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Abstract—The impulse response of wireless channels between
the Nt transmit and Nr receive antennas of a MIMO-OFDM
system are group approximately sparse (ga-sparse), i.e., theNtNr

channels have a small number of significant paths relative to
the channel delay spread and the time-lags of the significant
paths between transmit and receive antenna pairs coincide.Often,
wireless channels are also groupapproximately cluster sparse
(gac-sparse), i.e., every ga-sparse channel consists of clusters,
where a few clusters have all strong components while most
clusters have all weak components. In this work, we cast the
problem of estimating the ga-sparse and gac-sparse block-fading
and time-varying channels in the Sparse Bayesian Learning
(SBL) framework, and propose a bouquet of novel algorithms
for pilot-based channel estimation and joint channel estimation
and data detection in MIMO-OFDM systems. The proposed joint
channel estimation and data detection schemes are capable of
recovering ga-sparse and gac-sparse channels even when the
measurement matrix is only partially known. Further, we employ
a first order autoregressive modeling of the temporal variation
of the wireless ga-sparse and gac-sparse channels and propose
a recursive Kalman filtering and smoothing (KFS) technique for
joint channel estimation, tracking and data detection. TheKFS
framework exploits the correlation structure in the time-varying
channel. We also propose novel, parallel-implementation based,
low complexity techniques for estimating gac-sparse channels.
Monte Carlo simulations illustrate the efficacy of proposed
techniques in terms of mean square error (MSE) and coded
bit error rate (BER) performance. In particular, we demonstrate
the performance benefits offered by algorithms that exploitthe
gac-sparse structure in the wireless channel.

EDICS: MLR-BAYL, MLR-SLER, SPC-CEST, SPC-
MULT, SPC-DETC

I. I NTRODUCTION

Multiple Input Multiple Output (MIMO) combined with
Orthogonal Frequency Division Multiplexing (OFDM) is the
air-interface solution for next-generation broadband wireless
systems and standards. Multiple antennas are employed at the
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transmitter and receiver of a MIMO-OFDM system in order to
exploit the diversity and multiplexing advantages of a MIMO
system, while OFDM provides resilience to the commonly
encountered frequency-selective fading of a multipath wireless
environment [2]. Most OFDM-based wireless standards such
as DVB-T, IEEE 802.11a, IEEE 802.16e etc., employ pilot-
based channel estimation techniques for accurately decoding
the transmitted data bits. However, such methods necessitate
the transmission of pilots symbols on a set of anchor subcar-
riers per transmit antenna, leading to severe overheads on the
spectral efficiency. In this paper, we propose novel MIMO-
OFDM channel estimation techniques using far fewer pilots
compared to the conventional methods [3], [4], by exploiting
the approximate sparsity of the wireless channel. We also
extend the algorithms to exploit structure beyond sparsity, such
as temporal correlation, and clustered multipath components.

In this work, we model the spatially uncorrelatedNtNr

MIMO-OFDM wireless channels as (a) group approximately-
sparse (ga-sparse), and (b) group approximately cluster sparse
(gac-sparse). Further, we formulate the channel estimation
problem in block-fading and time-varying channels and inves-
tigate the problem of pilot-only channel estimation and joint
channel estimation and data detection for ga-sparse and gac-
sparse channels. Our focus is to design novel Sparse Bayesian
Learning (SBL) type algorithms for joint ga-sparse and gac-
sparse channel estimation and data detection in MIMO-OFDM
systems.

A. Background and Literature Survey

In this subsection, we present the basic set-up of the coded
MIMO-OFDM system considered in this work and formulate
the problem of pilot-based channel estimation and joint chan-
nel estimation and data detection in a MIMO-OFDM system
using the Multiple Measurement Vector (MMV) framework.

Figure 1 shows the block diagram of a typical MIMO-
OFDM system withN subcarriers,Nt transmit antennas and
Nr receive antennas. The transmissions take place through
OFDM frames, where every frame consists ofK OFDM
symbols. For simplicity, we assume that the timing and
frequency offsets between the transmitter and receiver are
perfectly estimated and compensated for, prior to the startof
communication. The residual offsets do result in a performance
degradation, but from our numerical experiments, we have
found that it does not change the relative performance of the
different schemes considered in this work. A detailed studyof
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Figure 1. Turbo encoded/decoded transmitter and receiver chain of a MIMO-
OFDM system. The dashed box (block shaded in yellow) highlights the
proposed algorithms. Note that the quantities of interest are the channel
estimateŝh11, . . . , ĥNtNr

and output bits{b̂}.

the effect of timing and frequency offsets, while interesting in
its own right, is beyond the scope of this paper.

At the transmitter of the discrete-time MIMO-OFDM sys-
tem,{b} input bits are first encoded and interleaved into a new
sequence of coded bits,{c}. The coded bits{c} are mapped
into an M -ary complex symbol sequence, which is further
divided intoNt streams. In this work, we consider both the
block-fading channel, where the channel coefficients remain
fixed across the OFDM frame duration and vary in an i.i.d.
fashion from frame to frame, and the slowly time-varying
channel, where the channel coefficients can vary across the
OFDM frame duration. At every transmit antenna,Pb pilots
are inserted in an OFDM frame in the case of block-fading
channels, andPt pilots are inserted in every OFDM symbol
of an OFDM frame in the case of time-varying channels. The
pilot symbols along with coded data symbols{c} are OFDM
modulated and transmitted over the multipath fading channel
of the kth OFDM symbol, denoted byhntnr,k ∈ CL×1. Here,
nt (nr) denotes the transmit (receive) antenna index, andL
is the length of the channel. After OFDM demodulation, the
signal received at thenth

r receive antenna of thekth OFDM
symbol is given by

ynr,k =

Nt∑

nt=1

Xnt,kFhntnr ,k+vnr ,k, nr = 1, . . . , Nr, (1)

where the diagonal matrixXnt,k ∈ C
N×N consists of the

pilot as well as data transmitted over thenth
t transmit antenna

andkth OFDM symbol, andF ∈ CN×L represents the matrix
consisting of the firstL columns of theN ×N DFT matrix.
Each component ofvnr,k ∈ CN×1 is an additive white circu-
larly symmetric Gaussian noise with probability distribution
CN (0, σ2). In this work, we assume that the noise variance
σ2 is known at the receiver. When it is unknown, or when it
is time-varying due to interference, one needs to dynamically
estimate both the thermal noise as well as the interference
power. It is possible to incorporate noise variance estimation
within the Expectation Maximization (EM) framework of SBL
[5]; however, we omit the details here due to lack of space.

In the complex baseband representation, the time domain

channel impulse response between thenth
t transmit antenna

and thenth
r receive antenna in thekth symbol, denoted as

h̃ntnr ,k[t], t ∈ R, can be modeled as a stationary tapped delay
line filter in the lag domain:

h̃ntnr,k[t] =
L̃∑

l=1

h̃ntnr,k,lδ[t− τl], (2)

where δ[t] is the Dirac delta function,̃hntnr,k,l and τl rep-
resent the attenuation and propagation delay on the pathl
corresponding to thenth

t transmit and thenth
r receive antenna,

respectively, andL̃ is the number of resolvable paths [6].
Wireless channel models obtained using channel sounding
experiments, on the other hand, exhibitapproximatesparsity in
the lag domain, for e.g., due to non-perfect low-pass filtering,
e.g., raised cosine filtering [7]. Based on these practical
considerations, we model the lag domainfiltered channel
impulse response as,hntnr ,k[t] = gt[t] ∗ h̃ntnr,k[t] ∗ gr[t],
where gt[t] and gr[t] represent the baseband transmit and
receive filters employed at every transmit and receive antenna
of the MIMO-OFDM system, and∗ represents the convolution
operation. Then, the corresponding discrete-time channelcan
be represented as,hntnr ,k(l) = hntnr,k[(l − 1)T ], where
T is the baud interval. The overall channel is represented
as hntnr ,k = [hntnr ,k(1), hntnr,k(2), . . . , hntnr,k(L)]

T . In
addition, it is known that the sample-spaced representation
of h̃ntnr,k[t] between different transmit and receive antenna
pairs are group-sparse [8], [9], i.e., the locations of non-zero
elements of the sparse vectors coincide. Sincegt[t] andgr[t]
are identical for every transmit and receive antenna, we deduce
that the locations of the significant components inhntnr,k also
coincide across the entire MIMO-OFDM system. In this work,
we consider the following scenarios:

• hntnr ,k is group approximately-sparse(ga-sparse), i.e.,
the NtNr wireless channels consists of a few strong
components and several weak components, and the time-
lags of strong and weak components between transmit
and receive antenna pairs coincide.

• hntnr ,k is group approximately cluster sparse(gac-
sparse), i.e., theNtNr ga-sparse wireless channels con-
sists of clusters such that the components of a given
cluster are all strong or weak. In addition, there are a
few clusters consisting of strong components.

