms of the relative power in the weakest data stream (qavg), as seen in Fig. 5.4. In the

5-user case (Fig. 5.3), the distributed IA outperforms the eigenbeamforming algorithm

and iterative algorithm with respect to the performance metric pavg. The performance

of the distributed IA in terms of qavg is poor compared to the proposed methods, as

seen in Fig. 5.6. In the case of the least-squares method proposed in [31], it is seen that
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Figure 5.1: Fraction of the interference power in the desired signal space for the K = 4
user IC with configurationM = 3, N = 6, and S = 5.

the algorithm is unable to reach the target DOF for larger values of the DOF. For the

eigenbeamforming method, p = 2 streams are aligned in the 3 × 6 case (Fig. 5.1) and

p = 1 stream is aligned in the other two cases. The maximum per user DOF achievable

by this scheme, from (5.25), are upper bounded by 1.64, 1.91, and 1.26, for the (3×6, K =

4), (3 × 7, K = 4) and (2 × 6, K = 5) cases, respectively and the following simulation

results demonstrate that the achievable DOF are close to the maximumDOF achievable

by this scheme. In order to achieve the maximum DOF (1.64, 1.91, and 1.26) exactly, the

eigenbeamforming algorithm requires large symbol extensions but finite. The DOF

achievable when p = 2, 1 and 1,
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Figure 5.2: Fraction of the interference power in the desired signal space for the K = 4
user IC with configurationM = 3, N = 7, and S = 5.

from (5.23), reduce to 1.6, 1.8 and 1.25, respectively. Thus, the eigenbeamforming

method is able to achieve very near to the DOF values predicted by the feasibility con-

ditions derived in Sec. 5.2.1.

Figures 5.4, 5.5 and 5.6 show the relative power in the weakest desired data stream

(denoted qavg above) in the log10 scale versus the DOF per user for the 4-user (Figs. 5.4,

5.5) and 5-user (Fig. 5.6) IC with M × N = 3 × 6, 3 × 7, and 2 × 6, respectively. The

non-zero value of qavg confirms that the DOF of the desired signal is preserved. For the

iterative algorithm, qavg is proportional to 1/Sd, where d is the DOF per user, due to

the scaled identity constraint on the effective channel matrix in (5.27) and (5.41). The
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Figure 5.3: Fraction of the interference power in the desired signal space for the K = 5
user IC with configurationM = 2, N = 6 and S = 4.

utility of the second performance metric (qavg) is clear from the graphs, as it captures

the possible loss of desired signal dimension when the interference is aligned at all the

receivers (e.g., Fig. 5.6, as mentioned above).

Fig. 5.7 shows the sum rate of the users per channel use versus the power in dB for

the K = 4 user IC with M = 3, N = 6. In this example, each user transmits 8 streams

over S = 5 symbol extensions, which represents a target sum DOF of 6.4 per symbol ex-

tension. The eigenbeamforming algorithm aligns two interfering data streams at each

receiver, and it outperforms all the other algorithms in terms of sum rate and achieves
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Figure 5.4: Relative power in the weakest desired signal data stream for theK = 4 user
IC with configurationM = 3, N = 6, and S = 5.

a sum DOF of about 6.38. In the high SNR regime, the iterative algorithm performs

the second best, and has the same performance as the Alter-IA algorithm. As the least-

squares method is unable to attain the target desired signal dimension (as also seen in

Fig. 5.4), its sum rate fails to achieve the target DOF. Thus, the proposed algorithms

are able to handle the block-diagonal structure of the channel matrices resulting from

the channel extension, which is contrary to existing algorithms which converge to local

minima without achieving zero interference leakage. In summary, the above examples

illustrate the performance benefits offered by the proposed algorithms relative to exist-

ing algorithms, in terms of the performance metrics considered in this chapter.
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Figure 5.5: Relative power in the weakest desired signal data stream for theK = 4 user
IC with configurationM = 3, N = 7, and S = 5.

5.5 Conclusions

This chapter explored the construction of precoding and receive filtering matrices for

IA for constant or quasi-static MIMO channels with finite symbol extensions. Most pre-

coder and receive filter design algorithms in the literature formulate the IA problem as

an interference leakage minimization problem, and thus may not achieve perfect IA or

may not achieve the required desired signal dimensionality. A new metric was pro-

posed to measure the performance of IA algorithms, that captured the possible loss in

signal dimension when the desired signal is aligned with the interference. Inspired by

the metric, two algorithms for finding the precoding and receive filtering matrices for
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Figure 5.6: Relative power in the weakest desired signal data stream for theK = 5 user
IC with configurationM = 2, N = 6, and S = 4.

IA were proposed. The first algorithm was based on sub-stream alignment at all the

receivers, and the second algorithm was designed to ensure that the desired signal di-

mension is maintained, while minimizing the interference leakage power. The second

algorithm had the added advantage of requiring limited channel knowledge at each

terminal, at the price of an iterative solution. The performance of the algorithms were

evaluated using Monte Carlo simulations and compared with the existing algorithms

for IA precoder design. It was illustrated that the proposed algorithms outperform

the existing IA algorithms in terms of the performance metrics considered. In the next



Chapter 5. 90

0 10 20 30 40 50 60
0

20

40

60

80

100

120

 

 

Total power in dB

A
ve

ra
ge

 s
um

 r
at

e 
(b

its
/c

ha
nn

el
 u

se
)

Iterative algorithm
Eig−bf
Dist−IA
Alter−IA
Least squares algo

Figure 5.7: Sum rate of the K = 4 user IC with configurationM = 3, N = 6, and S = 5.

chapter, the role of transmitter cooperation on managing interference and ensuring se-

crecy is studied in depth, in the context of the 2-user IC.



Chapter 6

Achievable Schemes for Secrecy in

SLDIC with Limited-rate Transmitter

Cooperation

As mentioned earlier, in a multiuser wireless communication system, users experience

interference due to the broadcast and superposition nature of the medium. Interference

not only limits the performance of the system, but also allows users to eavesdrop on

the other users’ messages. For example, in a cellular network, when users have sub-

scribed to different contents, it is important for the service provider to support high

throughput, as well as secure its transmissions, in order to maximize its own revenue.

In these scenarios, the transmitters (e.g., base stations) are not completely isolated from

each other, and cooperation among them is possible. Such cooperation can potentially

provide significant gains in the achievable throughput in the presence of interference,

while simultaneously guaranteeing security. Hence, the objective of this chapter is to

explore the role of transmitter cooperation in managing interference and ensuring se-

crecy in the case of 2-user symmetric linear deterministic IC (SLDIC) with limited-rate

91



Chapter 6. 92

transmitter cooperation and secrecy constraints at the receivers.

The notion of information theoretic secrecy was introduced in [11], where secret com-

munication between the transmitter and receiver in the presence of an eavesdropper

was considered. Subsequently, in [32], the wiretap channel was introduced, where the

legitimate transmitter and receiver communicate in the presence of an eavesdropper,

and the eavesdropper listens through a degraded channel. The wiretap channel is gen-

eralized in [70], where a general (non-degraded) broadcast channel is assumed, and

the transmitter sends common information to the legitimate receiver and eavesdropper

along with a confidential message intended for the legitimate receiver. These works ex-

ploit the fact that even though the signal has originated from the same source, the signal

may arrive at the legitimate receiver and the eavesdropper through different channels.

A linear deterministic model for relay network was introduced in [18], which led to in-

sights on the achievable schemes in Gaussian relay networks. The deterministic model

has subsequently been used for studying the achievable rates with the secrecy con-

straints in [21–23]. In [21], secret communication over the IC is analyzed with two

types of secrecy constraints: in the first case, the secrecy constraint is specific to the

agreed-upon signaling strategy, and in the second case, the secrecy constraint takes

into account the fact that the other users may deviate from the agreed-upon strategy.

The deterministic model has also been studied under different eavesdropper settings

in [22, 23, 71].

However, the role of limited transmitter-side cooperation on secrecy in an IC has not

been explored in literature, and is the focus of this chapter. Due to the cooperation

between the transmitters and the secrecy constraints at the receivers, the encoding at
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the transmitter becomes complex and even deriving outer bounds become difficult. In

order to make headway into this problem, first, the related problem of the linear deter-

ministic setting is considered. For the symmetric linear deterministic IC (SLDIC) with

cooperating transmitters and secrecy constraints at the receivers, achievable schemes

are obtained in this chapter. Outer bounds on the secrecy rate are derived in Chapter 7.

In this chapter, novel transmission schemes for the 2-user SLDIC with limited trans-

mitter cooperation and secrecy constraints at the receivers are proposed, and their

achievable secrecy rates are derived. The transmission scheme depends on the capacity

of the cooperative link (denoted by C) and value of α , n
m
, where m , (⌊logSNR⌋)+

and n , (⌊log INR⌋)+. The key features of the proposed schemes are:

1. In the weak interference regime1 (0 < α ≤ 2
3
), the scheme involves precoding of

a user’s own data bits with the bits received through cooperation, to simultane-

ously cancel the interference and ensure secrecy.

2. In the moderate interference regime (2
3
< α < 1), the scheme uses interference

cancelation, random bit transmission, or both. The novel idea behind the random

bit transmission scheme is explained in Sec. 6.2.2.

3. In the high interference regime (1 < α < 2), the scheme involves relaying of the

other user’s data bits obtained at the transmitters through the cooperative links,

in addition to the techniques used for (2
3
< α < 1).

4. In the very high interference regime (α ≥ 2), the scheme uses time sharing, along

with the techniques used for (1 < α < 2). Unlike the other interference regimes,

1Note that the definition of the weak interference regime here is different from the more typical (0 <

α ≤ 1

2
) [8]. It will turn out that (0 < α ≤ 2

3
) is more appropriate for the discussion in this chapter.
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Figure 6.1: 2-user SLDIC with transmitter cooperation.

when α ≥ 2 and for small values of C, sharing random bits along with the data

bits is strictly better than sharing only data bits, in terms of the achievable secrecy

rate.

6.1 System model

The deterministic model of 2-user symmetric IC with limited-rate transmitter cooper-

ation [20] is shown in Fig. 6.1. The received signals at the receivers are modeled as

follows:

y1 = Dq−mx1 ⊕Dq−nx2; y2 = Dq−mx2 ⊕Dq−nx1, (6.1)

where xi and yi are binary vectors of length q , max{m,n},D is a q×q downshift matrix

with elements dj′,j′′ = 1 if 2 ≤ j′ = j′′ + 1 ≤ q and dj′,j′′ = 0 otherwise, and ⊕ stands

for modulo-2 addition (XOR operation). Both the transmitters cooperate through a loss

less and secure link but of finite capacity. The quantity α , n
m

captures the amount of
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coupling between the signal and the interference, and is central to characterizing the

achievable rates in the case of SLDIC.

The convention followed for denoting the bits transmitted over the LDIC is the same

as that presented in [20]. The bits ai, bi ∈ F2 denote the information bits of transmitters

1 and 2, respectively, sent on the ith level, with the levels numbered starting from the

bottom-most entry. The data bits transmitted on the different levels of SLDIC are chosen

to be equiprobable Bernoulli distributed, denoted Bern
(
1
2

)
.

The transmitter i has a message Wi, which should be decodable at the intended re-

ceiver i, but needs to be kept secret from the other, unintended receiver j, j 6= i. The

encoded message is a function of its own data bits, the bits received through the co-

operative link, and possibly some random data bits. The encoding at the transmitter

should satisfy the causality constraint, i.e., it cannot depend on future cooperative bits.

The decoding is based on solving the linear equation in (6.1) at each receiver. For se-

crecy, it is required to satisfy I(Wi,yj) = 0, i, j ∈ {1, 2} [11]. Also, it is assumed that the

transmitters trust each other completely and that they do not deviate from the agreed

scheme.

6.2 SLDIC: Achievable schemes

6.2.1 Weak interference regime (0 ≤ α ≤ 2
3)

In this regime, the proposed scheme uses interference cancelation. It is easy to see that

data bits transmitted on the lower m − n levels [1 : m − n] remain secure, as these data

bits do not cause interference at the unintended receiver. Hence,m− n bits can be sent

securely, when C = 0, as shown in Fig. 6.2. However, with cooperation (C > 0), the
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Figure 6.2: SLDIC with m = 4 and n = 2: (a) C = 0 and Rs = 2 and (b) C = 2 and
Rs = 4.

top levels [m − n + 1 : m] can be used for data transmission by appropriately xoring

the data bits with the cooperative bits in the lower levels prior to transmission. These

cooperative bits are precoded (xored) with the data bits at the levels [1 : min{n, C}] to

cancel interference caused by the data bits sent by the other transmitter. When C =

n, it can be shown that the proposed scheme achieves the maximum possible rate of

max{m,n} bits. When C > n, C − n bits can be discarded and n cooperative bits can

be used for encoding as above, to achieve max{m,n} bits. Hence, in the sequel, it will

not be explicitly mentioned that C ≤ n. The proposed encoding scheme achieves the

following symmetric secrecy rate:

Rs = m− n+ C. (6.2)

The details of the encoding scheme and the derivation of (6.2) can be found in Ap-

pendix C.1.
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6.2.2 Moderate interference regime (23 < α < 1)

In this regime, the proposed scheme uses interference cancelation along with the trans-

mission of random bits. Without transmitter cooperation, at leastm−n bits can be sent

securely, as in the weak interference regime. Depending on the value ofC, with the help

of transmission of random bits, additional data bits on the higher levels [m− n+ 1 : m]

are sent by carefully placing data bits along with zero bits and random bits.

The proposed scheme achieves the following symmetric secrecy rate:

Rs = m− n +B(m− n) + q + C, (6.3)

where B ,

⌊
g
3r2

⌋
, g , {n− (r2 + C)}+, r2 , m − n, q , min {(t− r2)

+, r2} and t ,

g%{3r2}.

In the above equation, the first term corresponds to the number of data bits trans-

mitted securely without using random bits transmission or cooperation. The term

B(m − n) + q corresponds to the number of data bits that can be securely transmitted

using the help of random bits transmission. The last term C represents the gain in rate

achievable due to cooperation. The details of the encoding scheme and the derivation

of (6.3) can be found in Appendix C.2.

6.2.3 Interference is as strong as the signal (α = 1)

In this case, from Theorem 17 in Chapter 7, it is not possible to achieve a nonzero secrecy

rate.
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6.2.4 High interference regime (1 < α < 2)

The achievable scheme is similar to that proposed for the moderate interference regime,

but it differs in the manner the encoding of the message is performed at each transmit-

ter. The proposed scheme achieves the following secrecy rate:

1. When (1 < α ≤ 1.5):

Rs = B(n−m) + q + C, (6.4)

where B ,

⌊
g
3r2

⌋
, g , (m − C)+, q , min {(t− r2)

+, r2}, t , g%{3r2} and r2 ,

n−m.

2. When (1.5 < α < 2):

Rs =





2m− n+ C for 0 ≤ C ≤ 4n− 6m

4n− 6m+ CT1 + CT2 + CT3 + rd for 4n− 6m < C ≤ n,
(6.5)

where CT1 , min
{⌈

Crem

2

⌉
, 2m− n

}
, Crem , (C ′ − CT3)

+, CT3 , min {2m− n, C ′′},

C ′ , C − (4n − 6m), C ′′ ,
⌈
C′

3

⌉
, CT2 , min {2m− n, (Crem − CT1)

+} and rd ,

min {2m− n− CT3 , 2m− n− CT2}.

The details of the encoding scheme and some illustrative examples can be found in

Appendix C.3.

Remark: One can note that the achievable schemes for the moderate (Sec. 6.2.2) and

high interference regime (Sec. 6.2.4) use a combination of interference cancelation and

transmission of a jamming signal (random bits transmission). When precoding is done

using the other user’s signal, it cancels the interference and also ensures secrecy. In the

technique based on random bits transmission, the transmitter self-jams its own receiver,
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so that the receiver cannot decode the other user’s data. But, in this process, transmit-

ter causes interference to the other receiver, thereby adversely impairing the achievable

rate of secure communication. Thus, self jamming in that form only helps if the ben-

efit to the secrecy rate due to the interference caused at the own receiver outweighs

the negative impact of the interference caused at the other receiver. However, when

the jamming signal can be canceled at an unintended receiver by transmission of the

same random bits by the other transmitter, its adverse impact is completely alleviated,

leading to larger achievable rates.

6.2.5 Very high interference regime (α ≥ 2)

In this case, when C = 0, it is not possible to achieve nonzero secrecy rate as established

by the outer bound in Theorem 15. However, with cooperation (C > 0), the proposed

scheme can achieve a nonzero secrecy rate. The proposed scheme uses interference

cancelation, time sharing, and relaying the other user’s data bits. In contrast to the

achievable schemes for other interference regimes, the transmitters exchange data bits,

random bits, or both, depending on the capacity of the cooperative link. For example,

when 0 < C ≤ ⌈m
2
⌉, the transmitters exchange only random bits. The proposed scheme

achieves the following secrecy rate:

1. Whenm is even:

Rs =





2C for 0 < C ≤ m
2

m
2
+ C for m

2
< C ≤ n− 3m

2

n
2
− m

4
+ C

2
for n− 3m

2
< C < n− m

2

C for n− m
2
≤ C ≤ n.

(6.6)



Chapter 6. 100

2. Whenm is odd:

Rs =





min{2C,m} for 0 < C ≤ m+1
2

m+min
{
C − m+1

2
, n− 2m

}
for m+1

2
< C ≤ 2n−3m+1

2

n− 2m+ 1
2

[
Cul

1 + 2Cuu
1 + Cuu

2 + C lu
1 + Cul

2

]
for 2n−3m+1

2
< C ≤ n,

(6.7)

where Cuu
1 ,

⌈
C
2

⌉
, Cul

1 , (m − Cuu
1 )+, Cuu

2 , (C − C lu
2 − Cr

2)
+, C lu

1 , (C − Cuu
1 − Cr

1)
+,

Cul
2 , C ll

1 , C
ll
1 , min{2Cr

1 , (m − C lu
1 )+)}, C ll

2 , Cul
1 and Cr

2 , max
{⌈

Cll
2

2

⌉
,
⌊
Cul

2

2

⌋}
,

Cr
1 ,

⌈
Cul

1

2

⌉
.

The details of the achievable scheme, and examples, can be found in Appendix C.4.

Remark: When 0 < C ≤ ⌈m
2
⌉, the capacity achieving scheme involves exchanging

only random bits through the cooperative links. This is useful in scenarios where the

transmitters trust each other to follow the agreed-upon scheme, but are not allowed to

share their data bits through the cooperative link.

6.3 Conclusions

This chapter proposed novel achievable schemes for the 2-user SLDIC with transmitter

cooperation. The achievable scheme used a combination of interference cancelation,

random bit transmission, relaying of the other user’s data bits, and time sharing, de-

pending on the values of α and C. Several interesting results were obtained from the

proposed achievable schemes. For example, when 2
3
< α < 1 and 1 < α < 2, random bit

transmission helps ensure secrecy. With further increase in the strength of the interfer-

ence (α ≥ 2), random bit transmission is rendered ineffective. But, with cooperation, it

is possible to achieve a nonzero secrecy rate, even when the interference is very strong.
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In the next chapter, outer bounds on the secrecy rate are derived for the SLDIC and the

achievable results derived in this chapter are compared with the outer bounds.



Chapter 7

Outer Bounds on the Secrecy Rate of the

2-User SLDIC with Limited-rate

Transmitter Cooperation

In the previous chapter, achievable schemes were obtained for the 2-user SLDIC with

limited-rate transmitter cooperation with secrecy constraints at the receivers. Deriving

outer bounds on the achievable secrecy rate, which is the focus of this chapter, can

provide useful insights on the performance limits of the system. Further, in cases where

the inner and outer bounds match, one obtains the capacity region of the 2-user SLDIC

in those scenarios.

The deterministic model is a good starting point, as it provides critical insight into

outer bounds for more general models [19, 20]. Also, the outer bounds derived in [19]

helps to establish the capacity region for the deterministic IC. In [20], outer bounds

are obtained for the deterministic IC with limited-rate transmitter cooperation without

any secrecy constraints at receivers. The outer bounds are found to coincide with the

achievable rate region and thereby establishing the optimality of the proposed scheme

102
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in [20]. In [23], the outer bounds derived for the wiretap channel with side information

establishes that the proposed scheme achieves capacity. However, outer bounds on

the achievable secrecy rate for the 2-user deterministic IC with limited-rate transmitter

cooperation have not been derived in the literature, and is the focus of this chapter.

In this chapter, four new outer bounds on the achievable rates are derived for the

2-user SLDIC with limited-rate transmitter cooperation and secrecy constraints at the

receivers. The derivation of the outer bounds differ from each other in the way side-

information is provided to receiver or the encodedmessage/output is partitioned based

on the value of α, where α captures the amount of coupling between the signal and the

interference. The main contributions of this chapter are:

1. Outer bounds on the secrecy rate are derived under different interference regimes

for the SLDIC with limited-rate transmitter cooperation (Theorems 14-17).

2. The derivation of the outer bounds is based on providing side information to re-

ceivers in a carefully chosen manner, using the secrecy conditions at the receivers

and partitioning the encoded message/output depending on the value α. For ex-

ample, in the moderate interference regime (2
3
≤ α < 1), the encoded message is

partitioned into two parts: one which causes interference at the unintended re-

ceiver, and another part which does not cause any interference at the unintended

receiver.

3. The outer bound in Theorem 14 helps to establish that sharing random bits through

the cooperative link can achieve the optimal rate under certain conditions, as

mentioned in Section 7.2.1.
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The derived outer bounds are compared with the achievable secrecy rate in Chapter 6,

to illustrate their usefulness. It is also observed that the proposed outer bounds are

tighter than the outer bound without the secrecy constraint [20], in all interference

regimes, except for the initial part of the weak interference regime. Further, an outer

bound on the capacity of the 2-user SLDIC in the absence of transmitter cooperation is

obtained as a special case of the results in this chapter, by setting the capacity of the co-

operative link to zero. The corresponding result represents the best known outer bound

in this case also.

7.1 SLDIC: Outer bounds

In this section, four outer bounds on the symmetric rate for the 2-user SLDIC with

limited-rate cooperation between transmitters and perfect secrecy constraints at the re-

ceivers are stated as Theorems 14-17. Theorem 14 is valid for all α ≥ 0, while The-

orems 15, 16, and 17 are valid for α ≥ 2, 1 < α < 2, and α = 1, respectively. The

derivation of the outer bound involves using Fano’s inequality, providing side infor-

mation to receivers in a carefully chosen manner, and using the secrecy constraints

at receivers. One of the difficulties faced in deriving these bounds is that the encoded

messages at the transmitters are no longer independent due to the cooperation between

the transmitters. In order to overcome this problem, one of the key techniques used in

obtaining the outer bounds in Theorems 14- refth:theoremSLDIC-outer3 is to partition

the encoded message, output, or both, depending on the value of α. This helps to sim-

plify or bound the entropies terms involved in the outer bounds. Also, the following

relation helps to establish these outer bounds: conditioned on the cooperating signals,
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denoted by (vN
12,v

N
21), the encoded signals and the messages at the two transmitters are

independent [20, 72]. This is represented as the following Markov chain relationship:1

(W1,x
N
1 )− (vN

12,v
N
21)− (W2,x

N
2 ). (7.1)

Finally, the overall outer bound on the symmetric secrecy rate is obtained by taking

the minimum of these outer bounds. The best performing outer bound depends on

the value of α and the outer bound on the symmetric secrecy rate max(m,n)1{C>0} +

min(m,n)1{C=0}, where 1A is the indicator function, equal to 1 if A is true, and equal to

0 otherwise.

In the derivation of the first outer bound, the encoded message xi (i = 1, 2) is par-

titioned into two parts: one part (xia) which causes interference to the unintended re-

ceiver, and another part (xib) which is not received at the unintended receiver. Parti-

tioning the message in this way helps to obtain an outer bound on 2R1 + R2, which

leads to an outer bound on the symmetric secrecy rate. The following theorem gives

the outer bound on the symmetric secrecy rate.

Theorem 14. The symmetric rate of the 2-user SLDIC with limited-rate transmitter coopera-

tion and secrecy constraints at the receivers is upper bounded as:

Rs ≤





1
3
[2C + 3m− 2n] for α ≤ 1

1
3
[2C + n] for α > 1.

(7.2)

Proof. The proof is provided in Appendix D.1.

The next outer bound, stated as Theorem 15, focuses on the very high interference

1In Chapters 7-9, N denotes the number of channel uses, and not the number of antennas at each
receiver as mentioned in the previous chapters.
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regime, i.e., for α ≥ 2. In the derivation of the bound, the encoded message xi (i = 1, 2)

at each transmitter is partitioned into three parts, as shown in Fig. 7.1a. The partitioning

is based on whether (a) the bits are received at the intended receiver, and are received

at the other receiver without interference, (b) the bits are not received at the desired

receiver, and received without interference at the other receiver, and (c) the bits are

not received at the intended receiver, and are received with interference at the other

receiver. To motivate the development of the following outer bound, first consider the

C = 0 case. If receiver 1 can decode x1a sent by transmitter 1, then receiver 2 can

decode x1a as well, since it gets these data bits without any interference. Hence, data

bits cannot be sent securely on those levels. Data transmitted at the remaining levels

are not received by receiver 1, so they cannot be used for secure data transmission

either. Now, suppose a genie provides receiver 1 with the part of the signal sent by

transmitter 1 that is received without any interference at receiver 2, i.e., yN
2a , (xN

1a,x
N
1b).

Then, by using the secrecy constraint for the receiver 2, the rate of user 1 is upper

bounded by I(W1;y
N
1 |yN

2a). When α ≥ 2, the following holds:

I(W1;y
N
2 ) = 0,

or I(W1;y
N
2a,y

N
2b) = 0, where yN

2b = xN
2a ⊕ xN

1c,

or I(W1;y
N
2a) + I(W1;y

N
2b|yN

2a) = 0. (7.3)

When C > 0, by using the above mentioned approach and the relation in (7.1), an

outer bound on the symmetric secrecy rate is derived for α ≥ 2, and is stated as the

following theorem.

Theorem 15. In the very high interference regime, i.e., for α ≥ 2, the symmetric rate of the
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Figure 7.1: (a) SLDIC with m = 2 and n = 6 and (b) SLDIC with m = 3 and n = 5:
Illustration of partitioning of the encoded message/output.

2-user SLDIC with limited-rate transmitter cooperation and secrecy constraints at the receivers

is upper bounded as: Rs ≤ 2C.

Proof. The proof is provided in Appendix D.2.

Remark: Theorem 15 implies that, for α ≥ 2, a rate greater than 2C cannot be achieved,

regardless of m and n. In particular, when C = 0, i.e., without cooperation, it is not

possible to achieve a nonzero rate. The third outer bound, stated as Theorem 16 below,

is applicable in the high interference regime, i.e., 1 < α < 2. The derivation of the outer

bound involves partitioning of the output and the encoded message based on whether

the bits are received with interference at the intended receiver, or causes interference

to the other receiver, as shown in Fig. 7.1b. The outer bound on the symmetric secrecy

rate for the high interference regime is stated in the following theorem.

Theorem 16. In the high interference regime, i.e., for 1 < α < 2, the symmetric rate of the

2-user SLDIC with limited-rate transmitter cooperation and secrecy constraints at the receivers

is upper bounded as: Rs ≤ 2C + 2m− n.
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Proof. The proof is provided in Appendix D.3.

The following theorem gives the outer bound on the symmetric secrecy rate for the

α = 1 case. In this case, both the receivers see the same signal. Hence, it is possible

for receiver 2 decode any message that receiver 1 is able to decode, and vice-versa.

Therefore, a nonzero secrecy rate cannot be achieved, irrespective of C.

Theorem 17. When α = 1, the symmetric rate of the 2-user SLDIC with limited-rate trans-

mitter cooperation and secrecy constraints at the receivers is upper bounded as: Rs = 0.

Proof. The proof is provided in Appendix D.4.

A consolidated expression for the outer bound, obtained by taking minimum of the

outer bounds in Theorems 14-17, is stated as the following corollary. In particular, the

minimum of the outer bounds in Theorems 14 and 16 is taken for the high interference

regime, and the minimum of the outer bounds in Theorems 14 and 15 is taken in the

very high interference regime.

Corollory 1. An outer bound on the symmetric secrecy rate of the SLDIC obtained, by taking

the minimum of the outer bounds derived in this work, is:

Rs

m
≤






2β
3
− 2α

3
+ 1 for α < 1

0 for α = 1

2β
3
+ α

3
for 1 < α < 2, β > α− 3

2
or α ≥ 2, β > α

4

2β − α+ 2 for 3
2
< α < 2, 0 ≤ β < α− 3

2

2β for α ≥ 2, 0 ≤ β ≤ α
4
,

(7.4)

where β , C
m
.
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7.2 Results and discussion

Now, some numerical examples are considered for the deterministic case, to get insights

into the bounds for different values of C, over different interference regimes.

In Fig. 7.2, the outer bound in Theorem 14 is plotted along with the achievable secrecy

rate given in (6.3) for the (m,n) = (5, 4) case. Also plotted is the per user capacity of the

SLDIC with transmitter cooperation, but without the secrecy constraints [20]. It can be

observed that the proposed scheme is optimal, when C = 1 and C ≥ 4. However, it is

not possible to achieve the capacity without the secrecy constraint, when C ≤ 3. When

C ≥ 4, there is no loss in the achievable rate due to the secrecy constraint at receivers.

In Fig. 7.3, the minimum of the outer bounds in Theorems 14 and 15 is plotted as a

function of C, with (m,n) = (3, 6). Also plotted is the achievable secrecy rate in (6.7).

