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Abstract—The impulse response of wireless channels betweentransmitter and receiver of a MIMO-OFDM system in order to
the N; transmit and N, receive antennas of a MIMO-OFDM  exploit the diversity and multiplexing advantages of a MIMO
system are group approximately sparse (ga-sparse), i.ehd Ni N gustem  while OFDM provides resilience to the commonly
channels have a small number of significant paths relative to ’ . . . .
the channel delay spread and the time-lags of the significant encpuntered frequency-selective fad'ng_ of a multipatteless
paths between transmit and receive antenna pairs coincid®ften, ~€nvironment [2]. Most OFDM-based wireless standards such
wireless channels are also groupapproximately cluster sparse as DVB-T, IEEE 802.11a, IEEE 802.16e etc., employ pilot-
(9ac-sparse), i.e., every ga-sparse channel consists ofisters, pased channel estimation techniques for accurately degodi
where a few clusters have all strong components while most ye {ransmitted data bits. However, such methods necessita
clusters have all weak components. In this work, we cast the L . ’
problem of estimating the ga-sparse and gac-sparse bloclding the transmlssmq of pilots symb(_)Is on a set of anchor subcar-
and time-varying channels in the Sparse Bayesian Learning fi€rs per transmit antenna, leading to severe overheadseon t
(SBL) framework, and propose a bouquet of novel algorithms spectral efficiency. In this paper, we propose novel MIMO-
for pilot-based channel estimation and joint channel estiration ~ OFDM channel estimation techniques using far fewer pilots
and data detection in MIMO-OFDM systems. The proposed joint compared to the conventional methods [3], [4], by explgitin

channel estimation and data detection schemes are capablé o h imat itv of th irel h L We al
recovering ga-sparse and gac-sparse channels even when thdh€ approximate sparsity o € wireless channel. VVe aiso

measurement matrix is only partially known. Further, we employ ~ €xtend the algorithms to exploit structure beyond sparsitgh

a first order autoregressive modeling of the temporal variabn as temporal correlation, and clustered multipath comptsnen
of the wireless ga-sparse and gac-sparse channels and prggo | this work, we model the spatially uncorrelatéd N,

a recursive Kalman filtering and smoothing (KFS) technique or MIMO-OFDM wireless channels as (a) group approximately-

joint channel estimation, tracking and data detection. TheKFS d (b . v cl
framework exploits the correlation structure in the time-varying SParse (ga-sparse), and (b) group approximately clustessp

channel. We also propose novel, parallel-implementation dsed, (gac-sparse). Further, we formulate the channel estimatio
low complexity techniques for estimating gac-sparse chamts. problem in block-fading and time-varying channels and $ve

Monte Carlo simulations illustrate the efficacy of proposed tigate the problem of pilot-only channel estimation anaioi
techniques in terms of mean square error (MSE) and coded qpanne| estimation and data detection for ga-sparse and gac

bit error rate (BER) performance. In particular, we demonstrate h ls. Our f is to desi IS B .
the performance benefits offered by algorithms that exploitthe ~SParsé channeis. Quriocus IS 1o design novel sparse bayesia

gac-sparse structure in the wireless channel. Learning (SBL) type algorithms for joint ga-sparse and gac-
sparse channel estimation and data detection in MIMO-OFDM
EDICS: MLR-BAYL, MLR-SLER, SPC-CEST, SPC- sSstems
MULT, SPC-DETC '
. INTRODUCTION A. Background and Literature Survey

Multiple Input Multiple Output (MIMO) combined with  In this subsection, we present the basic set-up of the coded

Orthogonal Frequency Division Multiplexing (OFDM) is theMIMO-OFDM system considered in this work and formulate
Y

air-interface solution for next-generation broadbandeleiss the problem of pilot-based channel estimation and joinheha
systems and standards. Multiple antennas are employeé atribl estimation and data detection in a MIMO-OFDM system
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Ints channel impulse response between & transmit antenna

and then!" receive antenna in thé™" symbol, denoted as
- Bnon. k|t],t € R, can be modeled as a stationary tapped delay
5 line filter in the lag domain:

SYMBOL
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A+, i I’ _J_OI_N;'_ R hngnT,k[t] = Z hngnT,k,lé[t - Tl]a (2)
e : 'ESTIMATION | UR | o TE8R0: ~
. S DEINTERLEAVER|  where d[t] is the Dirac delta function,,,, x, and, rep-
b 1 . .
| DETECTION | resent the attenuation and propagation delay on the path
o 1_ o (0} corresponding to the!" transmit and thex!" receive antenna,
By, ..., B, respectively, andL is the number of resolvable paths [6].

Wireless channel models obtained using channel sounding
Figure 1. Turbo encoded/decoded transmitter and recefan of a MIMO-

OFDM system. The dashed box (block shaded in yellow) higidigthe experiments, on the other hand, exhigiproximatesparsity in

proposed algorithms. Note that the quantities of interest the channel the lag (_jomain, fF)r e.g., d_ue to non-perfect low-pass fﬂtﬁri_
estimateshi1, ..., hy, n, and output bits{b}. e.g., raised cosine filtering [7]. Based on these practical

considerations, we model the lag domditiered channel

impulse response ady,,., x[t] = gi[t] * hn,n, 1[t] * g.[t],
the effect of timing and frequency offsets, while interegtin  Where g:[t] and g.[¢] represent the baseband transmit and
its own right, is beyond the scope of this paper. receive filters employed at every transmit and receive anaten

At the transmitter of the discrete-time MIMO-OFDM sys-°f the MIMO-OFDM system, and represents the convolution

tem, {b} input bits are first encoded and interleaved into a ne@Peration. Then, the corresponding discrete-time chacmel
sequence of coded bit§¢}. The coded bitgc} are mapped b€ represented as, n, i(l) = hn,n, k[(l = 1T], where
into an M-ary complex symbol sequence, which is furthef 1S the baud interval. The overall channel is represented
divided into N; streams. In this work, we consider both th&S h?}tnmk_ - ey k(1) Py, (2); - B, i (L)) I )
block-fading channel, where the channel coefficients ramatddition, it is known that the sample-spaced represemtatio
fixed across the OFDM frame duration and vary in an i.i.@®f in.n. x[t] between different transmit and receive antenna
fashion from frame to frame, and the slowly time-varyin§@irs aré group-sparse [8], [9], i.e., the locations of aers
channel, where the channel coefficients can vary across figments of the sparse vectors coincide. Sig¢g and g..[{]
OFDM frame duration. At every transmit antenm, pilots &€ identical f_orevery transmit and receive antenna, welcked
are inserted in an OFDM frame in the case of block-fadirfj@t the locations of the significant component&jp.,, . also
channels, and?, pilots are inserted in every OFDM Symbo|c0|nC|de_across the entire MIMO-QFDM system. In this work,
of an OFDM frame in the case of time-varying channels. TH¥E consider the following scenarios:
pilot symbols along with coded data symbdls; are OFDM e« h,,,,, « iS group approximately-sparsgga-sparse), i.e.,
modulated and transmitted over the multipath fading chinne the NNV, wireless channels consists of a few strong

of the k™ OFDM symbol, denoted bi,,, ., » € C*'. Here, components and several weak components, and the time-

n: (n,) denotes the transmit (receive) antenna index, &nd lags of strong and weak components between transmit

is the length of the channel. After OFDM demodulation, the and receive antenna pairs coincide.

signal received at the!" receive antenna of the" OFDM o hy,,, 1 is group approximately cluster sparsggac-

symbol is given by sparse), i.e., théV,N,. ga-sparse wireless channels con-
N, sists of clusters such that the components of a given

Vo, b = Z X, 6 Fhpn 5+ Va &, ne=1,...,N,, (1) cluster are all strong or weak. In addition, there are a

few clusters consisting of strong components.

To recover the ga-sparse and gac-sparse channels, we cast
(1) in an MMV framework [10], [11]. Here, in th&™ OFDM
symbol, the observations from th#&.,. receivers form the
observation matrix,Y;, which is related to the vectors in
the channel matrixHy, through a common dictionarsp,
as follows:

ny=1

where the diagonal matriX,,, » € C¥*¥ consists of the
pilot as well as data transmitted over th transmit antenna
and k™ OFDM symbol, andf € CV*L represents the matrix
consisting of the first, columns of theN x N DFT matrix.