To recover the ga-sparse and gac-sparse channels, we cast
(1) in an MMV framework [10], [11]. Here, in thekth OFDM
symbol, the observations from theNr receivers form the
observation matrix,Yk, which is related to the vectors in
the channel matrix,Hk, through a common dictionaryΦk,
as follows:

[y1,k, . . . ,yNr ,k]
︸ ︷︷ ︸

Yk∈CN×Nr

= Xk(INt
⊗ F)

︸ ︷︷ ︸

Φk∈CN×LNt






h11,k . . . h1Nr,k

...
...

hNt1,k . . . hNtNr,k






︸ ︷︷ ︸

Hk∈CLNt×Nr

+ [v1,k, . . . ,vNr,k]
︸ ︷︷ ︸

Vk∈CN×Nr

, (3)
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where the overall transmit data matrixXk ∈ CN×NNt is given
by Xk , [X1,k,X2,k, . . . ,XNt,k]. At theP pilot subcarriers,
the MIMO-OFDM system model can be written as

Yp,k = Φp,kHk +Vp,k, (4)

whereYp,k ∈ CP×Nr , Φp,k ∈ CP×LNt andVp,k ∈ CP×Nr

are obtained by samplingYk, Φk and Vk at the pilot
subcarriers, respectively.

Several channel estimation techniques for MIMO-OFDM
systems have been proposed in literature. Conventional pilot-
based interpolation techniques using on frequency domain
Least Squares (LS) or Minimum Mean Square Error (MMSE)
methods [3], [4] and lag domain LS and MMSE [4] do
not provide reliable estimates whenPb < L, unless the
prior knowledge of the the average multipath power profile
measured at a particular location, also called as the Multipath
Intensity Profile (MIP) of the channel [12], is known. In
scenarios where the MIP is not known, blind methods [13] and
techniques based on Compressed Sensing (CS) using group-
sparse based formulation [8], [9] have been employed. Specif-
ically, CS based simultaneous Orthogonal Matching Pursuit
(OMP) [14], Modified OMP [15], Simultaneous Basis Pursuit
Denoising and Simultaneous OMP [16] have been proposed
for pilot-assisted ga-sparse channel estimation in MIMO-
OFDM systems. Further, CS based Block OMP (BOMP) has
been proposed for pilot-assisted gac-sparse MIMO-OFDM
channel estimation [17]. In general, CS based methods recover
an approximately sparse vector by recovering thes significant
non-zero coefficients [18]: a large value ofs guarantees recov-
ery accuracy, but requires a correspondingly large number of
measurements. Bayesian algorithms such as the Temporal SBL
(TSBL) [19] have been proposed for recovery of temporally
correlated group-sparse vectors, by modeling the correlation
among the group-sparse vectors using a general correlation
structure. However, due to the generality of the correlation
structure assumed, the complexity of such algorithms quickly
becomes prohibitive as the time-window over which estimation
is performed increases, making these algorithms unsuitable for
OFDM channel tracking.

If the MIP is known, incorporating the observations avail-
able at the data subcarriers into channel estimation by using
joint data detection and channel estimation techniques can
enhance the quality of channel estimates in MIMO-OFDM
systems [11]. We showed that such joint approximately sparse
channel estimation and data detection schemes enhance the
quality of channel estimates in SISO-OFDM systems [20].
However, using SISO-OFDM estimators in parallel to obtain
estimators in the MIMO-OFDM context does not lead to
significant gains as they do not exploit the spatial ga-sparse
and the gac-sparse nature of the channel. The novelty of this
work is that our proposed Bayesian joint channel estimation
and data detection techniques exploit the ga-sparse and gac-
sparse structure in MIMO-OFDM channels, and in the case
of both block-fading as well as time-varying channels. To the
best of our knowledge, this is the first work in which such
structure has been exploited for channel estimation and data
detection in MIMO-OFDM systems.

B. Problem Formulation and Contributions

In this work, we address the problem of pilot-assisted and
joint ga-sparse and gac-sparse channel estimation and data
detection in MIMO-OFDM systems using the SBL framework.
Among the known Bayesian sparse recovery techniques [21],
[22], SBL exhibits the Expectation Maximization (EM) based
monotonicity property, and offers guarantees such as conver-
gence to the sparsest solution when the noise variance is zero,
and convergence to a sparse local minimum, irrespective of the
noise variance [23]. This motivates us to employ SBL [23],
[24] based algorithms for recovery of the spatially uncorrelated
ga-sparse and gac-sparse channels in MIMO-OFDM systems.
In the SBL framework, we model the wireless channel as
follows:

• In the case of ga-sparse channel, we model the channel
as hntnr,k ∼ CN (0,Γ), where the hyperparameters
Γ = diag(γ(1), . . . , γ(L)) are common for theNtNr

channels for0 ≤ k ≤ K, i.e., the channels are spatially
and temporally ga-sparse. Note that ifγ(l) → 0, then
the correspondinghntnr ,k(l) → 0 for all the NtNrK
channels [5], [23].

• In the case of gac-sparse channel, we assume that theL-
length approximately sparse channelhntnr,k consists of
B clusters, each of lengthM , as follows:

hntnr,k = [hntnr,k(1), . . . , hntnr,k(M)
︸ ︷︷ ︸

hntnr,1k∈C1×M

; . . . ;

hntnr ,k((M − 1)B + 1), . . . , hntnr ,k(MB)
︸ ︷︷ ︸

hntnr,Bk∈C1×M

], (5)

for 1 ≤ k ≤ K. Here, the gac-sparse structure is
imposed by modeling thebth cluster of the channel as
hntnr ,bk ∼ N (0, γ(b)IM ), whereγ(b) is an unknown
hyperparameter such that whenγ(b) = 0, the bth block
of hntnr,k is zero [25]. In addition, we note that different
clusters of the gac-sparse channel are mutually uncorre-
lated, and hence, the overall covariance matrix ofhntnr,k

is a block-diagonal matrix with principal blocks given by
γ(b)IM , 1 ≤ b ≤ B.

Depending on the mobility of the receiver, the ga-sparse and
the gac-sparse channels may remain constant over the frame
duration (block-fading), or may be slowly time-varying. When
the channel is time-varying, the nonzero channel coefficients
vary slowly and are temporally correlated, but the locations
of significant components of the channel remain constant for
several OFDM frames [26]. In addition, it is known that the
first order autoregressive (AR) model accurately captures the
local behavior of fading wireless channels [27]. Hence, in this
work, we employ a first order AR model for the time-varying
channel in both the ga-sparse as well as the gac-sparse cases,
and develop a Kalman Filter (KF) based framework for exact
inference using the received pilot and data symbols. The first
order AR model for thekth channel tap is given by

hntnr,k = ρhntnr ,k−1 + untnr ,k, (6)

where ρ = J0(2πfdTs) is the AR coefficient,J0(·) is the
zeroth order Bessel function of the first kind,fd is the Doppler
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Figure 2. Figure depicting the algorithms proposed in this work.

frequency, andTs is the OFDM symbol duration [28]. The
driving noiseuntnr,k is distributed asuntnr ,k ∼ CN (0, (1 −
ρ2)γ(i)IM ).

As depicted in Fig. 2, the following algorithms are proposed
for recovering ga-sparse channels in the MMV framework
given in (3):

• In Sec. II, we adapt the multiple response SBL (MSBL)
algorithm [10] and propose a novel Kalman MSBL
(KMSBL) for pilot-based channel estimation in block-
fading channels and time-varying channels, respectively.

• In Sec. III, we propose a Joint-MSBL (J-MSBL) algo-
rithm and Joint-KMSBL (J-KMSBL) algorithm for joint
channel estimation/tracking and data detection in block-
fading and time-varying scenarios, respectively.

Further, in the context of recovering gac-sparse channels,
we propose the following algorithms:

• In Sec. IV, we propose the Block MSBL (BMSBL) and
Kalman BMSBL (KBMSBL) algorithm for pilot-based
gac-sparse channel estimation for block-fading and time-
varying channels, respectively.

• In Sec. V, we propose the and Joint-BMSBL (J-BMSBL)
and Joint-KBMSBL (J-KBMSBL) algorithm for joint
channel tracking and data detection in the block-fading
and time-varying scenario, respectively.

The joint counterparts of the proposed algorithms, whereina
joint ML estimation of both the hyperparameters and the data
is performed, leads to significant enhancement in the quality of
channel estimates. In the M-step, this joint estimation problem
separates as independent optimization problems, leading to a
simple, computationally inexpensive maximization procedure,
with no loss of optimality. This, in turn, leads to significant
improvement in the coded Bit Error Rate (BER) performance
compared to the pilot-based and conventional methods. In the
context of gac-sparse channel estimation, we show that the
proposed algorithms are more accurate than algorithms that
do not exploit the cluster sparsity. The algorithms proposed
to handle the time-varying channel conditions fully exploit
the correlation structure of the channel, resulting in gains
of 1 − 2 dB in the coded BER performance, as illustrated
using Monte Carlo simulations. Further, we propose novel,
implementation-friendly structures which lead to a lower com-
putational load for gac-sparse channels.