From the plot, it can be observed that a nonzero secrecy rate cannot be achievedwithout

cooperation between the transmitters, i.e., when C = 0. The achievable scheme, which

uses random bits sharing through the cooperative link and interference cancelation, is

optimal for C = 1. It can be observed the secrecy constraint results in a positive rate

penalty, in the sense that it is not possible to achieve the capacity without the secrecy

constraint, for C ≤ 5.

In Figs. 7.4 and 7.5, the outer bound on the symmetric rate is plotted against α for a

given value of C, along with the per user capacity of the SLDIC with transmitter coop-

eration, but without the secrecy constraints [20], and the inner bounds for the SLDIC

with secrecy constraints at the receiver. In order to generate these plots, m is chosen to

be 400 and n is varied from 0 to 4m, and the rates are normalized by m.

In Fig. 7.4, the achievable secrecy rate and the capacity without secrecy constraints [20]
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Figure 7.2: Bounds on the secrecy rate of the SLDIC with m = 5 and n = 4.
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Figure 7.3: Bounds on the secrecy rate of the SLDIC with m = 3 and n = 6.
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Figure 7.4: Normalized rate for the SLDIC with C = 0.
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Figure 7.5: Normalized rate for the SLDIC with C = 50.
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match when 0 ≤ α ≤ 1
2
. Hence, for this regime, it is not required to derive an outer

bound. When 1
2
< α ≤ 2

3
, in the absence of the secrecy constraint, the capacity increases

with increase in the value of α, as the receivers are able to decode some part of the in-

terference. However, with the secrecy constraint, the receiver cannot decode the other

user’s message, and, hence, the achievable rate decreases with α. When 2
3
< α < 1,

the achievable secrecy rate meets the outer bound at some of the points and the fluctu-

ating behavior of the achievable rate is due to the floor-operation involved in the rate

expression. In this regime, the transmission of random bits help to compensate for the

loss in rate, to some extent. At α = 1, there exists a point of discontinuity, as no nonzero

secrecy rate is achievable. Intuitively, one would expect that the achievable secrecy rate

should monotonically decrease with α, because of the reasoning mentioned above. In-

terestingly, the achievable secrecy rate increases with increase in the value of α, when

1 < α ≤ 1.5, although the increase is not monotonic in nature due to the floor operation

involved in the rate expression. The increase in the achievable secrecy rate arises due to

the improved ability of the transmitters to jam the data bits at the unintended receivers

by sending random bits as, α increases. However, when 1.5 < α < 2, the achievable

secrecy rate decreases with increase in the value of α and the outer bound meets the

inner bound. When α ≥ 2, it is no longer possible to achieve a nonzero secrecy rate.

In Fig. 7.5, compared to the C = 0 case, the achievable secrecy rate is higher in all

the interference regimes due to the cooperation, except when α = 1. The cooperation

between the transmitters not only eliminates the interference, but at the same time en-

sures secrecy. Also, the need of transmitting random bits decreases with increase in the

value of C. Interestingly, the proposed scheme can achieve a nonzero secrecy rate even
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when α ≥ 2, and the achievable scheme is optimal in this case.

7.2.1 Further remarks

From the derived bounds, the following observations can be made:

1. When C = 0 and α = 1
2
, the achievable rate result for the SLDIC in Sec. 6.2.1

reduces to the achievable rate result for the SLDIC in [21] with semi-secret con-

straint at each receiver. The semi-secret constraint at each receiver depends on

trusting the other transmitters.

2. When (0 ≤ α ≤ 1
2
), the achievable rate result for the SLDIC in Sec 6.2.1 is found

to match with the achievable result for the SLDIC in [20] (See Figs. 7.4 and 7.5).

As α increases, in [20], the receiver can decode some part of interference and can

achieve higher rate. Here, due to the secrecy constraints, the receivers cannot

decode other users’ messages, and hence, the achievable scheme is completely

different. Also, for some values of α, the achievable scheme proposed in Chapter 6

for the SLDIC requires the exchange of only random bits through the cooperative

link, in contrast with the achievable scheme in [20].

3. When (0 ≤ α ≤ 1
2
), the proposed achievable scheme is found to be optimal for all

values of C in the SLDIC (See Figs. 7.4 and 7.5).

4. When (2
3
< α < 1), data bits are transmitted securely in the higher levels by intelli-

gently choosing the placement of data and random bits, in addition to interference

cancelation.
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5. When 1 < α < 2 and C = 0, it is not possible to ensure secrecy without transmis-

sion of random bits in the case of SLDIC.

6. In all the interference regimes, the proposed scheme always achieves nonzero

secrecy rate with cooperation (i.e., C > 0), except for the α = 1 case.

7. When C = n and α 6= 1, i.e., when the cooperative link is as strong as the strength

of the interference, the proposed scheme achieves the maximum possible rate

of max{m,n} in the case of SLDIC.

8. The outer bound in Theorem 15 for α ≥ 2 helps to establish that sharing ran-

dom bits through the cooperative link can achieve the optimal rate when (0 <

C ≤ ⌈m
2
⌉) in the case of SLDIC. From this outer bound, one can also conclude

that it is not possible to achieve a per-user rate greater than 2C, when α ≥ 2.

However, in the other interference regimes, rates greater than 2C can be achieved

(See Figs. 7.4 and 7.5).

7.3 Conclusions

In this chapter, novel outer bounds on the achievable secrecy rate were derived for

the 2-user SLDIC with transmitter cooperation. The derivation of the outer bound

was based on providing side information to receiver in a carefully chosen manner,

use of the secrecy constraints at the receivers, and partitioning of the encoded mes-

sage/output, depending on the value of α. The usefulness of these outer bounds was

illustrated by comparing them with the achievable secrecy rate derived in Chapter 6.

When 0 < α ≤ 1
2
, the achievable scheme is found to be optimal for all values of C.
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When α ≥ 2, sharing random bits, or data bits, or both, outperforms sharing only data

bits through the cooperative links. The derived outer bounds establish that sharing

random bits through the cooperative link can achieve the optimal rate when α ≥ 2 and

(0 < C ≤ ⌈m
2
⌉). In the next chapter, achievable schemes for the Gaussian symmetric

IC with limited-rate transmitter cooperation and secrecy constraints at the receivers are

presented.
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Inner Bounds on the Secrecy Rate of the

2-User GSIC with Limited-rate

Transmitter Cooperation

As mentioned earlier, the capacity region of the Gaussian IC (GIC) without secrecy

constraints at receiver remains an open problem, even in the K = 2 user case, except

for some special cases like strong/very strong interference regimes [15], [16]. In [12],

the broadcast and IC with independent confidential messages are considered and the

achievable scheme is based on random binning techniques. The work in [6] demon-

strates that with the help of an independent interferer, the secrecy capacity region of

the wiretap channel can be enhanced. Intuitively, although the use of an independent

interferer increases the interference at both the legitimate receiver and the eavesdrop-

per, the benefit from the latter outweighs the rate loss due to the former. Some more

results on the IC under different eavesdropper settings can be found in [36, 37, 43].

The effect of cooperation on secrecy has been explored in [73–76]. In [73], the effects of

user cooperation on the secrecy of multiple access channel with generalized feedback

118
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is analyzed, where the message of each sender needs to be kept secret from each other.

In [74], the effects of user cooperation on the secrecy of BC, where the receivers can

cooperate with each other is considered. The achievable scheme uses a combination

of Marton’s coding scheme for BC and a compress and forward scheme for the relay

channel. Also, outer bounds on the rate-equivocation region are presented. The role of

a relay in ensuring secrecy under different wireless network settings has been studied

in [38–40].

The proposed transmission/coding strategy in the Gaussian setting is inspired by

the schemes proposed for the 2-user SLDIC in Chapter 6. It uses a superposition of

a non-cooperative private codeword and a cooperative private codeword. For the non-

cooperative private part, stochastic encoding is used [32], and for the cooperative pri-

vate part, the cooperative encoding scheme described in Sec. 8.2.1 is used. The code-

words corresponding to the cooperate private part are precoded such that the inter-

ference caused by the cooperative private codeword of the other user is completely

canceled out. This approach is different from the one used in [20], where the interfer-

ence caused by the unwanted codeword is approximately canceled. Further, one of the

users transmits dummy information to enhance the achievable secrecy rate.

8.1 System model

Consider a 2-user GSIC with cooperating transmitters. The signals at the receivers are

modeled as

y1 = hdx1 + hcx2 + z1; y2 = hdx2 + hcx1 + z2, (8.1)
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Tx − 2

Rx − 1

Rx − 2
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Figure 8.1: The 2-user GSIC with transmitter cooperation.

where zj (j = 1, 2) is complex Gaussian, distributed as zj ∼ CN (0, 1). The input signals

are required to satisfy the power constraint: E[|xi|2] ≤ P . Here, hd and hc are the

channel gains of the direct and cross links, respectively. The transmitters cooperate

through a noiseless secure link of finite rate (CG). The parameters m and n used for

the SLDIC are related to the GSIC asm = (⌊logP |hd|2⌋)+, n = (⌊logP |hc|2⌋)+,while the

capacity of the cooperative link is C = ⌊CG⌋.

The transmitter i has a message Wi, which should be decodable at the intended re-

ceiver i, but needs to be kept secret from the other, unintended receiver j, j 6= i. The

notion of weak secrecy is considered for the Gaussian case, in contrast to the perfect

secrecy constraint used in the deterministic case. Also, it is assumed that the transmit-

ters trust each other completely and that they do not deviate from the agreed scheme.

The details of the encoding and decoding scheme can be found for the weak/moderate

interference regime and high/very high interference regime in Secs. 8.2.1 and 8.2.2,
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respectively.

In the following section, achievable schemes for the GSIC are presented.

8.2 GSIC: Achievable schemes

8.2.1 Weak/moderate interference regime (0 ≤ α ≤ 1)

The achievable scheme is based on the approach used in Secs. 6.2.1 and 6.2.2, for the

SLDIC. In the case of the SLDIC, the achievable scheme used a combination of inter-

ference cancelation, transmission of random bits, or both, depending on the value of α

and C. That scheme is extended to the Gaussian setting, as follows.

The message at transmitter i is split into two parts: a non-cooperative private part (wpi)

and a cooperative private part (wcpi). The non-cooperative private message is encoded

using stochastic encoding [32], and the cooperative private part is encoded using co-

operative encoding scheme. For the SLDIC, data bits transmitted at the lower levels

[1 : m−n] are not received at the unintended receiver. Hence, these data bits remain se-

cure. However, there is no one-to-one analogue of this in the GSIC, so the scheme does

not extend directly. In the Gaussian case, for the non-cooperative private part, stochas-

tic encoding is used to ensure secrecy. The transmitter i encodes the non-cooperative

part wpi ∈ Wpi = {1, 2, . . . , 2NRpi} into xN
pi . A stochastic encoder is specified by a condi-

tional probability density fpi(xpi,k|wpi) (i = 1, 2), where xpi ∈ Xpi and wpi ∈ Wpi, and it

satisfies the following condition:

∑

xpi,k∈Xpi

fpi(xpi,k|wpi) = 1, k = 1, 2, . . . , N, (8.2)

where fpi(xpi,k|wpi) is the probability that xpi,k is output by the stochastic encoder, when
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message wpi is to be transmitted.

The cooperative private message wcp1 ∈ Wcp1 = {1, 2, . . . , 2NRcp1} and wcp2 ∈ Wcp2 =

{1, 2, . . . , 2NRcp2} at transmitters 1 and 2 are encoded using cooperative encoding scheme,

as described in the later part of this section. One of the key aspects of the achievable

scheme is the precoding of the cooperative private messages such that the codeword

carrying the cooperative private message is completely canceled at the unintended re-

ceiver. This corresponds to the scheme used for interference cancelation in the case

of SLDIC. This serves two purposes: it cancels interference over the air, and simul-

taneously ensures secrecy. This scheme is termed as cooperative encoding scheme. The

transmitter 2 sends a dummy message along with the cooperative private message and

the non-cooperative private message. Note that stochastic encoding is sufficient to en-

sure secrecy of the non-cooperative private message. However, the additional dummy

message sent by the transmitter 2 can enhance the achievable secrecy rate, depending

on the values of α and C. In this case, both the receivers treat the dummy message as

noise.

Encoding and decoding

For the non-cooperative private part, transmitter i (i = 1, 2) generates 2N(Rpi+R′
pi) i.i.d.

sequences of length N at random according to

P (xN
pi) =

N∏

k=1

P (xpi,k). (8.3)

The 2N(Rpi+R′
pi) codewords in the codebook Cpi are randomly grouped into 2NRpi bins,

with each bin containing 2NR′
pi codewords. Any codeword inCpi is indexed as xN

pi(wpi, w
′
pi)
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for wpi ∈ Wpi and w
′
pi ∈ W ′

pi = {1, 2, . . . , 2NR′
pi}. In order to transmit wpi, transmitter i

selects a w′
pi ∈ W ′

pi randomly and transmits the codeword xN
pj(wpi, w

′
pi).

In order to transmit a dummy message, transmitter 2 generates 2NRd2 i.i.d. sequences

of length N at random according to

P (xN
d2) =

N∏

k=1

P (xd2,k). (8.4)

The 2NRd2 codewords in codebook Cd2 are randomly grouped into 2NR′
d2 bins, with each

bin containing 2NR′′
d2 codewords (and thus Rd2 = R′

d2 + R′′
d2). Any codeword in Cd2

is indexed as xN
d2(w

′
d2, w

′′
d2), where w′

d2 ∈ W ′
d2 = {1, 2, . . . , 2NR′

d2} and w′′
d2 ∈ W ′′

d2 =

{1, 2, . . . , 2NR′′
d2}. During encoding, transmitter 2 selects w′

d2 ∈ W ′
d2 and w′′

d2 ∈ W ′′
d2

independently at random and sends the codeword xN
d2(w

′
d2, w

′′
d2).

For the cooperative private message, the transmitter i (i = 1, 2) generates the cooper-

ative private codeword wN
iz (wcpi) according to

P (wN
iz) =

N∏

k=1

P (wiz,k),where i = 1, 2. (8.5)

Each transmitter communicates its shared message to the other transmitter over the

cooperative links. The cooperative messages at the transmitters are precoded in such

way that the cooperative private messages at the unintended receivers are completely

canceled, as described below:

xcp1 = w1zhd −w2zhc,

xcp2 = w2zhd −w1zhc. (8.6)

Finally, the non-cooperative private codeword and cooperative private codeword are
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superimposed to form the transmit codeword at the transmitter 1 and the non-cooperative

private codeword, cooperative private codeword and the dummy message codeword

are superimposed to form the transmit codeword at the transmitter 2:

xN
1 (wcp1, wcp2, wp1, w

′
p1) = xN

cp1 + xN
p1,

and xN
2 (wcp1, wcp2, wp2, w

′
p2, w

′
d2, w

′′
d2) = xN

cp2 + xN
p2 + xN

d2. (8.7)

This not only eliminates the interference caused by the cooperative private part, but

also ensures secrecy of the cooperative private message. The outputs at the receivers

are:

y1 = u1 + hcxd2 + hcxp1 + z2, y2 = u2 + hdxd2 + hcxp1 + z2. (8.8)

where ui = (h2d − h2c)wiz, i = 1, 2. The quantity σ2
iz (i = 1, 2) corresponds to the variance

of wiz.

For decoding, receiver i looks for a unique message tuple such that (yN
i ,u

N
i (ŵcpi),

xN
pi(ŵpi, ŵ

′
pi)) is jointly typical. Based on the above coding strategy, the following theo-

rem gives the achievable result on the secrecy rate.

Theorem 18. In the weak/moderate interference regime, the following rate is achievable for the

GSIC with limited-rate transmitter cooperation and secrecy constraints at the receivers:

R1 +R′
p1 ≤ I(u1,xp1;y1),

R1 +R′
p1 ≤ I(xp1;y1|u1) + min {CG, I(u1;y1|xp1)} , (8.9)

where R′
p1 = I(xp1;y2|xp2,u2). The achievable secrecy rate for the user 2 can be obtained by
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exchanging the indices 1 and 2 in (8.9).

Proof. The proof involves analyzing the error probability at decoder along with equiv-

ocation computation. One of the novelties in obtaining the achievable scheme lies in

the precoding of the codewords carrying the cooperative private part of the message

(wcpi) which is canceled at the unintended receiver. This simultaneously eliminates in-

terference and ensures secrecy of the cooperate private message. For ensuring secrecy

of the non-cooperative private message, it is required to show that the weak secrecy

constraint is satisfied at the receiver j, i.e., H(Wpi|yN
j ) ≥ N [Rpi − ǫs]. In the equivoca-

tion computation, the main novelty lies in choosing the value of the rate sacrificed in

confusing the unintended receiver (R′
pi) and rate of the dummy message (Rdi) so that

the weak secrecy constraint is satisfied.

Equivocation computation: The equivocation at receiver 2 is bounded as follows.

H(W1|yN
2 ) = H(Wp1,Wcp1|yN

2 ),

= H(Wp1|yN
2 ) +H(Wcp1|yN

2 ,Wp1). (8.10)

First consider the term H(Wcp1|yN
2 ,Wp1). The output at receiver 2 is

y2 = u2 + hdxd2 + hcxp1 + z2. (8.11)

As u1 and u2 are independent of each other, i.e., I(u1;u2) = 0, and wcp1 is chosen inde-

pendent of wp1, the following holds:

H(Wcp1|yN
2 ,Wp1) = H(Wcp1). (8.12)
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Hence, it is only required to show the following:

H(Wp1|yN
2 ) ≥ N [Rp1 − ǫs] . (8.13)

Consider the following:

H(Wp1|yN
2 )

≥ H(Wp1|yN
2 ,x

N
p2,u

N
2 ,W

′′
d2),

(a)
= H(Wp1,y

N
2 |xN

p2,u
N
2 ,W

′′
d2)−H(yN

2 |xN
p2,u

N
2 ,W

′′
d2),

(b)
= H(Wp1,y

N
2 ,x

N
p1,x

N
d2|xN

p2,u
N
2 ,W

′′
d2)−H(xN

p1,x
N
d2|yN

2 ,u
N
2 ,x

N
p2,Wp1,W

′′
d2)

−H(yN
2 |xN

p2,u
N
2 ,W

′′
d2),

= H(xN
p1,x

N
d2|xN

p2,W
′′
d2) +H(Wp1,y

N
2 |xN

p1,x
N
d2,u

N
2 ,x

N
p2,W

′′
d2)−H(xN

p1,x
N
d2|yN

2 ,x
N
p2,Wp1,W

′′
d2)

−H(yN
2 |xN

p2,u
N
2 ,W

′′
d2),

≥ H(xN
p1) +H(xN

d2|W ′′
d2) +H(yN

2 |xN
p1,x

N
d2,u

N
2 ,x

N
p2,W

′′
d2)−H(yN

2 |xN
p2,u

N
2 )

−H(xN
p1,x

N
d2|yN

2 ,u
N
2 ,x

N
p2,Wp1,W

′′
d2),

(c)
= H(xN

p1) +H(xN
d2|W ′′

d2) +H(yN
2 |xN

p1,x
N
d2,u

N
2 ,x

N
p2)−H(yN

2 |xN
p2,u

N
2 )

−H(xN
p1,x

N
d2|yN

2 ,u
N
2 ,x

N
p2,Wp1,W

′′
d2),

= N
[
Rp1 +R′

p1 +R′
d2

]
− I(xN

p1,x
N
d2;y

N
2 |uN

2 ,x
N
p2)−H(xN

p1,x
N
d2|yN

2 ,u
N
2 ,x

N
p2,Wp1,W

′′
d2),

(8.14)

where (a) and (b) are obtained using the relation:

H(Wp1,y
N
2 |xN

p2,u
N
2 ,W

′′
d2) = H(yN

2 |xN
p2,u

N
2 ,W

′′
d2) +H(Wp1|yN

2 ,x
N
p2,u

N
2 ,W

′′
d2) and

H(Wp1,y
N
2 ,x

N
p1,x

N
d2|xN

p2,u
N
2 ,W

′′
d2) = H(Wp1,y

N
2 |xN

p2,u
N
2 ,W

′′
d2)+

H(xN
p1,x

N
d2|yN

2 ,x
N
p2,u

N
2 ,Wp1,W

′′
d2), respectively; and (c) is obtained using the fact that
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W ′′
d2 → (xN

p1,x
N
d2,x

N
p2,u

N
2 ) → yN

2 forms a Markov chain. This can be shown with the help

of a functional dependency graph [77].

Using Lemma 5 in Appendix E.2, it can be shown that

I(xN
p1,x

N
d2;y

N
2 |uN

2 ,x
N
p2) ≤ NI(xp1,xd2;y2|u2,xp2) +Nǫ′. (8.15)

Thus the remaining key step in showing that the condition in (8.13) is satisfied is to

bound the last term in (8.14). To bound this term, consider the joint decoding of W ′
p1

andW ′
d2 at receiver 2 assuming that a genie has givenWp1 andW

′′
d2 as side information

to receiver 2. For a given Wp1 = wp1 and W
′′
d2 = w′′

d2, assume that w′
p1 and w

′
d2 are sent

by transmitters 1 and 2, respectively and receiver 2 knows the sequence yN
2 = yN2 and

uN
2 = uN2 . For a given Wp1 = wp1 and W

′′
d2 = w′′

d2, receiver 2 declares that j and l was

sent if (xN
p1(wp1, j),x

N
d2(l, w

′′
d2),y

N
2 ) is jointly typical and such (j, l) exists and is unique.

Otherwise, an error is declared. Now, define the following event

E1
jl =

{
(xN

p1(wp1, j),x
N
d2(l, w

′′
d2),y

N
2 ) ∈ TN

ǫ (Pxp1,xd2,y2|u2,xp2
)
}
, (8.16)

where TN
ǫ (PXp1Xd2Y2|U2Xp2

) denotes, for given typical sequences u2 and xp2, the set of

jointly typical sequences y1,xp1, and u1 with respect to PXp1Xd2Y2|U2Xp2 . Without loss

of generality, assume that xN
p1(wp1, 1) and xN

d2(1, w
′′
d2) were sent. Then, by the union of

events bound, the following is obtained:

PN
e1 = P

(
E1c

11

⋃
∪j 6=1,l 6=1E

1
jl

)
,

≤ P (E1c

11) +
∑

j 6=1

P (E1
j1) +

∑

l 6=1

P (E1
1l) +

∑

j 6=1,l 6=1

P (E1
jl),
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≤ P (E1c

11) + 2NR′
p12−N [I(xp1;y2|xd2,u2,xp2)−3ǫ] + 2NR′

d22−N [I(xd2;y2|xp1,u2,xp2)−3ǫ]

+ 2N(R
′
p1+R′

d2)2−N [I(xp1,xd2;y2|u2,xp2)−3ǫ]. (8.17)

Hence, the probability of error PN
e1 is arbitrarily small for large N , provided the follow-

ing conditions are satisfied.

R′
P1 ≤ I(xp1;y2|xd2,u2,xp2), R

′
d2 ≤ I(xd2;y2|xp1,u2,xp2),

R′
p1 +R′

d2 ≤ I(xp1,xd2;y2|u2,xp2). (8.18)

When the conditions in (8.18) are satisfied and for sufficiently large N , the following

bound is obtained using Fano’s inequality:

1

N
H(xN

p1,x
N
d2|yN

1 ,u
N
2 ,x

N
p2,Wp1 = wp1,W

′′
d2 = w′′

d2) ≤
1

N
[1 + PN

e1 log 2
N [R′

p1+R′
d2]] ≤ δ1.

(8.19)

Using the above, the last term in (8.14) is bounded as follows:

H(xN
p1,x

N
d2|yN

2 ,u
N
2 ,x

N
p2,Wp1,W

′′
d2)

=
∑

wp1,w
′′
d2

P (wp1, w
′′
d2)H(xN

p1,x
N
d2|yN

2 ,u
N
2 ,x

N
p2,Wp1 = wp1,W

′′
d2 = w′′

d2),

≤ Nδ1. (8.20)

Using (8.15) and (8.20), (8.14) becomes

H(Wp1|yN
2 ) ≥ N

[
Rp1 +R′

p1 +R′
d2 − I(xp1,xd2;y2|u2,xp2)− ǫ1

]
, (8.21)



Chapter 8. 129

where ǫ1 = ǫ′ + δ1. By choosing R′
p1 +R′

d2 = I(xp1,xd2;y2|u2,xp2)− ǫ11, (8.21) becomes

H(Wp1|yN
2 ) ≥ N [Rp1 − ǫs] , where ǫs = ǫ1 + ǫ11. (8.22)

Hence, by choosing R′
p1 = I(xp1;y2|xp2,u2) − ǫ′11 and R

′
d2 = I(xd2;y2|xp1,xp2,u2) − ǫ′′11,

secrecy is ensured for the non-cooperative private message of transmitter 1, and also,

the achievability condition in (8.18) is satisfied.

For receiver 1, also, it is only required to show that the non-cooperative private mes-

sage of transmitter 2 remains secure. To bound the equivocation at receiver 1, consider

the following:

H(Wp2|yN
1 ) ≥ H(Wp2|yN

1 ,x
N
p1,u

N
1 ,W

′
d2). (8.23)

Then, by following similar steps as used in case of receiver 2, it can be shown that

the choice of R′
p2 = I(xp2;y1|xp1,u1) − ǫ′2 and R

′′
d2 = I(xd2;y1|xp1,xp2,u1) − ǫ′′2 , ensures

secrecy for the non-cooperative private message of transmitter 2. This completes the

proof.

Using the achievable rate result in Theorem 18 and time-sharing, the achievable sym-

metric secrecy rate is stated in the following Corollary.

Corollory 2. Using the achievable result in Theorem 18 and time-sharing between transmit-

ters, following symmetric secrecy rate is achievable for the GSIC with limited-rate transmitter

cooperation:

Rs =
1

2
[R∗

i (1) +R∗
i (2)] , (8.24)
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where i = 1, 2 and R∗
i (1) and R

∗
i (2) are the achievable secrecy rate for the transmitter i in the

first and second time slot, respectively, which is obtained by maximizing the rate given in the

following equations:

R1(1)≤




0.5 log

(
1 +

σ2
u+h2

d
Pp1

1+h2
cPd2+h2

cPp2

)
− R′

p1,

0.5 log
(
1 +

h2
d
Pp1

1+h2
cPd2+h2

cPp2

)
+min

{
CG, 0.5 log

(
1 + σ2

u

1+h2
cPd2+h2

cPp2

)}
−R′

p1,

(8.25)

R2(1)≤





0.5 log
(
1 +

σ2
u+h2

d
Pp2

1+h2
d
Pd2+h2

cPp1

)
− R′

p2,

0.5 log
(
1 +

h2
d
Pp2

1+h2
d
Pd2+h2

cPp1

)
+min

{
CG, 0.5 log

(
1 + σ2

u

1+h2
d
Pd2+h2

cPp1

)}
−R′

p2,

(8.26)

where R′
p1 = 0.5 log

(
1 +

h2
cPp1

1+h2
d
Pd2

)
, R′

p2 = 0.5 log
(
1 +

h2
cPp2

1+h2
cPd2

)
, σ2

u , (h2d − h2c)
2σ2

z , σ
2
z ,

θ1
θ1+θ2

P1

h2
d
+h2

c
, Pp1 ,

θ2
θ1+θ2

P1, Pp2 =
η1

η1+η2
P ′, Pd2 =

η2
η1+η2

P ′, P ′ = (P2− (h2d+h
2
c)σ

2
z), Pi , βiP

(i = 1, 2) and 0 ≤ (θi, ηi, βi) ≤ 1. The rate equations for the second time slot can be obtained

by exchanging indices 1 and 2 in (8.25) and (8.26).

Proof. In the first and second time slots, transmitters 1 and 2 send the following encoded

messages:

x1(1) = xcp1(1) + xp1(1), and x2(1) = xcp2(1) + xp2(1) + xd2(1),

x1(2) = xcp1(2) + xp1(2) + xd1(2), and x2(2) = xcp2(2) + xp2(2), (8.27)

where xcpi (i = 1, 2) is as defined in (8.6). In the following, the achievable secrecy rate

and power allocation for different messages are discussed in the case of the first time

slot. Hence, for simplicity, the time index is omitted. The mutual information terms

given in Theorem 18 are evaluated as follows. From Theorem 18, R′
p1 and R′

p2 are set

as 0.5 log
(
1 +

h2
cPp1

1+h2
d
Pd2

)
and 0.5 log(1 +

h2
cPp2

1+h2
cPd2

), respectively. The first equation in (8.9)
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becomes

R1 ≤ 0.5 log

(
1 +

σ2
u + h2dPp1

1 + h2cPd2 + h2cPp2

)
− R′

p1. (8.28)

The second equation in (8.9) becomes

R1 ≤ 0.5 log

(
1 +

h2dPp1

1 + h2cPd2 + h2cPp2

)
+min

{
CG, 0.5 log

(
1 +

σ2
u

1 + h2cPd2 + h2cPp2

)}

−R′
p1. (8.29)

The achievable rate for user 2 becomes

R2 ≤ 0.5 log

(
1 +

σ2
u + h2dPp2

1 + h2dPd2 + h2cPp1

)
− R′

p2, (8.30)

R2 ≤ 0.5 log

(
1 +

h2dPp2

1 + h2dPd2 + h2cPp1

)
+min

{
CG, 0.5 log

(
1 +

σ2
u

1 + h2dPd2 + h2cPp1

)}

−R′
p2. (8.31)

The encoded message at transmitters 1 and 2 are

x1 = hdw1z − hcw2z + xp1, and x2 = hdw2z − hcw1z + xp2 + xd2. (8.32)

To simplify the power allocation, the variance ofw1z andw2z are chosen to be the same,

i.e, σ2
1z = σ2

2z = σ2
z . In order to satisfy the power constraint at the transmitters, the

following conditions need to be satisfied.