Each component of,, , € CV*! is an additive white circu-
larly symmetric Gaussian noise with probability distriloat

CN(0,0?). In this work, we assume that the noise variance Vi - yna) = Xe(Iy, @ F)
o? is known at the receiver. When it is unknown, or when it ' ' '
is time-varying due to interference, one needs to dynaigical
estimate both the thermal noise as well as the interference hine o hang

YkECNXN"‘ q,ke(chLNt

power. It is possible to incorporate noise variance estonat : : +[Vigks -, VNok], ()
within the Expectation Maximization (EM) framework of SBL h h —
N1k e NN,k V €CNXNr

[5]; however, we omit the details here due to lack of space.
In the complex baseband representation, the time domain H), €CENexNr



where the overall transmit data matix, € CV*Vt is given B. Problem Formulation and Contributions

by X £ [Xi 5, Xk, .., X, 1. At the P pilot subcarriers, | this work, we address the problem of pilot-assisted and
the MIMO-OFDM system model can be written as joint ga-sparse and gac-sparse channel estimation and data
detection in MIMO-OFDM systems using the SBL framework.
Among the known Bayesian sparse recovery techniques [21],
[22], SBL exhibits the Expectation Maximization (EM) based

: . : monotonicity property, and offers guarantees such as conve
are obtained by samplingcs, @, and V. at the pilot gence to the sparsest solution when the noise varianceds zer

subcarriers, respectively. - ) .
P Y and convergence to a sparse local minimum, irrespectiveeof t

Several channel estimation techniques for MIMO-OFDM yise \ariance [23]. This motivates us to employ SBL [23],
systems have been proposed in literature. Conventiorat pl;%

Y, =P, Hy + Vyi, 4)

whereY,, , € CF*Nr @, € CP*ILNt and vV, € CP* N

; . ) . 24] based algorithms for recovery of the spatially unciaes
based interpolation tech_n!ques using on frequency dom Q-sparse and gac-sparse channels in MIMO-OFDM systems.
Least Squares (LS) or Minimum Mean Square Error (MMS the SBL framework, we model the wireless channel as
methods [3], [4] and lag domain LS and MMSE [4] dQ‘oIIOWS'

not provide reliable estimates wheR, < L, unless the
prior knowledge of the the average multipath power profile
measured at a particular location, also called as the Maihip
Intensity Profile (MIP) of the channel [12], is known. In
scenarios where the MIP is not known, blind methods [13] and
techniques based on Compressed Sensing (CS) using group-
sparse based formulation [8], [9] have been employed. peci
ically, CS based simultaneous Orthogonal Matching Pursuit
(OMP) [14], Modified OMP [15], Simultaneous Basis Pursuit
Denoising and Simultaneous OMP [16] have been proposed
for pilot-assisted ga-sparse channel estimation in MIMO-
OFDM systems. Furth_er, CSs .based Block OMP (BOMP) has o ke = [Pngn, k(1) oy By e (M)
been proposed for pilot-assisted gac-sparse MIMO-OFDM
channel estimation [17]. In general, CS based methods eecov
an approximately sparse vector by recoveringdtsignificant P (M = 1)B+1),... hayn, k(M B)],  (5)
non-zero coefficients [18]: a large value o§uarantees recov-

ery accuracy, but requires a correspondingly large number o
measurements. Bayesian algorithms such as the Temporal SBL
(TSBL) [19] have been proposed for recovery of temporally
correlated group-sparse vectors, by modeling the cormelat
among the group-sparse vectors using a general correlation
structure. However, due to the generality of the correfatio
structure assumed, the complexity of such algorithms dyick i )
becomes prohibitive as the time-window over which estiorati lated, and hence, the overall covariance matrikof,,

is performed increases, making these algorithms unsaifabl is a block-diagonal matrix with principal blocks given by
OFDM channel tracking. YOI, 1< < B.

If the MIP is known, incorporating the observations avail- Depending on the mobility of the receiver, the ga-sparse and
able at the data subcarriers into channel estimation bygustiie gac-sparse channels may remain constant over the frame
joint data detection and channel estimation techniques c@#ration (block-fading), or may be slowly time-varying. @t
enhance the quality of channel estimates in MIMO-OFDNhe channel is time-varying, the nonzero channel coeffisien
systems [11]. We showed that such joint approximately sparry slowly and are temporally correlated, but the location
channel estimation and data detection schemes enhance%hggnificant components of the channel remain constant for
qua“ty of Channe' estimates in SISO-OFDM Systems [2 'eVeral OFDM fl‘ameS [26] In addition, |t iS knOWn that the
However, using SISO-OFDM estimators in parallel to obtaif¥'st order autoregressive (AR) model accurately captures t
estimators in the MIMO-OFDM context does not lead téPcal behavior of fading wireless channels [27]. Hencehis t
significant gains as they do not exploit the spatial ga-gpa¥ork, we employ a first order AR model for the time-varying
and the gac-sparse nature of the channel. The novelty of ti@@nnel in both the ga-sparse as well as the gac-sparse cases
work is that our proposed Bayesian joint channel estimatigfd develop a Kalman Filter (KF) based framework for exact
and data detection techniques exploit the ga-sparse and daterence using the received pilot and data symbols. The firs
sparse structure in MIMO-OFDM channels, and in the ca&der AR model for the:" channel tap is given by
of both block-fading as well as time-varying channels. Te th
best of our knowledge, this is the first work in which such
structure has been exploited for channel estimation ana dathere p = Jy(27f4T5) is the AR coefficient,Jy(-) is the
detection in MIMO-OFDM systems. zeroth order Bessel function of the first kinf, is the Doppler

« In the case of ga-sparse channel, we model the channel
S hy,n.x ~ CN(0,T), where the hyperparameters

I = diag(y(1),...,v(L)) are common for theV;N.,

channels fol0 < k < K, i.e., the channels are spatially

and temporally ga-sparse. Note thatyifl) — 0, then

the correspondingu,, .. (1) — 0 for all the N;N, K

channels [5], [23].

« In the case of gac-sparse channel, we assume thdi-the

length approximately sparse chants), . ; consists of

B clusters, each of length/, as follows:

B yn, 1k €CIXM

oy, R ECIXM

for 1 < k < K. Here, the gac-sparse structure is
imposed by modeling thé" cluster of the channel as
hyn, o6 ~ N(0,7(b)In), wherev(b) is an unknown
hyperparameter such that wheib) = 0, the b block

of h,,, . 1 is zero [25]. In addition, we note that different
clusters of the gac-sparse channel are mutually uncorre-

hngnT,k = phntnT,k—l + Unn, k> (6)



ga-csparsq

ahannal represented gg(x) and the random variables and deterministic

parameters in the pdf are separated using a semic6Jui:)
denotes the complex Gaussian pdf. The expectation with
| respect taX is denoted a& x (). The symbold; andA ® B

Pilot: MSBL Pilot: KMSBL Pilot: BMSBL Pilot: KBMSBL denotes anl. x L identity matrix and Kronecker product of
[Joint; J—MSBL] [Joint:J—KMSBq [Joint: J—BMSBL] [Joint: J—KBMSBJ A and B, respectively. Theith entry of a and the (Lj)th
entry of A are represented agi) and A(i, j), respectively.
Figure 2. Figure depicting the algorithms proposed in thiskw Throughout the papep, as a subscript refers to pilots af)
in the superscript refers to the iteration number.