Notation: Boldface small letters denote vectors and bold-
face capital letters denote matrices. The symbols(·)T , | · |
and Tr(·) denote the transpose, determinant and the trace of a
matrix, respectively. Also, diag(a) denotes a diagonal matrix
with entries given bya. The pdf of the random variableX is

represented asp(x) and the random variables and deterministic
parameters in the pdf are separated using a semicolon.CN (·)
denotes the complex Gaussian pdf. The expectation with
respect toX is denoted asEX(·). The symbolsIL andA⊗B

denotes anL × L identity matrix and Kronecker product of
A and B, respectively. Theith entry of a and the(i, j)th

entry of A are represented asa(i) andA(i, j), respectively.
Throughout the paper,p as a subscript refers to pilots and(r)
in the superscript refers to the iteration number.

II. CHANNEL ESTIMATION AND TRACKING USING PILOT

SUBCARRIERS FORGA-SPARSECHANNELS

In this section, we propose algorithms for ga-sparse channel
estimation and tracking, using the pilot-subcarriersYp,k in
(4), in both block-fading and time-varying scenarios. First, we
adapt the MSBL algorithm for block-fading channel estimation
usingPb pilots placed in an equidistant manner over the time-
frequency grid in a lattice structure, as prescribed by the stan-
dard [29], [30]. Subsequently, we propose the novel KMSBL
algorithm for estimation and tracking of time-varying channels
using Pt pilots placed in an equidistant lattice structure in
every OFDM symbol.

A. The MSBL Algorithm

Here, we describe the MSBL algorithm for pilot-assisted
channel estimation in MIMO-OFDM systems.

In the MSBL framework, multiple group-sparse vectors
are recovered from multiple observation vectors [10] with
a parameterized prior incorporated to obtain group-sparse
solutions. The prior density is given by

p(H;Γ) =

Nr∏

nr=1

p(hnr
;Γ), (7)

wherehnr
represents thenth

r column ofH, given byhnr
=

[hT
1nr

, . . . ,hT
Ntnr

]T , with a prior pdf of hnr
∼ CN (0,Γb),

Γb = INt
⊗ Γ which control the variances of elements

in H. The hyperparameters inΓ = diag(γ), where γ =
[γ(1), γ(2), . . . , γ(L)]T , can be estimated using the type-II
ML procedure [24], i.e., by maximizing the marginalized pdf
p(yp,nr

;γ)1 at a given receive antenna, as follows:

γML(i) = argmax
γ(i)∈R+

p(yp,nr
;γ), 1 ≤ i ≤ L, 1 ≤ nr ≤ Nr.

(8)
Since the above problem cannot be solved in closed form,
iterative estimators such as the EM based2 MSBL algorithm
[10] are employed. In this approach,H is treated as the hidden
variable, and the posterior distribution ofH is obtained in the
E-step and the ML estimate ofγ is obtained in the M-step.
The steps of the algorithm are given as

E : Q(γ|γ(r)) = EH|Yp;γ(r) [log p(Yp,H;γ)] (9)

M : γ(r+1)(i) = argmax
γ(i)∈R+

Q(γ|γ(r)), (10)

1Here, we describe the MSBL algorithm fork = 1, and hence, we drop
the subscriptk in yp,nr andYp.

2Note that all the algorithms proposed in the paper use EM-based updates,
and hence, they have a convergence guarantee to a local optima, with the
likelihood increasing in each iteration [31].
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for 1 ≤ i ≤ L, and the E and M steps are iterated until
convergence. The E-step requires the posterior distribution
p(H|Yp;γ

(r)), which can be obtained from the likelihood at
the nth

r receiver, as follows:

p(yp,nr
|hnr

) =
1

(πσ2)Nr
exp

(

−
‖yp,nr

−Φphnr
‖22

σ2

)

.

(11)
Combining the likelihood and the prior distribution, the pos-
terior distribution ofhnr

is given by p
(
hnr

|yp,nr
;γ(r)

)
∼

CN (µnr
,Σ), with mean and covariance given by

µnr
= σ−2ΣΦH

p yp,nr
, Σ =

(

ΦH
p Φp

σ2
+ Γ

(r)
b

−1

)−1

.(12)

Here,Γ(r)
b is the hyperparameter value in therth iteration and

Σ is common to all receive antennas, and hence, independent
of the subscriptnr.

The M-step, given by (10), can be simplified to obtain the
update equation forγ as

γ(r+1)(i) =
1

NtNr

Nr∑

nr=1

Nt−1∑

nt=0

(
|µnr

(i+ ntL)|2

+ Σ(i+ ntL, i+ ntL)) . (13)

Note that, in the above equation, the ga-sparse nature of the
channel results in the update ofγ which is averagedover the
NtNr channels of the MIMO-OFDM system. For a SISO-
OFDM system,Nt = Nr = 1, and the above expression
simplifies to the one obtained in [20].

The MSBL algorithm consists of executing the E and the
M steps iteratively, until the algorithm reaches convergence,
i.e., the difference‖γ(r)−γ

(r−1)‖22 ≤ ǫ, whereǫ is a user de-
fined parameter. The E-step involves computing the posterior
mean and variance of the ga-sparse MIMO-OFDM channel
as given in (12), incurring a computational complexity given
by O(P 2

b L) [10], while M-step computes the hyperparameter
update as given in (13), incurring a computational complexity
of O(NtNrL). In practice, it is found that an initial estimate
for Γ given by

Γ(0) = IL×L, (14)

is sufficient for the MSBL algorithm.
In the case of multiple OFDM symbols in a block-fading

channel, the channel remains constant for theK OFDM
symbols. The system model in (4) can be used for channel
estimation, such that the number of observations correspond-
ing to pilot subcarriers isPb.

The MSBL algorithm, in the current form, is not capable of
exploiting the correlation that exists in time-varying channels
across OFDM symbols. In the following subsection, we extend
MSBL algorithm to obtain the recursive KMSBL algorithm
which exploits the temporal correlation across OFDM sym-
bols, resulting in a significant performance improvement when
the channel is time-varying.

B. The KMSBL Algorithm

In this subsection, we describe the KMSBL algorithm
which tracks theNtNr ga-sparse MIMO-OFDM channels by

exploiting both the group-sparsity and the temporal channel
correlation using a Kalman filter and smoother (KFS) based
recursive framework.

In the time-varying scenario, the state space equations for
k = 1, 2, . . . ,K − 1 are as follows:

Yp,k = Φp,kHk +Vp,k, (15)

Hk+1 = ρHk +Uk+1, (16)

whereΦp,k = [Φp,1,k, . . . ,Φp,Nt,k], andΦp,nt,k ∈ CPt×L is
given by Φp,nt,k , Xp,nt,kFp,nt

. Here,Xp,nt,k ∈ CPt×Pt

is a diagonal matrix consisting of pilots symbols transmitted
from thenth

t antenna in thekth OFDM symbol, andFp,nt
∈

CPt×L is a truncated DFT matrix consisting of the firstL
columns and thePt rows corresponding to the pilot subcarriers
of the nth

t transmit antenna. Further,Hk consists of theNr

channels corresponding to thekth OFDM symbol, i.e.,Hk =
[h1,k, . . . ,hNr,k] wherehnr,k = [hT

1nr ,k
, . . . ,hT

Ntnr,k
]T . In

the above equation, we defineH0 , 0NtL×Nr
, the NtL ×

Nr matrix of zeros. Note that columns of the matrixUk+1

consists of the driving noise vectors,unr ,k+1 which consists of
independent componentsunr ,k+1(i) ∼ CN (0, (1 − ρ2)γ(i)).
The initial condition for the a-sparse channel is given byh1 ∼
CN (0,Γ).

The EM update equations corresponding to the KMSBL
algorithm are as follows:

E : Q
(

γ|γ(r)
)

=

EH1,...,HK |Yp;γ(r) [log p(Yp,H1, . . . ,HK ;γ)]

M : γ(r+1) = argmax
γ∈R

L×1
+

Q
(

γ|γ(r)
)

. (17)

In the above expression,Yp , [Yp,1, . . . ,Yp,K ] represents
the overall observation matrix.