(h2d + h2c)σ
2
z + Pp1 ≤ P1 and (h2d + h2c)σ

2
z + Pp2 + Pd2 ≤ P2, (8.33)

where Pi = βiP (i = 1, 2), 0 ≤ βi ≤ 1 and P is the maximum power available at either

transmitter. The power for the non-cooperative private message, cooperative private
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message and dummy message are chosen as follows:

σ2
z =

θ1
θ1 + θ2

P1

h2d + h2c
, Pp1 =

θ2
θ1 + θ2

P1,

Pp2 =
η1

η1 + η2
P ′, Pd2 =

η2
η1 + η2

P ′, and P ′ = (P2 − (h2d + h2c)σ
2
z)

+. (8.34)

where (θi, ηi) ∈ [0, 1]. The parameters θi and ηi act as power splitting parameters for

transmitters 1 and 2, respectively. The parameter βi acts as a power control parameter.

Hence, θi, ηi and βi are chosen such that the rates in (8.28)-(8.31) are maximized, and

the minimum of (8.28) and (8.29) gives the achievable secrecy rate for transmitter 1 i.e.,

R∗
1(1); and the minimum of (8.30) and (8.31) give the achievable secrecy rate for the

transmitter 2 i.e., R∗
2(1). This completes the proof.

8.2.2 High/very high interference regime (α > 1)

The achievable scheme is based on the approach used for the SLDIC in the case of

the high interference regime. The achievable scheme for the SLDIC in Sec. 6.2.4 used

a combination of interference cancelation, relaying of the other user’s data bits, and

transmission of random bits. In the case of the SLDIC, as some of the interfering links

are not present to the intended receiver, the levels corresponding to these links can be

directly used for the other user’s data transmission. But, in the Gaussian setting, it

is not possible to relay the other user’s data directly in this manner. The relationship

between the corresponding achievable schemes for the SLDIC and the GSIC will be

made precise in the following paragraphs.

In the proposed scheme, user 1 sends a non-cooperative private message (wp1) and a
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cooperative private message (wcp1). The other user transmits cooperative private mes-

sage (wcp2) along with a dummy message (wd2). For the SLDIC, the achievable scheme

required transmission of random bits for ensuring secrecy of data bits, in addition to

the data bits that were sent with the help of cooperation. Similarly, for the GSIC, the

proposed scheme requires stochastic encoding and transmission of a dummy message

by the other user, in order to ensure secrecy for the non-cooperative private message

sent by user 1. It is important to note that stochastic encoding alone cannot ensure se-

crecy for the non-cooperative private part of the message. For the cooperative private

part of themessage (wcpi), the coding scheme is the same as that mentioned in Sec. 8.2.1.

The transmission of the dummymessage xd2 by transmitter 2 can be considered as us-

ing another stochastic encoder fd2, which is specified by a probability density fd2(xd2,k),

with xd2,k ∈ Xd2 and
∑

xd2,k∈Xd2

fd2(xd2,k) = 1. The rate Rd2 of the dummy message sent

by transmitter 2 and the rate sacrificed by transmitter 1 in stochastic encoding in order

to confuse the eavesdroppers at receivers 1 and 2, respectively, are chosen such that

the non-cooperative private message sent by transmitter 1 remains secure at receiver 2,

and receiver 1 is able to decode the dummy message. At transmitter 1, the cooperative

private message and the non-cooperative private message are superimposed to form

the transmit codeword (xN
1 ). Finally, at transmitter 2, the cooperative private message

and the dummy information are superimposed to form the transmit codeword (xN
2 ).

In contrast to the achievable scheme for the weak/moderate interference regime, the

dummy message sent by one of the transmitters i is required to be decodable at the

receiver j (i 6= j).
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Encoding and decoding

The encoding of the non-cooperative private message at transmitter 1 and the cooper-

ative private message at both the transmitters is the same as described in Sec. 8.2.1. In

order to transmit the dummy message, transmitter 2 chooses xN
d2(wd2) for wd2 ∈ Wd2.

The codewords transmitted from the two transmitters are given by:

xN
1 (wcp1, wcp2, wp1, w

′
p1) = xN

cp1 + xN
p1, and xN

2 (wcp1, wcp2, wd2) = xN
cp2 + xN

d2, (8.35)

where xcpi (i = 1, 2) is defined in (8.6).

For decoding, receiver 1 looks for a unique message tuple such that (yN
1 ,u

N
1 (ŵcp1),

xN
d2(ŵd2),x

N
p1(ŵp1, ŵ

′
p1)) is jointly typical. Receiver 2 looks for a index ŵcp2 such that

(yN
2 ,u

N
2 (ŵcp2)) is jointly typical.

Based on the above coding strategy, the following theorem gives the achievable result

on the secrecy rate.

Theorem 19. In the high interference regime, the following rate is achievable for the GSIC with

limited-rate transmitter cooperation and secrecy constraints at the receivers:

R1 +R′
p1 ≤ min [I(u1,xp1;y1|xd2), I(xp1;y1|u1,xd2) + min {I(u1;y1|xp1,xd2), CG}] ,

R1 +R′
p1 +Rd2 ≤ min [I(u1,xp1,xd2;y1), I(xp1,xd2;y1|u1) + min {I(u1;y1|xp1,xd2), CG} ,

I(xp1;y1|u1,xd2) + I(u1,xd2;y1|xp1)] ,

R1 +R′
p1 + 2Rd2 ≤ I(xp1,xd2;y1|u1) + I(u1,xd2;y1|xp1),

R2 ≤ min {I(u2;y2), CG} , Rd2 ≤ I(xd2;y1|u1,xp1), (8.36)

where R1 , Rp1 +Rcp1, R2 , Rcp2, R
′
p1 , I(xp1;y2|u2), and Rd2 , I(xd2;y2|xp1,u2).
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Proof. The proof is provided in Appendix E.3.

The achievable symmetric secrecy rate is stated in the following Corollary.

Corollory 3. Using the achievable result in Theorem 19 and time-sharing between transmitters,

the following symmetric secrecy rate is achievable for the GSIC with limited-rate transmitter

cooperation:

Rs =
1

2
[R∗

1(1) +R∗
1(2)] , (8.37)

where R∗
1(1) and R

∗
1(2) are the achievable secrecy rates for transmitter 1 in the first and second

time slots, respectively, which are obtained by maximizing Rs over parameters θi, ηi and βi

(i = 1, 2). The achievable rates for users 1 and 2 in the first time slot are as follows:

R1(1)

≤





min [0.5 log(1 + σ2
u + h2dPp1), 0.5 log(1 + h2dPp1) + min {0.5 log(1 + σ2

u), CG}]− R′
p1,

min [0.5 log(1 + σ2
u + h2dPp1 + h2cPd2), 0.5 log(1 + σ2

u + h2cPd2)+

min {0.5 log(1 + σ2
u), CG} , 0.5 {log(1 + h2dPp1) + log(1 + σ2

u + h2cPd2)}]
−(R′

p1 +Rd2),

0.5 log(1 + h2dPp1 + h2cPd2) + 0.5 log(1 + σ2
u + h2cPd2)− (R′

p1 + 2Rd2)

and R2(1) = min

{
0.5 log

(
1 +

σ2
u

1 + h2dPd2 + h2cPp1

)
, CG

}
, (8.38)

where R′
p1 = 0.5 log

(
1 +

h2
cPp1

1+h2
d
Pd2

)
, Rd2 = 0.5 log(1 + h2dPd2), σ

2
u , (h2d − h2c)

2σ2
z , σ

2
z ,

θ1
θ1+θ2

P1

h2
d
+h2

c
, Pp1 , θ2

θ1+θ2
P1, Pd2 , (P2 − (h2d + h2c)σ

2
z)

+, Pi , βiP and 0 ≤ (θi, βi) ≤ 1. The

achievable rate equation for the second time slot can be obtained by exchanging indices 1 and 2

in (8.38).
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Proof. The proof is provided in Appendix E.4.

8.3 Conclusions

In this chapter, achievable schemes were proposed for the GSIC with limited-rate trans-

mitter cooperation and secrecy constraints at the receivers. The achievable scheme

used a combination of cooperative encoding scheme and stochastic encoding along

with dummy message transmission. However, in the high interference regime, it was

possible to ensure secrecy for the non-cooperative part of the message with the help of

dummymessage transmission. In the next chapter, outer bounds on the secrecy rate for

the GSIC with limited-rate transmitter cooperation are presented. The rates achieved

by the schemes proposed in this chapter are compared with the outer bounds for dif-

ferent values of CG and in different interference regimes.



Chapter 9

Outer Bounds on the Secrecy Rate of the

2-User GSIC with Limited-rate

Transmitter Cooperation

In the previous chapters, the achievable schemes for the SLDIC and GSIC were ob-

tained, along with outer bounds for the SLDIC. In this chapter, using the intuitions

gained from the deterministic model, outer bounds for the GSIC are derived. Before

going into the details of the outer bounds, some of the past results on outer bounds for

various communication models with secrecy constraints are discussed below.

In general, deriving outer bounds on the secrecy rate involves use of Fano’s inequal-

ity along with the secrecy constraints at receivers. The outer bounds and achievable

schemes have given useful insights on the performance limits of the system for various

communication models [6, 12, 36, 43]. In [12], the broadcast and IC with independent

confidential messages are considered. For a special case of the IC, termed as the switch

channel, the outer bound helps to establish the optimality of the proposed scheme.

137
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In [6], outer bounds on the secrecy capacity of the wiretap channel with a helping inter-

ferer are given for both discrete memoryless and Gaussian channels. The outer bounds

derived in [36] helps to establish the optimality of the cooperative encoding scheme

for specific cases, in the case of 2-user IC with an external eavesdropper. In [43], a K-

user Gaussian many-to-one IC is considered and nested-lattice code is used to obtain

achievable secrecy sum-rate. It is shown that under specific cases, the gap between the

outer bound and achievable secrecy sum rate is only a function of the number of users.

The effects of cooperation on secrecy has been studied under different system models

in [38, 39, 73, 74]. In [73], the effects of user cooperation on the secrecy of multiple ac-

cess channel with generalized feedback is analyzed and outer bounds on the achievable

equivocation rates are obtained. Outer bounds on the rate-equivocation region are pro-

posed using auxiliary random variables for cooperative relay broadcast channel in [74].

Also, outer bounds for relay-eavesdropper channel can be found in [38, 39].

In this chapter, three outer bounds are presented on the achievable secrecy rate in The-

orems 20-22. The novelty in deriving these bounds lies in the way the outer bounds are

extended from the deterministic case to the Gaussian case. The derived outer bounds

are compared with achievable results derived in the previous chapter to illustrate the

usefulness of these outer bounds.

9.1 GSIC: Outer bounds

In this section, the outer bounds on the secrecy rate for the GSIC with limited-rate

transmitter cooperation are stated as Theorems 20-22. In the derivation of these outer

bounds, the main difficulty lies in translating the ideas from the SLDIC to the Gaussian
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case.

The outer bound derived in Theorem 14 for the SLDIC partitions the encodedmessage

into two parts: xN
ia (received at receiver j, j 6= i) and xN

ib (not received at receiver j, j 6= i).

However, it is not possible to partition the message in this way for the Gaussian case.

Hence, in the derivation of Theorem 20, sNi = hcx
N
i + zNj (j 6= i) is used as a proxy

for xN
ia. In this section, the following notation is used: SNR , h2dP , INR , h2cP and

ρ , E[x1x2].

Theorem 20. The symmetric rate of the 2-user GSIC with limited-rate transmitter cooperation

and secrecy constraints at the receiver is upper bounded as follows:

Rs ≤ max
0≤|ρ|≤1

1

3

[
2CG + 0.5 log

(
1 + SNR+ INR+ 2ρ

√
SNR INR

)
+ 0.5 log det

(
Σȳ|s̄

)]
,

(9.1)

where Σȳ|s̄ = Σȳ − Σȳ,s̄Σ
−1
s̄ ΣT

ȳ,s̄,

Σȳ =



 1 + SNR+ INR+ 2ρ
√
SNR INR 2

√
SNR INR+ ρ(SNR+ INR)

2
√
SNR INR+ ρ(SNR+ INR) 1 + SNR+ INR+ 2ρ

√
SNR INR



 ,

Σȳ,s̄ =




√
SNR INR+ ρINR INR+ ρ

√
SNR INR

INR+ ρ
√
SNR INR

√
SNR INR+ ρINR



 , and Σs̄ =



 1 + INR ρINR

ρINR 1 + INR



 ,

and det(·) represents the determinant of a matrix.

Proof. The proof is provided in Appendix F.1.

The outer bound on the secrecy rate presented in the following theorem is based on

the idea used in deriving outer bounds in Theorems 15 and 16 for case of the SLDIC.

But, in the Gaussian setting, it is not possible to partition the encoded message as was

done for the SLDIC. For example, in Theorem 15, a part of the output at receiver 2
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which does not contain the signal sent by transmitter 1 is provided as side information

to receiver 1. Hence, the approach used in the derivation of the outer bound in the

case of the SLDIC cannot be directly used for the Gaussian case. To overcome this

problem, for the Gaussian case, first xN
2 is provided as side information to receiver 1;

this eliminates the interference caused by transmitter 2. Then, the receiver 1 is provided

with yN
2 as side-information. The outer bound on the symmetric secrecy rate is stated

in the following theorem.

Theorem 21. The symmetric rate of the 2-user GSIC with limited-rate transmitter cooperation

and secrecy constraints at the receiver is upper bounded as follows:

Rs ≤ max
0≤|ρ|≤1

[
2CG + 0.5 log

(
1 +

SNR+ SNR2(1− ρ2)

1 + SNR+ INR+ 2ρ
√
SNR INR

)]
. (9.2)

Proof. The proof is provided in Appendix F.2.

The outer bound presented in the following theorem is similar to the outer bound

presented in Theorem 17 in the case of the SLDIC. This kind of outer bound exists in

the literature (see, for example, [23]), but for the sake of completeness, it is presented

in the following theorem. Unlike the results in Theorems 20 and 21, this outer bound

does not depend on the capacity of the cooperative link.

Theorem 22. The symmetric rate of the 2-user GSIC with limited-rate transmitter cooperation

and secrecy constraints at the receiver is upper bounded as follows:

Rs ≤ max
0≤|ρ|≤1

0.5 log

[
1 + SNR+ INR+ 2ρ

√
SNR INR− (2

√
SNR INR+ ρ(SNR+ INR))2

1 + SNR+ INR+ 2ρ
√
SNR INR

]
.

(9.3)

Proof. The proof is provided in Appendix F.3.
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Figure 9.1: Comparison of different outer bounds on the achievable secrecy rate for the
GSIC with P = 100 and hd = 1.

9.1.1 Relation between the outer bounds for SLDIC and GSIC

In the following, it is shown that at high SNR and INR, the outer bounds developed for

the Gaussian case (Theorems 20 and 21) are approximately equal to the outer bounds

for the SLDIC, when C = 0.1 In Fig. 9.1, the outer bounds on the achievable secrecy

rate in Theorems 20-22 are compared as a function of α, for CG = 0 and CG = 1, when

P = 100 and hd = 1.

In the following, for ease of presentation, it is assumed that log SNR and log INR are

integers. Recall that, the parameters m and n of the SLDIC are related to the GSIC as

m = (⌊0.5 log SNR⌋)+ and n = (⌊0.5 log INR⌋)+, respectively.

1When C 6= 0, from Fig. 9.1, it appears that the approximate equivalence of the bounds for the GSIC
and SLDIC will still hold.
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Outer bound in Theorem 20

Consider the following bound in the proof of Theorem 20, when C = 0:

N [R1 + 2R2] ≤ h(yN
1 ) + h(yN

1 ,y
N
2 |̃sN1 , s̃N2 )− h(z̃N1 )− h(z̃N2 )− h(zN1 ) +Nǫ′′, (9.4)

≤ h(yN
1 ) + h(yN

1 |̃sN1 ) + h(yN
2 |̃sN2 )− h(z̃N1 )− h(z̃N2 )− h(zN1 ) +Nǫ′′,

or R1 + 2R2 ≤ 0.5

[
log(1 + SNR+ INR) + 2 log

(
1 +

SNR+ INR

1 + INR

)]
,

≈ 0.5[log(SNR+ INR) + 2 log(SNR+ INR)− 2 log INR], (9.5)

where the last equation is obtained for high SNR and INR. Using the above mentioned

definitions ofm and n, (9.5) reduces to:

Rs ≤





1
3
[3m− 2n] for α ≤ 1

n
3

for α > 1.
(9.6)

The above is the same as the outer bound for the SLDIC in Theorem 14, when C = 0.

Outer bound in Theorem 21

When C = 0, the outer bound in Theorem 21 reduces to the following, in the high SNR

and high INR regime:

Rs ≤ 0.5 log

(
1 +

SNR+ SNR2

1 + SNR+ INR

)
,

≈ 0.5
[
log
(
INR+ SNR2

)
− log(SNR+ INR)

]
. (9.7)



Chapter 9. 143

Using the above mentioned definitions of m and n, (9.7) reduces to:

Rs ≤





2m− n for 1 < α < 2

0 for α ≥ 2.
(9.8)

The above is the same as the outer bound for the SLDIC in Theorem 15, when C = 0.

9.2 Discussion and numerical examples

9.2.1 Comparison with existing results

Some observations on how the bounds derived in this work stand in relation to existing

works are as follows:

1. When CG = 0, the system reduces to the 2-user GSIC without cooperation, which

was studied in [12]. The achievable rate result in Theorem 18 and Corollary 2

reduce to the results reported in [12] in this case.

2. When CG = 0, the achievable result in Theorem 19 reduces to the achievable

result in [6, Theorem 3] for the high/very high interference regime (α > 1) for the

wiretap channel with a helping interferer.

3. When the capacity of the cooperative links are sufficiently large, then the GSIC

with transmitter cooperation reduces to a 2-user Gaussian MIMO broadcast chan-

nel (GMBC) with two antennas at transmitter and one antenna at each receiver.

The achievable rate result in Corollaries 2 and 3 are found to be very close to the

achievable rate result in [4, Theorem 1] for the GMBC, as shown in Fig. 9.2.

4. The proposed outer bounds for the GSICwith limited rate transmitter cooperation

in Theorems 20-22 are compared with existing outer bounds for the GSIC with
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Figure 9.2: Achievable secrecy rate for the GSIC with CG sufficiently large, and the
capacity of the GMBC with two transmit antennas and one receive antenna at each re-
ceiver [4]. For the GSIC andGMBC the individual power constraints at each transmitter
are P = 100 and P = 200, respectively. The channel gain to the intended receivers in
the case of the GSIC and GMBC: hd = 1.

secrecy constraints at each receiver [5, 6], when CG = 0, in Fig. 9.3. It can be

observed that the outer bounds derived in this chapter improve over the best

known outer bounds in the literature even in the absence of cooperation (CG = 0).

In the following section, some numerical examples are considered for the Gaussian

cases, to get insights into the bounds for different values of CG, over different interfer-

ence regimes.
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Figure 9.3: Outer bound on the symmetric secrecy rate for the GSIC with CG = 0,
P = 100 and hd = 1. In the legend, MM stands for the outer bound derived in this
work, HY stands for the outer bound on secrecy rate in [5] and TP stands for the outer
bound derived in [6].

9.2.2 Numerical examples in the case of the GSIC

In Fig. 9.4, the achievable result in Corollary 2 in Chapter 8 is plotted against α, for

different values of CG, with two types of power allocations. In the first case, no power

is alloted for transmitting the dummy message. The power allocations for the non-

cooperative private message and cooperative private message are discussed below. For

the SLDIC, in the weak andmoderate interference regimes, the data bits transmitted on

the lower levels [1 : m−n]will not be received at the unintended receiver. For the GSIC,
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this corresponds to transmitting the non-cooperative private message such that it is

received at the noise floor of the unintended receiver. In the existing literature, this type

of power allocation has been used for the private message2 in the Han-Kobayashi (HK)-

scheme [8], and hence, this special case is termed as HKPA (HK-type power allocation)

scheme in this chapter. The remaining power is alloted for transmitting the cooperative

private message. In the second case, the achievable result in Corollary 2, which involves

transmission of a dummy message, is plotted. When CG = 0 and α > 0.4, the scheme

in Corollary 2 outperforms the HKPA scheme. The gain in the achievable rate largely

arises from the transmission of the dummy message. When CG = 1, the gap between

the two schemes decreases, except for the initial part of the weak interference regime.

In Fig. 9.5, the achievable symmetric secrecy rate in Corollaries 2 and 3 are plotted

against α, for CG = 0 and P = 100. Also plotted is the outer bound on the symmetric

rate in the case of GSIC without the secrecy constraint at receiver [20]. While plotting

the outer bound with secrecy constraint, the minimum of the outer bounds derived

in this work and outer bounds in [5, 6, 20] is taken for the CG = 0 case. When (0 ≤

α ≤ 1), the achievable secrecy rate decreases with increase in the value α. At α = 1,

the achievable secrecy rate becomes zero. But, with further increase in the value of α,

it remains an increasing function of α till around α = 1.5, after which the achievable

secrecy rate starts to decrease with α. This is due to the fact that the rate of the dummy

message sent by one of the users, say user j, is chosen such that it can be decoded and

subtracted from the received signal at the receiver i (i 6= j), but the other receiver j is

not able to decode the dummy message. As the value of α increases beyond 1.5, the

2In [8], there is no secrecy constraint at the receiver and the terminology private arises due to the fact
that this part of the message is not required to be decodable at the unintended receiver.
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Figure 9.4: Comparison of achievable schemes in Corollary 2 with different power al-
locations: P = 100 and hd = 1.

dummy message does not help much in ensuring secrecy of the non-cooperate private

message at receiver j. Also, there is a positive penalty in the achievable rate due to

the secrecy constraint at receivers (compared to the rate achievable without the secrecy

constraints), except in the weak interference regime.

In Fig. 9.6, the achievable symmetric secrecy rate is plotted against α for P = 100

and CG = 1, along with the outer bounds. For plotting the outer bound with secrecy

constraints, the minimumof the outer bounds derived in this work and the outer bound

in [20] is used. When α > 1, the achievable secrecy rate initially increases, and later
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decreases with α. Finally, the achievable secrecy rate saturates when (α ≥ 2), and this

is due to the fact that it is no longer possible to transmit any non-cooperative private

message and the gain in the achievable secrecy rate as compared to CG = 0 case is

due to cooperation only. Hence, when CG > 0, the proposed scheme achieves nonzero

secrecy rate in all the interference regimes except for the α = 1 case. Hence, as the

value of CG increases, it is required to assign lower powers for transmitting the dummy

message and the non-cooperative private message. By assigning lower power to the

non- cooperative private message, the penalty in the achievable secrecy rate due to

stochastic encoding also decreases. In the following example, no power is allocated for

transmitting the non-cooperative private message and the dummy message.

In Fig. 9.7, the achievable symmetric secrecy rate is plotted against α for P = 100

and CG = 10, along with the outer bounds. Here, the achievable secrecy rate and outer

bounds are very close to each other. In this case, both the users transmit cooperative

private messages only.

9.2.3 Further remarks

1. In the Gaussian case, there is a gap between the inner bound and outer bound. In

the Gaussian case, it was not possible to send the non-cooperative private mes-

sage directly as in the case of SLDIC, and some part of the rate is sacrificed in

confusing the unintended receiver.

2. In contrast to the deterministic case, only one of the users transmits dummy in-

formation in the Gaussian case. The transmission of dummy information helps

to improve the achievable secrecy rate as compared to the case where no dummy
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Figure 9.5: Secrecy rate in the case of the GSIC with P = 100 and CG = 0.

information is sent.

3. When 1 < α < 2 and CG = 0, it is not possible to ensure secrecy without trans-

mission of dummy information in the case of GSIC.

4. In all the interference regimes, the proposed scheme always achieves nonzero

secrecy rate with cooperation (i.e., CG > 0) in the case of GSIC, except for the

α = 1 case.

5. In the GSIC, when CG ≈ ⌈0.5 log (1 + h2cP )⌉, the achievable secrecy rate is very

close to the outer bound (See Fig. 9.7).
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Figure 9.6: Secrecy rate in the case of the GSIC with P = 100 and CG = 1.

9.3 Conclusions

In this chapter, the outer bounds on the achievable secrecy rate were presented for

the GSIC with limited-rate transmitter cooperation and secrecy constraints at receivers.

The outer bounds were compared with the achievable results derived in the previous

chapter, which gave interesting insights into the performance limits of the system. It

was found that when CG ≈ ⌈0.5 log (1 + h2cP )⌉, the achievable secrecy rate is very close

to the outer bound. Also, it was observed that, with cooperation, a nonzero secrecy rate

can be achieved in almost all cases, except for the α = 1 case. These results demonstrate
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Figure 9.7: Secrecy rate in the case of the GSIC with P = 100 and CG = 10.

that having a secure communication link in a network can significantly improve the

achievable secrecy rate.
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Conclusions and Future Work

In this thesis, the IC was studied under different settings with and without secrecy

constraints, from an information theoretic perspective. The main contributions of this

thesis are summarized below.

10.1 Summary of contributions

Chapter 2 proposed an inner bound on the achievable GDOF for the K-user MIMO

GSIC, where each transmitter and receiver hadM and N antennas, respectively. Inner

bounds on the GDOF were derived using a combination of ZF-receiving, treating in-

terference as noise, IA and HK-scheme. The HK-scheme was extended to K-users as a

function ofM , N and α. The relative performance of these schemes were characterized

from an achievable GDOF perspective, when K > N
M

(N
M

is an integer) and K ≥ N
M

+ 4.

Also, the interplay between the HK-scheme and IA was explored.

In Chapter 3, three outer bounds on the sum rate were derived for the K-user MIMO

GIC. One of the boundswas derived using the notion of cooperation and providing side

information, and the other two were based on providing carefully selected partial side

152
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information at the receivers. The novelty of the derivation lies in the careful selection of

the side information, which results in the negative differential entropy terms containing

signal components canceling out from the sum rate bounds. The outer bounds were

simplified for the MIMO GSIC to obtain corresponding outer bounds on the GDOF as

a function of K,M , N , and α. The overall outer bound on the GDOF was obtained by

taking the minimum of the three bounds and the interference-free GDOF of min(M,N)

per user.

In Chapter 4, the proposed achievable schemes in Chapter 2 were compared with the

outer bounds on the per user GDOF derived in the previous chapter. The comparison of

the bounds led to interesting insights on the performance limits of the multiuser MIMO

GIC and the relative efficacy of different techniques for interference management. For

example, it was found that when M = N , treating interference as noise performs as

well as the HK-scheme and outperforms both IA and ZF-receiving. However, when

N > M , treating interference as noise is always suboptimal. The maximum of the HK-

scheme and IA outperforms both treating interference as noise and ZF-receiving, for all

values of K, M , N , and α. When N
M
< K ≤ N

M
+ 1, the HK-scheme was found to be

GDOF optimal for all values of α. Treating interference as noise was found to be GDOF

optimal in the weak interference case (0 ≤ α ≤ 1
2
) whenM = N for anyK.

Chapter 5 explored the construction of precoding and receive filtering matrices for

IA for constant or quasi-static MIMO channels with finite symbol extensions. A new

metric was proposed to measure the performance of IA algorithms, that captured the

possible loss in signal dimension while designing the precoders. Inspired by the metric,

two algorithms for finding the precoding and receive filtering matrices for IA were
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proposed. The first algorithm for IA was based on aligning some of the interfering

signal sub-streams at each receiver. Also, the necessary conditions for solution to exist

was derived. As the first algorithm required global channel knowledge at each node,

a distributed algorithm was proposed which required limited channel knowledge and

also preserved the dimensionality of the desired signal at the intended receiver. It was

shown that the algorithms outperform existing algorithms achieving IA using linear

precoding at the transmitters.

In Chapters 2-5, the issue of ensuring security of individual messages arising due to

the broadcast nature of the wireless medium was not taken into consideration. In the

remaining chapters of the thesis, the 2-user ICwith security constraints was considered,

where individual messages need to be kept secret from the unintended receiver. Also,

the transmitters were allowed to cooperate through a noiseless link of finite rate.

In Chapters 6-9, the role of limited-rate transmitter cooperation in facilitating se-

cure communication over the 2-user IC was explored. In Chapter 6, novel achievable

schemes were proposed for the 2-user SLDICwith transmitter cooperation. The achiev-

able scheme used a combination of interference cancelation, random bits transmission,

relaying of the other user’s data bits, and time sharing, depending on the values of α

and C. Several useful insights were obtained from the proposed achievable schemes.

For example, it was found that when 2
3
< α < 1 and 1 < α < 2, random bit trans-

mission can enhance the achievable secrecy rate. However, when α ≥ 2 and C = 0,

it was not possible to ensure secrecy. But, with cooperation (i.e., when C > 0), it was

possible to achieve a nonzero secrecy rate and the proposed scheme which involved

sharing random bits, or data bits, or both, outperformed sharing only data bits through
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the cooperative links. Finally, when 0 < α ≤ 1
2
, the achievable scheme was found to be

optimal for all values of C.

Chapter 7 proposed novel outer bounds on the achievable secrecy rate for the 2-user

SLDIC with transmitter cooperation. The derivation of the outer bounds was based

on providing side information to receiver in a carefully chosen manner, the use of the

secrecy constraints at the receivers, and partitioning of the encoded message/output.