ga-sparse|
channel

Block—fading Time-varying Block-fading Time-varying

frequency, andl’, is the OFDM symbol duration [28]. The 1. CHANNEL ESTIMATION AND TRACKING USING PILOT
driving noiseu,, ,, . is distributed aau,,,, . ~ CA(0, (1 — SUBCARRIERS FORGA-SPARSECHANNELS
p2)y()Iar). In this section, we propose algorithms for ga-sparse cHanne
As depicted in Fig. 2, the following algorithms are propose@Stimation and tracking, using the pilot-subcarriéqfs . in
for recovering ga-sparse channels in the MMV framewoi(4), in both block-fading and time-varying scenarios. Fivee
given in (3): adapt the MSBL algorithm for block-fading channel estiroati
« In Sec. Il, we adapt the multiple response SBL (MSBL sing P, pilots placed in an equidistant manner over the time-
algorithm [10] and propose a novel Kalman msgLfeduency grid in a lattice structure, as prescribed by tae-s
(KMSBL) for pilot-based channel estimation in block-d2rd [29], [30]. Subsequently, we propose the novel KMSBL
fading channels and time-varying channels, respectiveﬁl).gor'thm for estimation and tracking of time-varying chats
« In Sec. Ill, we propose a Joint-MSBL (J-MSBL) algo_using P; pilots placed in an equidistant lattice structure in
fithm and Joint-KMSBL (J-KMSBL) algorithm for joint €Very OFDM symbol.
channel estimation/tracking and data detection in block-

fading and time-varying scenarios, respectively. A. The MSBL Algorithm

Further, in the context of recovering gac-sparse channels€re, we describe the MSBL algorithm for pilot-assisted

we propose the following algorithms: channel estimation in MIMO-OFDM systems.
In Sec. IV the B .k MSBL (BMSBL) and In the MSBL framework, multiple group-sparse vectors
° }? | ec. BMVé%ErOEEiAeSBﬁ ?C ithm f ( | tb) ar(lj are recovered from multiple observation vectors [10] with
aiman ( ) )_ aigorithm for priot-based parameterized prior incorporated to obtain group-sparse
gac-sparse channel estimation for block-fading and t'mgc')lutions The prior density is given by
varying channels, respectively. '

o In Sec. V, we propose the and Joint-BMSBL (J-BMSBL) ks
and Joint-KBMSBL (J-KBMSBL) algorithm for joint p(H;T) = H p(hn,;T), @)
channel tracking and data detection in the block-fading =t
and time-varying scenario, respectively. whereh,, represents the!" column of H, given byh,, =
The joint counterparts of the proposed algorithms, wheaeinhin, - > hin, 17 with a prior pdf of h,,, ~ CN(0,T'),
joint ML estimation of both the hyperparameters and the data = In, @ T' which control the variances of elements

is performed, leads to significant enhancement in the quafiit I" H. The hyperparameters i’ = diagv), wherey =
channel estimates. In the M-step, this joint estimatiorbfam  [7(1):7(2), -, 7(L)]”, can be estimated using the type-Il
separates as independent optimization problems, leadimg tML procedure [24], i.e., by maximizing the marginalized pdf
simple, computationally inexpensive maximization praoexl p(ypn,: )" at a given receive antenna, as follows:

with no loss of optimality. This, in turn, leads to signifitan ~,,; (i) = argmax p(y,..,;7v), 1<i<L,1<n, <N,.
improvement in the coded Bit Error Rate (BER) performance Y()ER L

compared to the pilot-based and conventional methods.ein th ) (8)
context of gac-sparse channel estimation, we show that thi#ce the above problem cannot be solved in closed form,

proposed algorithms are more accurate than algorithms tHgfative estimators such as the EM basetSBL algorithm
do not exploit the cluster sparsity. The algorithms proplos€l0] are employed. In this approadi, is treated as the hidden
to handle the time-varying channel conditions fully exploivariable, and the posterior distribution Hf is obtained in the
the correlation structure of the channel, resulting in gairc-SteP and the ML estimate of is obtained in the M-step.
of 1 — 2 dB in the coded BER performance, as illustratedh€ steps of the algorithm are given as

_using Monte Car!o simulations. Further, we propose novel, E: Q(yy") = Ety, iy l0g p(Yp, H; )] (9)

implementation-friendly structures which lead to a loweme )y )

putational load for gac-sparse channels. M A0 = Elvlf(%g%aXQ(’Yh ), (10)
Notation: Boldface small letters denote vectors and bold- "

face capital letters denote matrices. The symhe)s, | - | 'Here, we describe the MSBL algorithm fér= 1, and hence, we drop

and Tx-) denote the transpose, determinant and the trace df'gSUbSCriPE in vy, and Yy,
Note that all the algorithms proposed in the paper use ENédbapdates,

m.atrix, rgspet_:tively. Also, dia(g) denotes a diagopal m"f‘trixand hence, they have a convergence guarantee to a localapptiith the
with entries given bya. The pdf of the random variabl& is likelihood increasing in each iteration [31].



for 1 < i < L, and the E and M steps are iterated untiéxploiting both the group-sparsity and the temporal chbnne
convergence. The E-step requires the posterior distabuticorrelation using a Kalman filter and smoother (KFS) based
p(H|Y,;~), which can be obtained from the likelihood arecursive framework.

the n!" receiver, as follows: In the time-varying scenario, the state space equations for
k=1,2,...,K —1 are as follows:
( h,, ) = 1 exp [ — [¥pn. — pha, [I3
PUpne i, (ro2)Nr P o? ' Y, =®psHr + Vi, (15)
- . e (11) Hy 11 = pHy + Uy, (16)
Combining the likelihood and the prior distribution, thespo o
terior distribution ofh,,, is given byp (h,, |y, ;v") ~ Where®,; = [(I’ng’“ - Bpnkl and @y € C e
CN(pn,, %), with mean and covariance given by given by @, 1 = Xy, kFpn,. Here, X, p € C

. is a diagonal matrix consisting of pilots symbols transeditt
menn _(efe, 1 from then!" antenna in the&"™™ OFDM symbol, andF,, ,,, €
Bn, =0 "ELYpn,, X = PR + I (12) P~xL s a truncated DFT matrix consisting of the firt
columns and thé, rows corresponding to the pilot subcarriers
Here,I‘ff) is the hyperparameter value in th# iteration and ©Of the n{" transmit antenna. FurtheH,, consists of theN,
3 is common to all receive antennas, and hence, independ@@nnels corresponding to th& OFDM symbol, i.e. H; =

of the subscript,. [hy g, ..., hy, 1] whereh, ;= [bf ... b5 17 In
The M-step, given by (10), can be simplified to obtain ththe above equation, we defif, = On,xn,, the N;L x
update equation foty as N, matrix of zeros. Note that columns of the matiik,,
1 Ny Ny—1 consists of the driving noise vectots,, ;41 which consists of
A (4) = S Y (It (6 +nL))? independent components,, x41(i) ~ CN(0, (1 — p?)v(i)).
NeNp ' =1 ni=0 The initial condition for the a-sparse channel is giverhlyy~
+ X +nL,i+nL)). (13) CN(O7I‘)_

Note that, in the above equation, the ga-sparse nature of t dhe EM update equations corresponding to the KMSBL

e . .
channel results in the update ®fwhich is averagedover the a[?gonthm are as follows:
N¢N, channels of the MIMO-OFDM system. For a SISO- E:Q ('y|’y(r)) =
OFDM system,N;, = N, = 1, and the above expression

simplifies to the one obtained in [20]. Eu,, . Hciv,me log p(Yp, Hy, o Hi )]
The MSBL algorithm consists of executing the E and the M : 4D = argmaxQ (7|7(7‘>) ) (17)
M steps iteratively, until the algorithm reaches conveogen ~yERE X!

i.e., the differencél~ (") —~("=1|12 < ¢, wheree is a user de- :
. 4 A Iz < € » In the above expressioY, = [Y,1,...,Y, x| represents
fined parameter. The E-step involves computing the poster{ﬂ . . : ’

e overall observation matrix.

mean an(_j variance of.the ga-sparse MIMO'OFDM. chgnne To compute the E-step given above, we require the posterior
as given in (12), incurring a computational complexity OVE istribution of the unknown ga-sparse chankgl. For this

2 ; _

by O(F;'L) [.10]’ .Wh'le M. step _computes the hyperparamet%e employ the Kalman based recursive update equations. The
update as given in (13), incurring a computational compyexi
of O(N.N,.L). In practice, it is found that an initial estimate

for T' given by

KFS update equations fak’ OFDM symbols are as follows
[20], [32], [33]:

F(O):ILX[” (14) for k=1,...,K do
is sufficient for the MSBL algorithm. Prediction:Hy, 1 = pHy1jx 1 (18)
In the case of multiple OFDM symbols in a block-fading Pyjx—1 = p°Py_1s—1 + (1 — p*)T (19)
channel, the channel remains constant for thie OFDM Filtering:

symbols. The system model in (4) can be used for channel H /o oo -1
estimation, such that the number of observations correspon Gr = Prp-1®pk (C’ Ip, + <I’10J<Pk|k—1‘I’p,k) (20)
ing to pilot subcarriers is?. Hypp = Hyppo1 + Gi(ype — piHyn—1) (21)

The MSBL algorithm, in the current form, is not capable of Piik = (In,p — Gr®, 1) Pryi_s (22)
exploiting the correlation that exists in time-varying ohals end (23)
across OFDM symbols. In the following subsection, we extend
MSBL algorithm to obtain the recursive KMSBL algorithm  for j = K, K —1,...,2 do
which exploits the temporal correlation across OFDM sym- Smoothing:

bols, resultm_g ina S|gn|f|_cant performance improvemengmwh I:Ij—1|K _ I:Ij—l\j—l i ijl(I:Ij\K -~ I:Ijlj—l) (24)
the channel is time-varying. H
Pi ik =P + 30 (Pjix = Pjj-0)J52, (25)
end (26)

B. The KMSBL Algorithm

In this subsection, we describe the KMSBL algorithrivhereJ; i = ij*1|j*1PJ|J1'—1 ar]d Gy, is the Kalman gain
which tracks theV; N, ga-sparse MIMO-OFDM channels bymatrix. In the above, the symboH;_,, Pz, etc. have



their usual meanings as in the KF literature [33]. For exampli" hyperparameter as follows:
Hk\k 1 is the channel estimate at th® OFDM symbol given

the observation¥,, »—1; Pyx—1 is the covariance of theh K N
r . nt K Z Z

char_m_e_l e_sumate glve1_n',,,£C 1, etc. The above KFS equations 7( +1)(,) — KN,N, Z Z J|
are initialized by settingy o = 0 and Pyo = T, where =2 =1
I' =T®Ily,. R

In order to simplify (17), we use the joint pdf of the Mo, 115 (6)] (31)
observationsy,, and K channel instantiationdl, ..., Hg,
given by fori=1,..., L. Thus the KMSBL algorithm learns in the

M-step and provides low-complexity and recursive estimate
K of the ga-sparse channel in the E-step.
p(Yp, Hy, ... Hg;vy) = HP(YP|H17~"HK) Remarks: Whenp = 1, H; = ... = Hg and hence, the
k=1 channel is constant across the OFDM frame, i.e., the channel
p(Hi[Hyr—1;7).  (27) s plock-fading. The results from Sec. II-A demonstratet tha
P, pilots per OFDM symbol are sufficient for recoveriitd

Since Hy consi_sts of colur‘r.m:hnmk_ fc_>r 1, <n < Ny the gon Y,. Substitutingp = 1 in (18)-(26), the KFS update
M-step results in the following optimization problem: equations collapse to the following three equations:

A1) =argmaxBy, g, |y, 0 KN log|Ty|

‘YGRLXI Gk = Pkfl\kfl(ﬁgk(UQIPt + ¢p7kPk71‘k,1¢£k)_l (32)
Z Z h )Hr—l I:Iklk =Hp_qjp—1 + Gr(Ypr — q)p,kafl\kfl) (33)
= n,,k Py, k—1 b Pk|k = (INtL — Gk(bp,k)Pkfl\kfl- (34)

(hnT,k - phn,\,k—l) + hnr_rlrbilhn,\,l]] . (28)

Further, whenp = 1, the M-step of (28) simplifies to the
We see that the M-step requires the computation M-step of MSBL given in (10).

ﬂj\K = Eg, . 7HK|YP ,YM[HJ-], and the covariance The KMSBL algorithm proposed in this section is a gen-
....HK\Y () H;HY] £ Pk + H. |KH for j = eralized version of the KSBL algorithm proposed in [20]
1,..., K, which is obtained from (18)- (26) The M-step alsdor pilot-based SISO-OFDM channel estimation, i.e., setti
requires the computation alyy, g1, |y, [H;HI ] 2 Ni = N, = 1 in the KMSBL algorithm leads to the KSBL

P, 1k +H, \KH forj=K,K—1 9 which we algorithm. However, in contrast to the KSBL algorithm, the
Jid— J ’ [ A

obtain from [33] as fgﬁ(ows KMSBL algorithm incorporates the spatial sparsity thatsexi
in the MIMO-OFDM framework, and tracksV, correlated
Py oK = })jil‘jilJfl_2 + J;FI_I(PJ.J.A‘K channel vectors governed by a commgn
—pP; 1) (29) In order to estimate the wireless channel when the data is

observed up to thé&™ OFDM symbol, (18)-(22) are applied

The above recursion is initialized usiiy x—1x = p(In,— recursively until we reach thé™ OFDM symbol in the
Gx®, x)Px_1jx_1. Using the above expressions, the optforward recursion. We store the valuesidf,;, H;); 1, P,;

mization problem in (28) can be written as andP;;_, for j =0,..., K in the forward recursion. Next,
we apply the backward recursion using the Kalman smoother
Nt given by (24)-(26), i.e., KFS is applied to the whole seqeenc
SRR argfglxl?{KNtN log |T| + Z (T Mnhl\K) of observations before updating. The Kalman smoother
veR ne=1 helps to utilize all the information available in both thespa
K N and future symbols, and hence improves the channel esimate
+r% Z Z Tr(F_ant,j\K) ) (30) Using a flop-count analysis [34], the computations of the
J=2ne=1 KMSBL algorithm is dominated by the computation of the

. . - term in the smoothing step, which has a complexit
whereM,,, ,jx € Chxtis the submatrix consisting of rowsmf (5(KL3) per iteration pegr recpewe antenna. We sclaoe thgt
and columngn; —1)L throughn, L from the mat”XMHK = if the number of OFDM symbols to be tracked are such
NePjig +HJ|KH |K+P (N Py +H;_ 1\KHJ k)~ that KP, > L, the complexity of the block-based ARSBL
2pRe(N, P ;i 11k + H, ‘KHJ 1‘K) Similarly, M,,, JlK € algorithm [19] is larger than the KMSBL algorithm. In other
CL*L js the submatrix OﬂVIJ|K £ NPy + H1|KH words, the KMSBL algorithm is a good choice among the ex-
consisting of rows and columris, — 1) L throughn, L. Smce act inference techniques when the number of OFDM symbols
the individual channel components bf,_;, given byh,,, , !0 be tracked is large [20].

for 1 < n; < N, are governed byy, we note that the update The algorithms proposed in this section do not utilize the
of ~ is averaged over th&/; components via the summationinformation available from the data subcarriers in estingat
overn,. Differentiating (30) w.r.ty(¢) and setting the resulting the channel. In the following section, we propose joint cten
expression to zero and solving forgives the update for the estimation and data detection schemes for ga-sparse deanne



[E-step:Q(w,Xh('),X(")):]EHY;,Y[”vx(,)[logp(H,Y;A,,X)] J At the outset, solving the optimization problem in the
;
¥

) M-step in (35) might appear to be an uphill task, as
i it involves joint optimization overX and ~. However,
[M—step:;u-gmaxw_xQ(v,Xh("),Xm) ] we see that, in (35), the objective function w.ry. and
| X can be decoupled as the sum of two independent
I e . terms, Q(X|X™) £ Egy .o xo logp(Y|H; X)] and

! Q(yIY'")) £ Eppy.yn xo log p(H;%)]. This is schemati-

! cally illustrated in Fig. 3 Further, we see thad(~|y")) of
———————————————— the MSBL algorithm and the J-MSBL algorithm are identical,

Figure 3. The J-MSBL algorithm: E-step computes the expiectaover the and hence' upon opt|m|2|r(g(17|7(T>) W'th respect tOV(Z)’_ we

posterior density ofL. The joint maximization in the M-step simplifies into Obtain the expression for"+1) (i) as in the MSBL algorithm,

two independent maximizations overand X. The dashed box indicates the given by (10). Further, the objective function to obtXni.e.,

novelty in the J-MSBL approach. Q(X|X(), can be derived as follows:

[‘7“’*” = argmax, Q(v]v") ]

N,
Q(X|X (M) = Eqjyiy ) x [log II p(ynr,k|hnT;X>:|

I11. JOINT CHANNEL ESTIMATION/TRACKING AND DATA np=1
DETECTIONUSING PILOT AND DATA SUBCARRIERS FOR N, )
GA-SPARSECHANNELS = —Enjyviyo xm 21 lyn,.k — ®ohy, I3 - (37)
Nyp=

In this section, we present the novel J-MSBL and J-

KMSBL algorithm that generalizes the pilot-based MSBL anand hence, the optimization problem firis given by

KMSBL alg(_)rith_ms for joint ga-sparse channel estimat?od an Xl(;+1)(i, i), ... ,X](\?}l)(i,i) = argmin C(i,q)

data detection in MIMO-OFDM systems. Further, using the ¢ T1,..EN, €S

recursive J-KMSBL algorithm, we show that a low-complexity N, Ny

recursive variant of J-MSBL can be derived using the KFS  + " [y, «(i) = > &, kFu(i, 1), |, (38)
update equations given in (18)-(26). ne=1 ny=1

wherei € D, D is an index set consisting of the data subcarrier
A. The J-MSBL Algorithm locations,C = ®@X®, Fy (i, ) is thei!" row of theF;, matrix,

In this subsection, we derive the J-MSBL algorithm for joint*»- _andE are given in (36). The co_mputatlonal cpmplexny
estimation of the ga-sparse channels and the transmit ldate?fi th'_s a'gog'th';" is dominated by the inverse operation B)(3
a MIMO-OFDM system. To derive this algorithm, we modifyand IsO(K N LNG). , ) _— ,
the MSBL framework such that the unknown variables are n_otAS stated in the previous section, the initial estimatel'of

only the hyperparameters but also the data transmittei in 'S taken to be an identity matrix. The initialization of the
OFDM symbols (KNN; — P,N;) non-pilot data in turn requires an initial

channel estimate. Channel estimates using methods like LS
and, in contrast to the MSBL setup, we consid nd MMSE cannot be used, as they require knowledge of

X 2 X X X as parameters tot e MIP. Hence, the initialization oX is set to be the
A= X, Ko _NfK] P ~ channel estimate obtained from a few iterations of the MSBL
be estimated. HereX,,,,. consists of the data correspondmgi'gorithm from theP, pilots (denoted asiy;spz). The ML

th i th
to then;" antenna in thé:™ OFDM symbol. The E and the j,45 getection problem for obtaining the initial data eatizs
M-steps of the J-MSBL algorithm can be given as is given by

We consider H in (3) as the hidden variable,

E: Q(v, Xy, X") = Eggjy .y [log p(Y, H; v, X))

M : (7(T+1),X(T+1)) = argmax Q(v, X[y, X"),

Ny
YR XiaieS argmin _|yn, (i) — Z 2, Fo(i, Yharsprl®, i€D.
(35) Z1,.., TN ES ne=1

X0y, x Qi) =

. . . . 39
where z; is an element inX, and S is the constellation (39)

from which the symbols are transmitted. The E-step of Ja order to obtain the solution for both (38) and (39), we

MSBL consists of computing the posterior distribution a&®v need to find the vectofzs, ..., zy,] that jointly minimizes
receive antenna, and is given agh, |y, ;~v(", X)) ~ (38). Although we can solve this problem with moderate
CN(pn,,X), where complexity for MIMO-OFDM systems withV, up to 4 [29],

N the complexity of this problem is high for largé¥;. In such

Wn, =0 B0y, . B = (a*2<I>bH<I>b + 1" ) , scenarios, one can use sphere decoding [11].
36

for K OFDM symbols in a frame. In the above equati@r(a,:) 3Notice that (10) and (35) are different, since the formersute mea-
[<I>1T, o CI’}T<]T* and forl < k < K, F = 1y, ® F, &, — surement matrix containing only the known pilot symbals,, whereas the

; () () latter uses measurement matrices which consist of pilotosjgsmalong with
Fyblkdiag X7/, . .. vXN,k) andy,, r = [yfk, e ,y]:C,T7k]T. the estimated data, together given $y").



In the following section, we discuss the pilot-based anthe M-step requirestMK = Epr, vxo ~ [Hi] and

joint channel estimation and data detection for time-vagyi P, £ Egr, v x o [HeHf], which are given by the KFS

ga-sparse MIMO-OFDM channels. equations of the E-step. The maximization C@fﬁXHX,(f)

) in (42) leads to the following optimization problem fox;:
B. The J-KMSBL Algorithm

In this section, we generalize the KMSBL algorithm of Xff/jl)(iai)a---7Xz(\7:kl)(ivi) = argmin C(i,1)
Sec. 1I-B to obtain the J-KMSBL algorithm, which utilizeseth N N FhorersiN €
observations available at all tié subcarriers of théd OFDM - _ - o7 2
symbols, and performs data detection at thé — P;) data * Z [Yn. (1) = Z n, B )b, x| (43)
subcarriers of each OFDM symbol. Generalizing the J-MSBL
to the J-KMSBL algorithm involves incorporating an E-stepvherei € D, D is an index set consisting of the data subcarrier
that exploits the correlation in the time-varying chanrealsh locations,C = ®Py,x®, F(i,:) is the " row of F and
that the algorithm is recursive in nature, and the smoothdd, j x is then!" column of Hy, ;. Note that, in contrast to
channel estimates obtained for tieOFDM symbols are used the expression fo€ in (38), the above expression is a function
to jointly estimate the ga-sparse channel and the unknoten daf Py, since the covariance is computed recursively.
of the K OFDM symbols. Data detection in the M-step results in the measurement

Our starting point, again, is the state space model given matrix <I>§€T) in the " iteration andk™™ OFDM symbol. Hence,
(16). The EM update equations in this context are given bythe iterations of the J-KMSBL are comprised of KFS update

equations that incorporat’ég) instead of the pilot-only®,, ;.

np=1 ny=1

E: QO Xy X)) = Ba, _myvao used in the KSBL algorithm. Further, the data detection & th
logp(Y,H;, ..., Hg;v,X)] M-step necessitates the initialization of transmit daxg.’

M : (7(7~+1),X(r+1)) = argmax  Q(v, X[y, X)), for 0 < k£ < K. We use the channel estimate obtained from
~ERLX! Xix; €8 a few iterations of the KMSBL algorithm from th&; pilots

(40) (denoted aSﬁKA,ISB 1) to obtain the initial estimaté(éo) for

where X comprises the data transmitted on the OFDM O<k<KandieDas

symbols, as defined in the previous subsection. Since the J- x°)(i,4),..., X\, (i,i) =
KMSBL algorithm uses the observations available at all the ’ TN,
N subcarriers of each OFDM symbol, recursive updates of 10 min |y, (i) — Z o0, F(i, Vhgarsprl® (44)

the posterior mean and covariance are given by (18)-(26), «i,...zn,€S
with Y, and @, replaced byY and®, respectively. Further, . . _ .
sinceT’ and data at the non-pilot subcarriers are unknown, t%?AS mentioned in Sec. II-B, whep = 1, the channel is

SBL framework leads to the objective function f&r OFDM ock-fading in nature. Employing? p.'IOtS n-an OFDM.
symbols in the M-step given by frame, we can emulate the block-fading scenario described

in Sec. llI-A, and hence implement the J-MSBL algorithm

9] (X77|X(r)’,y(r)) =c— KN, log|Ts| — Eg, iy v:x. F€CUrsively using KFS equations given by (34). Further, the
N v M-step of the J-KMSBL algorithm is given by (31) and (44).
Z Z 0-72||y7717“;j - Z X iFhnn,

ny=1

Until now, we focussed on recovering the block-fading and
time-varying ga-sparse channels using pilot-only andtjoin

2

j=tne=t =t techniques. In the sequel, we design pilot-only and joint
LY (h,,, ; — phy, j—1)ET, by, — phy, 1) channe_l estimation and data detectipn algorithms for group

_Z Z (1—p?) approximatelycluster-sparseblock-fading and time-varying
e channels.