To compute the E-step given above, we require the posterior
distribution of the unknown ga-sparse channelHk. For this,
we employ the Kalman based recursive update equations. The
KFS update equations forK OFDM symbols are as follows
[20], [32], [33]:

for k = 1, . . . ,K do

Prediction:Ĥk|k−1 = ρĤk−1|k−1 (18)

Pk|k−1 = ρ2Pk−1|k−1 + (1− ρ2)Γb (19)

Filtering:

Gk = Pk|k−1Φ
H
p,k

(
σ2IPt

+Φp,kPk|k−1Φ
H
p,k

)−1
(20)

Ĥk|k = Ĥk|k−1 +Gk(yp,k −Φp,kĤk|k−1) (21)

Pk|k = (INtL −GkΦp,k)Pk|k−1 (22)

end (23)

for j = K,K − 1, . . . , 2 do

Smoothing:

Ĥj−1|K = Ĥj−1|j−1 + Jj−1(Ĥj|K − Ĥj|j−1) (24)

Pj−1|K = Pj−1|j−1 + Jj−1(Pj|K −Pj|j−1)J
H
j−1 (25)

end (26)

whereJj−1 , ρPj−1|j−1P
−1
j|j−1 andGk is the Kalman gain

matrix. In the above, the symbolŝHk|k−1, Pk|k−1, etc. have
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their usual meanings as in the KF literature [33]. For example,
Ĥk|k−1 is the channel estimate at thekth OFDM symbol given
the observationsYp,k−1; Pk|k−1 is the covariance of thekth

channel estimate givenYp,k−1, etc. The above KFS equations
are initialized by settingĤ0|0 = 0 and P0|0 = Γb, where
Γb = Γ⊗ INt

.
In order to simplify (17), we use the joint pdf of the

observationsYp andK channel instantiations,H1, . . . ,HK ,
given by

p(Yp,H1, . . . ,HK ;γ) =

K∏

k=1

p(Yp|H1, . . . ,HK)

p(Hk|Hk−1;γ). (27)

SinceHk consists of columnshnr,k for 1 ≤ nr ≤ Nr, the
M-step results in the following optimization problem:

γ
(r+1) = argmax

γ∈R
L×1
+

EH1,...,HK |Yp;γ(r) [KNr log |Γb|

+
1

(1− ρ2)

Nr∑

nr=1

K∑

k=2

[
(hnr ,k − ρhnr,k−1)

HΓ−1
b

(hnr ,k − ρhnr,k−1) + hH
nr,1Γ

−1
b hnr,1]

]
. (28)

We see that the M-step requires the computation of
Ĥj|K , EH1,...,HK |Yp;γ(r) [Hj ], and the covariance
EH1,...,HK |Yp;γ(r) [HjH

H
j ] , Pj|K + Ĥj|KĤH

j|K for j =
1, . . . ,K, which is obtained from (18)-(26). The M-step also
requires the computation ofEH1,...,HK |Yp;γ(r) [HjH

H
j−1] ,

Pj,j−1|K + Ĥj|KĤH
j−1|K for j = K,K − 1, . . . , 2, which we

obtain from [33] as follows:

Pj−1,j−2|K = Pj−1|j−1J
H
j−2 + JH

j−1(Pj,j−1|K

−ρPj−1|j−1)Jj−2. (29)

The above recursion is initialized usingPK,K−1|k = ρ(INtL−
GKΦp,K)PK−1|K−1. Using the above expressions, the opti-
mization problem in (28) can be written as

γ
(r+1) = argmin

γ∈R
L×1
+

{

KNtNr log |Γ|+
Nt∑

nt=1

Tr(Γ−1Mnt,1|K)

+ 1
(1−ρ2)

K∑

j=2

Nt∑

nt=1

Tr(Γ−1Mnt,j|K)






, (30)

whereMnt,1|K ∈ CL×L is the submatrix consisting of rows
and columns(nt−1)L throughntL from the matrixM1|K ,

NrPj|K + Ĥj|KĤH
j|K + ρ2(NrPj−1|K + Ĥj−1|KĤH

j−1|K)−

2ρRe(NrPj,j−1|K + Ĥj|KĤH
j−1|K). Similarly, Mnt,j|K ∈

CL×L is the submatrix ofMj|K , NrP1|K + Ĥ1|KĤH
1|K ,

consisting of rows and columns(nt−1)L throughntL. Since
the individual channel components ofhnr ,k given byhntnr ,k

for 1 ≤ nt ≤ Nt are governed byγ, we note that the update
of γ is averaged over theNt components via the summation
overnt. Differentiating (30) w.r.t.γ(i) and setting the resulting
expression to zero and solving forγ gives the update for the

ith hyperparameter as follows:

γ(r+1)(i) =



 1
KNtNr





K∑

j=2

Nt∑

nt=1

Mnt,j|K(i, i)

(1− ρ2)

+Mnt,1|K(i, i)
)]+

, (31)

for i = 1, . . . , L. Thus the KMSBL algorithm learnsγ in the
M-step and provides low-complexity and recursive estimates
of the ga-sparse channel in the E-step.
Remarks: When ρ = 1, H1 = . . . = HK and hence, the
channel is constant across the OFDM frame, i.e., the channel
is block-fading. The results from Sec. II-A demonstrate that
Pb pilots per OFDM symbol are sufficient for recoveringH
from Yp. Substitutingρ = 1 in (18)-(26), the KFS update
equations collapse to the following three equations:

Gk = Pk−1|k−1Φ
H
p,k(σ

2IPt
+Φp,kPk−1|k−1Φ

H
p,k)

−1 (32)

Ĥk|k = Ĥk−1|k−1 +Gk(Yp,k −Φp,kĤk−1|k−1) (33)

Pk|k = (INtL −GkΦp,k)Pk−1|k−1. (34)

Further, whenρ = 1, the M-step of (28) simplifies to the
M-step of MSBL given in (10).

The KMSBL algorithm proposed in this section is a gen-
eralized version of the KSBL algorithm proposed in [20]
for pilot-based SISO-OFDM channel estimation, i.e., setting
Nt = Nr = 1 in the KMSBL algorithm leads to the KSBL
algorithm. However, in contrast to the KSBL algorithm, the
KMSBL algorithm incorporates the spatial sparsity that exists
in the MIMO-OFDM framework, and tracksNr correlated
channel vectors governed by a commonγ.

In order to estimate the wireless channel when the data is
observed up to theK th OFDM symbol, (18)-(22) are applied
recursively until we reach theK th OFDM symbol in the
forward recursion. We store the values ofĤj|j , Ĥj|j−1, Pj|j

andPj|j−1 for j = 0, . . . ,K in the forward recursion. Next,
we apply the backward recursion using the Kalman smoother
given by (24)-(26), i.e., KFS is applied to the whole sequence
of observations before updatingγ. The Kalman smoother
helps to utilize all the information available in both the past
and future symbols, and hence improves the channel estimates.

Using a flop-count analysis [34], the computations of the
KMSBL algorithm is dominated by the computation of the
Jk−1 term in the smoothing step, which has a complexity
of O(KL3) per iteration per receive antenna. We see that
if the number of OFDM symbols to be tracked are such
that KPt > L, the complexity of the block-based ARSBL
algorithm [19] is larger than the KMSBL algorithm. In other
words, the KMSBL algorithm is a good choice among the ex-
act inference techniques when the number of OFDM symbols
to be tracked is large [20].

The algorithms proposed in this section do not utilize the
information available from the data subcarriers in estimating
the channel. In the following section, we propose joint channel
estimation and data detection schemes for ga-sparse channels.
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E-step:Q(γ,X|γ(r),X(r)) = EH|Y;γ(r),X(r)[log p(H,Y;γ,X)]

M-step: argmax
γ,XQ(γ,X|γ(r),X(r))

X(r+1) = argmaxXQ(X|X(r))γ
(r+1) = argmax

γ
Q(γ|γ(r))

Figure 3. The J-MSBL algorithm: E-step computes the expectation over the
posterior density ofH. The joint maximization in the M-step simplifies into
two independent maximizations overγ andX. The dashed box indicates the
novelty in the J-MSBL approach.

III. JOINT CHANNEL ESTIMATION /TRACKING AND DATA

DETECTION USING PILOT AND DATA SUBCARRIERS FOR

GA-SPARSECHANNELS

In this section, we present the novel J-MSBL and J-
KMSBL algorithm that generalizes the pilot-based MSBL and
KMSBL algorithms for joint ga-sparse channel estimation and
data detection in MIMO-OFDM systems. Further, using the
recursive J-KMSBL algorithm, we show that a low-complexity
recursive variant of J-MSBL can be derived using the KFS
update equations given in (18)-(26).

A. The J-MSBL Algorithm

In this subsection, we derive the J-MSBL algorithm for joint
estimation of the ga-sparse channels and the transmit data in
a MIMO-OFDM system. To derive this algorithm, we modify
the MSBL framework such that the unknown variables are not
only the hyperparameters but also the data transmitted inK
OFDM symbols.