The outer bounds were comparedwith the achievable schemes obtained in the previous

chapter. These bounds gave useful insights on the performance limits of the system

under security constraints. For example, it was observed that, there is a nonzero loss in

the achievable rate relative to the capacity without the secrecy constraint when C < n,

except when 0 ≤ α ≤ 1
2
. Also, the derived outer bounds helped to establish that sharing

random bits through the cooperative link can achieve the optimal rate when α ≥ 2 and

(0 < C ≤ ⌈m
2
⌉).

In Chapter 8, achievable schemes were proposed for the GSIC with limited-rate trans-

mitter cooperation and secrecy constraints at receivers, using the intuitions obtained

from study of SLDIC in Chapter 6. The achievable scheme used a combination of

stochastic encoding and cooperative encoding scheme, along with dummy informa-

tion transmission. The achievable scheme for the high interference regime required the

dummy information sent by one of the users to be decodable at the other receiver, in

contrast to the achievable scheme for the weak/moderate interference regime.

In Chapter 9, the outer bounds on the achievable secrecy rate were presented for the

GSICwith limited-rate transmitter cooperation and secrecy constraints at receivers. The

novelty in deriving these bounds was in the translation of the ideas obtained from the
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deterministic case to the Gaussian case. The outer bounds were compared with the

achievable results derived in the previous chapter, which gave useful insights on the

performance limits of the system. It was found that when CG ≈ ⌈0.5 log (1 + h2cP )⌉, the

achievable secrecy rate is very close to the outer bound.Also, it was observed that, with

cooperation, a nonzero secrecy rate can be achieved in almost all cases, except for the

α = 1 case.

10.2 Future work

Future work could study the following issues:

1. The achievable results and outer bounds on GDOF in Chapter 2 and 3, respec-

tively, assume knowledge of global CSI at transmitters and receivers. It will be

interesting to conduct more detailed analysis on the effect of imperfect or out-

dated CSI on the achievable GDOF or the outer bound on the GDOF for K-user

MIMO GIC. Some initial results related to this can be found in [78, 79].

2. In Chapter 6-9, it is assumed that transmitters trust each other completely and

they do not deviate from the agreed-upon scheme. When there is lack of trust

between the transmitters, it would be pertinent to analyze the IC under a robust

notion of secrecy, where user imust preserve its secrecy even when user j (j 6= i)

deviates from the agreed-upon scheme.

3. Also, studying the IC channel with rate-limited transmitter or receiver coopera-

tion in the presence of an external eavesdroppers from an information theoretic

view is an interesting direction for future work.
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Appendix for Chapter 2

A.1 Proof of Theorem 2

When interference is treated as noise, the rate achieved by user j for the MIMOGSIC is

bounded as

Rj ≥ log

∣∣∣∣∣IN + ρHjjPjH
H
jj + ρα

K∑

i=1, i 6=j

HjiPiH
H
ji

∣∣∣∣∣− log

∣∣∣∣∣IN + ρα
K∑

i=1, i 6=j

HjiPiH
H
ji

∣∣∣∣∣ ,

=
[
r +min

{
r
′

, N − r
}
α− αr

′
]
log ρ+O(1), (A.1)

where r , rank(HjjPjH
H
jj) and r

′
, rank(

K∑

i=1, i 6=j

HjiPiH
H
ji). The last equation is ob-

tained using Lemma 4 in [42]. As the input covariance matrix Pi is full rank, (A.1)

becomes:

Rj ≥ [M +min {min {(K − 1)M,N} , N −M}α −min {(K − 1)M,N}α] log ρ+O(1).

(A.2)

When N
M
< K ≤ N

M
+ 1, N −M ≤ (K − 1)M ≤ N , and hence, (A.2) becomes

Rj ≥ [M + (N −M)α− (K − 1)Mα] log ρ+O(1). (A.3)
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Thus, the per user GDOF that can be achieved in this case is

d(α) ≥M + (N −KM)α. (A.4)

WhenK > N
M

+ 1,min {(K − 1)M,N} = N , and hence, (A.2) becomes

Rj ≥ [M +min {N,N −M}α−Nα] log ρ+O(1). (A.5)

The achievable per user GDOF in this case is d(α) ≥ M(1 − α). Combining this with

(A.4) results in Theorem 2.

A.2 Proof of Theorem 3

Due to the symmetry of the problem, it is sufficient to derive the GDOF achieved by any

particular user, say user 1. Consider a user subset S ⊆ {2, . . . , K}, and let S ′ , S ∪ {1},

i.e., S is a subset of users excluding user 1, while S ′ always includes user 1. The number

of users in the set S is denoted by |S| ≤ K − 1 and number of users in S ′ is |S|+ 1. The

following two cases are considered.

When (N
M
< K ≤ N

M
+ 1)

Now, using the MAC channel formed at the receiver of user 1with the signals from the

user set S, the achievable sum rate is bounded as:

∑

j∈S

Rj ≤ log |IN + ρα
∑

j∈S

H1jPjH
H
1j| = min {|S|M,N}α log ρ+O(1),

or Rj ≤Mα log ρ+O(1). (A.6)
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To get the last equation above, note that |S|max = K − 1. Since N
M

< K ≤ N
M

+ 1,

this implies min {|S|M,N} = |S|M . Similarly, using the MAC channel formed at the

receiver of user 1 with signals from the user set S ′, the achievable sum rate is bounded

as:

∑

j∈S′

Rj ≤ log |IN + ρH11P1H
H
11 + ρα

∑

j∈S

H1jPjH
H
1j|,

= [|S|Mα +min {M,N − |S|M}] log ρ+O(1). (A.7)

Again, Lemma 4 in [42] is used to obtain the last equation above.

Now, whenmin {M,N − |S|M} = N −|S|M , sinceK ≤ N
M

+1, the condition becomes

N
M

≤ 1 + |S| ≤ N
M

+ 1 and (A.7) reduces to the following form:

Rj ≤
|S|M(α− 1) +N

1 + |S| log ρ+O(1). (A.8)

The right hand side above is minimized when |S| = |S|max = K − 1; and recall that

K ≤ N
M

+ 1. Hence, (A.8) becomes

Rj ≤
(K − 1)M(α− 1) +N

K
log ρ+O(1). (A.9)

Whenmin {M,N − |S|M} =M , 1 + |S| ≤ N
M
, and (A.7) becomes:

Rj ≤
|S|α+ 1

|S|+ 1
M log ρ+O(1). (A.10)

The term in the right hand side of the above equation is minimized when |S| = 0 and
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this results in following equation:

Rj ≤M log ρ+O(1). (A.11)

The achievable rate is obtained by taking the minimum of (A.6), (A.9) and (A.11). It can

be observed that (A.6) becomes superfluous given (A.11). Finally, taking the minimum

of (A.9) and (A.11) results in case 1 of Theorem 3.

When (K > N
M

+ 1)

Now, using the MAC channel formed at the receiver of user 1with the signals from the

user set S, the achievable sum rate is bounded as:

∑

j∈S

Rj ≤ log |IN + ρα
∑

j∈S

H1jPjH
H
1j| = min {|S|M,N}α log ρ+O(1). (A.12)

If min {|S|M,N} = |S|M , then the above equation simplifies to:

Rj ≤Mα log ρ+O(1). (A.13)

If min {|S|M,N} = N , then (A.12) simplifies to:

Rj ≤
Nα

|S| log ρ+O(1), where |S| ≤ K − 1. (A.14)
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Similarly, using the MAC channel formed at the receiver of user 1with the signals from

the user set S ′, the achievable sum rate is bounded as:

∑
j∈S′ Rj ≤ log |IN + ρH11P1H

H
11 + ρα

∑

j∈S

H1jPjH
H
1j|,

= [min{|S|M,N}α+min{M,N −min(|S|M,N)}] log ρ+O(1).(A.15)

Again, Lemma 4 in [42] is used to obtain the last equation above. The above equation

is simplified under the following cases.

Case a): Whenmin{|S|M,N} = |S|M , (A.15) becomes:

∑

j∈S′

Rj ≤ |S|Mα log ρ+min{M,N − |S|M} log ρ+O(1), (A.16)

Whenmin{M,N − |S|M} = N − |S|M , then it results in the condition N
M

− 1 ≤ |S| ≤ N
M

and (A.16) becomes:

Rj ≤
|S|M(α− 1) +N

1 + |S| log ρ+O(1). (A.17)

The value of |S| which minimizes the RHS of the above equation is discussed in the

later part of the proof. When min{M,N − |S|M} = M , it results in the condition |S| ≤
N
M

− 1 < N
M

and (A.16) becomes

Rj ≤
|S|α+ 1

|S|+ 1
M log ρ+O(1). (A.18)

The right hand side in the above equation is minimized when |S| = 0. This results in

Rj ≤M log ρ+O(1). (A.19)



Appendix A. 162

Case b: Whenmin {|S|M,N} = N , (A.15) reduces to:

Rj ≤
Nα

|S|+ 1
log ρ+O(1), (A.20)

Above equation is minimized when |S| = K − 1 and (A.20) becomes:

Rj ≤
Nα

K
log ρ+O(1). (A.21)

Finally, taking minimum of (A.13), (A.14), (A.17), (A.19) and (A.21) the achievable

GDOF is obtained as follows. Given (A.19), the equation in (A.13) becomes superfluous

as α > 1. Similarly, given (A.21), the equation in (A.14) is redundant. Also, (A.17) is

redundant given (A.19) and (A.21) as explained below, when N
M

is an integer. There

are two possible values of |S| which satisfies the condition: N
M

− 1 ≤ |S| ≤ N
M
. When

|S| = N
M

− 1, (A.17) reduces to following form:

Rj ≤
(
N
M

− 1
)
M(α − 1) +N

N
M

log ρ+O(1). (A.22)

It is not difficult to observe that given (A.19), (A.22) is redundant. When |S| = N
M
, (A.17)

becomes

Rj ≤
Nα

N
M

+ 1
log ρ+O(1). (A.23)

As K > N
M

+ 1, given (A.21), the rate in (A.23) becomes superfluous. When N
M

is not

an integer, then with some algebraic manipulations, it can be shown that (A.17) is re-

dundant given (A.21). Finally by taking minimum of (A.19) and (A.21) results in the

second case of Theorem 3. This completes the proof.
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A.3 Proof of Theorem 4

First, the rate obtained due to the private part of the message is obtained. As the pri-

vate message is decoded last, the rate of the private message is obtained by treating

all remaining users’ private messages as noise. Due to symmetry of the problem, it is

sufficient to consider only one particular user. The rate achieved by the private part is

Rp,j ≤ log

∣∣∣∣∣∣
IN +

(
IN +

K∑

j=1, j 6=i

HjiPiH
H
ji

)−1

ρ1−αHjjPjH
H
jj

∣∣∣∣∣∣
,

=M(1− α) log ρ+O(1). (A.24)

For obtaining the rate due to the common part of the message, the following two cases

are considered. In both the cases, different subsets of users are considered, as in Ap-

pendix A.2. Consider the set S
′ ⊆ {1, 2, . . . , K}, where user 1 is always included in the

subset. Since common messages need to be decodable at every receiver, user 1 should

be able to decode the other users’ common messages as well as its own common mes-

sage. While decoding the common message, it should treat all other users’ private

messages as well as its own private message as noise.

When (N
M
< K ≤ N

M
+ 1)

The common messages form a MAC channel at Receiver 1. The achievable rate due to

the signals from S
′
is:

∑

j∈S′

Rc,j≤ log |IN + (IN +
∑

j∈S

H1jPjH
H
1j + ρ(1−α)H11P1H

H
11)

−1
∑

j∈S′

Pc,jH1jPjH
H
1j|.(A.25)
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Here, Pc,j , ρα − 1when j 6= 1 and Pc,j , ρ− ρ(1−α) when j = 1. Now, (A.25) becomes:

∑

j∈S′

Rc,j ≤ log |IN +
∑

j∈S

H1jPjH
H
1j + ρ(1−α)H11P1H

H
11 +

(
ρ− ρ(1−α)

)
H11P1H

H
11

+ (ρα − 1)
∑

j∈S

H1jPjH
H
1j | − log

∣∣IN + ρ(1−α)H11P1H
H
11

∣∣ ,

= log |IN + ρH11P1H
H
11 + ρα

∑

j∈S

H1jPjH
H
1j |−log

∣∣IN+ρ(1−α)H11P1H
H
11

∣∣ +O(1),

= [Mα +min {|S|M,N −M}α] log ρ+O(1). (A.26)

Equation (A.26) is obtained using Lemma 4 in [42] and |S|M ≤ (K − 1)M ≤ N . The

above equation is simplified under the following cases.

Case a: Whenmin {|S|M,N −M} = N −M , we have N ≤ (1 + |S|)M . Since N
M
< K ≤

N
M

+ 1 and |S| ≤ K − 1, the inequality can only be satisfied for |S| = K − 1, and hence

(A.26) becomes:

Rc,j ≤
Nα

K
log ρ+O(1). (A.27)

Case b: When min {|S|M,N −M} = |S|M , we have (1 + |S|)M ≤ N . This condition is

satisfied when |S| < K − 1, and (A.26) simplifies to

Rc,j ≤Mα log ρ+O(1). (A.28)

Now consider the user subset S ⊆ {2, . . . , K}. A MAC channel is formed at Receiver 1

due to the signals from users in S. The achievable sum rate in this case is:

∑

j∈S

Rc,j ≤ log |IN + (IN +
∑

j∈S

H1jPjH
H
1j + ρ(1−α)H11P1H

H
11)

−1(ρα − 1)
∑

j∈S

H1jPjH
H
1j |,

= [|S|Mα +min {M,N − |S|M} (1− α)−M(1 − α)] log ρ+O(1), (A.29)
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where, to obtain the last equation above, Lemma 4 in [42] and the inequality α ≥ (1−α)

was used. Equation (A.29) is simplified under the following cases:

Case b(i): Whenmin {M,N − |S|M} = N − |S|M , then N − |S|M ≤M . This condition

is satisfied when |S| = K − 1, and (A.29) reduces to:

Rc,j ≤
1

K − 1
[M {α (2K − 1)−K}+N(1− α)] log ρ+O(1). (A.30)

Case b(ii): When min {M,N − |S|M} = M , it results in (1 + |S|)M ≤ N . Under this

condition, (A.29) reduces to

Rc,j ≤Mα log ρ+O(1). (A.31)

The achievable rate is obtained by taking the minimum of (A.27), (A.28), (A.30) and

(A.31). As N < KM , (A.28) and (A.31) become superfluous given (A.27). The achiev-

able GDOF by the common part of the message is thus given by

dc(α) ≥ min

{
Nα

K
,

1

K − 1
[M {α (2K − 1)−K}+N(1− α)]

}
. (A.32)

From (A.24), one obtains dp(α) ≥ M(1 − α). Adding this and (A.32), the total GDOF

achievable by the private part and the common part together is obtained, resulting in

the first case of the right hand side in (2.9). This completes the proof for the first case of

Theorem 4.
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When (K > N
M

+ 1)

The achievable rate due to the signals from S
′
is:

∑

j∈S′

Rc,j ≤ log |IN + ρH11P1H
H
11 + ρα

∑

j∈S

H1jPjH
H
1j | − log

∣∣IN + ρ1−αH11P1H
H
11

∣∣+O(1),

= [M +min {min {N, |S|M} , N −M}α−M(1 − α)] log ρ+O(1). (A.33)

The above equation is obtained using Lemma 4 in [42]. It can be simplified under the

following cases.

Case a: When min{N, |S|M} = N , then N
M

≤ |S| and the maximum value of |S| which

satisfies this condition isK − 1. Under this condition, (A.33) becomes:

Rc,j ≤
Nα

K
log ρ+O(1). (A.34)

Case b: When min{N, |S|M} = |S|M , then |S| ≤ N
M
. Under this condition, (A.33)

becomes:

∑

j∈S′

Rc,j ≤M log ρ+min {|S|M,N −M}α log ρ−M(1− α) log ρ+O(1). (A.35)

Whenmin {|S|M,N −M} = N −M , then N
M

≤ |S|+ 1. The achievable rate becomes

Rc,j ≤
Nα

1 + |S| log ρ+O(1). (A.36)

The above equation is minimized by taking largest integer value of |S| which satisfies

the condition: N
M

≤ |S|+ 1 ≤ N
M

+ 1.
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Whenmin {|S|M,N −M} = |S|M , then |S| < 1 + |S| ≤ N
M

and (A.35) becomes:

Rc,j ≤Mα log ρ+O(1). (A.37)

Now consider the user set S ⊆ {2, 3, . . . , K}. As this forms aMAC channel at receiver 1,

from (A.29), the following rate equation is obtained:

∑

j∈S

Rc,j ≤ log |IN + ρα
∑

j∈S

H1jPjH
H
1j + ρ1−αH11P1H

H
11| − log |IN + ρ1−αH11P1H

H
11|,

= [min {N, |S|M}α +min {M,N −min (N, |S|M)} (1− α)−M(1− α)] log ρ

+O(1), (A.38)

where the above uses the fact that α > 1 − α in the moderate interference regime. The

above equation is simplified under the following cases.

Case a: When min {N, |S|M} = |S|M , then |S| ≤ N
M
. Under this condition, (A.38)

becomes

∑

j∈S

Rc,j ≤ [|S|Mα +min {M,N − |S|M} (1− α)−M(1 − α)] log ρ+O(1). (A.39)

Above equation is further simplified as follows. Whenmin {M,N − |S|M} = N−|S|M ,

then N
M

− 1 ≤ |S| ≤ N
M

and (A.39) becomes:

Rc,j ≤M(2α− 1) log ρ+
(N −M)(1 − α)

|S| log ρ+O(1). (A.40)

The above equation is required to beminimized by taking largest possible integer value

of |S|, which also satisfies N
M

− 1 ≤ |S| ≤ N
M
. To simplify the analysis, consider N

M
is

an integer. When N
M

is not an integer, it is straightforward to see that the arguments to
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follow remain valid, as ⌊N
M
⌋ < N

M
. Hence, (A.40) is minimized by taking |S| = N

M
and

(A.40) becomes:

Rc,j ≤M(2α− 1) log ρ+
(N −M)(1 − α)

N
M

log ρ+O(1). (A.41)

Whenmin {M,N − |S|M} =M , then |S| ≤ N
M

− 1 < N
M

and (A.39) becomes:

Rc,j ≤Mα log ρ+O(1). (A.42)

Case b: Whenmin {N, |S|M} = N , then N
M

≤ |S|. Under this condition, (A.38) becomes:

Rc,j ≤
Nα −M(1 − α)

|S| log ρ+O(1). (A.43)

The above equation is minimized when |S| = K − 1 and (A.43) becomes:

Rc,j ≤
Nα −M(1 − α)

K − 1
log ρ+O(1). (A.44)

The achievable rate by the common part whenK > N
M
+1 of the message is obtained by

taking minimum of (A.34), (A.36), (A.37), (A.41), (A.42) and (A.44). It can be observed

that (A.37) and (A.42) are redundant given (A.34) as N < KM . As K > N
M

+ 1, (A.41)

is redundant given (A.44). Also, (A.36) is redundant given (A.34). Now the achievable

GDOF obtained by the common part of the message is:

dc(α) ≥ min

{
Nα

K
,
Nα−M(1− α)

K − 1

}
. (A.45)

From (A.24), one obtains dp(α) ≥ M(1 − α). Adding this and (A.45), the total GDOF

achievable by the private part and the common part together is obtained, resulting in
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the second case of the right hand side in (2.9). This completes the proof for the second

case of Theorem 4.

A.4 Proof of Theorem 5

The GDOF achieved by the private part is the same as in the moderate interference case:

dp(α) ≥M(1 − α). (A.46)

To obtain the rate for the common part of the message, the same procedure is followed

as described in the moderate interference case. The following two cases are considered:

When
(
N
M
< K ≤ N

M
+ 1
)

In order to obtain the rate for the common part, consider the MAC channel formed at

Receiver 1 due to the users in S ⊆ {2, . . . , K}. The sum rate constraint leads to

∑

j∈S

Rc,j ≤ log |IN + ρα
∑

j∈S

H1jPjH
H
1j + ρ(1−α)H11P1H

H
11| − log |IN + ρ(1−α)H11P1H

H
11|,

= min {|S|M,N −M}α log ρ+O(1). (A.47)

When min {|S|M,N −M} = N −M , then N ≤ (1 + |S|)M . This implies |S| = K − 1,

and (A.47) becomes:

Rc,j ≤
N −M

K − 1
α log ρ+O(1). (A.48)
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When min {|S|M,N −M} = |S|M , then (1 + |S|)M ≤ N . This condition results when

|S| < K − 1, and hence, (A.47) reduces to:

Rc,j ≤Mα log ρ+O(1). (A.49)

Now consider the user set S
′
= S ∪ {1}, where user 1 is always included. The sum rate

constraint for the common part of the message is given by:

∑

j∈S′

Rc,j ≤ log

∣∣∣∣∣IN + ρH11P1H
H
11 + ρα

∑

j∈S

H1jPjH
H
1j

∣∣∣∣∣− log
∣∣IN + ρ(1−α)H11P1H

H
11

∣∣ +O(1),

= [Mα +min {min {N, |S|M} , N −M}α] log ρ+O(1). (A.50)

AsK ≤ N
M

+ 1, we have (K − 1)M ≤ N or |S|M ≤ N , and (A.50) further simplifies to

∑

j∈S′

Rc,j ≤ [Mα +min {|S|M,N −M}α] log ρ+O(1). (A.51)

It can be seen that (A.26) and (A.51) are the same, and hence, the above can be simplified

as in (A.26). Whenmin {|S|M,N −M} = N −M , (A.51) becomes

Rc,j ≤
Nα

K
log ρ+O(1). (A.52)

Whenmin {|S|M,N −M} = |S|M , (A.51) becomes

Rc,j ≤Mα log ρ+O(1). (A.53)

The rate achievable by the common part of the message is obtained by taking the min-

imum of (A.48), (A.49), (A.52) and (A.53). With some algebraic manipulation, it can be
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shown that given (A.48), all the remaining equations become superfluous. The achiev-

able GDOF due to the common part of the message is thus given by

dc(α) ≥
N −M

K − 1
α. (A.54)

The per user GDOF achievable in this case is obtained by adding (A.46) and (A.54),

resulting in the expression given by (2.10).

When
(
K > N

M
+ 1
)

As in the previous case, first consider the MAC channel formed at Receiver 1, due to

the users in S ⊆ {2, . . . , K}. The sum rate constraint in this case becomes:

∑

j∈S

Rc,j ≤ min {min {N, |S|M} , N −M}α log ρ+O(1). (A.55)

When min {N, |S|M} = N , then N ≤ |S|M . Under this condition and for |S| = K − 1,

(A.55) reduces to:

Rc,j ≤
N −M

K − 1
α log ρ+O(1). (A.56)

Whenmin {N, |S|M} = |S|M , then |S| ≤ N
M
, and (A.55) becomes:

∑

j∈S

Rc,j ≤ min {|S|M,N −M}α log ρ+O(1). (A.57)

When min {|S|M,N −M} = N −M , then N ≤ (1 + |S|)M . Under this condition and

for |S| = K − 1, (A.55) becomes

Rc,j ≤
N −M

K − 1
α log ρ+O(1). (A.58)
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Whenmin {|S|M,N −M} = |S|M , then (1 + |S|)M ≤ N , and (A.55) becomes

Rc,j ≤Mα log ρ+O(1). (A.59)

Now consider the user set S
′
= S ∪ {1}, where user 1 is always included. By following

the same procedure as in the previous case, the following equation similar to (A.50) is

obtained

∑

j∈S′

Rc,j ≤Mα log ρ+min {min {N, |S|M} , N −M}α log ρ+O(1). (A.60)

Whenmin {N, |S|M} = |S|M , then following equation is obtained:

∑

j∈S′

Rc,j ≤Mα log ρ+min {|S|M,N −M}α log ρ+O(1). (A.61)

By using the same procedure as in the previous case, above equation is further simpli-

fied and the following rate constraints are obtained under the following conditions.

When N
M

− 1 ≤ |S| ≤ N
M
, then (A.61) becomes

Rc,j ≤
Nα

1 + |S| log ρ+O(1). (A.62)

The above equation is minimized when |S| = N
M

(assume N
M

is an integer) and (A.62)

becomes:

Rc,j ≤
Nα

1 + N
M

log ρ+O(1). (A.63)
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When |S| < 1 + |S| ≤ N
M
, (A.61) reduces to:

Rc,j ≤Mα log ρ+O(1). (A.64)

When N −M ≤ |S|M , using |S| = K − 1, (A.61) becomes

Rc,j ≤
Nα

K
log ρ+O(1). (A.65)

Whenmin {N, |S|M} = N , thenN ≤ |S|M . Under this condition, for |S| = K−1, (A.60)

becomes

Rc,j ≤
Nα

K
log ρ+O(1). (A.66)

Finally, the achievable rate by common part of the message is obtained by taking min-

imum of (A.56), (A.58), (A.59), (A.63), (A.64), (A.65) and (A.66). Given (A.65), (A.63)

becomes redundant asK > N
M

+1. It is not difficult to see that the above results remain

same, even if N
M

is not an integer. Given (A.56) and (A.58), (A.59), (A.65) and (A.66)

become redundant. Finally, the GDOF achievable by the common part of the message

is:

dc(α) ≥
N −M

K − 1
α. (A.67)

The per user GDOF achievable in this case is obtained by adding (A.46) and (A.67),

resulting in the expression given by (2.10).
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A.5 Proof of Theorem 6

Following two cases are considered.

When
(
N
M
< K ≤ N

M
+ 1
)
: In this case, the HK-scheme achieves the GDOF given by

(2.6). The HK-scheme achieves the interference free GDOF provided

α ≥ M(2K − 1)−N

M(K − 1)
. (A.68)

Hence, (2.6) can also be expressed as (2.11) in the statement of the theorem. Comparing

(2.11) with (2.4), it is easy to see that the HK-scheme outperforms ZF-receiving for all

α ≥ 1. The HK-scheme also outperforms treating interference as noise.

When
(
K > N

M
+ 1
)
: In this case, from Theorem 3, the HK-scheme achieves a per user

GDOF given by (2.6). Comparing the HK-scheme with IA, it is easy to show that the

former outperforms the latter for α > KM
N+M

. Hence, we obtain (2.12) in the statement

of the theorem. Also, the HK-scheme always outperforms ZF-receiving and treating

interference as noise. This completes the proof.

A.6 Proof of Theorem 7

The following two cases are considered in this regime.

When
(
N
M
< K ≤ N

M
+ 1
)
: In this case, from Theorem 4, the per user GDOF achievable

by the HK-scheme is

dHK(α) =





M(1− α) + 1

K−1
[M {α(2K − 1)−K}+N(1− α)] for 1

2
≤ α ≤ K

2K−1

M(1− α) + Nα
K

for K
2K−1

≤ α ≤ 1.

(A.69)
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It can be shown that the HK-scheme performs better than treating interference as noise

and ZF-receiving, with their performance coinciding at α = 1. In this case, IA is not

applicable.

When
(
K > N

M
+ 1
)
: In this case, the HK-scheme as well as IA perform better than ZF-

receiving and treating interference as noise and at α = 1, the HK-scheme coincides with

ZF-receiving. In this regime, the achievable per user GDOF in Theorem 4 simplifies to

dHK(α) =





M(1− α) + Nα−M(1−α)
K−1

for 1
2
≤ α ≤ KM

N+KM

M(1− α) + Nα
K

for KM
N+KM

< α ≤ 1.
(A.70)

When 1
2
≤ α ≤ KM

N+KM
, the HK-scheme outperforms IA for

α [N −M(K − 2)] ≥M

[
N −M(K − 2)

M +N

]
. (A.71)

When N −M(K − 2) ≥ 0, the following condition on α is obtained:

α ≥ M

M +N
, (A.72)

which is satisfied for all α in the moderate interference regime and hence the HK-

scheme always performs better than IA.

When N −M(K − 2) < 0, then following condition is obtained:

α <
M

M +N
≤ 1

2
. (A.73)

In this case, it is not possible to find an αwhich satisfies the above condition, and hence,

IA always outperforms the HK-scheme.
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When KM
N+KM

< α ≤ 1, from (A.70), the HK-scheme outperforms IA when

α ≤ KM2

(M +N)(KM −N)
. (A.74)

From (A.72), (A.73) and (A.74), the following conditions are obtained.

1. When N −M(K − 2) ≥ 0 i.e., K < 2 + N
M
, then we have following conditions:

(a) When 1
2
≤ α ≤ KM

N+KM
, the HK-scheme performs better than IA and it achieves

a per user GDOF of

d(α) ≥M(1 − α) +
Nα−M(1 − α)

K − 1
. (A.75)

(b) When KM
N+KM

< α ≤ KM2

(M+N)(KM−N)
, the HK-scheme outperforms IA and

achieves a per user GDOF of

d(α) ≥M(1− α) +
Nα

K
. (A.76)

(c) When KM2

(M+N)(KM−N)
< α ≤ 1, IA performs the best and the following per

user GDOF is achievable:

d(α) ≥ MN

M +N
. (A.77)

2. WhenN −M(K−2) < 0, i.e.,K > 2+ N
M
, IA performs better than the HK-scheme

for 1
2
≤ α ≤ 1, and the following per user GDOF is achievable:

d(α) ≥ NM

N +M
. (A.78)

This completes the proof.
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A.7 Proof of Theorem 8

WhenK > N
M
+1, from (2.10) and (2.5), it can be observed that the HK-scheme performs

better than treating interference as noise. The per user GDOF achievable by the HK-

scheme is

dHK(α) =M +
1

K − 1
(N −KM)α. (A.79)

When N
M
< K ≤ N

M
+ 1, from (2.10) and (2.5), it can be observed that the HK-scheme

again performs better than treating interference as noise in this case, since 1
K−1

(N −

KM)α > (N −KM)α. Now, the HK-scheme outperforms IA whenever

α >
M2

M(N +M)− N2−M2

K−1

. (A.80)

Since α < 1
2
, the right hand side is less than 1

2
, which requires

K > 2 +
N

M
. (A.81)

Thus, whenK > 2+ N
M

and (A.80) is satisfied, the HK-scheme performs better than IA.