~hy Ty hy, ], (41)

wherec is a constant independentgfandX. The expression V. CHANNEL ESTIMATION AND TRACKING USING PILOT
above is a sum of terms which are independent functions of =~ SUBCARRIERS FORGAC-SPARSECHANNELS

v and X £ [Xi4,...,Xn,x) for 1 < k < K, denoted  In this section, we model the channel as gac-sparse, iee., th
asQ (7|7(r)) and Q (Xk|X1(:) .1 < k < K, respectively. entries of the approximately sparse channel are constraine

Further, we see thap (,.y|,y(7‘)) is the same as (30). Henceli€ in a few clusters. Each cluster of the gac-sparse channel
the learning rule fory follows from the M-step of the h,.,», With B blocks of length) each, consists of all strong

KMSBL algorithm, and is given by (31). The expression fof’ all weak components and the strong component clusters
MY are few in number. The parametric prior modeling in SBL
Q (X |X( )) is given by
kg

can be extended to the gac-sparse channels by assigning a
0 (Xk|X;(:)) = Ep, jyixr) thhyp?hrparamete%(z‘) to _thez’“_* cluster,1 <i < B instead of
AL e component, as given in Sec. lI-A. That is, thelength
N N hyperparameter vectey, is associated with the pdf df,,, ., ,
lC A DY Xnt,thntnT,kHz] . (42) such that everyM length cluster of the channel is distributed
asCN(0,7.(i)).

n,=1 ng=1



First, we propose the Block MSBL (BMSBL) for pilot- D :
based gac-sparse block-fading channel estimation in a MIMO : pr, S, ,LHzH
OFDM framework. We implement the BMSBL algorithm : > g
using the parallel cluster MSBL (PCMSBL) approach [35], g y
which is same as the BMSBL in performance but has the & p_ LN el Mstep [T
advantage of lower computational complexity as it allows fo L :
the parallel implementation of the algorithm. Thereaftee, :

1
1

propose the Kalman-BMSBL (KBMSBL) algorithm for pilot-

based gac-sparse time-varying channel estimation, aqbpeo 3 _i._. SRR PR TETERRRERES _ ‘:H__E*i ______
to implement the algorithm using the low-complexity Nested
MSBL (NMSBL) approach [35]_ Figure 4. Block Diagram of the PCMSBL algorithm depictidg parallel

branches.

A. The BMSBL Algorithm
_ ) Simplifying the above, we obtain
In this subsection, we propose the Block MSBL (BMSBL) v

algorithm for pilot-based sparse channel estimation irchlo : ) 1 M N

faging channerljs. We propoge to recover the gac-sparseehann Y G) = MN; N, Z Z Z Zenen, (M, m)
h,,,.,, by generalizing the BSBL algorithm [25] to the mul-
tiple measurement scenario, i.e., we recoverihega-sparse + |ttengn, (M) (49)
channels h,, ., from N, observation vectorsy,, ... Note Note that, in contrast to (13), we obtain the averaging over
that settingV,, = N; = 1 leads to the SISO-OFDM problem,ihe size of the cluster, sinceyé”l)(i) is common to the
making the proposed algorithm backward compatible for the,ies of the cluster. Further, since the vectors are gacse
SISO-OFDM gac-sparse channel estimation. over N, transmit andN, receive antenna, we obtain the

The EM algorithm for obtaining the ML estimate of th%pdate,yé’”“)(z’) which is averaged oveN, N, channels of
unknown parametery., in the BMSBL framework is as the MIMO-OFDM system.

m=1n,=1n:=1

follows: Implementation of BMSBLHere, we discuss the imple-
E. M\ _ 1 Y. H: mentation of the BMSBL algorithm. We employ the PCSBL
HQ (%h’c ) o EHIYPWE") log p(Yy, H; )] approach [35], which significantly reduces the complexity o
M ,y((:rJrl) — argmax Q (%hgr)) _ (45) the proposed BMSBL algorithm. _ _ _
o EREX1 The complexity of the BMSBL algorithm is dominated

by the computation of the posterior covariance mafy,
The posterior distribution in the E-step above can be ddrivevhich incurs a computational load @(N?M B). In [35],

aSp(hnr|yp7nr;‘y£7‘)) ~ CN(pren,, ), where we proposed an approach for estimating cluster-sparsalsign
and showed that by using a Parallel Cluster SBL approach,
Hen, = Ecéfyp,m, the block-based algorithm [25] is amenable to parallel anpl

SHE -1 mentation.
¥, =02 < P _ Py (T, ®IM)_1> . (46) We employ the ECSBL approach to handle multiple mea-
o surements, as depicted in Fig. 4, where the gac-sparse&hann
is recovered by solving/ parallel problems. The M-step is
Observe that the MSBL Sec. II-A and the BMSBL algosjmply the average of the hyperparameter updates obtained
rithms differ in the prior distribution oH. The logarithm of from the M parallel problems per receive antenna. The multi-

the pdf of the gac-sparse chanii#lis given by ple measurement PCSBL incurs a maximum computational
, load of O(P?), i.e., the complexity does not scale with
log p(H;e) = ¢'— L=MB.

Ny " The BMSBL algorithm is designed for block-fading chan-

N
-1
NNy log|(Te @ Inr)| — Z Z by, (Te®@Tar) hun,, nels, and hence, is not capable of exploiting the correfatio
m=lne=1 47 seen in time-varying channels. Hence, in the following sub-
(47) section, we design a recursive KBMSBL algorithm for time-
where ¢ is a constant independent of.. Maximizing varying gac-sparse channel estimation in order to exphait t

Q (717"} in (45) w.r.t.+, we obtain the following temporal correlation.

7£T+1)(2.) — argmin M NN, log |T'| B. The KBMSBL Algorithm

Ve ER In this subsection, we derive an algorithm for tracking the

Ne [ Ny slowly time-varyinggac-sparse MIMO-OFDM channel using

T By, 4 S Ce@Ty) ' Trfhy,,, b, 1| . the SBL framework. As in Sec. II-B, we employ an AR
np=1 Ln,=1 model for the temporal evolution of the gac-sparse channel

(48) and derive recursive KFS based techniques. In addition, we
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propose a nested SBL approach [35] which facilitates thehere M., ;x consists of rows and columns
implementation of the proposed algorithm using parallel (n, — 1)L through n;L from the matrix M., ;i x £
Kalman filters/smoothers. N, Pji +ﬂj|KﬂﬁK + P (No Pk +I:I_j_1‘KI:IJ},I_1‘K) _
We formulate the gac-sparse channel estimation prOblejBRe(N P.. l\K. + ﬂ_lKﬂH | ). Likewise, M., 1k
; ; Tt J j—1|K/ ’ cng,
by modeling the channel corresponding to th€ OFDM consists of rows and columrs;, — 1)L throughn, L from
symbol ash,,, , ~ CN(0, (I'.®I))). We model the temporal the matrix M,y A NPy + ﬂl‘kﬁH In the above

variation of the gac-sparse channel using the first order AR 1k

model as given in (16), i.e., the temporal evolution of eve hpresstlr:)nsPM and H,;, are affun?lon O?S_flfm“ket. (?0)'
cluster in the gac-sparse channel follows a first order A ere the expressions are a tunction -at itierentiating
model given by 4) w.rt. 7.(i) and setting the resulting equation to zero

gives the update for thé" hyperparameter as follows:

hntnr,mk - phntnﬁmkfl + Un,n,. mk; (50) Ny K M M
(r+1) ¢, _ 1 m,eng, | K

for 1 < m < M, whereu,,,, . is temporally and spatially 70 = wENw, <n2_:1 ;m_l (1=p?)
white, i.e., n,n, mr ~ CN(0,(1 — p*)y(m)Irr). The EM N M S
algorithm for pilot-based gac-sparse channel estimat®n i i Z Z Y S (55)
given by ny=1m=1