We consider H in (3) as the hidden variable,
and, in contrast to the MSBL setup, we consider(

γ,X , [X11, . . . ,Xntk, . . . ,XNtK ]
)

as parameters to
be estimated. Here,Xntk consists of the data corresponding
to thenth

t antenna in thekth OFDM symbol. The E and the
M-steps of the J-MSBL algorithm can be given as

E : Q(γ,X|γ(r),X(r)) = EH|Y;γ(r) [log p(Y,H;γ,X)]

M :
(

γ
(r+1),X(r+1)

)

= argmax
γ∈R

L×1
+ ,X:xi∈S

Q(γ,X|γ(r),X(r)),

(35)

where xi is an element inX, and S is the constellation
from which the symbols are transmitted. The E-step of J-
MSBL consists of computing the posterior distribution at every
receive antenna, and is given asp(hnr

|ynr
;γ(r),X(r)) ∼

CN (µnr
,Σ), where

µnr
= σ−2ΣΦH

b ynrk, Σ =
(

σ−2ΦH
b Φb + Γ(r)−1

)−1

,

(36)
for K OFDM symbols in a frame. In the above equation,Φb =
[ΦT

1 , . . . ,Φ
T
K ]T , and for1 ≤ k ≤ K, Fb = 1Nt

⊗ F, Φk =

Fbblkdiag(X(r)
1k , . . . ,X

(r)
Ntk

) andynr,k = [yT
1,k, . . . ,y

T
Nr ,k

]T .

At the outset, solving the optimization problem in the
M-step in (35) might appear to be an uphill task, as
it involves joint optimization overX and γ. However,
we see that, in (35), the objective function w.r.t.γ and
X can be decoupled as the sum of two independent
terms, Q(X|X(r)) , EH|Y;γ(r),X(r) [log p(Y|H;X)] and
Q(γ|γ(r)) , EH|Y;γ(r),X(r) [log p(H;γ)]. This is schemati-
cally illustrated in Fig. 3.3 Further, we see thatQ(γ|γ(r)) of
the MSBL algorithm and the J-MSBL algorithm are identical,
and hence, upon optimizingQ(γ|γ(r)) with respect toγ(i), we
obtain the expression forγ(r+1)(i) as in the MSBL algorithm,
given by (10). Further, the objective function to obtainX, i.e.,
Q(X|X(r)), can be derived as follows:

Q(X|X(r)) = EH|Y;γ(r),X(r)

[

log
Nr∏

nr=1
p(ynr ,k|hnr

;X)

]

= −EH|Y;γ(r),X(r)

[
Nr∑

nr=1
‖ynr,k −Φbhnr

‖22

]

. (37)

and hence, the optimization problem forX is given by

X
(r+1)
11 (i, i), . . . , X

(r+1)
NtK

(i, i) = argmin
x1,...,xNt

∈S
C(i, i)

+

Nr∑

nr=1

|ynr ,k(i)−
Nt∑

nt=1

xnt,kFb(i, :)µnr
|2, (38)

wherei ∈ D, D is an index set consisting of the data subcarrier
locations,C = ΦΣΦH , Fb(i, :) is theith row of theFb matrix,
µnr

andΣ are given in (36). The computational complexity
of this algorithm is dominated by the inverse operation in (36),
and isO(K2N2LNt).

As stated in the previous section, the initial estimate ofΓ

is taken to be an identity matrix. The initialization of the
(KNNt − PbNt) non-pilot data in turn requires an initial
channel estimate. Channel estimates using methods like LS
and MMSE cannot be used, as they require knowledge of
the MIP. Hence, the initialization ofX is set to be the
channel estimate obtained from a few iterations of the MSBL
algorithm from thePb pilots (denoted aŝhMSBL). The ML
data detection problem for obtaining the initial data estimates
is given by

X
(0)
1 (i, i), . . . , X

(0)
Nt

(i, i) =

argmin
x1,...,xNt

∈S
|ynr,k(i)−

Nt∑

nt=1

xnt
Fb(i, :)ĥMSBL|

2, i ∈ D.

(39)

In order to obtain the solution for both (38) and (39), we
need to find the vector[x1, . . . , xNt

] that jointly minimizes
(38). Although we can solve this problem with moderate
complexity for MIMO-OFDM systems withNt up to 4 [29],
the complexity of this problem is high for largerNt. In such
scenarios, one can use sphere decoding [11].

3Notice that (10) and (35) are different, since the former uses the mea-
surement matrix containing only the known pilot symbols,Φp, whereas the
latter uses measurement matrices which consist of pilot symbols along with
the estimated data, together given byΦ(r).
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In the following section, we discuss the pilot-based and
joint channel estimation and data detection for time-varying
ga-sparse MIMO-OFDM channels.

B. The J-KMSBL Algorithm

In this section, we generalize the KMSBL algorithm of
Sec. II-B to obtain the J-KMSBL algorithm, which utilizes the
observations available at all theN subcarriers of theK OFDM
symbols, and performs data detection at the(N − Pt) data
subcarriers of each OFDM symbol. Generalizing the J-MSBL
to the J-KMSBL algorithm involves incorporating an E-step
that exploits the correlation in the time-varying channelssuch
that the algorithm is recursive in nature, and the smoothed
channel estimates obtained for theK OFDM symbols are used
to jointly estimate the ga-sparse channel and the unknown data
of theK OFDM symbols.

Our starting point, again, is the state space model given by
(16). The EM update equations in this context are given by

E : Q(γ,X|γ(r),X(r)) = EH1,...,HK |Y;γ(r)

[log p(Y,H1, . . . ,HK ;γ,X)]

M :
(

γ
(r+1),X(r+1)

)

= argmax
γ∈R

L×1
+ ,X:xi∈S

Q(γ,X|γ(r),X(r)),

(40)

where X comprises the data transmitted on theK OFDM
symbols, as defined in the previous subsection. Since the J-
KMSBL algorithm uses the observations available at all the
N subcarriers of each OFDM symbol, recursive updates of
the posterior mean and covariance are given by (18)-(26),
with Yp andΦp replaced byY andΦ, respectively. Further,
sinceΓ and data at the non-pilot subcarriers are unknown, the
SBL framework leads to the objective function forK OFDM
symbols in the M-step given by

Q
(

X,γ|X(r),γ(r)
)

= c−KNr log |Γb| − EH1,...,HK |Y;X,γ(r)





K∑

j=1

Nr∑

nr=1

σ−2‖ynr,j −
Nt∑

nt=1

Xnt,jFhntnr ,j‖
2

−
K∑

j=2

Nr∑

nr=1

(hnr ,j − ρhnr ,j−1)
HΓ−1

b (hnr ,j − ρhnr ,j−1)

(1− ρ2)

−hH
nr,1Γ

−1
b hnr ,1

]
, (41)

wherec is a constant independent ofγ andX. The expression
above is a sum of terms which are independent functions of
γ and Xk , [X1,k, . . . ,XNt,k] for 1 ≤ k ≤ K, denoted

as Q
(
γ|γ(r)

)
andQ

(

Xk|X
(r)
k

)

, 1 ≤ k ≤ K, respectively.

Further, we see thatQ
(
γ|γ(r)

)
is the same as (30). Hence,

the learning rule forγ follows from the M-step of the
KMSBL algorithm, and is given by (31). The expression for
Q
(

Xk|X
(r)
k

)

is given by

Q
(

Xk|X
(r)
k

)

= EHk|Y;X(r),γ(r)

[

c−
Nr∑

nr=1

σ−2‖ynr ,k −
Nt∑

nt=1

Xnt,kFhntnr ,k‖
2

]

. (42)

The M-step requiresĤk|K , EHk|Y;X(r),γ(r) [Hk] and
Pk|K , EHk|Y;X(r),γ(r) [HkH

H
k ], which are given by the KFS

equations of the E-step. The maximization ofQ
(

Xk|X
(r)
k

)

in (42) leads to the following optimization problem forXk:

X
(r+1)
1,k (i, i), . . . , X

(r+1)
Nt,k

(i, i) = argmin
x1,...,xNt

∈S
C(i, i)

+

Nr∑

nr=1

|ynr
(i)−

Nt∑

nt=1

xnt
F(i, :)ĥnr ,k|K |2, (43)

wherei ∈ D, D is an index set consisting of the data subcarrier
locations,C = ΦPk|KΦH , F(i, :) is the ith row of F and
ĥnr,k|K is thenth

r column of Ĥk|K . Note that, in contrast to
the expression forC in (38), the above expression is a function
of Pk|k since the covariance is computed recursively.