Comparing the HK-scheme with ZF-receiving, it is easy to show that the HK-scheme

outperforms ZF-receiving for α ≤ 1
2
. The two schemes coincide at α = 1

2
, when K = 2.

To summarize, whenK > 2+ N
M
, the per user GDOF that can be achieved in the weak

interference regime is:

d(α) ≥





M(1 − α) + 1
K−1

(N −M)α for 0 ≤ α ≤ M2

M(N+M)−N2−M2

K−1

NM
N+M

for M2

M(N+M)−N2−M2

K−1

< α ≤ 1
2
.

(A.82)

When K ≤ 2 + N
M
, the HK-scheme outperforms the other schemes and the per user
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GDOF achievable by this scheme is as given in (2.10). This completes the proof.

A.8 Proof of Theorem 9

First, recall that the maximum of the achievable GDOF from the HK-scheme and IA

outperforms the achievable GDOF from treating interference as noise or ZF-receiving

for all values of M , N , K and α. Hence, the above result follows from carefully com-

paring the achievable GDOF from the HK-scheme and IA in the weak, moderate, and

strong interference cases.

Weak interference case (0 ≤ α ≤ 1
2
): Comparing the achievable GDOF using IA, given

by (2.3), with that achievable using the HK-scheme, given by (2.10), it follows that the

HK-scheme is active when

α ≤ (K − 1)

(R + 1)
(
K − N

M

) . (A.83)

When R = 1, since N
M

≥ 1, it is clear that the right hand side above exceeds 1
2
. Hence,

the HK-scheme is active throughout the weak interference case. When R > 1, the right

hand side above is ≤ 1
2
, provided

K ≥ N

M
+ 2

N
M

− 1

R− 1
. (A.84)

Notice that, in the last term above, the denominator is the floor of the numerator.

Hence, the ratio is bounded above by 2. Hence, for K ≥ N
M

+ 4, the HK-scheme is

active for the initial part of the weak interference case. IA is active in the later part

of the weak interference case. This completes the proof in the weak interference case.

Moderate interference case (1
2
≤ α ≤ 1): Consider the achievable GDOF using the
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HK-scheme given by (2.9) for K > N
M

+ 1. The expression can be equivalently written

as

d(α) ≥





M(1 − α) + Nα+M(1−α)
K−1

for 1
2
≤ α < 1

1+ N
MK

M(1 − α) + Nα
K

for 1
1+ N

MK

≤ α < 1.
(A.85)

Consider the first case above, i.e., when 1
2
≤ α < 1

1+ N
MK

. It can be shown that the above

achievable GDOF exceeds that achievable by IA, provided

α ≤ (K − 1)− (R + 1)

(R + 1)
(
(K − 1)−

(
N
M

+ 1
)) . (A.86)

Now, the right hand side above is smaller than 1
1+ N

MK

when K ≥ N
M

+ 2 N
RM

, which is

always satisfied when K ≥ N
M

+ 4. When R = 1, it is immediate to see that the right

hand side above exceeds 1
2
, and hence, the HK-scheme is active for an initial portion of

1
2
≤ α < 1

1+ N
MK

. When R > 1, the right hand side above is smaller than 1
2
and hence IA

is active throughout this range of α, provided

K ≥ N

M
+ 2

N
M

− 1

R− 1
, (A.87)

which is satisfied when K ≥ N
M

+ 4.

Next, consider the second case above, i.e., when 1
1+ N

MK

≤ α < 1. In this case, the HK-

scheme outperforms IA when

α ≤ 1

(R + 1)
(
1− N

MK

) . (A.88)

When the right hand side above is≤ 1
1+ N

MK

, IA is active throughout this range of α. This

leads to

K ≥ N

M
+ 2

N

RM
, (A.89)



Appendix A. 180

which is satisfied when K ≥ N
M

+ 4. This completes the proof in the moderate interfer-

ence case.

Strong interference case (α ≥ 1): In this case, from (2.6), the achievable GDOF from

the HK-scheme when K ≥ N
M

+ 4 is given by

d(α) ≥





Nα
K

for 1 ≤ α < MK
N

M for α ≥ MK
N
.

(A.90)

Comparing the above achievable GDOF using IA given by (2.3), one obtains

d(α) ≥






RM
R+1

for 1 ≤ α ≤ MKR
N(R+1)

Nα
K

for MKR
N(R+1)

< α ≤ MK
N

M for α > MK
N
.

(A.91)

The statements of the theorem are now easily obtained by consolidating the above re-

sults.
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Appendix for Chapter 3

B.1 Proof of Theorem 10

Given the stated assumptions on user cooperation and the genie-provided side infor-

mation, the system model becomes:

y1 = H11x1 +H12x2 + z1, and y2 = H22x2 + z2, (B.1)

where

y1 ,
[
yT
1 , · · · ,yT

L1

]T
, y2 ,

[
yT
L1+1, · · · ,yT

L

]T
,x1 ,

[
xT
1 , · · · ,xT

L1

]T
,

x2 ,
[
xT
L1+1, · · · ,xT

L

]T
, z1 ,

[
zT1 , · · · , zTL1

]T
, and z2 ,

[
zTL1+1, · · · , zTL

]T
.

Here,Hij are stacked channel matrices, as defined in the statement of the theorem. The

above system model is equivalent to a 2-user MIMO Z-GIC with the two transmitters

having L1M and L2M antennas and the two receivers having L1N and L2N antennas.

The outer bound derived for this modified system is clearly an outer bound for the

K-user MIMO GIC. By using Fano’s inequality, the sum rate of the modified system is

181
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upper bounded as:

n
L∑

i=1

Ri − nǫn
(a)

≤ I (xn
1 ;y

n
1 ) + I (xn

2 ;y
n
2 , s

n) ,

or
L∑

i=1

Ri

(b)

≤ h (y∗
1)− h (z1) + h (y∗

2|s∗)− h (z2) , (B.2)

where (a) is due to the genie giving side information to receiver 2 and where, sn ,

H12x
n
2 + zn1 ; and (b) follows from the Lemma 2 in [80]. In the above equation, the su-

perscript ∗ indicates that the inputs are i.i.d. Gaussian i.e., x̄∗
i ∼ CN(0,Pi) and the

quantities s∗,y∗
1 and y∗

2 are the signals obtained due to Gaussian inputs, and h(zj) =

LjN log(πe), j = 1, 2. Each term in (B.2) is simplified as follows:

h (y∗
1)=log

∣∣∣πe
[
IL1N+H11P1H

H

11+H12P2H
H

12

]∣∣∣ , (B.3)

h (y∗
2|s∗) = log

∣∣πeΣy∗
2|s

∗

∣∣ , (B.4)

where

Σy∗
2|s

∗ , E
[
y∗
2y

∗H
2

]
− E

[
y∗
2s

∗H
]
E
[
s∗s∗H

]−1
E
[
s∗y∗H

2

]
,

= IL2N +H22P
1/2

2

{
IL2M +P

1/2

2 H
H

12H12P
1/2

2

}−1

P
1/2

2 H
H

22. (B.5)

In the above, (B.5) is obtained using theWoodbury matrix identity [81]. The conditional

differential entropy in (B.4) thus reduces to:

h (y∗
2|s∗) = log

∣∣∣∣πe
[
IL2N +H22P

1/2

2

{
IL2M +P

1/2

2 H
H

12H12P
1/2

2

}−1

P
1/2

2 H
H

22

]∣∣∣∣ . (B.6)

From (B.3) and (B.6), the sum rate bound in (B.2) reduces to (3.2), which concludes the

proof.
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B.2 Proof of Lemma 1

In the symmetric case, with a slight abuse of notation, the systemmodel in (B.1) reduces

to

y1 =
√
ρH11x1 +

√
ραH12x2 + z1, and y2 =

√
ρH22x2 + z2. (B.7)

Under the symmetric assumption, the sum rate in (3.2) in Theorem 10 is bounded as

follows:

L∑

i=1

Ri≤ log
∣∣∣IL1N+ρH11H

H

11+ρ
αH12H

H

12

∣∣∣ + log

∣∣∣∣IL2N + ρH22

{
IL2M + ραH

H

12H12

}−1

H
H

22

∣∣∣∣ .

(B.8)

Equation (B.8) is obtained using Lemma 6 in [82] and the fact that log | · | is monotoni-

cally increasing on the cone of positive definite matrices. Consider the following term

in (B.8):

IL2N + ρH22

{
IL2M + ραH

H

12H12

}−1

H
H

22

(a)
= IL2N + ρH22

{
IL2M + ραU12Σ12U

H

12

}−1

H
H

22,

= IL2N + ρH̃22

{
IL2M + ραΣ12

}−1
H̃H

22, where H̃22 , H22U12,

(b)
= IL2N + ρ

[
H̃

(a)
22 H̃

(b)
22

]


 (Ir + ραΣr)
−1

0

0 IL2M−r




[
H̃

(a)
22 H̃

(b)
22

]H
,

= IL2N + ρH̃
(a)
22 (Ir + ραΣr)

−1
H̃

(a)H
22 + ρH̃

(b)
22 IL2M−rH̃

(b)H
22 , (B.9)

where (a) is obtained by taking eigen value decomposition (EVD) of H
H

12H12, U12 ∈

C
L2M×L2M ; in (b) Σr contains the nonzero singular values of H

H

12H12 and 0L2M−r is a

zero matrix of dimension (L2M − r)× (L2M − r), where r , min{L2M,L1N} and H̃22
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is partitioned into two sub-matrices H̃(a)
22 and H̃

(b)
22 of dimensions L2N × r and L2N ×

(L2M − r), respectively. Substituting (B.9) in (B.8), one obtains the following outer

bound on the sum rate:

L∑

i=1

Ri ≤ log
∣∣∣IL1N + ρH11H

H

11 + ραH12H
H

12

∣∣∣

+ log |IL2N +ρ1−αH̃
(a)
22 Σ

−1
r H̃

(a)H
22 + ρH̃

(b)
22 IL2M−rH̃

(b)H
22

∣∣∣ +O(1). (B.10)

The above bound holds at high SNR, and is further simplified depending on the values

ofM , N and α.

Case 1 (M ≤ N and 0 ≤ α ≤ 1): Using Lemma 4 in [42], the outer bound in (B.10)

becomes

L∑

i=1

Ri≤
[
r11 +min{r12, L1N − r11}α + r

(b)
22 +min{r(a)22 , L2N − r

(b)
22 }(1− α)

]
log ρ+O(1),

(B.11)

where rij , rank(Hij), r
(a)
22 , rank(H̃

(a)
22 ) and r

(b)
22 , rank(H̃

(b)
22 ). As the channel coeffi-

cients are drawn from a continuous distribution such as the Gaussian distribution, the

channel matrices are full rank with probability one. Hence, the outer bound in (B.11)

reduces to the following form:

L∑

i=1

Ri ≤ [L1M +min {r, L1N − L1M}α + Lr +min {r, L2N − Lr} (1− α)] log ρ+O(1),
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where r , min{L2M,L1N} and Lr , L2M − r. Hence, the sum GDOF of the L users is

upper bounded as

di1 + . . .+ diL ≤ L1M +min {r, L1(N −M)}α+ Lr +min {r, L2N − Lr} (1− α).

(B.12)

Note that L users can be chosen among K-users in
(
K
L

)
different ways, and any given

user appears in
(
K−1
L−1

)
of these ways. By adding all inequalities like (B.12) and dividing

by K, the following upper bound on the per user GDOF is obtained:

d(α) ≤ 1

L
[L1M +min {r, L1(N −M)}α + Lr +min {r, L2N − Lr} (1− α)] . (B.13)

Taking the minimum of (B.13) over all possible values of L1 and L2 results in Case 1 of

Lemma 1.

Case 2 (M ≤ N and α > 1): Hence, the outer bound in (B.10) is simplified to following

form using Lemma 4 in [42]:

L∑

i=1

Ri ≤ rα log ρ+min {L1M,L1N − r} log ρ+ (L2M − r) log ρ+O(1). (B.14)

By following the same steps as in the previous case, the per user GDOF is upper

bounded as given below:

d(α) ≤ 1

L
[rα+min {L1M,L1N − r}+ (L2M − r)] . (B.15)

By taking minimum of (B.15) over all possible values of L1 and L2 results in Case 2 of

Lemma 1.

Case 3 (M > N and 0 ≤ α ≤ 1): WhenM > N and 0 ≤ α ≤ 1, the sum rate in (B.10)
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reduces to following form by using Lemma 4 in [42]:

L∑

i=1

Ri ≤ L1N log ρ+min {L2N,L2M − r} log ρ+

min {min {L2N, r} , L2N −min {L2N,L2M − r}} (1− α) log ρ+O(1). (B.16)

Following the same steps as in Case 1, the per user GDOF is upper bounded as given

below by using (B.16):

d(α) ≤ 1

L
[L1N +min {L2N,L2M − r}

+min {min {L2N, r} , L2N −min {L2N,L2M − r}} (1− α)] . (B.17)

By taking minimum of (B.17) over all possible values of L1 and L2 results in Case 3 of

Lemma 1.

Case 4 (M > N and α ≥ 1):

Under this condition the outer bound in (B.10) is simplified to following form by using

Lemma 4 in [42]:

L∑

i=1

Ri ≤ rα log ρ+min {L1N,L1N − r} log ρ+min {L2N,L2M − r} log ρ+O(1),

= rα log ρ+ (L1N − r) log ρ+min {L2N,L2M − r} log ρ+O(1). (B.18)

Following the same steps as in case 1, the per user GDOF is upper bounded as:

d(α) ≤ 1

L
[L1N + r(α− 1) + min {L2N,L2M − r}] . (B.19)

Taking minimum of (B.19) over all possible values of L1 and L2 results in Case 4 of

Lemma 1. This completes the proof of Lemma 1.
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B.3 Proof of Theorem 11

Define the quantity sj,B ,
∑

i∈B

Hjixi + zj, where B ⊆ {1, 2, . . . , K} is a subset of the

K-users. The rate of the first user is upper bounded as follows:

nR1

(a)

≤ I(xn
1 ;y

n
1 , s

n
2,1) + nǫn,

(b)
= h(sn2,1)− h(zn2 ) + h(yn

1 |sn2,1)− h(yn
1 |sn2,1,xn

1 ) + nǫn,

= h(sn2,1)− h(zn2 ) + h(yn
1 |sn2,1)− h(yn

1 |xn
1 ) + nǫn,

(c)

≤ h(sn2,1)−h(zn2)+h(yn
1 |sn2,1)− h(yn

1 |{xn
i }Ki=1,i 6=2) + nǫn,

= h(sn2,1)− h(zn2 ) + h(yn
1 |sn2,1)− h(sn1,2) + nǫn, (B.20)

where (a) is due to the genie giving side information to receiver 1; (b) follows from the

chain rule of mutual information, and (c) follows by using the fact that the differential

entropy cannot increase by additional conditioning to provide xn
i , i = 1, . . . , K, i 6= 2, to

receiver 1. Given {xn
i }Ki=1,i 6=2, the remaining uncertainty in yn

1 is due to that in xn
1 and

zn1 , and it is simply given by h(sn1,2).

The rate of the Kth user is upper bounded by giving side information of the form

sK−1,K to its receiver and using similar arguments as in the case of the first user, to get

nRK ≤ h(snK−1,K)− h(znK−1) + h(yn
K |snK−1,K)− h(snK,K−1) + nǫn. (B.21)

The rates of users i = 2, 3, . . . , K − 1 are upper bounded as

nRi ≤ I(xn
i ;y

n
i , s

n
i−1,i) + nǫn,

= h(sni−1,i)− h(zni−1)+h(y
n
i |sni−1,i)− h(yn

i |sni−1,i,x
n
i ) + nǫn,
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≤ h(sni−1,i)− h(zni−1) + h(yn
i |sni−1,i)− h(sni,i+1) + nǫn. (B.22)

Another way to upper bound the rates of users i = 2, 3, . . . , K − 1 is by providing si+1,i

as side information. This results in

nRi ≤ h(sni+1,i)− h(zni+1) + h(yn
i |sni+1,i)− h(sni,i−1) + nǫn. (B.23)

Summing the inequalities in (B.20), (B.21), (B.22) and (B.23), and using Lemma 2 in [80] ,

the sum rate is bounded as follows:

Rs ≤
K−1∑

i=1

h(y∗
i |s∗i+1,i) +

K∑

i=2

h(y∗
i |s∗i−1,i)− h(z1)− 2

K−1∑

i=2

h(zi)− h(zK), (B.24)

where Rs , R1 + 2
K−1∑

i=2

Ri +RK . The conditional differential entropy terms in (B.24) are

simplified as follows:

h(y∗
i |s∗i+1,i) = log

∣∣∣πeΣy∗
i |s

∗
i+1,i

∣∣∣ , (B.25)

where

Σy∗
i |s

∗
i+1,i

, E
[
y∗
iy

∗H
i

]
−E

[
y∗
i s

∗H
i+1,i

]
E
[
s∗i+1,is

∗H
i+1,i

]−1
E
[
s∗i+1,iy

∗H
i

]
. (B.26)

The individual terms in Σy∗
i |s

∗
i+1,i

are obtained as

E
[
y∗
iy

∗H
i

]
= INi

+HiiPiH
H
ii +

K∑

j=1, j 6=i

HijPjH
H
ij ,

E
[
y∗
i s

∗H
i+1,i

]
= HiiPiH

H
i+1,i,

and E
[
s∗i+1,is

∗H
i+1,i

]
= INi

+Hi+1,iPiH
H
i+1,i. (B.27)
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Using theWoodburymatrix identity [81] to simplifyΣy∗
i |s

∗
i+1,i

, and substituting in (B.25),

one obtains

h(y∗
i |s∗i+1,i) = log

∣∣∣∣∣πe
[
INi

+
K∑

j=1, j 6=i

φi,j +ψi,i+1

]∣∣∣∣∣ . (B.28)

In a similar manner, it can be shown that

h(y∗
i |s∗i−1,i) = log

∣∣∣∣∣πe
[
INi

+
K∑

j=1, j 6=i

φi,j +ψi,i−1

]∣∣∣∣∣ . (B.29)

In the above equations, φi,j and ψi,j are as defined in the statement of the Theorem.

Finally, the sum rate is upper bounded using (B.28) and (B.29) in (B.24) to get (3.3),

which completes the proof.

B.4 Proof of Lemma 2

The following two cases are considered to simplify the outer bound stated in Theo-

rem 11.

Case 1 (M ≤ N): For the symmetric case, applying Lemma 6 in [82] and simplifying

(3.3) for high SNR, the outer bound of Theorem 11 becomes

Rs ≤
K−1∑

i=1

log

∣∣∣∣∣IN + ρα
K∑

j=1, j 6=i

HijH
H
ij + ρ(1−α)Hii

(
HH

i+1,iHi+1,i

)−1
HH

ii

∣∣∣∣∣

+
K∑

i=2

log

∣∣∣∣∣IN + ρα
K∑

j=1, j 6=i

HijH
H
ij + ρ(1−α)Hii

(
HH

i−1,iHi−1,i

)−1
HH

ii

∣∣∣∣∣+O(1). (B.30)

Weak Interference Case (0 ≤ α ≤ 1

2
): Using Lemma 4 in [42] and with r

′
as defined in the

statement the Lemma, (B.30) leads to the following upper bound on the per user GDOF

d(α) ≤M(1− α) + min{r′

, N −M}α. (B.31)



Appendix B. 190

Moderate Interference Case
(
1
2
≤ α ≤ 1

)
: Using Lemma 4 in [42] and with r

′
as defined

in the statement the Lemma, (B.30) leads to the following upper bound on the per user

GDOF

d(α) ≤ r
′

α +min
{
M,N − r

′
}
(1− α). (B.32)

High Interference Case (α ≥ 1): Using Lemma 4 in [42] and with r
′
as defined in the

statement the Lemma, (B.30) leads to the following upper bound on the per user GDOF

d(α) ≤ min {N, (K − 1)M}α. (B.33)

As the per user GDOF in this case exceeds the interference free GDOF, this bound is not

helpful for high interference regime.

Case 2 (M > N): By employing a procedure similar to that used to obtain (B.10), one

can simplify (B.30) to get

Rs ≤
K−1∑

i=1

log

∣∣∣∣∣IN + ρα
K∑

j=1, j 6=i

HijH
H
ij + ρ(1−α)H̃

(a)
ii

(
Σi+1,i

N

)−1
H̃

(a)H
ii + ρH̃

(b)
ii IM−NH̃

(b)H
ii

∣∣∣∣∣

+

K∑

i=2

log

∣∣∣∣∣IN + ρα
K∑

j=1, j 6=i

HijH
H
ij + ρ(1−α)H̃

(a)
ii

(
Σi−1,i

N

)−1
H̃

(a)H
ii +ρH̃

(b)
ii IM−NH̃

(b)H
ii

∣∣∣∣∣+O(1),

(B.34)

where H̃ii , HiiUij and Σj,i
N contains N nonzero singular values of HH

ijHij , and H̃ii

is partitioned into submatrices H̃
(a)
ii and H̃

(b)
ii of dimension N × N and N × (M − N),

respectively.
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Weak Interference Case (0 ≤ α ≤ 1

2
): Consider a specific i in (B.34):

log

∣∣∣∣∣IN + ρα
K∑

j=1, j 6=i

HijH
H
ij + ρ(1−α)H̃

(a)
ii

(
Σi+1,i

N

)−1
H̃

(a)H
ii + ρH̃

(b)
ii IM−NH̃

(b)H
ii

∣∣∣∣∣

= [min{N,M−N}+(N−min {N,M−N}) (1− α)] log ρ+O(1), (B.35)

The above equation is obtained by using Lemma 5 in [42]. Thus, from (B.34) and (B.35),

the per user GDOF is upper bounded as

d(α) ≤ N(1 − α) + min {N,M −N}α. (B.36)

Moderate Interference Case
(
1
2
≤ α ≤ 1

)
: Consider a specific i in (B.34):

log

∣∣∣∣∣IN + ρα
K∑

j=1, j 6=i

HijH
H
ij + ρ1−αH̃

(a)
ii

(
Σi+1,i

N

)−1
H̃

(a)H
ii + ρH̃

(b)
ii IM−NH̃

(b)H
ii

∣∣∣∣∣

= min {N,M −N} log ρ+min {N,N −min {N,M −N}}α log ρ+O(1). (B.37)

The above equation is obtained by using Lemma 5 in [42]. Thus, from (B.34) and (B.37),

the per user GDOF is upper bounded as

d(α) ≤ Nα +min {N,M −N} (1− α). (B.38)

High Interference Case (α ≥ 1):

In this case, the outer bound in (B.34) simplifies as follows:

Rs ≤
K−1∑

i=1

log

∣∣∣∣∣IN + ρα
K∑

j=1, j 6=i

HijH
H
ij + ρH̃

(b)
ii IM−NH̃

(b)H
ii

∣∣∣∣∣

+

K∑

i=2

log

∣∣∣∣∣IN + ρα
K∑

j=1, j 6=i

HijH
H
ij + ρH̃

(b)
ii IM−NH̃

(b)H
ii

∣∣∣∣∣+O(1),
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or Ri ≤ Nα log ρ+O(1), (B.39)

The above equation is obtained by using Lemma 4 in [42]. Hence, the per user GDOF

in case of high interference is upper bounded as follows:

d(α) ≤ Nα. (B.40)

But the outer bound in this case exceeds the interference free GDOF i.e. N as α ≥ 1 .

Hence, this outer bound is not useful when α ≥ 1. By combining (B.31), (B.32), (B.36)

and (B.38) results in Lemma 2. This completes the proof.

B.5 Proof of Theorem 12

Define sj,B as in the proof of Theorem 11. Let A = {1, 2, . . . , K} be the set of all trans-

mitters, and letA− B be the complement of B inA. Following the procedure in [2] and

using Lemma 2 in [80], the sum rate can be bounded as

Rs ≤ h
(
y∗
1|s∗K,1

)
+

K−1∑

i=2

h
(
y∗
i |s∗K,{1,2,...,i}, s

∗
1,{i+1,...,K}

)
+ h

(
y∗
K |s∗1,K

)

+
K−1∑

i=2

h
(
y∗
i |s∗1,{K,2,...,i}, s

∗
K,A−{K,2,3,...,i}

)
− h (z1)− 2n

K−1∑

i=2

h (zi)− h (zK) . (B.41)

The above expression is simplified for the SIMO case in [2]. Here, since the transmit-

ters can have multiple antennas, the individual terms in (B.41) need to be evaluated

as follows. The first two terms in (B.41) are similar to the evaluation of conditional
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differential entropy in the proof of Theorem 11. On simplification, these terms become

h
(
y∗
1|s∗K,1

)
=log

∣∣∣∣∣β
[
IN1 +

K∑

j=2

φ1,j +ψ1,K

]∣∣∣∣∣ ,

h
(
y∗
K |s∗1,K

)
=log

∣∣∣∣∣β
[
INK

+

K−1∑

j=1

φK,j +ψK,1

]∣∣∣∣∣ . (B.42)

where β , πe. In the above equations, φi,j and ψi,j are as defined in the statement

of the Theorem. Now consider the term h
(
y∗
i |s∗K,{1,2,...,i}, s

∗
1,{i+1,...,K}

)
. In this case,

y∗
i = Hiix

∗
i +

K∑

j=1, j 6=i

Hijx
∗
j + zi, s

∗
K,{1,2,...,i} =

∑

j∈{1,2,...,i}

HKjx
∗
j + zK , and s∗1,{i+1,...,K} =

∑

j∈{i+1,...,K}

H1jx
∗
j + z1. The conditional differential entropy becomes

h
(
y∗
i |s∗K,{1,2,...,i}, s

∗
1,{i+1,...,K}

)
= log

∣∣∣πeΣy∗
i |s

∗
K,{1,2,...,i}

,s∗
1,{i+1,...,K}

∣∣∣ , (B.43)

where

Σy∗
i
|s∗

K,{1,2,...,i}
,s∗

1,{i+1,...,K}
, E

[
y∗
iy

∗H
i

]
− E

[
y∗
i s

∗H
]
E
[
s∗s∗H

]−1
E
[
s∗y∗H

i

]
,

and s∗ , [ s∗TK,{1,2,...,i} s∗TK,{1,...,i}
]T .

The output at receiver i (i 6= 1, K) can be expressed as

y∗
i = Hi1x1 +Hi,i+1x2 + zi, (B.44)

where x1 , [x∗T
1 . . . x∗T

i ]T , x2 , [x∗T
i+1 . . . x

∗T
K ]T . Here, Hi1 and Hi,i+1 are defined after

(3.5). The two side information terms can be expressed as sK,{1,2,...,i} = HKix1 + zK ,

and s1,{i+1,...,K} = H1,i+1x2 + z1. Now consider the evaluation of the individual terms in
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Σy∗
i |s

∗
K,{1,2,...,i}

,s∗
1,{i+1,...,K}

:

E
[
y∗
iy

∗H
i

]
= INi

+Hi1Pi1H
H

i1 +Hi,i+1Pi2H
H

i,i+1,

E
[
y∗
i s

∗H
]
=
[
Hi1Pi1H

H

Ki Hi,i+1Pi2H
H

1,i+1

]
,

E
[
s∗1,Ks

∗H
1,K

]
= blkdiag

(
INi

+HKiPi1H
H

Ki, INi
+H1,i+1Pi2H

H

1,i+1

)
.

Hence, Σy∗
i
|s∗

K,{1,2,...,i}
,s∗

1,{i+1,...,K}
becomes

Σy∗
i |s

∗
K,{1,2,...,i}

,s∗
1,{i+1,...,K}

= INi
+Hi1P

1/2

i1

{
IMri

+P
1/2

i1 H
H

KiHKiP
1/2

i1

}−1

P
1/2

i1 H
H

i1

+Hi,i+1P
1/2

i2

{
IMsi

+P
1/2

i2 H
H

1,i+1H1,i+1P
1/2

i2

}−1

P
1/2

i2 H
H

i,i+1.

whereMri ,

i∑

j=1

Mj ,Msi ,

K∑

j=i+1

Mj , and the last equation follows from the Woodbury

matrix identity [81]. The quantities Pi1 and Pi2 are as defined after (3.5). Hence, (B.43)

becomes

h
(
y∗
i |s∗K,{1,2,...,i}, s

∗
1,{i+1,...,K}

)
=log

∣∣∣∣πe
[
INi

+Hi1P
1/2

i1

{
IMri

+P
1/2

i1 H
H

KiHKiP
1/2

i1

}−1

P
1/2

i1 H
H

i1

+Hi,i+1P
1/2

i2

{
IMsi

+P
1/2

i2 H
H

1,i+1H1,i+1P
1/2

i2

}−1

P
1/2

i2 H
H

i,i+1

]∣∣∣∣ .

