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Abstract

Bayesian approaches for sparse signal recovery have enjoyed a long-standing history

in signal processing and machine learning literature. Among the Bayesian techniques,

the expectation maximization based Sparse Bayesian Learning (SBL) approach is an it-

erative procedure with global convergence guarantee to a local optimum, which uses a

parameterized prior that encourages sparsity under an evidence maximization frame-

work. SBL has been successfully employed in a wide range of applications ranging

from image processing to communications. In this thesis, we propose novel, efficient

and low-complexity SBL-based algorithms that exploit structured sparsity in the pres-

ence of fully/partially known measurement matrices. We apply the proposed algo-

rithms to the problem of channel estimation and data detection in Orthogonal Fre-

quency Division Multiplexing (OFDM) systems. Further, we derive Cramér Rao type

lower Bounds (CRB) for the single and multiple measurement vector SBL problem of

estimating compressible vectors and their prior distribution parameters. The main con-

tributions of the thesis are as follows:

• We derive Hybrid, Bayesian and Marginalized Cramér Rao lower bounds for the

problem of estimating compressible vectors drawn from a Student-t prior distri-

bution. We derive CRBs that encompass the deterministic or random nature of the

unknown parameters of the prior distribution and the regression noise variance.

We use the derived bounds to uncover the relationship between the compress-

ibility and Mean Square Error (MSE) in the estimates. Through simulations, we

demonstrate the dependence of the MSE performance of SBL based estimators on

the compressibility of the vector.

• OFDM is a well-known multi-carrier modulation technique that provides high

spectral efficiency and resilience to multi-path distortion of the wireless channel.

iii



Abstract iv

It is well-known that the impulse response of a wideband wireless channel is ap-

proximately sparse, in the sense that it has a small number of significant compo-

nents relative to the channel delay spread. In this thesis, we consider the estima-

tion of the unknown channel coefficients and its support in SISO-OFDM systems

using a SBL framework. We propose novel pilot-only and joint channel estimation

and data detection algorithms in block-fading and time-varying scenarios. In the

latter case, we use a first order auto-regressive model for the time-variations, and

propose recursive, low-complexity Kalman filtering based algorithms for chan-

nel estimation. Monte Carlo simulations illustrate the efficacy of the proposed

techniques in terms of the MSE and coded bit error rate performance.

• Multiple Input Multiple Output (MIMO) combined with OFDM harnesses the

inherent advantages of OFDM along with the diversity and multiplexing advan-

tages of a MIMO system. The impulse response of wireless channels between

the Nt transmit and Nr receive antennas of a MIMO-OFDM system are group ap-

proximately sparse (ga-sparse), i.e., the NtNr channels have a small number of

significant paths relative to the channel delay spread, and the time-lags of the sig-

nificant paths between transmit and receive antenna pairs coincide. Often, wire-

less channels are also group approximately-cluster sparse (ga-csparse), i.e., every

ga-sparse channel consists of clusters, where a few clusters have all strong com-

ponents while most clusters have all weak components. In this thesis, we cast

the problem of estimating the ga-sparse and ga-csparse block-fading and time-

varying channels using a multiple measurement SBL framework. We propose

a bouquet of novel algorithms for MIMO-OFDM systems that generalize the al-

gorithms proposed in the context of SISO-OFDM systems. The efficacy of the

proposed techniques are demonstrated in terms of MSE and coded bit error rate

performance.



Glossary

3GPP : Third Generation Partnership Project
AR : Autoregressive
AWGN : Additive White Gaussian Noise
BCRB : Bayesian Cramér Rao Bound
BER : Bit Error Rate
BIM : Bayesian Information matrix
BPSK : Binary Phase Shift Keying
FIM : Fisher Information Matrix
CP : Cyclic Prefix
CRLB : Cramér Rao Lower Bound
CS : Compressed Sensing
EM : Expectation Maximization
HCRB : Hybrid Cramér Rao Bounds
HIM : Hybrid Information Matrix
KFS : Kalman Filter and Smoother
LLR : Log-Likelihood Ratio
LOS : Line-Of-Sight
LTE-A : Long Term Evolution - Advanced
MAP : Maximum a Posteriori
MCRB : Marginalized Cramér Rao Bounds
MIMO : Multiple-Input Multiple-Output
MIP : Multipath Intensity Profile
MISO : Multiple-Input Single-Output
ML : Maximum Likelihood
MMSE : Minimum Mean Square Error
MMV : Multiple Measurement Vector
MSE : Mean Squared Error
OFDM : Orthogonal Frequency Division Multiplexing
OMP : Orthogonal Matching Pursuit
QPSK : Quadrature Phase Shift Keying
QAM : Quadrature Amplitude Modulation
SBL : Sparse Bayesian Learning
SMV : Single Measurement Vector
SNR : Signal-to-Noise Ratio
SISO : Single-Input Single-Output
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Notation