Data detection in the M-step results in the measurement
matrixΦ(r)

k in therth iteration andkth OFDM symbol. Hence,
the iterations of the J-KMSBL are comprised of KFS update
equations that incorporateΦ(r)

k instead of the pilot-onlyΦp,k

used in the KSBL algorithm. Further, the data detection in the
M-step necessitates the initialization of transmit data,X

(0)
k

for 0 ≤ k ≤ K. We use the channel estimate obtained from
a few iterations of the KMSBL algorithm from thePt pilots
(denoted aŝhKMSBL) to obtain the initial estimateX(0)

k for
0 ≤ k ≤ K and i ∈ D as

X
(0)
1,k(i, i), . . . , X

(0)
Nt,k

(i, i) =

argmin
x1,...,xNt

∈S
|ynr

(i)−
Nt∑

nt=1

xnt
F(i, :)ĥKMSBL|

2. (44)

As mentioned in Sec. II-B, whenρ = 1, the channel is
block-fading in nature. EmployingPb pilots in an OFDM
frame, we can emulate the block-fading scenario described
in Sec. III-A, and hence implement the J-MSBL algorithm
recursively using KFS equations given by (34). Further, the
M-step of the J-KMSBL algorithm is given by (31) and (44).

Until now, we focussed on recovering the block-fading and
time-varying ga-sparse channels using pilot-only and joint
techniques. In the sequel, we design pilot-only and joint
channel estimation and data detection algorithms for group
approximatelycluster-sparseblock-fading and time-varying
channels.

IV. CHANNEL ESTIMATION AND TRACKING USING PILOT

SUBCARRIERS FORGAC-SPARSECHANNELS

In this section, we model the channel as gac-sparse, i.e., the
entries of the approximately sparse channel are constrained to
lie in a few clusters. Each cluster of the gac-sparse channel
hntnr

with B blocks of lengthM each, consists of all strong
or all weak components and the strong component clusters
are few in number. The parametric prior modeling in SBL
can be extended to the gac-sparse channels by assigning a
hyperparameterγc(i) to the ith cluster,1 ≤ i ≤ B, instead of
the ith component, as given in Sec. II-A. That is, theB length
hyperparameter vectorγc is associated with the pdf ofhntnr

,
such that everyM length cluster of the channel is distributed
asCN (0, γc(i)).
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First, we propose the Block MSBL (BMSBL) for pilot-
based gac-sparse block-fading channel estimation in a MIMO-
OFDM framework. We implement the BMSBL algorithm
using the parallel cluster MSBL (PCMSBL) approach [35],
which is same as the BMSBL in performance but has the
advantage of lower computational complexity as it allows for
the parallel implementation of the algorithm. Thereafter,we
propose the Kalman-BMSBL (KBMSBL) algorithm for pilot-
based gac-sparse time-varying channel estimation, and propose
to implement the algorithm using the low-complexity Nested
MSBL (NMSBL) approach [35].

A. The BMSBL Algorithm

In this subsection, we propose the Block MSBL (BMSBL)
algorithm for pilot-based sparse channel estimation in block-
fading channels. We propose to recover the gac-sparse channel,
hntnr

, by generalizing the BSBL algorithm [25] to the mul-
tiple measurement scenario, i.e., we recover theNr ga-sparse
channels,hnr ,m from Nr observation vectors,ynr,m. Note
that settingNr = Nt = 1 leads to the SISO-OFDM problem,
making the proposed algorithm backward compatible for the
SISO-OFDM gac-sparse channel estimation.

The EM algorithm for obtaining the ML estimate of the
unknown parameterγc, in the BMSBL framework is as
follows:

E : Q
(

γc|γ
(r)
c

)

= E
H|Yp;γ

(r)
c

[log p(Yp,H;γc)]

M : γ(r+1)
c = argmax

γc∈R
B×1
+

Q
(

γc|γ
(r)
c

)

. (45)

The posterior distribution in the E-step above can be derived
asp(hnr

|yp,nr
;γ

(r)
c ) ∼ CN (µc,nr

,Σc), where

µc,nr
= ΣcΦ

H
p yp,nr

,

Σc = σ−2

(

ΦH
p Φp

σ2
+ (Γc ⊗ IM )−1

)−1

. (46)

Observe that the MSBL Sec. II-A and the BMSBL algo-
rithms differ in the prior distribution ofH. The logarithm of
the pdf of the gac-sparse channelH is given by

log p(H;γc) = c′−

NtNr log |(Γc ⊗ IM )| −
Nt∑

nt=1

Nr∑

nr=1

hH
ntnr

(Γc ⊗ IM )
−1

hntnr
,

(47)

where c′ is a constant independent ofγc. Maximizing
Q
(

γc|γ
(r)
c

)

in (45) w.r.t.γc, we obtain the following

γ
(r+1)
c (i) = argmin

γc∈R+

MNtNr log |Γc|

+ E
H|Yp;γ

(r)
c

Nr∑

nr=1

[
Nt∑

nt=1

(Γc ⊗ IM )−1Tr[hntnr
hH
ntnr

]

]

.

(48)

γ̂M-step

E-step

... ...

µH1,ΣH1

µHM
,ΣHM

Yp

µTp,1,ΣTp,1

µTp,M
,ΣTp,M

µTp,2,ΣTp,2

ETp

µH2,ΣH2EH2

EHM

EH1

Figure 4. Block Diagram of the PCMSBL algorithm depictingM parallel
branches.

Simplifying the above, we obtain

γ
(r+1)
c (i) =

1

MNtNr

M∑

m=1

Nr∑

nr=1

Nt∑

nt=1

Σc,ntnr
(m,m)

+ |µc,ntnr
(m)|2. (49)

Note that, in contrast to (13), we obtain the averaging over
the size of the cluster, sinceγ(r+1)

c (i) is common to the
entries of the cluster. Further, since the vectors are gac-sparse
over Nt transmit andNr receive antenna, we obtain the
update,γ(r+1)

c (i) which is averaged overNtNr channels of
the MIMO-OFDM system.

Implementation of BMSBL:Here, we discuss the imple-
mentation of the BMSBL algorithm. We employ the PCSBL
approach [35], which significantly reduces the complexity of
the proposed BMSBL algorithm.

The complexity of the BMSBL algorithm is dominated
by the computation of the posterior covariance matrixΣc,
which incurs a computational load ofO(N2MB). In [35],
we proposed an approach for estimating cluster-sparse signals
and showed that by using a Parallel Cluster SBL approach,
the block-based algorithm [25] is amenable to parallel imple-
mentation.

We employ the PCSBL approach to handle multiple mea-
surements, as depicted in Fig. 4, where the gac-sparse channel
is recovered by solvingM parallel problems. The M-step is
simply the average of the hyperparameter updates obtained
from theM parallel problems per receive antenna. The multi-
ple measurement PCSBL incurs a maximum computational
load of O(P 3

b ), i.e., the complexity does not scale with
L = MB.

The BMSBL algorithm is designed for block-fading chan-
nels, and hence, is not capable of exploiting the correlation
seen in time-varying channels. Hence, in the following sub-
section, we design a recursive KBMSBL algorithm for time-
varying gac-sparse channel estimation in order to exploit the
temporal correlation.

B. The KBMSBL Algorithm

In this subsection, we derive an algorithm for tracking the
slowly time-varyinggac-sparse MIMO-OFDM channel using
the SBL framework. As in Sec. II-B, we employ an AR
model for the temporal evolution of the gac-sparse channel
and derive recursive KFS based techniques. In addition, we
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propose a nested SBL approach [35] which facilitates the
implementation of the proposed algorithm usingM parallel
Kalman filters/smoothers.

We formulate the gac-sparse channel estimation problem
by modeling the channel corresponding to thekth OFDM
symbol ashnr,k ∼ CN (0, (Γc⊗IM )). We model the temporal
variation of the gac-sparse channel using the first order AR
model as given in (16), i.e., the temporal evolution of every
cluster in the gac-sparse channel follows a first order AR
model given by

hntnr,mk = ρhntnr,mk−1 + untnr ,mk, (50)

for 1 ≤ m ≤ M , whereuntnr,mk is temporally and spatially
white, i.e., untnr ,mk ∼ CN (0, (1 − ρ2)γ(m)IM ). The EM
algorithm for pilot-based gac-sparse channel estimation is
given by

E : Q
(

γc|γ
(r)
c

)

= E
H1,...,HK |Yp;γ

(r)
c

[log p(Yp,H1, . . . ,HK ;γc)]

M : γ(r+1)
c = argmax

γc∈R
B×1
+

Q
(

γc|γ
(r)
c

)

. (51)

Now, the posterior distribution ofH1, . . . ,HK can be ef-
ficiently evaluated using the Kalman Filter and Smoother
(KFS) equations given in (18) - (26), by replacingΓb by
Γcb , (INt

⊗ (Γc ⊗ IM )).
The logarithm of the conditional prior distribution is given

by

log p(Hk|Hk−1;Γc) = KNr log |Γcb|

−

Nr∑

nr=1

K∑

k=2

(hnr ,k − ρhnr ,k−1)
HΓ−1

cb (hnr ,k − ρhnr,k−1)