(B.45)

In a similar manner, it can be shown that

h
(
y∗
i |s∗1,{K,2,...,i}, s

∗
K,A−{K,2,3,...,i}

)
= log

∣∣∣∣πe
[
INi

+HiKP
1/2

i3

{
IM ′

ri

+P
1/2

i3 H
H

1iH1iP
1/2

i3

}−1

P
1/2

i3 H
H

iK +Hi,K−1P
1/2

i4

{
IM ′

si

+P
1/2

i4 H
H

K,i+1HK,i+1P
1/2

i4

}−1

P
1/2

i4 H
H

i,K−1

∣∣∣∣
]
,

(B.46)
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where M
′

ri
,

i∑

j=2

Mj +MK and M
′

si
, M1 +

K−1∑

j=i+1

Mj , and Pi3 and Pi4 are as defined

after (3.5). Combining (B.42), (B.45) and (B.46) results in Theorem 12.

B.6 Proof of Lemma 3

For the symmetric case, using Lemma 6 in [82], the sum rate outer bound in Theorem 12

reduces to the following form:

Rs≤ log

∣∣∣∣∣IN+ρα
K∑

j=2

H1jH
H
1j+ρH11

{
IM+ραHH

K1HK1

}−1
HH

11

∣∣∣∣∣

+

K−1∑
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log

∣∣∣∣IN +Hi1

{
IMri

+H
H

KiHKi

}−1

H
H

i1 +Hi,i+1

{
IMri

+H
H

1,i+1H1,i+1

}−1

H
H

i,i+1

∣∣∣∣

+
K−1∑

i=2

log

∣∣∣∣IN +HiK

{
IMri

+H
H

1iH1i

}−1

H
H

iK +Hi,K−1

{
IMri

+H
H

K,i+1HK,i+1

}−1

H
H

i,K−1

∣∣∣∣

+ log

∣∣∣∣∣IN + ρα
K−1∑

j=1

HKjH
H
Kj + ρHKK

{
IM+ραHH

1KH1K

}−1
HH

KK

∣∣∣∣∣ , whereMri , iM.

(B.47)

Consider the following term in the above equation

log

∣∣∣∣IN +Hi1

{
IMri

+H
H

KiHKi

}−1

H
H

i1 +Hi,i+1

{
IMri

+H
H

1,i+1H1,i+1

}−1

H
H

i,i+1

∣∣∣∣

=log

∣∣∣∣IN+
[
Hi1 Hi2 . . .

√
ρ(1−α)Hii

]{
[HK1 HK2 . . .HKi]

H [HK1 HK2 . . . HKi]
}−1

[
Hi1 Hi2 . . .

√
ρ(1−α)Hii

]H
+ [Hi,i+1 Hi,i+2 . . . HiK ]

{
[H1,i+1 H1,i+2 . . . H1K ]

H

[H1,i+1 H1,i+2 . . . H1K ]}−1 [Hi,i+1 Hi,i+2 . . . HiK ]
H
∣∣∣+O(1),

(a)
= log

∣∣∣∣IN +
[
Hi1 Hi2 . . .

√
ρ(1−α)Hii

] [
Hi1 Hi2 . . .

√
ρ(1−α)Hii

]H∣∣∣∣ +O(1),

(b)
= log

∣∣IN + ρ(1−α)HiiH
H
ii

∣∣+O(1), (B.48)
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where (a) is obtained by using the fact that the terms containing inverses are indepen-

dent of α and are invertible when
N

M
< K ≤ N

M
+ 1, and (b) is obtained by taking the

constant terms into the O(1) approximation.

Similarly, it can be shown that

log

∣∣∣∣IN+HiK

{
IMri

+H
H

1iH1i

}−1

H
H

iK+Hi,K−1

{
IMri

+H
H

K,i+1HK,i+1

}−1

H
H

i,K−1

∣∣∣∣

= log
∣∣IN + ρ(1−α)HiiH

H
ii

∣∣+O(1). (B.49)

Using (B.48) and (B.49), for large ρ, the sum rate bound in (B.47) reduces to

Rs ≤ log

∣∣∣∣∣IN+ρα
K∑

j=2

H1jH
H
1j+ρ

(1−α)H11

{
HH

K1HK1

}−1
HH

11

∣∣∣∣∣

+
K−1∑

i=2

log
∣∣IN + ρ(1−α)HiiH

H
ii

∣∣ +
K−1∑

i=2

log
∣∣IN + ρ(1−α)HiiH

H
ii

∣∣

+ log

∣∣∣∣∣IN + ρα
K−1∑

j=1

HKjH
H
Kj + ρ(1−α)HKK

{
HH

1KH1K

}−1
HH

KK

∣∣∣∣∣+O(1). (B.50)

The outer bound in (B.50) is further simplified based on the range of α.

Weak Interference Case (0 ≤ α ≤ 1

2
): Using Lemma 4 in [42], (B.50) becomes

Rs ≤ [2min {min (N, (K − 1)M) , N −M}α + 2(K − 1)M(1− α)] log ρ+O(1). (B.51)

Thus, the per user GDOF is upper bounded as given below:

d(α) ≤M(1 − α) +
1

K − 1
(N −M)α. (B.52)

This results in the first case of Lemma 3.
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Moderate Interference Case
(
1
2
≤ α ≤ 1

)
: Using Lemma 4 in [42], (B.50) simplifies to

Rs ≤ [2αmin {N, (K − 1)M}+ 2min {M,N −min {N, (K − 1)M}} (1− α)

+2(K − 2)M(1− α)] log ρ+O(1). (B.53)

Hence, the per user GDOF is upper bounded as given below:

d(α) ≤Mα +
1

K − 1
(N −M)(1− α). (B.54)

This results in the second case of Lemma 3.

High Interference Case (α ≥ 1):

In this case, it can be shown that the sum rate bound in (B.50) leads to d(α) ≤ αM , which

exceeds the interference free GDOF. Hence, the upper bound reduces to d(α) ≤M .

Finally, combining (B.52) and (B.54) results in Lemma 3.

B.7 Proof of Theorem 13

In the initial part of the proof, the outer bound in Lemma 1 is simplified. Then, in

specific cases, the performance of the outer bound is characterized as a function of K,

M , N and α.

Weak (0 ≤ α ≤ 1
2
) and moderate (1

2
≤ α ≤ 1) interference regime:

WhenM ≤ N , for a specific L1 and L2 (0 < L1 + L2 ≤ K), the outer bound in Lemma 1

is of the following form:

d(α) ≤ 1

L
[L1M +min {r, L1(N −M)}α + Lr +min {r, L2N − Lr} (1− α)] , (B.55)
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where r , min {L2M,L1N} and Lr , L2M − r. The RHS in (B.55) is simplified under

the following cases.

Case 1: When min {L2M,L1N} = L2M , then it results in the following condition:

L2

L1

≤ N

M
. (B.56)

Under this condition, (B.55) becomes

d(α) ≤ 1

L
[L1M +min {L2M,L1(N −M)}α +min {L2M,L2N} (1− α)] ,

=
1

L
[LM +min {L2M,L1(N −M)}α− L2Mα] . (B.57)

Equation (B.57) is simplified under the following cases:

Case 1(a): Whenmin {L2M,L1(N −M)} = L1(N −M), then

L2

L1
≥ N

M
− 1. (B.58)

Combining this with (B.56), results in the following condition

N

M
− 1 ≤ L2

L1
≤ N

M
. (B.59)

Under this condition, (B.57) becomes

d(α) ≤M(1− α) +
L1

L
Nα. (B.60)

Case 1(b): Whenmin {L2M,L1(N −M)} = L2M , then (B.57) becomes

d(α) ≤ M. (B.61)
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This case is not useful, as the RHS is equal to the interference free GDOF.

Case 2: When min {L2M,L1N} = L1N , then

L2

L1
≥ N

M
. (B.62)

In this case, (B.55) becomes

d(α) ≤ 1

L
[L1M +min {L1N,L1(N −M)}α + L2M − L1N

+min {L1N,L2N − L2M + L1N} (1− α)] ,

=M − L1

L
Mα. (B.63)

High interference regime (α ≥ 1):

In the high interference regime, for a specific L1 and L2 (0 < L1 + L2 ≤ K), Lemma 1 is

of the following form:

d(α) ≤ 1

L
[rα +min {L1M,L1N − r}+ Lr] . (B.64)

The above equation is simplified under the following cases.

Case 1: When min {L2M,L1N} = L2M , then

L2

L1

≤ N

M
, (B.65)

Under this condition (B.64) becomes

d(α) ≤ 1

L
[L2Mα +min {L1M,L1N − L2M}] . (B.66)
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The above equation is further simplified under following cases.

Case 1(a): When min {L1M,L1N − L2M} = L1N − L2M , then the following condition

is obtained:

L2

L1
≥ N

M
− 1. (B.67)

In this case, (B.66) becomes

d(α) ≤ 1

L
[L2Mα + L1N − L2M ] ,

= N +
L2

L
[M(α− 1)−N ] . (B.68)

Case 1(b): Whenmin {L1M,L1N − L2M} = L1M , (B.66) becomes

d(α) ≤ L2α + L1

L
M. (B.69)

As α ≥ 1, this case is not useful as the RHS in the above equation exceeds the interfer-

ence free GDOF.

Case 2: When min {L2M,L1N} = L1N ,

L2

L1
≥ N

M
, (B.70)

and (B.64) becomes

d(α) ≤ 1

L
[L1Nα + L2M − L1N ]

= N(α− 1) +
L2

L
[M −N(α− 1)] . (B.71)

Due to the minimization involved in Lemma 1, it is not possible to characterize the

performance of the outer bounds in all the cases. However, a tractable solution exists
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in the following cases.

Case a (K ≥ N + M): It is required to determine the value of L1 and L2, such that

the outer bound in Lemma 1 is minimized. First, the weak and moderate interference

regimes are considered, followed by the high interference regime in the later part of the

proof.

The RHS in (B.60) is minimized when L1

L
is minimized, under the constraint in (B.59).

In other words, L
L1

or L2

L1
is required to be maximized to minimize the RHS in (B.60).

From (B.59), it can be noticed that L2

L1
is maximized when L2

L1
= N

M
. AsK ≥ M +N , it is

always possible to choose L1 =M and L2 = N , and (B.60) becomes

d(α) ≤M − M2

M +N
α. (B.72)

The RHS in (B.63) is minimized by choosing L1

L
as large as possible, under the constraint

in (B.62). Maximizing L1

L
is the same as minimizing L2

L1
. By choosing L1 = M and

L2 = N , the RHS in (B.63) is minimized, and the outer bound reduces to following

from:

d(α) ≤M − M2

M +N
α, (B.73)

which is same as that in (B.72). Hence, the outer bound in Lemma 1 is minimized by

choosing L1 =M and L2 = N and is given by (B.73).

Now, the outer bounds are compared in the following interference regimes. As K ≥

M + N , the condition N
M
< K ≤ N

M
+ 1 is not satisfied, and hence, the outer bound in

Lemma 3 is not applicable.

Weak interference regime (0 ≤ α ≤ 1
2
): In this case, the outer bound on the per user GDOF
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in Lemma 2 reduces to:

d(α) ≤M(1 − α) + (N −M)α. (B.74)

The outer bound in (B.74) exceeds that in (B.73), when MN < N2 − M2 and which

results in (3.8).

Moderate interference regime (1
2
≤ α ≤ 1): In this case, the outer bound in Lemma 2

reduces to

d(α) ≤ Nα. (B.75)

The outer bound in (B.73) is active compared to (B.75), when

α >
M(M +N)

N(M +N) +M2
. (B.76)

Note that M(M+N)
N(M+N)+M2 ≤ 1. The outer bound in (B.73) is active for the entire moderate

interference regime, if

M(M +N)

N(M +N) +M2
<

1

2
,

orMN < N2 −M2. (B.77)

Otherwise, when 1
2
≤ α ≤ M(M+N)

N(M+N)+M2 , the outer bound in (B.75) is active, and when

M(M+N)
N(M+N)+M2 < α ≤ 1, the outer bound in (B.73) is active. Combining these results

together leads to (3.9) and (3.10).

High interference regime (α ≥ 1): The RHS in (B.68) and (B.71) need to be minimized in

cases 1 and 2 discussed in a previous page, respectively. Consider the minimization of

(B.68) first. When M(α − 1) − N ≥ 0, the RHS in (B.68) exceeds the interference free

GDOF, and hence this case is not useful. WhenM(α − 1)−N < 0, the RHS in (B.68) is
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minimized by choosing L2

L
as large as possible. From (B.65), it can be noticed that (B.68)

is minimized by choosing L1 =M and L2 = N , and (B.68) becomes

d(α) ≤ MNα

M +N
. (B.78)

Now, the RHS in (B.71) is required to be minimized. WhenM−N(α−1) < 0, L2

L
should

be chosen as large as possible. By choosing L1 = 0 and L2 > 0, L2

L
is maximized, and

(B.71) becomes

d(α) ≤ M, (B.79)

which is not useful. When M − N(α − 1) ≥ 0, L2

L
or L2

L1
should be as low as possible.

From (B.70), it can be noticed that (B.71) is minimized by choosing L1 =M and L2 = N ,

and it reduces to

d(α) ≤ MNα

M +N
. (B.80)

It can be noticed that in both the cases, the RHS are the same. But, (B.78) and (B.80)

are active when 1 ≤ α ≤ M+N
M

and 1 ≤ α ≤ M+N
N

, respectively. As M ≤ N and the

RHS in (B.80) exceeds the interference free GDOF per user, i.e., M , when α > M+N
N

,

it is not required to consider the case M+N
N

< α ≤ M+N
M

. The outer bound in Lem-

mas 2 and 3 exceed the interference free GDOF in this case as mentioned in the proofs

of these lemmas, and hence, these bounds are not taken into account in the high inter-

ference regime. Finally, taking the minimum of (B.80) andM results in (3.11).

Case b (N
M

+ 1 < K < M + N , where N
M

is an integer): In this case, (B.60) and (B.63)

are minimized by choosing L1 = 1 and L2 = N
M
. This can be shown by following

a similar procedure as in the previous case. Hence, the outer bound in Lemma 1 in
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weak/moderate interference regime and high interference regime is of the same form

as given in the first case of the Theorem.

Case c (N
M

< K ≤ N
M

+ 1): In this case, (B.60) is minimized by choosing L1 = 1 and

L2 = K − 1. It is easy to verify that this choice of L1 and L2 maximizes L1

L
and also

satisfies the constraint in (B.59). Hence, (B.60) becomes

d(α) ≤ M(1− α) +
Nα

K
. (B.81)

In this case, the condition L2

L1
≥ N

M
implies that (B.63) arises only when (K − 1)M = N .

The RHS in (B.63) is minimized by choosing L1 = 1 and L2 = K−1, and (B.63) becomes

d(α) ≤M − Mα

K
. (B.82)

With some algebraic manipulation, it can be shown that (B.82) reduces to (B.81) when

(K − 1)M = N . Hence, choosing L1 = 1 and L2 = K − 1minimizes the outer bound in

Lemma 1, and it is given by (B.81).

The following interference regimes are considered for comparison with other outer

bounds.

Weak interference regime (0 ≤ α ≤ 1
2
): In the weak interference regime, the outer bound

in Lemma 2 reduces to:

d(α) ≤M(1 − α) + (N −M)α. (B.83)

Comparing (B.83) with (B.81), results in the condition 2M ≤ N , which is always sat-

isfied in this case. Hence, the outer bound in (B.83) is loose compared to the outer

bound in (B.81). When, the outer bound in (B.81) is compared with the outer bound in

Lemma 3, it results in the condition KM ≤ N , which is satisfied in this case. Hence,
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Lemma 3 is active in the entire weak interference regime, which results in (3.12).

Moderate interference regime (1
2
≤ α ≤ 1): In the moderate interference regime, it is

easy to see that the outer bound in Lemma 2 is loose compared to the outer bound in

Lemma 1. Lemma 3 is tighter than the outer bound in (B.81), when α ≤ K
2K−1

. Con-

sequently, Lemma 1 is active when K
2K−1

< α ≤ 1. Taking the minimum of these two

outer bounds results in (3.13).

High interference regime (α ≥ 1): By employing the similar procedure as followed in the

weak/moderate interference regime, it can be shown that the outer bound in Lemma 1

is minimized by choosing L1 = 1 and L2 = K − 1. Also, the outer bound in Lemma 2

and 3 are loose compared to Lemma 1, as they exceed the interference free GDOF per

user, i.e.,M . In this case, Lemma 1 reduces to

d(α) ≤ 1

K
[N + (K − 1)M(α− 1)] . (B.84)

Finally, taking the minimum of (B.84) and M results in (3.14), which completes the

proof.

Remark: There are a few other cases where it is possible to exactly characterize the

performance of these outer bounds. For example, whenK < M +N < aK, and integer

a ≥ 2, M
a
and N

a
are integers, choosing L1 =

M
a
and L2 =

N
a
minimizes the outer bound

in Lemma 1, and the outer bound is the same as given in the first case of the Theorem.

In this case, N
M

need not be an integer.
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Appendix for Chapter 6

C.1 Details of the achievable scheme when (0 < α ≤ 2
3)

Recall that data bits transmitted on the the lowerm− n levels [1 : m− n] remain secure

even without transmitter cooperation. When C = 0, if all the bottom m − n levels

are used for transmission, it is easy to see that transmitting on the remaining n levels

either reduces the rate or violates secrecy. But, with cooperation, the upper levels can

be used for data transmission using the scheme proposed below. In this scheme, the

transmitters exchange the C bits they intend to transmit on the levels [m − n + 1 :

m − n + C], through the cooperative link. Each transmitter precodes the cooperative

bits received from the other transmitter by xoring them with the data bits at the levels

[1 : C]. This serves a dual purpose: it cancels the interference caused by the data bits

sent by the other transmitter, and also ensures that data bits from the other transmitter

remain secure. This scheme is illustrated for C = 0 and 2 in Fig. 6.2. Mathematically,

206
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the message of transmitter 1 is encoded as follows:

x1 =


 0(m−(r+C))+×1

a(r+C)×1


⊕


 0(m−C)×1

bc
C×1


 , (C.1)

where a , [ar+C , ar+C−1, . . . , a1]
T are the own transmitter 1’s data bits, bc, [br+C , br+C−1,

. . . , br+1]
T are the cooperative data bits received from transmitter 2, and r , m− n. The

message of transmitter 2 is encoded in an analogous fashion. The proposed encoding

scheme thus achieves the following symmetric secrecy rate:

Rs = m− n+ C. (C.2)

C.2 Details of the achievable scheme when (2
3
< α < 1)

First, note that the links in the SLDIC can be classified into three categories: Type I,

Type II, and Type III, as shown in Fig. C.1a. The classification is based on whether the

data bits are received without interference or with interference at the intended receiver,

and whether or not they cause interference at the unintended receiver. The number of

Type I (r1) and Type II (r2) links are r1 = r2 = m−l
2

= m − n, where l is the number of

Type III links, which is given by l = 2n − m. In this case, the achievable scheme uses

interference cancelation in addition to random bit transmission.

As the bits transmitted on the Type II links [1 : m − n] are not received at the un-

intended receiver, at least r2 bits can be sent securely. Data bits transmitted on the

Type III/I links (levels [m − n + 1 : n]/[n + 1 : m]) will cause interference at the unin-

tended receiver, and it is not possible to ensure secrecy with uncoded data transmis-

sion on these levels. As the Type II links are already used up for data transmission,
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the remaining g , {n− (r2 + C)}+ levels can be used for transmission with the help

of random bits sent by each transmitter. Transmitter i sends the random bits in such a

way that they superimpose with the data bits sent by the other transmitter, at receiver i.

Thus, the random bits are a form of jamming signal sent by each transmitter to ensure

that its own receiver is unable to decode the other transmitter’s message. Such a trans-

mission scheme truly exploits the cooperative nature of the transmitters, and works

because the transmitters do not deviate from the agreed- upon scheme. Note that, the

receiver does not require the knowledge of these random bits in order to decode its

own message.

Now, it is required to determine the number of levels of Type I/III links that can be

used for data transmission. Notice that bits transmitted on any level get shifted down

bym−n levels at the unintended receiver. In the scheme proposed below, transmission

occurs in blocks of size 3(m − n) levels, with each block consisting of a sequence of

data bits, random bits and zero-bits of sizem−n each, sent on consecutive levels. Such

a scheme ensures that the intended data bits are received without interference at the

desired receiver, and, data received at the unintended receiver remains secure. The

total number of blocks of size 3r2 that can be sent is B ,

⌊
g
3r2

⌋
. Out of the remaining

t , g%{3r2} levels, one can use q , min {(t− r2)
+, r2} levels to send data bits securely;

the remaining levels are unused.

Mathematically, the signal x1 of transmitter 1 is encoded as follows:

Case 1 (q = 0):

x1 =



 0(m−(r2+C))+×1

a(r2+C)×1



⊕



 0(m−C)×1

bc
C×1



⊕



 au
p×1

0p′×1



 , (C.3)
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Tx − 1

Tx − 2 Rx − 2

Rx − 1

Type I Links

Type III Links

Type II Links

Type I Links

Type III Links

Type II Links

(a)

Tx − 1 Rx − 1

Rx − 2Tx − 2

a2

b2 ⊕ a1

a2

a1

b2

b1

b2

a2 b1

C = 1

a5
d4

b5 b5

e4

d4

e4⊕

d4⊕

⊕

a5

b5

a5

e4

(b)

Figure C.1: SLDIC with m = 5 and n = 4: (a) Different types of links, (b) C = 1 and
RS = 3.

where a , [ar2+C , ar2+C−1, . . . , a1]
T , bc , [br2+C , br2+C−1, . . . , br2+1]

T , au , [u1,d2, z3,u4,d5,

z6, . . . ,u3B−2,d3B−1, z3B, ]
T , ul ,

[
am−(l−1)r2 , am−(l−1)r2−1, . . . , am−lr2+1

]
, dl ,

[
dm−(l−1)r2 ,

dm−(l−1)r2−1, . . . , dm−lr2+1

]
, zl is a zero vector of size 1×r2, p , 3B(m−n) and p′ , m−p.

The encoding at transmitter 2 is similar.

Case 2 (q 6= 0): The number of data bits that can be sent on the remaining t levels is

q = min{(t− r2)
+, r2}. In this case, the message of transmitter 1 is encoded as follows.

xmod
1 = x1 ⊕




0p×1

a′
t×1

0(m−(p+t))×1


 , (C.4)

where x1 is as defined in (C.3), a′ , [u11,u12,d11,d12, z]
T , u11 , [am−p, am−p−1, . . . ,

am−p−q+1], d11 , [dm−w, dm−w−1, . . . , dm−w−q+1]. Also, u12, d12 and z are zero vectors of

size 1×v, 1×f , and 1×v′, respectively. Here, v , (r2−q), f , (t− (r2+ q))
+, w , p+ r2

and v′ , (t− 2r2)
+.

As mentioned earlier, the data bits transmitted on the lower levels [1 : m − n] are

inherently secure as they are not received by the unintended receiver. With the help of
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cooperation and transmission of random bits, it possible to transmit at the higher levels

[m − n + 1 : m]. To determine the achievable rate, it is required to find the number

of data bits that can be transmitted securely on the higher levels. With the help of

interference cancellation, the unintended user’s data bits can be completely canceled at

the unintended receiver, thereby preventing it from being able to decode these data bits.

Hence, cooperation between the users can provide a rate gain of C bits. The number

of data bits that can be transmitted securely with the help of transmission of random

bits is B(m − n) + q (See (C.3) and (C.4)). By choosing the random bits independent

of the data bits and from a B(1
2
) distribution, the secrecy of data bits can be ensured,

i. e., H(bi|di ⊕ bi) = H(bi) at receiver 1. Hence, the proposed scheme in (C.3) and (C.4)

achieves the following secrecy rate:

Rs = m− n +B(m− n) + q + C. (C.5)

Depending on the encoding schemes for different interference regimes, the achievable

secrecy rate can be obtained in a similar way as mentioned above, and hence, these

details are omitted for the remaining cases.

C.3 Details of the achievable scheme when (1 < α < 2)

When (1 < α ≤ 1.5)

The achievable scheme uses transmission of random bits, interference cancelation, or

both, depending on the capacity of the cooperative link. The bits received through the

cooperative links are transmitted on the levels [1 : C]. As the links corresponding to
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the levels [1 : n−m] are not present at the intended receiver, these links can be directly

used to securely relay the other user’s data bits. Any data bits transmitted on the levels

higher than n − m will cause interference. The cooperative data bits transmitted by

transmitter i on the levels higher than n−m, namely, on levels [n −m + 1 : C], can be

canceled by transmitter j by sending the same data bits along with the data bits of user

i (i 6= j). Precoding the data with the other user’s data bits thus serves a dual purpose:

it cancels interference, and simultaneously ensures secrecy, since one does not want the

interfering signal to be decodable.

In the remaining higher levels, the transmission of data bits along with random bits

happen in a similar way as mentioned for the moderate interference regime. Define the

following quantities: g , (m − C)+, B , ⌊ g
3r2

⌋, t , g%3r2 and q , min{(t − r2)
+, r2}.

Mathematically, the signal of transmitter 1 is encoded as follows:

Case 1 (q = 0):

x1 =


 ae

p×1

0s×1


⊕


 0(n−C)×1

bC×1


⊕


 0v×1

al
(C−r2)+×1


 , (C.6)

where ae , [d1,u2, z3,d4,u5, z6, . . . ,d3B−2,u3B−1, z3B, ]
T , ul , [an−(l−1)r2 , an−(l−1)r2−1,

. . . , an−lr2+1], dl ,
[
dn−(l−1)r2 , dn−(l−1)r2−1, . . . , dn−lr2+1

]
, zl is a zero vector of size 1 × r2,

b , [bC , bC−1, . . . , b1]
T , al , [aC , aC−1, . . . , ar2+1]

T p , 3Br2, s , n− p and v , (n− (C −

r2)
+).

Case 2 (q 6= 0):

xmod
1 = x1 ⊕




0w×1

a′
t×1

0s×1


 , (C.7)
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where x1 is as defined in (C.6), a′ , [d11,d12,u11,u12, z
′]T , u11 , [an−3Br2−q−v′ ,

an−3Br2−q−v′−1, . . . , an−3Br2−2q−v′+1], d11 , [dn−3Br2 , dn−3Br2−1, . . . , dn−3Br2−q+1]. Also, d12,

u12 and z′ are zero vectors of length 1×v′, 1× (t− (2q+f + v′))+ and 1×f , respectively.

Here, v′ , (n−m− q)+, f , (t− 2(q + v′))+, s , n−m+ C and w , (n− t− s)+.

The proposed encoding scheme achieves the following symmetric secrecy rate:

Rs = B(n−m) + q + C. (C.8)

When (1.5 < α < 2)

The links in the SLDIC can be classified into three categories: Type I, Type II, and

Type III, as shown in Fig. C.2a. The classification is based on whether the data bits

are received with or without interference at the intended receiver, and whether or not

they are received at the intended receiver.

Case 1When (0 ≤ C ≤ 2(2n− 3m)): In this case, the achievable scheme uses a combina-

tion of interference cancelation, transmission of random bits and relaying of the other

user’s data bits. The data bits transmitted by transmitter i on the levels associated with

Type II links [n−m+1 : m]will be received at the unintended receiver j (j 6= i). In order

to ensure secrecy, transmitter j transmits random bits on the levels [2(n − m) + 1 : n].

The remaining levels can be used for transmitting the other user’s data bits received

through cooperation. The cooperative bits are transmitted on the levels corresponding

to Type I and Type III links. The C1 , ⌊C
2
⌋ data bits obtained through cooperation are

sent by transmitter i for transmitter j (i 6= j) on the levels corresponding to Type III

links. As these links are not present at receiver i (i 6= j), these bits will remain secure.

However, the remaining C2 , C −C1 cooperative bits sent on the levels corresponding
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to Type I links by transmitter i will cause interference at receiver i. The interference

caused at receiver i is eliminated by sending the same C2 data bits on Type III links by

transmitter j (i 6= j) and this simultaneously cancels interference and ensures secrecy.

The achievable scheme is shown for m = 5, n = 8 and C = 2 in Fig. C.2b.

The signal of transmitter 1 is encoded as follows:

x1 =




dl×1

0(n−l)×1




⊕




0(n−m)×1

al×1

0(n−m)×1




⊕




0(n−m−C2)×1

bu
C2×1

0l×1

bl
C1×1

0(n−m−C1)+×1




⊕




0(n−l−C2)+×1

a′
C2×1

0l×1




, (C.9)

where d,[dn, dn−1, . . . , dn−l+1]
T , a, [al, al−1, . . . , a1]

T , bl, [bn−m, bn−m−1, . . . , bn−m−C1+1]
T ,

bu , [bm+C2 , bm+C2−1, . . . , bm+1]
T , a′ , [am+C2 , am+C2−1, . . . , am+1]

T and l , 2m− n.

The proposed scheme achieves the following secrecy rate:

Rs = 2m− n + C. (C.10)

Case 2 When (2(2n − 3m) < C ≤ n): In this case, 2(2n − 3m) cooperative data bits

out of C cooperative bits obtained through cooperation are used in an analogous way

as in the previous case. Define C1 , C2 , 2n − 3m. The remaining cooperative bits

C ′ , C − (4n − 6m) are used as explained below. Let C ′′ ,
⌈
C′

3

⌉
. The cooperative

data bits sent by transmitter i on the levels corresponding to Type III links will remain

secure, as these links are present to the receiver j (i 6= j) only. The number of data

bits that can be relayed by transmitter i for transmitter j on the levels corresponding to

Type III links are: CT3 = min {2m− n, C ′′}. The remaining cooperative bits Crem , (C ′−

CT3)
+ are transmitted on the levels corresponding to Type I and II links as explained
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below. The CT1 , min
{⌈

Crem

2

⌉
, 2m− n

}
cooperative bits sent by transmitter i cause

interference at receiver i. The interference caused at receiver i is eliminated by sending

the same CT1 bits on Type II/III links by transmitter j (j 6= i). The remaining CT2 ,

min {2m− n, (Crem − CT1)
+} bits are transmitted on the Type II links by transmitter i.