Boldface lower case letters : Vectors
⌊c⌋ : Largest integer less than c
C : Field of complex numbers
CN (µ, σ2) : Circularly symmetric complex Gaussian

distribution with mean µ and σ2 variance
EX [·] : Expectation with respect to the random variable X
IM : M ×M Identity matrix
ℑ(·) : Imaginary part of the complex argument
K : Number of OFDM symbols in an OFDM frame
L : Length of the channel
N : Number of subcarriers in an OFDM symbol
Nt : Number of Transmit Antenna in a MIMO-OFDM system
Nr : Number of Receive Antenna in a MIMO-OFDM system
p(x) : probability density function of the random variable X
R : Field of real numbers
R+ : Field of non-negative real numbers
Tr(·) : Trace of a matrix
⊗ : Kronecker Product
ℜ(·) : Real part of the complex argument
(·)T : Transposition
(·)H : Hermitian transposition
(·)∗ : Complex conjugation
| · | : Absolute value of a complex number or the

determinant of a matrix or the cardinality
of a set, depending on the context

‖ · ‖2 : Euclidean norm of a vector
‖ · ‖F : Frobenius norm of a matrix
Upper case letters : Matrices

vi
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Chapter 1

Introduction

In the recent years, Sparse Signal Recovery (SSR) has received a lot of interest in the

signal processing and machine learning communities as it facilitates reliable recovery

of underlying sparse signals using compressed domain samples by exploiting the in-

herent redundancy in the sparse signal [1–4]. The objective of SSR is to accurately re-

construct a sparse signal from an underdetermined set1 of noisy linear measurements.

In practice, the signal may not be exactly sparse but compressible. Compressible signals

are signals whose ordered coefficients decay quickly, for e.g., they may obey a power

law: for some p > 1, the kth largest coefficient in magnitude is at most cpk
−p, where

cp > 0 is some constant. In this context, one seeks to find computationally efficient

algorithms that recover sparse/compressible vectors from an underdetermined set of

linear equations. In several applications such as audio and video processing [6], medi-

cal imaging [7], and baseband signal processing in communication systems [8], [9], the

signal acquisition process involves an unknown sparse vector x ∈ CL×1 projected into a

lower dimensional space and corrupted by additive noise, resulting in the observations

1This is also referred to as an overcomplete set in the literature [5]

1
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y ∈ CL×1 given by

y = Φx + v, (1.1)

where Φ ∈ CN×L denotes the measurement matrix with N < L and v ∈ CN×1 denotes

the ambient noise. The difficulty in reconstructing a sparse signal arises from the fact

that neither the locations of the non-zero entries of x nor the corresponding values at

those locations are known.

In general, the problem of recovering x from y is ill-posed, as measurement matrix

Φ has a non-trivial null space (N < L). In other words, any non-zero vector xn in the

null-space of Φ contributes to a new solution x+ xn of (1.1), thus, making it impossible

to recover a unique solution. In [5] and [10], the authors have independently shown

that sparse vectors can be uniquely recovered from a set of N (N < M) linear and non-

adaptive measurements using the knowledge of sparsity, S, which allows one to restrict

the search for x to the set consisting of all possible S-sparse vectors. Furthermore, these

studies also elucidate the crucial role of Φ in admitting sparse representations along

with recovery guarantees. These sufficient conditions for unique and reliable recov-

ery of sparse vectors typically take the form of a requirement on the so-called mutual

coherence or restricted isometry property of the measurement matrix.