(1− ρ2)

−
Nr∑

nr=1

hH
nr,1Γ

−1
cb hnr,1, (52)

Note that, in the above expression,Γ−1
cb imposes the gac-sparse

structure on the channel forK OFDM symbols. The M-step
of KBMSBL can be simplified as follows:

γ
(r+1)
c = argmin

γc∈R
B×1
+

E
H1,...,HK |Yp;Γ

(r)
c
[KNr log |Γcb|

+

K∑

k=2

Nr∑

nr=1

(hnr ,k − ρhnr ,k−1)
HΓ−1

cb (hnr ,k − ρhnr,k−1)

(1 − ρ2)

+

Nr∑

nr=1

hH
nr,1Γ

−1
cb hnr,1]. (53)

Using the prior distribution given in (52), and invoking the
fact thatΓcb = (INt

⊗ (Γc ⊗ IM )), we can simplify (53) as

γ
(r+1)
c = argmin

γc∈R
B×1
+

KMNrNt log |Γc|+
Nt∑

nt=1

Tr(Γ−1
cb Mcnt,1|K)

+ 1
(1−ρ2)

K∑

k=2

Nt∑

nt=1

Tr(Γ−1
cb Mcnt,k|K), (54)

where Mcnt,j|K consists of rows and columns
(nt − 1)L through ntL from the matrix Mc,j|K ,

NrPj|K + Ĥj|KĤH
j|K + ρ2(NrPj−1|K + Ĥj−1|KĤH

j−1|K)−

2ρRe(NrPj,j−1|K + Ĥj|KĤH
j−1|K). Likewise, Mcnt,1|k

consists of rows and columns(nt − 1)L throughntL from
the matrix Mc,1|k , NrP1|k + Ĥ1|kĤ

H
1|k. In the above

expressions,Pj|k andĤj|k are a function ofγc, unlike (30),
where the expressions are a function ofγ. Differentiating
(54) w.r.t. γc(i) and setting the resulting equation to zero
gives the update for theith hyperparameter as follows:

γ(r+1)
c (i) = 1

MKNtNr

(
Nt∑

nt=1

K∑

k=2

M∑

m=1

Mm,cnt,j|K

(1−ρ2)

+

Nt∑

nt=1

M∑

m=1

Mm,cnt,1|K

)

, (55)

whereMm,cnt,j|K consists of rows and columns(B − 1)M
through BM from the matrix Mcnt,j|K , and Mm,cnt,1|K

consists of rows and columns(B − 1)M throughBM from
the matrixMm,cnt,1|K . Thus, the KBMSBL algorithm learns
γc in the M-step and provides low-complexity and recursive
estimates of the time-varying gac-sparse channel in the E-step
using the KFS framework.

Implementation of KBMSBL:Here, we discuss the imple-
mentation details of the KBMSBL algorithm and propose a
low complexity solution based on the nested EM algorithm.

The complexity of the KBMSBL algorithm is dominated
by theJk−1 term, whose computational complexity is given
by O(KL3). In [35], we proposed a nested SBL approach for
estimating cluster-sparse signals and showed that the nested
SBL approach has low complexity.

In the nested SBL approach [35], we restructure the problem
by introducing auxiliary variablestntnr ,k ∈ CN×1, such that

tntnr ,k = Φnt,khntnr,kc + zntnr ,kc. (56)

The structuring of the vectorshntnr ,kc is crucial for the nested
SBL algorithm since it directly affects the computational
complexity. Here, we construct a vectorhntnr,kc, such that it
consists of sub-vectors governed by a common hyperparameter
vectorγc, i.e.,

hntnr,kc = [hntnr,1k(1), hntnr ,2k(1), . . . , hntnr ,Bk(1),

. . . , hntnr ,1k(M), hntnr,2k(M), . . . , hntnr,Bk(M)]. (57)

Accordingly, Φnt,k consists of the columns ofΦk cor-
responding to entries ofhntnr ,kc. Although zntnr ,kc can-
not explicitly obtained, we note that its covariance can
be written aszntnr,kc ∼ CN (0, βmσ2IN ) where, 0 ≤
βm ≤ 1 and

∑M

m=1 βm = 1. [35]. Further, we using

tnr,k =
[

tT1nr ,k
, . . . , tTNtnr ,k

]

, we construct the matrixTk ∈

CNtML×Nr by stackingt1,k, . . . , tNr ,k as its columns. The
auxiliary variable matrixTk decomposes the problem of
tracking gac-sparse channels into a problem of trackingM
length ga-sparse channel component vectors.

The NSBL technique is implemented using two EM loops,
one nested within the other, as depicted in Fig. 5. The outer
EM loop consists of updating the posterior distribution ofTk
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M-step

γ
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K )
c

γ
(r+ k

K )
c

Yp

γ
(r+1)

γ̂c

Figure 5. Block Diagram of the NSBL approach.

for 1 ≤ k ≤ K, and the inner EM loop consists of updating
the posterior distribution of the gac-sparse channel usingthe
KFS framework across theK OFDM symbols.

After the posterior distribution ofTk is obtained in the
outer EM loop, the inner EM loop in the NSBL algorithm
is amenable to parallel implementation asM parallel Kalman
filter and smoother chains. Each Kalman filter and smoother
chain incurs a computational load ofO(KB3), since the
parallel chains track a vector in a lower dimension (B). The
computational complexity of the outer loop of the nested
SBL approach dominates the overall complexity of the al-
gorithm, and hence, the complexity of NSBL is given by
O(K3M2P 2

t L). Note that, in contrast to KBMSBL which
incurs a computational complexity ofO(KL3), the complexity
of the NSBL approach scales linearly inL. Hence, the NSBL
approach leads to efficient implementation of the proposed
KBMSBL algorithm for largeL.

In the following subsection, we generalize the proposed
BMSBL and KBMSBL approaches for performing joint chan-
nel estimation and data detection in time-varying gac-sparse
MIMO-OFDM channels.

V. JOINT CHANNEL ESTIMATION /TRACKING AND DATA

DETECTION USING PILOT AND DATA SUBCARRIERS FOR

GAC-SPARSECHANNELS

In this section, we derive the novel J-BMSBL and J-
KBMSBL algorithm that generalize the pilot-based BMSBL
and KBMSBL algorithms for joint channel estimation and data
detection in MIMO-OFDM systems.

To derive these algorithms, we modify the BMSBL and
KBMSBL framework such that the unknown variables are not
only the hyperparameters but also the unknown transmit data
symbols in the entire OFDM frame. We considerH as the
hidden variable, and, in contrast to BMSBL and KBMSBL, we
consider[γc,X] whereX , [X1, . . . ,XNt

] as the parameters
to be estimated. An important observation here is that the
BMSBL/KBMSBL algorithm differs from the ga-sparse based
MSBL/KMSBL algorithm due to the channel modeling, which
in turn affects the posterior mean and variance of the channel.
These posterior statistics affect the updates ofγc as shown
in (48)/(53). The updates of the transmit data[X1, . . . ,XNt

]
in the case of J-BMSBL, and[γc,X1, . . . ,Xk] in the case of
J-KBMSBL, can be obtained from the posterior estimates of
the gac-sparse channel, from the E-step. Hence, the update
equation for the transmit data remains the same as (38)/(43).

VI. SIMULATION RESULTS

In this section, we demonstrate the performance of the
proposed channel estimation algorithms using Monte Carlo

simulations. We consider the parameters in the 3GPP/LTE
broadband standard [29], [30]. We use a3MHz 2× 2 MIMO-
OFDM system with256 subcarriers, with a sampling fre-
quency of fs = 3.84MHz, resulting in an OFDM symbol
duration of∼ 83.3µs with Cyclic Prefix (CP) of16.67µs. The
length of component channel vectors of the ga-sparse channel
(L) is taken to be equal to the length of the CP. Each frame of
the MIMO-OFDM system consists ofK = 7 OFDM symbols.
The data is transmitted using a rate1/2 Turbo code with
QPSK modulation. For the Turbo code generation, we use the
publicly available software [36], which uses a maximum of10
Turbo iterations. We use a convergence criteria ofǫ = 10−9

and rmax = 200 for all the algorithms. We note that these
values are not meant to be completely compliant with the
LTE standard. We have chosen the parameter settings so as
to facilitate visual comparison between the different schemes,
illustrate the underlying performance tradeoffs, while atthe
same time being close to realistic settings used in the standard.

We use the Pedestrian B channel model [37] with Rayleigh
fading. Further, we consider raised cosine filtering in every
receive and transmit antenna chain with a roll-off factor of
0.5 [30]. This leads to the channel vectors being ga-sparse
(see [20] for an illustration).