These data bits cause interference at receiver i, which is canceled by transmitter j (i 6=

j), by sending the same CT2 data bits on the Type III links. Depending on the number

of levels used, the number of data bits that can be sent on the Type II links with the

help of transmission of random bits is rd , min {(2m− n− CT3)
+, 2m− n− CT2}. The

achievable scheme is shown for m = 5, n = 8 and C = 4 in Fig. C.2c.

Mathematically, the signal of transmitter 1 is encoded as follows:

x1 =




0(2m−n)×1

bu
(2n−3m)×1

0(2m−n)×1

bl
(2n−3m)×1

0(2m−n)×1




⊕




0(2m−n−CT1
)×1

b′u
CT1

×1

0(2(n−m)−CT3
)×1

b′l
CT3

×1




⊕




0(m−CT2
)×1

b′m
CT2

×1

0(n−m)×1




⊕




0m×1

au
(2n−3m)×1

0(2m−n−CT2
)×1

am
CT2

×1




⊕




0(m−CT1
)×1

a′u
CT1

×1

0(n−m)×1



⊕




drd×1

0(n−m−rd)×1

ae
rd×1

0(m−rd)×1



, (C.11)

where bl , [bn−m, bn−m−1, . . . , b2m−n+1]
T , bu , [b2(n−m), b2(n−m)−1, . . . , bm+1]

T , b′l , [bCT3
,

bCT3
−1, . . . , b1]

T , b′u , [b2(n−m)+CT1
, b2(n−m)+CT1

−1, . . . , b2(n−m)+1]
T , b′m , [bn−m+CT2

,

bn−m+CT2
−1, . . . , bn−m+1]

T , au , [a2(n−m), a2(n−m)−1, . . . , am+1]
T , am, [an−m+CT2

, an−m+CT2
−1,

. . . , an−m+1]
T , a′u , [a2(n−m)+CT1

, a2(n−m)+CT1
−1, . . . , a2(n−m)+1]

T , d , [dn, dn−1, . . . , dn−rd+1]
T
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Type I links

Type II links

Type III links

Type I links

Type II links

Type III links

Tx−1

Tx−2

Rx−1

Rx−2

(a)

Tx−1

Tx−2

Rx−1

Rx−2

d7

a1

d8

e8
e7
a6

a2

a6⊕

b6⊕ a3

a1

d7⊕b1

e8

a6
d8⊕b2
a3
a2

d8
d7
b6

b1
b2
b3

e8⊕a2
e7⊕a1

b2
b1

b6
e7

b3

C = 2

(b)

Tx−1

Tx−2

Rx−1

Rx−2

d8

e8

a6

a2

a6⊕

b6⊕ a3

e8

a6
d8⊕b2
a3
a2

d8

b6

b2
b3

e8⊕a2b2

b6

b3

b7

b1

a7

0

a7

b7

a1

a7

0

b7

C = 4

b1b1b1 ⊕ b7

a1 ⊕ a7

(c)

Figure C.2: SLDIC with m = 5 and n = 8: (a) Different types of links, (b) C = 2, RS = 4
(c) C = 4, RS = 5.

and ae , [a2m−n, a2m−n−1, . . . , a2m−n−rd+1]
T . The proposed scheme achieves the follow-

ing secrecy rate:

Rs = 2(2n− 3m) + CT1 + CT2 + CT3 + rd. (C.12)

C.4 Details of the achievable scheme when (α ≥ 2)

When 0 < C ≤ m
2 andm is even

In this case, interestingly, transmitters share only random bits through the cooperative

links. Each transmitter generatesC random bits independent of data bits with Bern
(
1
2

)
.

The achievable scheme involves transmitting the data bits xored with the random bits.

The same random bits are transmitted by the other transmitter, so as to cancel them out

at the desired receiver. In contrast to the achievable schemes in Secs. 6.2.2 and 6.2.4, the

random bits transmission causes jamming to the unintended receiver only. Through

careful observation it is found that sharing random bits through the cooperative links
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can achieve higher secrecy rate compared to sharing data bits only. The achievable

scheme is illustrated for random bits sharing and data bits sharing for C = 1 in Figs.

C.3a and C.3b, respectively.

In this case, the signal of transmitter 1 is encoded as follows:

x1 =




0(m−2C)+×1

a2C×1

0(n−m)×1


⊕




0(n−2C)×1

d1
2C×1


⊕




0(m−2C)+×1

d2
2C×1

0(n−m)×1


 , (C.13)

where a , [a2C , a2C−1, . . . , a1]
T , d1 , [eC , dC , . . . , e1, d1]

T and d2 , [dC , eC , . . . , d1, e1]
T .

The proposed scheme achieves the following secrecy rate:

Rs = 2C. (C.14)

Note that, with data bits sharing, the achievable scheme achieves

Rs = C. (C.15)

Hence, under the proposed scheme, one can achieve higher rate by sharing random

bits than by sharing the data bits.

When (m2 < C ≤ n− 3m
2 ) andm is even

In this case, the transmitters exchange m
2
random bits and (C−m

2
) data bits. The random

bits are used in an analogous fashion as described in the previous subsection. The links

corresponding to the levels from [m + 1 : n − m] are present only at the unintended

receiver and data bits transmitted on these levels are received without interference at

the unintended receiver. Hence, any data bits of the other user relayed using these
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Rx − 1

Rx − 2Tx − 2

Tx − 1
C = 1

e1

a1

a1⊕e1

b2

b1

b1⊕

b2⊕

d1

a2⊕d1

b1⊕

b2⊕ e1

d1

d1

e1

a2⊕
a1⊕

d1
e1

e1

d1

a2

(a) Random bits sharing: Rs = 2.

Tx − 1 Rx − 1

Rx − 2Tx − 2

C = 1

b1

a1

a1

b1

(b) Data bits sharing: Rs = 1.

Figure C.3: SLDIC with m = 2 and n = 4

levels will remain secure. In this case, the signal of transmitter 1 is encoded as follows:

x1 =




am×1

0(n−m)×1


⊕




0(n−m)×1

d1
m×1


⊕




d2
m×1

0(n−m)×1


⊕




0(n−C−m
2
)×1

bc
(C−m

2
)×1

0m×1


 , (C.16)

where a , [am, am−1, . . . , a1]
T , d1 , [em

2
, dm

2
, . . . , e1, d1]

T , d2 , [dm
2
, em

2
, . . . , d1, e1]

T and

bc , [bm
2
+C , bm

2
+C−1, . . . , bm+1]

T .

The proposed scheme achieves the following secrecy rate:

Rs =
m

2
+ C. (C.17)

When (n− 3m
2 < C < n− m

2 ) andm is even

The novelty of the proposed scheme is in precoding the data bits of the user partly with

the other user’s data bits and/or with random bits. The random bits used for precoding

may be generated at its own transmitter or obtained from the other transmitter through

the cooperative link. Then, by appropriately transmitting data bits or random bits on

the levels of the SLDIC, the random bits are canceled at the intended receiver, or the
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data bits of the other user are canceled out at the unintended receiver. The details of

the achievable scheme are as follows.

The achievable scheme uses transmission of random bits, interference cancelation,

time sharing and relaying of the other user’s data bits. The transmitters share a com-

bination of random bits and data bits through the cooperative links. To simplify the

understanding of the achievable scheme, first consider the α = 2 case. In this case,

both the transmitters share m
2
random bits along with C1 , C − m

2
data bits. In the first

time slot, transmitter 1 sends m random bits (di and ei) on alternate levels in [1 : m]. In

order to eliminate the interference caused by these random bits at receiver 2, the data

bits of transmitter 2 are precoded (xored) with thesem random bits and transmitted on

the levels from [m + 1 : 2m] from transmitter 2. The random bits are not canceled at

receiver 1. Further, receiver 1 has no knowledge of these random bits. Hence, it can-

not decode the bits intended to receiver 2. Also, the data bits of transmitter 2 received

through the cooperative link are transmitted at the upper levels [n − C1 + 1 : n] from

transmitter 1. Again, in order to ensure secrecy at receiver 1, transmitter 2 sends the

same data bits at levels [m − C1 + 1 : m] along with the C1 data bits of transmitter 1,

also received through cooperation. This not only cancels the interference due to the bits

sent on levels [n − C1 + 1 : n] at receiver 1, but also enables transmitter 2 to relay the

data bits of transmitter 1.

In the remaining upper levels [m + 1 : n − C1], transmitter 1 sends its own data bits

xored with random bits. Transmitter 2 transmits the same random bits on levels [1 : C1]

to cancel the random bits at receiver 1. In this way, transmitter 1 sends m − C1 data

bits of its own and C1 data bits of transmitter 2, in the first time slot. Simultaneously,
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transmitter 2 is able to send m data bits of its own and C1 data bits of transmitter 1. In

the second time slot, the roles of transmitters 1 and 2 are reversed.

In contrast to the achievable schemes for other interference regimes, transmitters ex-

change both random bits and data bits through the cooperative links. However, as the

capacity of the cooperative links increases, it is required to exchange fewer number of

random bits. Figures C.4a and C.4b illustrate the scheme for m = 2 and n = 4, with

C = 2 bits.

When α > 2, it is straightforward to extend the achievable scheme described above.

Both the transmitter exchanges m
2
random bits and C ′ , C − m

2
data bits. Out of C ′

data bits obtained through cooperation, n− 2m data bits are securely relayed using the

levels [m+1 : n−m]. Them random bits and the remaining C1 , C ′ −n+2m data bits

obtained through cooperation are used in a similar manner as explained for the α = 2

case. The signal of transmitter 1 in the first time slot is encoded as follows:

x1 =




0(n−m)×1

d1
m×1


⊕




bc
C1×1

a(m−C1)×1 ⊕ d2
(m−C1)×1

0(n−m)×1


⊕




0m×1

b′c
(n−2m)×1

0m×1


 , (C.18)

where d1 , [em/2, dm/2, . . . , e1, d1]
T , bc , [bn, bn−1, . . . , bn−C1+1]

T , a , [am−C1 , . . . , a2, a1]
T ,

d2 , [dq, eq, . . . , d1, e1]
T if m − C1 is even, d

2 , [eq+1, dq, eq, . . . , d1, e1]
T if m − C1 is odd,

q , ⌊m−C1

2
⌋ and b′c , [bn−m, bn−m−1 . . . , bm+1]

T .

The signal of transmitter 2 in the first time slot is encoded as follows:

x2 =




bm×1 ⊕ e2m×1

0(n−m)×1


⊕




0(n−m)×1

bl
C1×1 ⊕ ac

C1×1

e1(m−C1)×1


⊕




0m×1

a′c
(n−2m)×1

0m×1


 , (C.19)
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Tx − 1 Rx − 1

Tx − 2 Rx − 2

b4
a1⊕e1

e1

d1

b2⊕e1

b1⊕d1

b4⊕a2

e1

b2⊕e1

b1⊕d1

a2

a1

b4

b2

b1

C = 2

a1⊕e1

(a) First slot: (R1, R2) = (2, 3).

Tx − 1 Rx − 1

Rx − 2Tx − 2

C = 2

a2⊕d1

e1

a4⊕

a1⊕

b2

d1

a4

b1⊕d1

d1

e1

a4

a2

a1

b2

b1

b1⊕ d1

a2⊕ d1

a1⊕ e1

(b) Second slot: (R1, R2) = (3, 2).

Figure C.4: SLDIC withm = 2 and n = 4: C = 2 and Rs = 2.5.

where b , [bm, bm−1, . . . , b1]
T , e2 , [em/2, dm/2, . . . , e1, d1]

T , bl , [bn, bn−1, . . . , bn−C1+1]
T ,

ac , [am, am−1, . . . , am−C1+1]
T , e1 , [dq, eq, . . . , d1, e1]

T ifm−C1 is even, e
1 , [eq+1, dq, eq,

. . . , d1, e1]
T ifm−C1 is odd, q , ⌊m−C1

2
⌋ and a′c , [an−m, an−m−1, . . . , am+1]

T . In the sec-

ond time slot, the encoding for transmitters 1 and 2 is reversed. The proposed scheme

achieves the following secrecy rate:

Rs =
n

2
− m

4
+
C

2
. (C.20)

When (n− m
2
≤ C ≤ n) andm is even

In this case, both the transmitters share C data bits and the achievable scheme uses

interference cancelation. The signal of transmitter 1 is encoded as follows:

x1 =




0(n−C+m)+×1

a(C−m)×1


⊕




0(n−C)+×1

bC×1


 , (C.21)
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where a = [aC , aC−1, . . . , am+1]
T and b = [bC , bC−1, . . . , b1]

T . The proposed scheme

achieves the following secrecy rate.

Rs = C. (C.22)

When 0 < C ≤ m+1
2 andm is odd

The achievable scheme and encoding of the message are analogous to that mentioned

for the (0 < C ≤ m
2
) and even valued m case. The proposed scheme achieves the

following secrecy rate:

Rs = min{2C,m}. (C.23)

When m+1
2 < C ≤ 2n−3m+1

2 andm is odd

In this case, the achievable scheme is analogous to that mentioned for the (m
2
< C ≤

n− 3m
2
) and even valuedm case. The signal of transmitter 1 is encoded as follows:

x1 =




du
m×1 ⊕ au

m×1

0(n−2m)×1

dl
m×1


⊕




0(n−m−C′)×1

bc
C′×1

0m×1


 , (C.24)

where du , [em+1
2
, . . . , d1, e1]

T , au , [am, am−1, . . . , a1]
T , dl , [dm+1

2
, . . . , e1, d1]

T , bc ,

[bm+C′ , bm+C′−1, . . . , bm+1]
T and C ′ , C − m+1

2
. The proposed scheme achieves the fol-

lowing secrecy rate:

Rs = m+min

{
C − m+ 1

2
, n− 2m

}
. (C.25)
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When 2n−3m+1
2 < C ≤ n andm is odd

In this case, the achievable scheme is similar to that described for the (n − 3m
2
< C <

n − m
2
) and even valued m case, with minor differences in the way the encoding is

performed. For simplicity of exposition, the encoding scheme is explained for the α = 2

case. Now define the following quantities: Cuu
1 =

⌈
C
2

⌉
, C lu

2 = Cuu
1 , Cul

1 = (m − Cuu
1 )+,

C ll
2 = Cul

1 , Cr
1 =

⌈
Cul

1

2

⌉
, C lu

1 = (C − Cuu
1 − Cr

1)
+, C ll

1 = min{2Cr
1 , (m − C lu

1 )+)}, Cul
2 = C ll

1 ,

Cr
2 = max

{⌈
Cll

2

2

⌉
,
⌊
Cul

2

2

⌋}
, Cuu

2 = (C − C lu
2 − Cr

2)
+. In the first time slot, transmitter 1

sends Cuu
1 data bits of transmitter 2 received through cooperation on the upper levels

[n − Cuu
1 + 1 : n]. In order to ensure secrecy at receiver 1, transmitter 2 sends the

same data bits at levels [m − C lu
2 + 1 : m] along with the C lu

2 data bits of transmitter 1,

also received through cooperation. In the remaining upper levels [m + 1 : n − Cuu
1 ],

transmitter 1 sends Cul
1 of its own data bits, xored with random bits. Transmitter 2

sends the same random bits on levels [1 : C ll
2 ] to cancel the random bits at receiver 1.

The number of random cooperative bits in such a transmission isCr
1 . Also, transmitter 1

relaysC lu
1 data bits of transmitter 2 received through cooperation on the levels [m−C lu

1 +

1 : m]. As the links corresponding to these levels are not present to receiver 1, these data

bits remain secure. Transmitter 1 sends C ll
1 random bits on the levels [1 : C ll

1 ] to ensure

secrecy of user 2’s data. Transmitter 2 sends its Cul
2 = C ll

1 data bits precoded with the

same random bits transmitted on the levels [1 : C ll
1 ], to eliminate the random bits at

receiver 2. The number of cooperative random bits used by transmitter 2 is Cr
2 . Then,

transmitter 2 can relay the remaining Cuu
2 cooperative data bits on the upper levels

[n − Cuu
2 + 1 : n]. As these bits will cause interference at receiver 2, transmitter 1 sends

the same data bits on the levels [m−Cuu
2 +1 : m] to cancel the interference at receiver 2.
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When α > 2, it is straightforward to extend the achievable scheme described above.

In the first time slot, the signal of transmitter 1 is encoded as follows:

x1 =




b′uu
Cuu

1 ×1

aul
Cul

1 ×1
⊕ dul

Cul
1 ×1

0(n−Cuu
1 −Cul

1 )×1



⊕




0(n−m)×1

b′lu
Clu

1 ×1

0(m−Clu
1 −Cll

1 )+×1

dll
Cll

1 ×1



⊕




0m×1

b′c
(n−2m)×1

alu
Cuu

2 ×1

0(m−Cuu
2 )+×1



, (C.26)

where b′uu , [bn, bn−1, . . . , bn−Cuu
1 +1]

T , b′lu , [bm, bm−1, . . . , bm−Clu
1 +1]

T , aul , [aCul
1
, aCul

1 −1,

. . . , a1]
T , dul , [dCr

1
, eCr

1
, . . . , d1, e1]

T if Cul
1 is even, dul , [eCr

1
, dCr

1−1, eCr
1−1, . . . , d1, e1]

T if

Cul
1 is odd, alu , [an, an−1, . . . , an−Cuu

2 +1]
T , dll , [eCll

1
2

, dCll
1
2

, . . . , e1, d1]
T if C ll

1 is even, dll ,

[d⌈Cll
1
2

⌉, e⌈Cll
1 ⌉−1, d⌈Cll

1 ⌉−1 . . . , e1, d1]
T if C ll

1 is odd and b′c , [bn−m, bn−m−1, . . . , bm+1]
T . The

signal of transmitter 2 is encoded as follows:

x2 =




0uu
(m−Cul

2 )×1

bul
Cul

2 ×1

0(n−2m)×1

blu
Clu

2 ×1

0(m−Clu
2 )×1




⊕




a′uu
Cuu

2 ×1

0(m−Cuu
2 )×1

ac
(n−2m)×1

a′lu
Clu

2 ×1

0(m−Clu
2 )×1




⊕




0(n−Cll
2 )×1

ell
Cll

2 ×1




⊕




0(m−Cul
2 )×1

eul
Cul

2 ×1

0(n−m)×1




, (C.27)

where bul , [bCul
2
, bCul

2 −1, . . . , b1]
T , blu , [bn, bn−1, . . . , bn−Clu

2 +1]
T , a′uu , [an, an−1, . . .

, an−Cuu
2 +1]

T , ac , [an−m, an−m−1, . . . , am+1]
T , a′lu , [am, am−1, . . . , am−Clu

2 +1]
T , ell , [dCll

2
2

, eCll
2
2

, . . . , d1, e1]
T if C ll

2 is even, ell , [e⌈Cll
2
2

⌉, d⌈Cll
2
2

⌉

−1
, . . . , d1, e1]

T if C ll
2 is odd, eul ,

[eCul
2
2

, dCll
2
2

, . . . , e1, d1]
T if Cul

2 is even and eul , [d⌈Cul
2
2

⌉, e⌈Cul
2
2

⌉

−1
, . . . , e1, d1]

T if Cul
2 is odd.

In the second time slot, the encoding scheme is reversed for transmitters 1 and 2. The

proposed scheme achieves the following secrecy rate:

Rs = n− 2m+
1

2

[
Cul

1 + 2Cuu
1 + Cuu

2 + C lu
1 + Cul

2

]
. (C.28)
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Appendix for Chapter 7

D.1 Proof of Theorem 14

Using Fano’s inequality, the rate of user 1 is upper bounded as

NR1 ≤ I(W1;y
N
1 ) +Nǫ1,

= H(yN
1 )−H(yN

1 |W1) +Nǫ1,

(a)

≤ H(yN
1 )−H(yN

1 |W1,x
N
1 ) +Nǫ1,

= H(yN
1 )−H(xN

2a|W1,x
N
1 ) +Nǫ1, where, xN

2a , Dq−nxN
2 ,

≤ H(yN
1 )−H(xN

2a|W1,x
N
1 ,v

N
12,v

N
21) +Nǫ1,

(b)
= H(yN

1 )−H(xN
2a|vN

12,v
N
21) +Nǫ1,

or H(xN
2a|vN

12,v
N
21) ≤ H(yN

1 )−NR1 +Nǫ1, (D.1)

where (a) follows by using the fact that the entropy cannot increase by additional con-

ditioning and (b) follows by using the relation in (7.1).
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Adopting similar steps for user 2, it follows that

H(xN
1a|vN

12,v
N
21) ≤ H(yN

2 )−NR2 +Nǫ2, where, xN
1a , Dq−nxN

1 . (D.2)

Note that in obtaining the outer bounds in (D.1) and (D.2), the secrecy constraint at

receiver has not been used. Using the secrecy constraint at receiver 2, the rate of user 1

can also be bounded as follows:

NR1 ≤ I(W1;y
N
1 ) +Nǫ1,

(a)

≤ I(W1;y
N
1 ,y

N
2 ) +Nǫ1,

(b)
= I(W1;y

N
1 |yN

2 ) +Nǫ1,

≤ H(yN
1 |yN

2 ) +Nǫ1,

(c)
= H(yN

1 ,y
N
2 )−H(yN

2 ) +Nǫ1,

(d)

≤ H(yN
1 ,y

N
2 ,x

N
1a,x

N
2a)−H(yN

2 ) +Nǫ1,

(e)
= H(xN

1a,x
N
2a) +H(yN

1 ,y
N
2 |xN

1a,x
N
2a)−H(yN

2 ) +Nǫ1, (D.3)

(f)

≤ H(xN
1a,x

N
2a,v

N
12,v

N
21) +H(yN

1 ,y
N
2 |xN

1a,x
N
2a)−H(yN

2 ) +Nǫ1,

(g)

≤ H(vN
12,v

N
21) +H(xN

1a|vN
12,v

N
21) +H(xN

2a|vN
12,v

N
21) +H(yN

1 ,y
N
2 |xN

1a,x
N
2a)

−H(yN
2 ) +Nǫ1, (D.4)

where (a) is due to a genie providing yN
2 to receiver 1; (b) is due to the perfect secrecy

condition at receiver 2, i.e., I(W1;y
N
2 ) = 0; (c) is obtained from the joint entropy relation:

H(yN
1 ,y

N
2 ) = H(yN

2 ) + H(yN
1 |yN

2 ); (d), (e) and (f) follow from the chain rule for joint

entropy; and (g) is obtained using the fact that removing conditioning cannot decrease

the entropy.
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In deriving the bounds in (D.1)-(D.4), one of the difficulties is that the encoded mes-

sages are no longer independent due to the cooperation between the transmitters. This

problem is overcome by cleverly using v12 and v21 in amanner that allows one to bound

the different entropy terms.

Using (D.1) and (D.2), (D.4) becomes

NR1 ≤ H(vN
12,v

N
21) +H(yN

1 )−N [R1 +R2] +H(yN
1 ,y

N
2 |xN

1a,x
N
2a) +Nǫ1,

or N [2R1 +R2] ≤ H(vN
12,v

N
21) +H(yN

1 ) +H(Dq−mxN
1 |xN

1a) +H(Dq−mxN
2 |xN

2a) +Nǫ1.

(D.5)

The above equation is simplified under the following cases.

Case 1 (m ≥ n): In this case, q = m and (D.5) becomes

N [2R1 +R2] ≤ H(vN
12,v

N
21) +H(yN

1 ) +H(xN
1 |xN

1a) +H(xN
2 |xN

2a) +Nǫ1,

or R ≤ 1

3
[2C + 3m− 2n] . (D.6)

The above equation is obtained using the fact that the entropies H(v12,v21), H(yi) and

H(xi|xia) are upper bounded by 2C,m andm− n, respectively.

Case 2 (m < n): In this case, q = n and (D.5) becomes

N [2R1 +R2] ≤ H(vN
12,v

N
21) +H(yN

1 ) +H(Dn−mxN
1 |xN

1 ) +H(Dn−mxN
2 |xN

2 ) +Nǫ1,

or R ≤ 1

3
[2C + n] . (D.7)

The above equation is obtained using the fact that the entropies H(v12,v21) and H(y1)

are upper bounded by 2C and n, respectively. Also, given xN
i , there is no uncertainty

about Dn−mxN
i . Combining (D.6) and (D.7) results in (7.2). This completes the proof.
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D.2 Proof of Theorem 15

Using Fano’s inequality, the rate of user 1 is upper bounded as

NR1 ≤ I(W1;y
N
1 ) +Nǫ1,

(a)

≤ I(W1;y
N
1 ,y

N
2a) +Nǫ1, where yN

2a , (xN
1a,x

N
1b),

= I(W1;y
N
2a) + I(W1;y

N
1 |yN

2a) +Nǫ1, (D.8)

where (a) is due to a genie providing yN
2a to receiver 1. From the secrecy constraint at

receiver 2, the following holds:

I(W1;y
N
2 ) = 0,

or I(W1;y
N
2a,y

N
2b) = 0, where yN

2b = xN
2a ⊕ xN

1c,

or I(W1;y
N
2a) + I(W1;y

N
2b|yN

2a) = 0. (D.9)

As mutual information cannot be negative, I(W1;y
N
2a) = 0, and (D.8) becomes

NR1 ≤ I(W1;y
N
1 |yN

2a) +Nǫ1,

= H(yN
1 |yN

2a)−H(yN
1 |yN

2a,W1) +Nǫ1,

(a)
= H(xN

2a,x
N
2b,x

N
1a ⊕ xN

2c|xN
1a,x

N
1b)−H(xN

2a,x
N
2b,x

N
1a ⊕ xN

2c|xN
1a,x

N
1b,W1) +Nǫ1,

= H(xN
2 |xN

1a,x
N
1b)−H(xN

2 |xN
1a,x

N
1b,W1) +Nǫ1, (D.10)

where (a) is obtained by partitioning the message into three parts as shown in Fig. 7.1a.

The encoded messages at the transmitters are correlated due to the cooperation be-

tween the transmitters. Because of this, it is not straightforward to upper bound or
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simplify (D.10). To overcome this problem, H(xN
2 |xN

1a,x
N
1b) is upper bounded by

H(vN
12,v

N
21,x

N
2 |xN

1a,x
N
1b), and the latter is further upper bounded as explained below.

NR1 ≤ H(vN
12,v

N
21,x

N
2 |xN

1a,x
N
1b)−H(xN

2 |xN
1a,x

N
1b,W1) +Nǫ1,

(a)

≤ H(vN
12,v

N
21|xN

1a,x
N
1b) +H(xN

2 |vN
12,v

N
21,x

N
1a,x

N
1b)−H(xN

2 |vN
12,v

N
21,x

N
1a,x

N
1b,W1)

+Nǫ1,

(b)

≤ H(vN
12,v

N
21) +H(xN

2 |vN
12,v

N
21,x

N
1a,x

N
1b)−H(xN

2 |vN
12,v

N
21,x

N
1a,x

N
1b,W1) +Nǫ1,

(c)

≤ H(vN
12,v

N
21) +Nǫ1,

or R1 ≤ 2C, (D.11)

where (a) is due to the fact that conditioning cannot increase the entropy; (b) is due to

the fact that removing conditioning cannot decrease the entropy; and (c) is obtained

using the relationship in (7.1). This completes the proof.

D.3 Proof of Theorem 16

Using Fano’s inequality, rate of user 1 is bounded as

NR1 ≤ I(W1;y
N
1 ) +Nǫ1,

(a)

≤ I(W1;y
N
1 ,y

N
2a) +Nǫ1,

(b)
= I(W1;y

N
1 |yN

2a) +Nǫ1,

= H(yN
1 |xN

1a)−H(yN
1 |xN

1a,W1) +Nǫ1,

≤ H(yN
1 ,v

N
12,v

N
21|xN

1a)−H(yN
1 |xN

1a,W1) +Nǫ1,

≤ H(vN
12,v

N
21|xN

1a) +H(yN
1 |vN

12,v
N
21,x

N
1a)−H(yN

1 |vN
12,v

N
21,x

N
1a,W1) +Nǫ1,
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≤ H(vN
12,v

N
21) +H(yN

1 |vN
12,v

N
21,x

N
1a)−H(yN

1 |vN
12,v

N
21,x

N
1a,W1) +Nǫ1,

(c)
= H(vN

12,v
N
21) +H(xN

2a,y
N
1b|vN

12,v
N
21,x

N
1a)−H(xN

2a,y
N
1b|vN

12,v
N
21,x

N
1a,W1) +Nǫ1,

= H(vN
12,v

N
21) +H(xN

2a|vN
12,v

N
21,x

N
1a) +H(yN

1b|vN
12,v

N
21,x

N
1a,x

N
2a)

−H(xN
2a|vN

12,v
N
21,x

N
1a,W1)−H(yN

1b|vN
12,v

N
21,x

N
1a,x

N
2a,W1) +Nǫ1,

(d)
= H(vN

12,v
N
21) +H(yN

1b|vN
12,v

N
21,x

N
1a,x

N
2a)−H(yN

1b|vN
12,v

N
21,x

N
1a,x

N
2a,W1) +Nǫ1, (D.12)

where (a) is due to a genie providing yN
2a to receiver 1; (b) is obtained using the secrecy

constraint at receiver 2; (c) is obtained by partitioning of the encoded message and

output as shown in Fig. 7.1b; and (d) is obtained using the relation in (7.1).