In practice, sensing devices record the measurements y as a function of the sparse

signal x, but the measurement matrix is system-dependent. It is often hard to verify

that these matrices possess the required properties to guarantee reliable recovery of

x [5, 10]. Moreover, many of the known sufficient conditions for reliable recovery tend

to be overly pessimistic. The presence of measurement noise in the sensing process

further complicates the problem. Despite these and several other issues that render
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the SSR seemingly hard, the idea that the sparsity structure in the signal can be used

to obtain unique solutions from underdetermined works in principle, and a number

of recovery algorithms are available in the literature. The recovery algorithms can be

broadly classified into two categories, namely, Compressed Sensing (CS) and Bayesian

methods. In the rest of this section, we discuss the various CS and Bayesian techniques

that have been proposed and studied in the literature.

1.1 Compressed Sensing Techniques

In this subsection, we first introduce the fundamental problem of sparse recovery as

an optimization problem with ℓ0 norm based sparsity constraint. We later discuss the

different relaxations of the fundamental problem, such as the ℓ1 and the ℓp norm based

optimization problems. Furthermore, we discuss the algorithms proposed in the litera-

ture in order to solve the fundamental sparse recovery problem and its variants.

In general, a Minimum Mean Square Error (MMSE) or Least Squares (LS) solution

to the noisy linear equations in (1.1) can be obtained by solving for x that minimizes

‖y−Φx‖2. However, in scenarios where N < L, the MMSE/LS problem is ill-posed.

If x is sparse, one can exploit the sparse structure and obtain the solution to (1.1) by

solving the constrained optimization problem given by

argmin
x

|x|0 subject to ‖y −Φx‖2 ≤ ǫ, (1.2)

where ǫ > 0 is a user-defined parameter, | · |0 denotes the ℓ0 norm and ‖·‖2 denotes the



Chapter 1. 4

ℓ2 norm. The implication of sparsity is clear when we rewrite (1.1) as follows:

y =
L∑

i=1

Φix(i) + v, (1.3)

where Φi represents the ith column of Φ. If x is S-sparse, only S columns of Φ con-

tribute to y. Hence, in the noiseless scenario, if the locations of the non-zero entries

of x are known, then only S rows of Φ are sufficient in order to recover x. However,

since the locations of non-zero entries are not known, intuitively, we require N > S

measurements, especially in the presence of noise. However, for sufficiently small S,

it is possible that N < L, i.e., it is possible to uniquely recover x even when the lin-

ear equations given in (1.1) are underdetermined. Notice that in (1.2), the ℓ0 norm of

x counts the number of non-zero components of the vector, i.e., one seeks to find the

sparsest solution. Hence, by imposing the sparsity constraint, it is possible to recover x

in (1.1).

Greedy algorithms such as Matching Pursuit [11], Orthogonal Matching Pursuit (OMP)

[12] and Compressive Sampling Matching Pursuit (CoSAMP) [13] have been proposed

for the recovery of x in (1.2). In [14], iterative thresholding algorithms using a vari-

ational formulation for hard thresholding has been proposed as a solution to the ℓ0

problem. In [15], the authors provide two low-complexity iterative algorithms which

employ hard thresholding and show that they minimize a cost function similar to the

ℓ0 norm.

Since solving the ℓ0 norm problem is known to be NP-hard, algorithms based on con-

vex optimization techniques have been studied in the literature. Convex optimization

based techniques relax the ℓ0 norm on x to a convex ℓ1 norm, thereby converting the
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problem in (1.2) to an optimization problem given by

argmin
x

‖x‖1 subject to ‖y −Φx‖2 ≤ ǫ. (1.4)

where ‖x‖1 denotes the ℓ1 norm of x, defined as ‖x‖1 ,
L∑

i=1

|x|. It turns out, rather sur-

prisingly, that when the measurement matrix Φ satisfies the so-called Restricted Isom-

etry Property (RIP) property with an appropriate constant, (1.2) and (1.4) can be guar-

anteed to have the same unique globally optimal solution [10]. We reiterate that (1.4)

is a convex optimization problem, and many numerically efficient algorithms such as

the Basis Pursuit (BP) and BP denoising/LASSO [16] have been proposed for finding

sparse solutions.