In the following subsections, we present the simulation
results for the performance of the proposed algorithms in
estimating block-fading and time-varying ga-sparse and gac-
sparse wireless channels.

A. Block-fading Ga-sparse and Gac-sparse Channels

In this subsection, we consider the pilot-only channel es-
timation and joint channel estimation and data detection in
block-fading ga-sparse and gac-sparse channels. Each OFDM
frame consists ofK = 7 OFDM symbols, withPb = 44
pilots placed in an equidistant lattice structure in an OFDM
frame of each transmitter. We implement the MSBL and the
J-MSBL algorithm for ga-sparse and BMSBL and J-BMSBL
algorithms (with block sizes of4 and 6) in the case of gac-
sparse block-fading channels, and plot the MSE and the coded
BER performance of the algorithms in Fig. 6 and Fig. 7,
respectively. We compare the performance of the proposed
algorithms with the CS based Simultaneous OMP (SOMP)
[38] using 50 pilots, MIP-aware methods: pilot-only MIP-
aware estimation [4] and the MIP-aware joint data and channel
estimation algorithm, which we refer to as the EM-OFDM
algorithm [11].

From the top half of Fig. 6, we observe that the MSBL algo-
rithms performs at least1 dB better than the CS based SOMP
technique. Since the proposed MSBL technique exploits spa-
tial joint sparsity, MSBL performs5 dB better than the per-
symbol SBL algorithm proposed in [20]. We also observe that
since BMSBL exploits the cluster-sparse structure, it performs
2− 2.5 dB better than the MSBL technique. The bottom half
of Fig. 6 depicts the MSE performance of joint data detection
techniques that detect the(KN − Pb) data symbols along
with estimating the channel, resulting in a significantly lower
overall MSE compared to pilot-only schemes. We see that
among the joint SBL based iterative methods, the J-MSBL
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Figure 6. MSE performance in block-fading channels as a function of SNR
in dB: Top: per-symbol SBL vs. MSBL vs. BMSBL. Bottom: J-SBL vs. J-
MSBL vs. J-BMSBL.Pb = 44, gac-sparse: Solid curves - block size = 4,
Dashed-dot curves - block size = 6.

algorithm performs an order of magnitude better than the
MSBL algorithm, especially at higher values of SNR. Further,
we see that J-BMSBL has a superior performance compared to
J-MSBL and the per-symbol J-SBL [20]. Note that J-BMSBL
is less than a dB from the MIP-aware EM-OFDM algorithm.

The coded BER performance of the proposed schemes are
compared to the EM-OFDM, and a genie receiver, i.e., a
receiver with perfect knowledge of the channel (labeled as
Genie), in Fig. 7. We also compare the performance with
MSBL, BMSBL and MIP-aware pilot-only channel estimation
followed by data detection. First, we observe that the MSBL
algorithm performs2 dB better than the SOMP scheme,
while being more than a dB worse than the BMSBL scheme.
Further, the J-BMSBL technique, performs1 dB better than
the BMSBL scheme and0.5 dB better than the J-MSBL
scheme, and only0.5 dB worse than the MIP-aware pilot-only
technique. Since the MIP-aware pilot-only technique estimates
the channel from an overdetermined system of equations, it
outperforms the MIP-unaware pilot-only techniques. More-
over, for the SNRs between0 − 10 dB, the joint channel
estimation and data detection techniques are prone to errors in
the detected transmit data. Hence, they are outperformed by
MIP-unaware pilot-only techniques.

B. Time-varying Ga-sparse and Gac-sparse Channels

In this section, we consider a slowly time-varying channel,
simulated according to a Jakes’ model [39] with a normalized
fade rate offdTs = 0.001 andPt = 44 pilot subcarriers in
every OFDM symbol.

The MSE performance of the proposed algorithms as a
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Figure 7. Coded BER performance of the proposed algorithms in a block-
fading channel, withPb = 44 pilot subcarriers, as a function ofEb/N0.

function of SNR is depicted in Fig. 8. In the top half of the
plot, we demonstrate that the pilot-only KMSBL algorithm
performs5−7 dB better than the MSBL and per-symbol J-SBL
algorithms, since the KMSBL algorithm exploits the temporal
correlation and joint sparsity in time-varying channels. Further,
we demonstrate that the KBMSBL technique, which exploits
the approximate cluster-sparsity, performs1.5− 2.5 dB better
than the KMSBL algorithm, while being5 − 6 dB away
from the optimal MIP-aware Kalman tracking algorithm [28].
However, the J-KBMSBL algorithm performs5 dB better
than its pilot-only counterpart, i.e., the KBMSBL algorithm,
while being less than a dB away from the optimal MIP-aware
Kalman tracking algorithm. The optimal MIP-aware algorithm
performs joint channel estimation and data detection, i.e., uses
an MIP-aware EM algorithm, which implements the channel
estimation in the E-step using a Kalman tracker and detects
the transmit data in the M-step.

In the bottom half of Fig. 8, we demonstrate the perfor-
mance of joint channel estimation and data detection schemes
in time-varying channels. First, we observe that the per-symbol
J-SBL algorithm that is not designed to exploit the temporal
correlation performs5-6 dB poorer than the recursive KMSBL
and JKMSBL algorithms. At higher SNR, we observe that the
performance of the JKMSBL algorithm is only2 dB worse
than the MIP-aware Kalman tracking algorithm. In contrast
to pilot-only schemes, J-KMSBL and J-KBMSBL have the
same performance while being1 dB away from the MIP-
aware Kalman tracking algorithm, especially at higher values
of SNR, i.e., the advantage of modeling the channel as being
cluster-sparse diminishes, as we see higher number of pilots
due to accurate detection of transmit data at high SNRs.

In Fig. 9, we depict the coded BER performance of the
proposed algorithms. We see that, while the proposed algo-
rithms perform better than the SOMP algorithm by a margin
larger than2.5 dB, the JKBMSBL is only a fraction of a dB
away from performance of the MIP-aware Kalman and the
genie receiver which has perfect channel knowledge. The J-
KSBL outperforms the pilot-only based KMSBL by a margin
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Figure 8. MSE performance in time-varying channels as a function of SNR
in dB: Top: per-symbol SBL vs. MSBL vs. KMSBL vs. KBMSBL, Bottom:
J-SBL vs. J-MSBL vs. J-KMSBL vs. J-KBMSBL as compared to the optimal
Kalman tracker [28].fdTs = 0.001 and Pt = 44. Cluster-sparse: Solid
curves - block size = 4, Dashed-dot curves - block size = 6.
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Figure 9. Coded BER performance of different schemes in a time-varying
channel withfdTs = 0.001 andPt = 44, as a function ofEb/N0.

of 0.5 dB. Further, the gac-sparse KBMSBL and J-KBMSBL
algorithms perform better than their ga-sparse counterparts,
i.e., the KMSBL and J-KMSBL algorithms, by a margin of
0.5 dB.

In both block-fading and time-varying channel conditions,
we note that the performance of algorithms proposed for gac-
sparse channels was better than their ga-sparse counterparts,
ascertaining that the cluster-sparse channel modeling is indeed
useful for estimating wireless OFDM channels. Intuitively,
modeling the channel usingγ ∈ CL×1 leads to overfitting,

which is overcome by modeling the channel usingγc ∈ CB×1

whereB < L. We also observe that the performance is better
for a block-size of6 compared to the block-size of4 . This is
because, in this example, a block-size of6 is more accurate,
and avoids overfitting, as compared to a block-size of4.

VII. C ONCLUSIONS

In this paper, we considered the pilot-only channel esti-
mation and joint ga-sparse and gac-sparse channel estimation
and data detection for block-fading and time-varying channels
in MIMO-OFDM systems, using the SBL framework. To
estimate the ga-sparse and gac-sparse block-fading channels,
we adapted the existing MSBL and BMSBL algorithms and
generalized it to obtain the J-MSBL and J-BMSBL algorithms,
respectively, for joint ga-sparse and gac-sparse channel estima-
tion and data detection. We used a first order AR model to cap-
ture the temporal correlation of the ga-sparse and gac-sparse
channels and proposed the pilot-only KMSBL and KBMSL
algorithms, respectively. We generalized these algorithms to
obtain the J-KMSBL and J-KBMSBL algorithms, respectively,
for joint channel estimation and data detection. We discussed
the computational aspects of the proposed algorithms and
showed that the proposed recursive algorithms entail a sig-
nificantly lower computational complexity compared to the
previously known SBL based techniques. Further, we also
discussed efficient implementation structures for gac-sparse
channels in block-fading and time-varying scenarios. Simula-
tion results showed that (i) joint algorithms outperformedtheir
pilot-only counterparts, (ii) recursive techniques outperformed
the per-symbol algorithms, and (iii) algorithms proposed in the
context of gac-sparse channels outperformed their ga-sparse
counterparts.
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