Once again, as the encoded messages at transmitters are correlated, it is not straight-

forward to bound or simplify the entropy terms in (D.12). To overcome this problem,

the output y1b is partitioned into two parts as follows:

• y
(1)
1b : contains x1a sent by transmitter 1 and the interference caused by transmitter 2

due to transmission on the levels [2m− n + 1 : m]

• y
(2)
1b : contains x1b sent by transmitter 1 and the interference caused by transmitter 2

due to transmission on the levels [1 : 2m− n]

The partitioning of y1b = (y
(1)
1b ,y

(2)
1b ) is illustrated in the Fig. 7.1b. Now consider the
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second term in (D.12):

H(yN
1b|vN

12,v
N
21,x

N
1a,x

N
2a)

= H(y
(1)N
1b ,y

(2)N
1b |vN

12,v
N
21,x

N
1a,x

N
2a)

= H(xN
2b,x

(1)N
2c |vN

12,v
N
21,x

N
1a,x

N
2a) +H(y

(2)N
1b |vN

12,v
N
21,x

N
1a,x

N
2a,y

(1)N
1b )

= H(xN
2b,x

(1)N
2c |vN

12,v
N
21,x

N
2a) +H(y

(2)N
1b |vN

12,v
N
21,x

N
1a,x

N
2a,y

(1)N
1b ). (D.13)

The above equation is obtained using the fact that I(xN
2b,x

(1)N
2c ;xN

1a|vN
12,v

N
21,x

N
2a) = 0. This

can be obtained using the relation in (7.1). In a similar way, the third term in (D.12) can

be simplified as follows:

H(yN
1b|vN

12,v
N
21,x

N
1a,x

N
2a,W1)

= H(xN
2b,x

(1)N
2c |vN

12,v
N
21,x

N
2a) +H(y

(2)N
1b |vN

12,v
N
21,x

N
1a,x

N
2a,y

(1)N
1b ,W1). (D.14)

From (D.13) and (D.14), and dropping the last term in (D.14), (D.12) becomes

NR1 ≤ H(vN
12,v

N
21) +H(y

(2)N
1b |vN

12,v
N
21,x

N
1a,x

N
2a,y

(1)N
1b ) +Nǫ1,

or R1 ≤ H(v12,v21) +H(y
(2)
1b ) ≤ 2C + 2m− n. (D.15)

In the above equation, the termH(v12,v21) is upper bounded by 2C. From the definition

of y
(2)
1b , it can be seen that the term H(y

(2)
1b ) can be upper bounded by 2m − n. This

completes the proof.
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D.4 Proof of Theorem 17

Using Fano’s inequality, the rate of user-1 is upper bounded as

NR1 ≤ I(W1;y
N
1 ) +Nǫ1

(a)
= I(W1;y

N
2 ) +Nǫ1,

or R1
(b)
= 0, (D.16)

where (a) is obtained using the fact that y1 = y2 and (b) is obtained using the perfect

secrecy constraint at receiver 2. This completes the proof.
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Appendix for Chapter 8

E.1 Analysis of the probability of error in the proof of

Theorem 18

Define the following event

Eijk =
{(

yN
1 ,x

N
p1(i, j),u

N
1 (k)

)
∈ TN

ǫ (PY1Xp1U1)
}
, (E.1)

where TN
ǫ (PY1Xp1U1) denotes the set of jointly typical sequences y1,xp1, and u1 with

respect to P (y1,xp1,u1). Without loss of generality, assume that transmitters 1 and 2

sends xN
1 (1, 1, 1, 1) and xN

2 (1, 1, 1, 1, 1, 1), respectively. An error occurs if the transmitted

and received codewords are not jointly typical or a wrong codeword is jointly typical

with the received codewords. By the union of events bounds

λ(N)
e = P

(
Ec

111

⋃
∪i 6=1,j 6=1,k 6=1Eijk

)
≤ P (Ec

111) + P (∪i 6=1,j 6=1,k 6=1Eijk). (E.2)
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From the joint AEP [83], P (Ec
111) → 0 as N → ∞. When i 6= 1, j 6= 1, and k = 1, then

λij1 =
∑

i 6=1,j 6=1

P (Eij1) ≤ 2N[Rp1+R′
p1]

∑

(yN
1 ,xN

p1,u
N
1 )∈T

(N)
ǫ

P (xN
p1)P (u

N
1 )P (y

N
1 |uN

1 ),

≤ 2N[Rp1+R′
p1−I(xp1;y1|u1)+4ǫ]. (E.3)

Hence, λij1 → 0 as N → ∞, if

Rp1 +R′
p1 ≤ I(xp1;y1|u1). (E.4)

When the above condition is satisfied, also, the probability of error λ1j1 and λi11 also go

to zero as N → ∞. When k 6= 1 and (i, j) = (1, 1)

λ11k =
∑

k 6=1

P (E11k) ≤ 2NRcp1
∑

(yN
1 ,xN

p1,u
N
1 )∈T

(N)
ǫ

P (xN
p1)P (u

N
1 )P (y

N
1 |xN

p1),

≤ 2N [Rcp1−I(u1;y1|xp1)+4ǫ]. (E.5)

Hence, λ11k → 0 as N → ∞, if

Rcp1 ≤ I(u1;y1|xp1). (E.6)

Due to limited-rate transmitter cooperation, the following holds:

Rcp1 ≤ CG. (E.7)

From (E.6) and (E.7), the following constraint is obtained on the rate for the cooperative

private message

Rcp1 ≤ min{I(u1;y1|xp1), CG}. (E.8)
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When i 6= 1, j 6= 1, and k 6= 1, then

λijk =
∑

i 6=1,j 6=1,k 6=1

P (Eijk) ≤ 2N[Rcp1+Rp1+R′
p1]

∑

(yN
1 ,xN

p1,u
N
1 )∈T

(N)
ǫ

P (xN
p1)P (u

N
1 )P (y

N
1 ),

≤ 2N[Rcp1+Rp1+R′
p1−I(u1,xp1;y1)+4ǫ]. (E.9)

Hence, λijk → 0 as N → ∞, if

Rcp1 +Rp1 +R′
p1 ≤ I(u1,xp1;y1). (E.10)

The above condition also ensures that λi1k and λ1jk go to zero as N → ∞. Hence, λ
(n)
e

in (E.2) goes to 0 as N → ∞, when the conditions in (E.4), (E.8) and (E.10) are satisfied.

Now, using the Fourier-Motzkin procedure [84], the achievable rate in Theorem 18 is

obtained. The choice of R′
p1 is discussed in the proof of Theorem 18.

The following lemma is useful in bounding the mutual information in the proof of

Theorem 18.

E.2 Useful Lemma

Lemma 5.

I(xN
p1,x

N
d2;y

N
2 |xN

p2,u
N
2 ) ≤ N [I(xp1,xd2;y2|xp2,u2) + ǫ3] , (E.11)

where ǫ3 is small for sufficiently large N .

Proof. Let T
(N)
ǫ (PXp1,Xp2,Xd2,U2,Y2) denote the set of typical sequences (x

N
p1,x

N
p2,x

N
d2,u

N
2 ,y

N
2 )
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with respect to P (xp1, xp2, xd2, u2, y2). Define the following indicator random variable.

ψ(xN
p1,x

N
p2,x

N
d2,u

N
2 ,y

N
2 ) =





1 (xN
p1,x

N
p2,x

N
d2,u

N
2 ,y

N
2 ) /∈ TN

ǫ

0 otherwise.
(E.12)

Now, I(xN
p1,x

N
d2;y

N
2 |xN

p2,u
N
2 ) is bounded as follows:

I(xN
p1,x

N
d2;y

N
2 |xN

p2,u
N
2 ) ≤ I(xN

p1,x
N
d2, ψ;y

N
2 |xN

p2,u
N
2 ),

= I(ψ;yN
2 |xN

p2,u
N
2 ) + I(xN

p1,x
N
d2;y

N
2 |xN

p2,u
N
2 , ψ). (E.13)

Consider the first term in (E.13).

I(ψ;yN
2 |xN

p2,u
N
2 ) ≤ H(ψ) ≤ 1. (E.14)

Consider the second term in (E.13).

I(xN
p1,x

N
d2;y

N
2 |xN

p2,u
N
2 , ψ) =

1∑

j=0

P (ψ = j)I(xN
p1,x

N
d2;y

N
2 |xN

p2,u
N
2 , ψ = j). (E.15)

When j = 1, (xN
p1,x

N
p2,x

N
d2,u

N
2 ,y

N
2 ) /∈ T

(N)
ǫ , and the following bound is obtained:

P (ψ = 1)I(xN
p1,x

N
d2;y

N
2 |xN

p2,u
N
2 , ψ = 1) ≤ P

{
(xN

p1,x
N
p2,x

N
d2,u

N
2 ,y

N
2 ) /∈ T (N)

ǫ

}
H(yN

2 ),

≤ Nǫ3 log |Y2|. (E.16)
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When j = 0, (xN
p1,x

N
p2,x

N
d2,u

N
2 ,y

N
2 ) ∈ T

(N)
ǫ , and the following bound is obtained.

P (ψ = 0)I(xN
p1,x

N
d2;y

N
2 |xN

p2,u
N
2 , ψ = 0)

≤ I(xN
p1,x

N
d2;y

N
2 |xN

p2,u
N
2 , ψ = 0),

≤
∑

(xN
p1,x

N
p2,x

N
d2,u

N
2 ,yN

2 )∈T
(N)
ǫ

P (xN
p1,x

N
p2,x

N
d2,u

N
2 ,y

N
2 )
[
logP (xN

p1,x
N
d2,y

N
2 |xN

p2,u
N
2 )

− logP (yN
2 |xN

p2,u
N
2 )− logP (xN

p1,x
N
d2|xN

p2,u
N
2 )
]
,

≤ N [H(y2|xp2,u2) +H(xp1,xd2|xp2,u2)−H(xp1,xd2,y2|xp2,u2) + 3ǫ3] ,

= N [I(xp1;y2|xp2,u2) + 3ǫ2] . (E.17)

From (E.14)-(E.17), (E.13) is bounded as follows:

I(xN
p1;y

N
2 |xN

p2,u
N
2 ) ≤ NI(xp1;y2|xp2,u2) +Nǫ′3, (E.18)

where ǫ′3 = ǫ′3 log |Y2|+3ǫ2+
1
N
and |Y2| is the cardinality of the output alphabet Y2. This

completes the proof.

E.3 Proof of Theorem 19

In contrast to the achievable scheme for the weak/moderate interference regime, the

dummy message sent by one of the users i is required to be decodable at the receiver j

(j 6= i). Intuitively, since the cross links are stronger than the direct links, stochastic en-

coding alone is not sufficient to ensure secrecy of the non-cooperative private message.

Hence, the dummymessage sent by transmitter i acts as a self-jamming signal, prevent-

ing receiver i from decoding the message from the other transmitter j 6= i. At the same

time, ensuring that the dummy message is decodable at receiver j enables receiver j to
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cancel the interference caused by the dummy message, allowing it to decode its own

message. Thus, although the cross-links are strong, receiver i is unable to decode the

message from transmitter j because of the jamming signal; and this helps user j achieve

a better rate. In the next time slot, user i can achieve a better rate by exchanging the

roles of users i and j. The proof involves analyzing the error probability at the decoder

along with equivocation computation.

E.3.1 Analysis of the probability of error

Define the following event

Eijkl =
{(

yN
1 ,x

N
p1(i, j),u

N
1 (k),x

N
d2(l)

)
∈ TN

ǫ

}
. (E.19)

Without loss of generality, assume that transmitters 1 and 2 send xN
1 (1, 1, 1, 1) and

xN
2 (1, 1, 1, 1), respectively. An error occurs if the transmitted and received codewords

are not jointly typical or a wrong codeword is jointly typical with the received code-

words. Then by the union of events bounds

λ(n)e = P
(
Ec

1111

⋃
∪i 6=1,j 6=1,k 6=1,l 6=1Eijkl

)
≤ P (Ec

1111) + P (∪i 6=1,j 6=1,k 6=1,l 6=1Eijkl). (E.20)

From the joint AEP [83], P (Ec
1111) → 0 as N → ∞. When i 6= 1, j 6= 1, and (k, l) = (1, 1),

then

λij11 =
∑

i 6=1,j 6=1

P (Eij11),

≤ 2N[Rp1+R′
p1]

∑

(yN
1 ,xN

p1,u
N
1 ,xN

d2)∈T
(N)
ǫ

P (xN
p1)P (u

N
1 )P (x

N
d2)P (y

N
1 |uN

1 ,x
N
d2),

≤ 2N[Rp1+R′
p1−I(xp1;y1|u1,xd2)+5ǫ]. (E.21)
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Hence, λij11 → 0 as N → ∞, if

Rp1 +R′
p1 ≤ I(xp1;y1|u1,xd2). (E.22)

Thus, if the condition in (E.22) is satisfied, then the probabilities of error λi111 and λ1j11

also go to zero. When k 6= 1 and (i, j, l) = (1, 1, 1), then

λ11k1 =
∑

k 6=1

P (E11k1),

≤ 2N [Rcp1−I(u1;y1|xp1,xd2)+5ǫ]. (E.23)

Hence, λ11k1 → 0 as N → ∞, if

Rcp1 ≤ I(u1;y1|xp1,xd2). (E.24)

Due to limited-rate transmitter cooperation, the following holds:

Rcp1 ≤ CG. (E.25)

From (E.24) and (E.25), the following constraint is obtained on the rate for the coopera-

tive private message

Rcp1 ≤ min{I(u1;y1|xp1), CG}. (E.26)

When l 6= 1 and (i, j, k) = (1, 1, 1), then

λ111l =
∑

l 6=1

P (E111l),

≤ 2N [Rd2−I(xd2;y1|xp1,u1)+5ǫ]. (E.27)
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Thus, λ111l → 0 as N → ∞, if

Rd2 ≤ I(xd2;y1|xp1,u1). (E.28)

When i 6= 1, j 6= 1, k 6= 1, and l = 1, then

λijk1 =
∑

i 6=1,j 6=1,k 6=1

P (Eijk1),

≤ 2N[Rcp1+Rp1+R′
p1−I(u1,xp1;y1|xd2)+5ǫ]. (E.29)

Hence, λijk1 → 0 as N → ∞, if

Rcp1 +Rp1 +R′
p1 ≤ I(u1,xp1;y1|xd2). (E.30)

Thus, if the condition in (E.30) is satisfied, then the probabilities of error λi1k1 and λ1jk1

also go to zero. When k 6= 1, l 6= 1, and (i, j) = (1, 1), then

λ11kl =
∑

k 6=1,l 6=1

P (E11kl),

≤ 2N [Rcp1+Rd2−I(u1,xd2;y1|xp1)+5ǫ]. (E.31)

Hence, λ11kl → 0 as N → ∞, if

Rcp1 +Rd2 ≤ I(u1,xd2;y1|xp1). (E.32)

When i 6= 1, j 6= 1, l 6= 1, and k = 1, then

λij1l =
∑

i 6=1,j 6=1,l 6=1

P (Eij1l),

≤ 2N[Rp1+R′
p1+Rd2−I(xp1,xd2;y1|u1)+5ǫ]. (E.33)
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Hence, λij1l → 0 as N → ∞, if

Rp1 +R′
p1 +Rd2 ≤ I(xp1,xd2;y1|u1). (E.34)

Thus, if the condition in (E.34) is satisfied, then the probabilities of error λi11l and λ1j1l

also go to zero. When i 6= 1, j 6= 1, k 6= 1, and l 6= 1, then

λ1jkl =
∑

i 6=1,j 6=1,k 6=1,l 6=1

P (Eijkl),

≤ 2N[Rp1+R′
p1+Rcp1+Rd2−I(u1,xp1,xd2;y1)+5ǫ]. (E.35)

Hence, λijkl → 0 as N → ∞, if

Rp1 +R′
p1 +Rcp1 +Rd2 ≤ I(u1,xp1,xd2;y1). (E.36)

If the condition in (E.36) is satisfied, then the probabilities of error λi1kl and λ1jkl also go

to zero.

In a similar way, it can be shown that the probability of decoding error at receiver 2

goes to zero if the following condition is satisfied.

Rcp2 ≤ min{I(u2;y2), CG}. (E.37)

Thus, the probabilities of encoding and decoding error go to 0 as N → ∞, if (E.22),

(E.26), (E.28), (E.30), (E.32), (E.34), (E.36) and (E.37) are satisfied. Then, by applying

Fourier-Motzkin procedure [84] to these equations and the conditions for encoding er-

ror, the achievable rate in Theorem 19 can be obtained.
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E.3.2 Equivocation computation

The equivocation at receiver 2 is bounded as follows. As the non-intended cooperative

private message is canceled completely at receiver 2, it suffices to show the following,

as mentioned in the proof of Theorem 18.

H(Wp1|yN
2 ) ≥ N [Rp1 − ǫs] . (E.38)

Consider the following:

H(Wp1|yN
2 ) ≥ H(Wp1|yN

2 ,u
N
2 ),

= H(Wp1,y
N
2 |uN

2 )−H(yN
2 |uN

2 ),

(a)
= H(Wp1,y

N
2 ,x

N
p1,x

N
d2|uN

2 )−H(xN
p1,x

N
d2|Wp1,y

N
2 ,u

N
2 )−H(yN

2 |uN
2 ),

= H(xN
p1,x

N
d2|uN

2 ) +H(Wp1,y
N
2 |xN

p1,x
N
d2,u

N
2 )−H(yN

2 |uN
2 )

−H(xN
p1,x

N
d2|Wp1,y

N
2 ,u

N
2 ),

≥ H(xN
p1,x

N
d2|uN

2 ) +H(yN
2 |xN

p1,x
N
d2,u

N
2 )−H(yN

2 |uN
2 )

−H(xN
p1,x

N
d2|Wp1,y

N
2 ,u

N
2 ),

= Rp1 +R′
p1 +Rd2 − I(xN

p1,x
N
d2;y

N
2 |uN

2 )−H(xN
p1,x

N
d2|Wp1,y

N
2 ,u

N
2 ), (E.39)

where (a) is obtained using the relation: H(Wp1,y
N
2 ,x

N
p1,x

N
d2|uN

2 ) = H(Wp1,y
N
2 |uN

2 )+

H(xN
p1,x

N
d2|Wp1,y

N
2 ,u

N
2 ). The second term in (E.39) is upper bounded as follows.

I(xN
p1,x

N
d2;y

N
2 |uN

2 ) ≤ NI(xp1,xd2;y2|u2) +Nǫ′. (E.40)

The above bound can be obtained by using similar steps as used in the proof of Lemma 5

in Appendix E.2. To bound the last term in (E.39), consider the joint decoding of W ′
p1
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andWd2, assuming that the receiver 2 is givenWp1 and uN
2 as side information. By fol-

lowing similar steps as in the equivocation computation in the proof of Theorem 18, the

probability of error can be made arbitrarily small for large N , provided the following

conditions are satisfied:

R′
P1 ≤ I(xp1;y2|xd2,u2), Rd2 ≤ I(xd2;y2|xp1,u2),

R′
p1 +Rd2 ≤ I(xp1,xd2;y2|u2). (E.41)

When the conditions in (E.41) are satisfied and for sufficiently large N , the following

bound is obtained using Fano’s inequality:

H(xN
p1,x

N
d2|Wp1 = wp1,y

N
1 ,u

N
2 ) ≤ Nδ2. (E.42)

Finally, the last term in (E.39) is bounded as follows.

H(xN
p1,x

N
d2|Wp1,y

N
2 ,u

N
2 ) =

∑

wp1

P (wp1)H(xN
p1,x

N
d2|Wp1 = wp1,y

N
1 ,u

N
2 ),

≤ Nδ2. (E.43)

Using (E.40) and (E.43), (E.39) becomes

H(Wp1|yN
2 ) ≥ N

[
Rp1 +R′

p1 +Rd2 − I(xp1,xd2;y2|u2)− (δ2 + ǫ′)
]
, (E.44)

By choosing R′
p1 = I(xp1;y2|u2) − ǫ′2 and Rd2 = I(xd2;y2|xp1,u2) − ǫ′′2 secrecy of the

non-cooperative private part is ensured. Thus,

H(Wp1|yN
2 ) ≥ N [Rp1 − ǫ2] . (E.45)
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This completes the proof.

E.4 Proof of Corollary 3

In the first and second time slots, transmitters 1 and 2 send the following encoded

messages.

x1(1) = xcp1(1) + xp1(1), and x2(1) = xcp2(1) + xd2(1),

x1(2) = xcp1(2) + xd1(2), and x2(2) = xcp2(2) + xp2(2). (E.46)

In the following, the achievable secrecy rate and power allocation for different mes-

sages are discussed in case of the first time slot. Hence, for simplicity, the time index

is omitted here. The mutual information given in Theorem 19 is evaluated as follows.

From Theorem 19, R′
p1 and Rd2 are set as 0.5 log

(
1 +

h2
cPp1

1+h2
d
Pd2

)
and 0.5 log(1 + h2dPd2),

respectively. The first four inequalities in (8.36) lead, respectively, to

R1 ≤ min
[
0.5 log(1 + σ2

u1 + h2dPp1), 0.5 log(1 + h2dPp1) + min
{
0.5 log(1 + σ2

u1), CG

}]
−R′

p1,

(E.47)

R1 ≤ min
[
0.5 log(1 + σ2

u1 + h2dPp1 + h2cPd2), 0.5 log(1 + σ2
u1 + h2cPd2)

+min
{
0.5 log(1 + σ2

u1), CG

}
, 0.5 log(1 + h2dPp1) + 0.5 log(1 + σ2

u1 + h2cPd2)
]

− (R′
p1 +Rd2), (E.48)

R1 ≤ 0.5 log(1 + h2dPp1 + h2cPd2) + 0.5 log(1 + σ2
u1 + h2cPd2)− (R′

p1 + 2Rd2), (E.49)

R2 = min

{
0.5 log

(
1 +

σ2
u2

1 + h2dPd2 + h2cPp1

)
, CG

}
. (E.50)
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As Rd2 = 0.5 log(1 + h2dPd2) < 0.5 log(1 + h2cPd2), Rd2 satisfies the last inequality in

(8.36). Now, consider the power allocation for the private cooperative message, non-

cooperative private message and dummy message as shown below. The encoded mes-

sages at transmitters 1 and 2 are:

x1 = hdw1z − hcw2z + xp1, and x2 = hdw2z − hcw1z + xd2. (E.51)

To simplify the power allocation, the variance ofw1z andw2z are chosen to be the same.

In order to satisfy the power constraint, the following conditions need to be satisfied.

(h2d + h2c)σ
2
z + Pp1 ≤ P1, and (h2d + h2c)σ

2
z + Pd2 ≤ P2, (E.52)

where Pi = βiP (i = 1, 2) and 0 ≤ βi ≤ 1. The power for the non-cooperative private

message, cooperative private message and dummy message are chosen as follows:

σ2
z =

θ1
θ1 + θ2

P1

h2d + h2c
, Pp1 =

θ2
θ1 + θ2

P1, and Pd2 = (P2 − (h2d + h2c)σ
2
z)

+. (E.53)

where θi ∈ [0, 1]. The parameters θi and βi are the power splitting and power control

parameter, respectively. Hence, θi and βi are chosen such that the rates in (E.47)-(E.50)

are maximized and the minimum of (E.47)-(E.49) gives the achievable secrecy rate for

the transmitter 1 i.e.,R∗
1(1) and (E.50) gives the achievable secrecy rate for the transmit-

ter 2. i.e., R∗
2(1). In a similar way, the achievable secrecy rate R∗

1(2) and R∗
1(2) can be

determined in the second time slot. This completes the proof.
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Appendix for Chapter 9

F.1 Proof of Theorem 20

Using Fano’s inequality, the rate of user 1 is upper bounded as

NR1 ≤ I(W1;y
N
1 ) +NǫN ,

(a)

≤ h(yN
1 )− h(yN

1 |W1,x
N
1 ) +NǫN ,

(b)

≤ h(yN
1 )− h(hcx

N
2 + zN1 |vN

12,v
N
21,W1,x

N
1 ) +NǫN ,

(c)
= h(yN

1 )− h(hcx
N
2 + zN1 |vN

12,v
N
21) +NǫN ,

(d)
= h(yN

1 )− h(hcx
N
2 + z̃N1 |vN

12,v
N
21) +NǫN ,

or h(̃sN2 |vN
12,v

N
21) ≤ h(yN

1 )−NR1 +NǫN , where s̃N2 , hcx
N
2 + z̃N1 , (F.1)

where (a) and (b) follow by using the fact that the entropy cannot increase by additional

conditioning; (c) follows by using the relation in (7.1), and (d) is obtained using the fact

that the secrecy capacity region of an interference channel with confidential messages

is invariant under any joint channel noise distribution P (z1, z2) that leads to the same

marginal distributions P (z1) and P (z2) [5]. Although this invariance property is stated

245
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for GIC in [5], it is not difficult to see that this property holds for the GIC with limited-

rate transmitter cooperation also.

Adopting similar steps as was used to obtain (F.1), the following bound on the condi-

tional entropy is obtained.

h(̃sN1 |vN
12,v

N
21) ≤ h(yN

2 )−NR2 +NǫN , where s̃N1 , hcx
N
1 + z̃N2 , (F.2)

The rate of user 1 can also be bounded as

NR1 ≤ I(W1;y
N
1 ) +Nǫ,

(a)

≤ I(W1;y
N
1 )− I(W1;y

N
2 ) +Nǫ′,

(b)

≤ I(W1;y
N
1 ,y

N
2 )− I(W1;y

N
2 ) +Nǫ′,

= I(W1;y
N
1 |yN

2 ) +Nǫ′,

= h(yN
1 |yN

2 )− h(yN
1 |yN

2 ,W1) +Nǫ′,

= h(yN
1 ,y

N
2 )− h(yN

2 )− h(yN
1 |yN

2 ,W1) +Nǫ′,

(c)
= h(yN

1 ,y
N
2 , s̃

N
1 , s̃

N
2 )− h(̃sN1 , s̃

N
2 |yN

1 ,y
N
2 )− h(yN

2 )− h(yN
1 |yN

2 ,W1) +Nǫ′,

= h(̃sN1 , s̃
N
2 ) + h(yN

1 ,y
N
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(e)
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12,v
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where (a) is obtained using the secrecy constraint at receiver 2; (b) is due to the ge-

nie providing yN
2 to receiver 1; (c) is obtained using the relation h(yN

1 ,y
N
2 , s̃

N
1 , s̃

N
2 ) =

h(yN
1 ,y

N
2 ) + h(̃sN1 , s̃

N
2 |yN

1 ,y
N
2 ); (d) is obtained using chain rule for mutual information,

and (e) is obtained using the fact that removing conditioning cannot decrease the en-

tropy and conditioning cannot increase the entropy. Using (F.1) and (F.2), (F.3) becomes

N [2R1 +R2] ≤ H(vN
12) +H(vN

21) + h(yN
1 ) + h(yN
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0≤|ρ|≤1

1

3
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2CG + 0.5 log

(
1 + SNR+ INR+ 2ρ

√
SNR INR

)
+ 0.5 logdet

(
Σȳ|s̄

)]
.

(F.4)

In the above equation, ρ, det(.) and Σȳ|s̄ are as defined in the statement of the theorem.

The second term in (F.4) is obtained using the fact that differential entropy is maximized

by the Gaussian distribution for a given power constraint. Hence, the following holds.

h(y1) ≤ 0.5 log
(
2πe

(
1 + SNR+ INR+ 2ρ

√
SNR INR

))
, (F.5)

where SNR and INR are as defined in the statement of the theorem. The last term in
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(F.4) is obtained as follows.

h(y1,y2 |̃s1, s̃2) ≤ 0.5 logdet
(
2πeΣȳ|s̄

)
, (F.6)

where Σȳ|s̄ = Σȳ − Σȳ,s̄Σ
−1
s̄ ΣT

ȳ,s̄, Σȳ = E[ȳȳT ], Σȳ,s̄ = E[ȳs̄T ], Σs̄ = E[s̄s̄T ], ȳ , [y1 y2]
T ,

and s̄ , [̃s1 s̃2]
T . The evaluation of these terms are given in the statement of the theorem.

This completes the proof.

F.2 Proof of Theorem 21

Using Fano’s inequality, the rate of user 1 is upper bounded as
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where (a) is due to the genie providing xN
2 to receiver 1; (b) is obtained using chain rule

for mutual information; (c) is obtained using secrecy constraint at receiver 2; (d) is due

to the genie providing yN
2 as side information to receiver 1, where xN

2 is eliminated, (e) is

obtained using the relation I(W1;x
N
2 ,v

N
12,v

N
21|s′N1 ) = I(W1;x

N
2 |s′N1 )+I(W1;v

N
12,v
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and (f) is obtained using the relation in (7.1) and the fact that removing conditioning

does not decrease the entropy. The last inequality is obtained using the fact that the

differential entropy is maximized by the Gaussian distribution for a given power con-

straint. The term Σs′|y2 is evaluated as follows.

Σs′|y2 = E[s′
2
1]−E[s′y2]

2E[y2
2]

−1 = 1 +
SNR+ SNR2(1− ρ2)

1 + SNR+ INR+ 2ρ
√
SNR INR

. (F.8)

This completes the proof.

F.3 Proof of Theorem 22

Using Fano’s inequality, the rate of user 1 is upper bounded as

NR1 ≤ I(W1;y
N
1 ) +NǫN ,
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(a)

≤ I(W1;y
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where (a) is obtained using the secrecy constraint at receiver 2 and Σy1|y2 is evaluated

as follows:

Σy1|y2 = E[y2
1]−E[y1y2]

2E[y2
2]

−1,

= 1 + SNR+ INR+ 2ρ
√
SNR INR− (2

√
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. (F.10)

Substituting the value of Σy1|y2
from (F.10) in (F.9) results in (9.3), and this completes

the proof.
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