E:Q (%hg‘)) whereM,,, .., ;i consists of rows and columr($? — 1)M

through BM from the matrix M, jix, and My, ., 1|k
- EHl;---7HK|Yp§7£7‘) [logp(Ypa H17 RS HKa 76)] .

consists of rows and columr® — 1)M throughBM from

M ,y((:r+1) — arg max Q (’Yc|‘7§r)) ' (51) the matrixM,,, .., .1/x- Thus, the KBMSBL algorithm learns
~. in the M-step and provides low-complexity and recursive

estimates of the time-varying gac-sparse channel in thiejk-s

Now, the posterior distribution oHy,...,Hx can be ef- using the KFS framework.

ficiently evaluated using the Kalman Filter and Smoother Implementation of KBMSBLHere, we discuss the imple-

(KFS) equations given in (18) - (26), by replacidg by mentation details of the KBMSBL algorithm and propose a

YR

Lo = (Iy, © (Te ® Inr)). low complexity solution based on the nested EM algorithm.
The logarithm of the conditional prior distribution is give  The complexity of the KBMSBL algorithm is dominated
by by theJ,_; term, whose computational complexity is given

by O(K L?). In [35], we proposed a nested SBL approach for
estimating cluster-sparse signals and showed that thedest

N, K .
S 3 (ke — phnr,kq)HF;f(hnr,k — ph, 1) SBL approach has low complexity.

logp(Hy|Hg—1;T:) = KN, log |Tc|

no=1 k=2 ' In the nested SBL approach [35], we restructure the problem
N (1= p2?) by introducing auxiliary variables,,, ., ,» € CV*1, such that
N,
= 2 bl B, (52) Frm e = B ke T B (%)
ne=1 The structuring of the vectols,, ,, 1. is crucial for the nested

SBL algorithm since it directly affects the computational

Note that, in the above expressidt, imposes the gac—sparsecomplexity_ Here, we construct a vectt, . ., such that it

E}ri%vesgf égﬁ Eza;%eglrggdzzlgfowllloagbm& The M-step consists of sub-vectors governed by a common hyperparamete

vector~y,, i.e.,
r4+1 :
75 = argRH;lxI} EHl’---vHK|Yp§F£T) [KNT 1og |FCb| hntnmkc = [hnmmlk(l)v hnmr,%(l)a ceey hnmmBk(l)a
’Yce
" .- '7h’7lt7lr-,1k(M)ahntank(M)a' .- ’hntnr-,Bk(M)]' (57)
WL (hnTk - phnr kfl)HI‘ibl(hnT.k - phnr.kfl) . .
+Z Z ’ . ( _C %) ’ ’ Accordingly, ®,,, ,, consists of the columns ofp; cor-
k=2 n,=1 P responding to entries ohy,,, k.. Although z,,,, 1. can-
Nr . ) not explicitly obtained, we note that its covariance can
+ Z h; (T hy, 4] (53) be written asz,,,, ke ~ CN(0,B,0%Iy) where, 0 <
nr=1 Bm < 1 and Zn]\le Bm = 1. [35]. Further, we using
Using the prior distribution given in (52), and invoking thet,,, » = [t, ,,... ,t%tnmk}, we construct the matrif'y, €
fact thatl'c, = (I, @ (T'c @ Iar)), we can simplify (53) as  cNeMLxN: py stackingty .. .., ty,  as its columns. The
N, auxiliary variable matrixT; decomposes the problem of
.yéwrl) = argmin K M N, N, log|T.| + Z TT(FQ)IMCM,HK) tracking gac-sparse channels into a problem of tracking
~e€RT X1 ny=1 length ga-sparse channel component vectors.
K N, The NSBL technique is implemented using two EM loops,
+ (1jp2) Z Z Tr(r;)let_’k‘K% (54) one nested within the other, as depicted in Fig. 5. The outer

=2 ne—1 EM loop consists of updating the posterior distributionIgf
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Y"—[ Er }__,[ Ex }——— (ryiyoteP e simulations. We consider the parameters in the 3GPP/LTE
" — . L,_,_]'Y‘ broadband standard [29], [30]. We us8MHz 2 x 2 MIMO-
[ Do OFDM system with256 subcarriers, with a sampling fre-
________ ] guency of f, = 3.84MHz, resulting in an OFDM symbol
duration of~ 83.3us with Cyclic Prefix (CP) ofl6.67us. The
length of component channel vectors of the ga-sparse channe
(L) is taken to be equal to the length of the CP. Each frame of
the MIMO-OFDM system consists df = 7 OFDM symbols.
for 1 <k < K, and the inner EM loop consists of updating’he data is transmitted using a rat¢2 Turbo code with
the posterior distribution of the gac-sparse channel udieg QPSK modulation. For the Turbo code generation, we use the
KFS framework across th& OFDM symbols. publicly available software [36], which uses a maximum of
After the posterior distribution ofl'; is obtained in the Turbo iterations. We use a convergence criteria ef 10~
outer EM loop, the inner EM loop in the NSBL algorithmand r,,,,,, = 200 for all the algorithms. We note that these
is amenable to parallel implementation /e parallel Kalman values are not meant to be completely compliant with the
filter and smoother chains. Each Kalman filter and smoothefE standard. We have chosen the parameter settings so as
chain incurs a computational load @ (K B?), since the to facilitate visual comparison between the different scbs,
parallel chains track a vector in a lower dimensids).(The illustrate the underlying performance tradeoffs, whiletta
computational complexity of the outer loop of the nesteshme time being close to realistic settings used in the atdnd
SBL approach dominates the overall complexity of the al- We use the Pedestrian B channel model [37] with Rayleigh
gorithm, and hence, the complexity of NSBL is given byading. Further, we consider raised cosine filtering in gver
O(K3M?PZ2L). Note that, in contrast to KBMSBL which receive and transmit antenna chain with a roll-off factor of
incurs a computational complexity 6f( K L3), the complexity 0.5 [30]. This leads to the channel vectors being ga-sparse
of the NSBL approach scales linearly In Hence, the NSBL (see [20] for an illustration).
approach leads to efficient implementation of the proposedin the following subsections, we present the simulation
KBMSBL algorithm for largeL. results for the performance of the proposed algorithms in
In the following subsection, we generalize the proposegstimating block-fading and time-varying ga-sparse anct ga
BMSBL and KBMSBL approaches for performing joint chansparse wireless channels.
nel estimation and data detection in time-varying gacspar
MIMO-OFDM channels.

Figure 5. Block Diagram of the NSBL approach.

A. Block-fading Ga-sparse and Gac-sparse Channels

V. JOINT CHANNEL ESTIMATION/TRACKING AND DATA In this subsection, we consider the pilot-only channel es-
DETECTIONUSING PILOT AND DATA SUBCARRIERS FOR timation and joint channel estimation and data detection in
GAC-SPARSECHANNELS block-fading ga-sparse and gac-sparse channels. Each OFDM

In this section, we derive the novel J-BMSBL and J[r_ame COI’]SISt-S Off" = .7.OFDM symbols, W'tth = 4
pilots placed in an equidistant lattice structure in an OFDM

KBMSBL algorithm that generalize the pilot-based BMSBI‘frame of each transmitter. We implement the MSBL and the
and KBMSBL algorithms for joint channel estimation and datfi‘-MSBL algorithm for ga-éparse and BMSBL and J-BMSBL
detection in MIMO-OFDM systems. Igorithms (with block sizes of and6) in the case of gac-

KETI\C/)I SdISel_mf/rear;h:Ssrl?Isgoc:rrlfr:rTz;’ tr\:\(le € ?k?] dc;fynth:r_sg/llst;-reag(g arse block-fading channels, and plot the MSE and the coded
W u u wh vari ER performance of the algorithms in Fig. 6 and Fig. 7,

only the hyperparameters but also the unknown transmit d%% ectivelv. We combpare the performance of the proposed
symbols in the entire OFDM frame. We considHr as the P y- P R e

hidden variable, and, in contrast to BMSBL and KBMSBL, Walgonthms with the CS based Simultaneous OMP (SOMP)

; N T38] using 50 pilots, MIP-aware methods: pilot-only MIP-
considerfy, X] whereX = [X;, ..., Xy,] as the parametersgware estimation [4] and the MIP-aware joint data and chlanne

to be estimated. An important observation here is that the,. ~ - . .
BMSBL/KBMSBL algorithm differs from the ga-sparse base al;g]i?ﬁr?]n[ﬂ?omhm’ which we refer to as the EM-OFDM

MSBL/KMSBL algorithm due to the channel modeling, which From the top half of Fig. 6, we observe that the MSBL algo-

In trn affects_the posterior mean and variance of the cHannnetth performs at least dB better than the CS based SOMP
These posterior statistics affect the updatesyofas shown

. : technique. Since the proposed MSBL technique exploits spa-
in (48)/(53). The updates of the transmit d&¥y, ..., Xy,] ... . ) °
in the case of J-BMSBL, anth., X1, ..., X,] in the case of tial joint sparsity, MSBL perform$ dB better than the per

J-KBMSBL, can be obtained from the posterior estimates (S)%Tgoéagléf Ig;)r:'g;tn; t?\rg?:?ussetgrl-g [i?;évgteruﬂtsfrgbitserveg that
the gac-sparse channel, from the E-step. Hence, the Up‘% P P '

te .
equation for the transmit data remains the same as (38)/(43) . 2.5 dB better than the MSBL technique. The bottom half

o? Fig. 6 depicts the MSE performance of joint data detection
techniques that detect thg N — P,) data symbols along
VI. SIMULATION RESULTS with estimating the channel, resulting in a significantiyéo
In this section, we demonstrate the performance of tlwerall MSE compared to pilot-only schemes. We see that
proposed channel estimation algorithms using Monte Caimnong the joint SBL based iterative methods, the J-MSBL
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Figure 7. Coded BER performance of the proposed algorithmes block-
fading channel, withP, = 44 pilot subcarriers, as a function d@;/No.

I
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SNR function of SNR is depicted in Fig. 8. In the top half of the
plot, we demonstrate that the pilot-only KMSBL algorithm
Figure 6. MSE performance in block-fading channels as atiomof SNR  performs5—7 dB better than the MSBL and per-symbol J-SBL

in dB: Top: per-symbol SBL vs. MSBL vs. BMSBL. Bottom: J-SBIs.vJ- . . . .
MSBL vs. J-BMSBL. P, — 44, gac-sparse: Solid curves - block size = 4’algonthms, since the KMSBL algorithm exploits the tempora

Dashed-dot curves - block size = 6. correlation and joint sparsity in time-varying channelsttker,
we demonstrate that the KBMSBL technique, which exploits
the approximate cluster-sparsity, perforins — 2.5 dB better

algorithm performs an order of magnitude better than tgan the KMSBL algorithm, while being — 6 dB away
MSBL algorithm, especially at higher values of SNR. Furthefrom the optimal MIP-aware Kalman tracking algorithm [28].
we see that J-BMSBL has a superior performance compared{gvever, the J-KBMSBL algorithm performs dB better
J-MSBL and the per-symbol J-SBL [20]. Note that J-BmsBithan its pilot-only counterpart, i.e., the KBMSBL algorith
is less than a dB from the MIP-aware EM-OFDM algorithm'hile being less than a dB away from the optimal MIP-aware
The coded BER performance of the proposed schemes §fiman tracking algorithm. The optimal MIP-aware algomith
compared to the EM-OFDM, and a genie receiver, i.e., g;rformSJomt channel estimation and data detection,uses
receiver with perfect knowledge of the channel (labeled 48 MIP-aware EM algorithm, which implements the channel
Geni e), in Fig. 7. We also compare the performance witgstimation in the E-step using a Kalman tracker and detects
MSBL, BMSBL and MIP-aware pilot-only channel estimatiorfn® transmit data in the M-step.
followed by data detection. First, we observe that the MSBL [N the bottom half of Fig. 8, we demonstrate the perfor-
algorithm performs2 dB better than the SOMP schememMance of joint channel estimation and data detection scheme
while being more than a dB worse than the BMSBL schem@ time-varying channels. First, we observe that the pemxyl
Further, the J-BMSBL technique, perfornisdB better than J-SBL algorithm that is not designed to exploit the temporal
the BMSBL scheme and.5 dB better than the J-MSBL Ccorrelation performs-6 dB poorer than the recursive KMSBL
scheme, and onl§.5 dB worse than the MIP-aware pilot-onlyand JKMSBL algorithms. At higher _SNR,.we observe that the
technique. Since the MIP-aware pilot-only technique estim Performance of the JKMSBL algorithm is only dB worse
the channel from an overdetermined system of equations@n the MIP-aware Kalman tracking algorithm. In contrast
outperforms the MIP-unaware pilot-only techniques. Mord® Pilot-only schemes, J-KMSBL and J-KBMSBL have the
over, for the SNRs betweed — 10 dB, the joint channel Same performance while being dB away from the MIP-
estimation and data detection techniques are prone tosémor@ware Kalman tracking algorithm, especially at higher galu

the detected transmit data. Hence, they are outperformed®y>NR, i-€., the advantage of modeling the channel as being
MIP-unaware pilot-only techniques. cluster-sparse diminishes, as we see higher number of pilot

due to accurate detection of transmit data at high SNRs.

In Fig. 9, we depict the coded BER performance of the
proposed algorithms. We see that, while the proposed algo-
In this section, we consider a slowly time-varying channelithms perform better than the SOMP algorithm by a margin

simulated according to a Jakes’ model [39] with a normalizédrger than2.5 dB, the JKBMSBL is only a fraction of a dB

fade rate off;Ts = 0.001 and P; = 44 pilot subcarriers in away from performance of the MIP-aware Kalman and the

every OFDM symbol. genie receiver which has perfect channel knowledge. The J-
The MSE performance of the proposed algorithms ask&BL outperforms the pilot-only based KMSBL by a margin

B. Time-varying Ga-sparse and Gac-sparse Channels
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Figure 9. Coded BER performance of different schemes in ae-tiarying
channel withf3Ts = 0.001 and P; = 44, as a function ofE} /No.

of 0.5 dB. Further, the gac-sparse KBMSBL and J-KBMSBL
algorithms perform better than their ga-sparse countespar (8]
i.e., the KMSBL and J-KMSBL algorithms, by a margin of

0.5 dB.

In both block-fading and time-varying channel conditions,
we note that the performance of algorithms proposed for 93¢0
sparse channels was better than their ga-sparse courserpar

ascertaining that the cluster-sparse channel modelingleed

useful for estimating wireless OFDM channels. Intuitivel)}ll]

modeling the channel using € CF*! leads to overfitting,

13

which is overcome by modeling the channel usipge CZ*1
where B < L. We also observe that the performance is better
for a block-size of6 compared to the block-size df. This is
because, in this example, a block-size6oifs more accurate,
and avoids overfitting, as compared to a block-siz.of

VII. CONCLUSIONS

In this paper, we considered the pilot-only channel esti-
mation and joint ga-sparse and gac-sparse channel estimati
and data detection for block-fading and time-varying cledsin
in MIMO-OFDM systems, using the SBL framework. To
estimate the ga-sparse and gac-sparse block-fading dsanne
we adapted the existing MSBL and BMSBL algorithms and
generalized it to obtain the J-MSBL and J-BMSBL algorithms,
respectively, for joint ga-sparse and gac-sparse chastisia
tion and data detection. We used a first order AR model to cap-
ture the temporal correlation of the ga-sparse and gasspar
channels and proposed the pilot-only KMSBL and KBMSL
algorithms, respectively. We generalized these algosthm
obtain the J-KMSBL and J-KBMSBL algorithms, respectively,
for joint channel estimation and data detection. We disatiss
the computational aspects of the proposed algorithms and
showed that the proposed recursive algorithms entail a sig-
nificantly lower computational complexity compared to the
previously known SBL based techniques. Further, we also
discussed efficient implementation structures for gacsgpa
channels in block-fading and time-varying scenarios. $mu
tion results showed that (i) joint algorithms outperforntleeir
pilot-only counterparts, (ii) recursive techniques outpemed
the per-symbol algorithms, and (iii) algorithms proposethie
context of gac-sparse channels outperformed their gesspar
counterparts.
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