An unconstrained form of the optimization problem in (1.4) can be written as

x̂ = argmin
x

‖x‖1 + λ(‖y −Φx‖2), (1.5)

where the scalar λ appropriately weighs the relative importance given to the sparsity

of the solution and the Euclidean fit error term. In [16], a recovery technique known as

the Least Absolute Shrinkage and Selection Operator (LASSO) is proposed for solving

(1.5). Simple and efficient methods for solving the basis pursuit problem (1.4) and the

unconstrained problem (1.5), based on Bregman iterative regularization are proposed

in [17]. Several efficient methods such as the iterative shrinkage and thresholding [18],

gradient projection for sparse reconstruction [19] have been proposed to solve (1.5).

These methods are computationally fast, with complexity being linear in the size of the

product of Φ and x, and in some special cases the complexity is linear in the size of x.

As a result, such algorithms are a natural choice in solving large-scale sparse recovery
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problems. An accelerated projected gradient method for regularization of (1.5) via it-

erative soft-thresholding algorithms and ℓ1 penalization methods have been proposed

for cases where the vector is almost sparse [20].

A non-convex relaxation of (1.2) leads to a ℓp (0 < p < 1) norm minimization problem,

whose unconstrained variant is proposed in [21] given by,

x̂ = argmin
x

|x|p + λ(‖y −Φx‖2), (1.6)

where 0 < p ≤ 1. The authors propose the FOcal Underdetermined System Solver

(FOCUSS) algorithm as a solution to the above optimization problem. Exact recon-

struction of sparse signals in (1.6) via nonconvex minimization methods is proposed

in [22], where the authors show that exact recovery is possible with substantially fewer

measurements compared to the ℓ1 based solution. Iteratively reweighted algorithms for

computing local minima of such nonconvex problems is proposed in [23].

Several other studies in the literature have sought to provide a coding-theoretic per-

spective, and leverage algorithms from coding theory, for sparse signal recovery. In

[24], the authors perform fast approximate Bayesian inference using belief propaga-

tion (BP) decoding, which is based on representing the CS measurement matrix as a

graphical model. Using the theory of codes on graphs, joint design of sensing matrices

and low complexity reconstruction algorithms using a new family of list decoding and

multiple-basis belief propagation algorithms are proposed in [25].

Several alternate perspectives on CS based recovery techniques have been proposed in

the literature. In [26], the authors seek to bridge the two major algorithmic approaches
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to SSR - ℓ1 minimization methods and iterative methods such as matching pursuit al-

gorithms. The authors propose a simple, Regularized version of Orthogonal Matching

Pursuit (ROMP) which has advantages of both ℓ1 minimization methods and iterative

methods.

In scenarios where the observations arrive sequentially, several methods have been

proposed for online ℓ1 learning [27,28]. A recursive perspective in terms of Kalman and

RLS filters to the ℓ1 optimization problem is provided in [29] and [30], respectively. A

recursive ℓ1 regularized least squares algorithm, also known as SPARLS for the estima-

tion of a sparse vector has been proposed using the expectation maximization approach

in [31]. In the next subsection, we review discuss the Bayesian formalism used in SSR

and several algorithms that are popularly employed.

1.2 Bayesian Techniques

Bayesian techniques impose a sparsity promoting prior distribution on the sparse vec-

tor, and perform MAP estimation, variational Bayes’ minimization or evidence maxi-

mization. Unlike the CS based algorithms that provide point estimates of the sparse

vector, the Bayesian techniques evaluate the posterior distribution of x conditioned on

y, or the posterior statistics such as the mean, variance and other higher order moments.

A variety of Bayesian methods have been employed for finding sparse representations

from a linear underdetermined set of equations.

Bayesian approaches for recovering a sparse vectors have a long history in the sig-

nal processing and machine learning literature. In [32], the author proposed Bayesian
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regularization and pruning techniques using Laplacian priors for neural network ap-

plications. In [33] and [34], the authors proposed a Sparse Bayesian Learning (SBL)

technique using an evidence maximization framework, largely based on approaches

proposed in [35] and [36]. The relationship between LASSO and quadratic penaliza-

tion was discussed in [37], along with proposing an expectation maximization based

algorithm for obtaining the LASSO solution. In [38], the authors propose Bayesian

techniques based on the cost functions that emerge from different priors, rather than

justifying the choice of the prior based on the physical process that resulted in the

sparse vectors, and postulate conditions that any sparse learning objective should sat-

isfy. Bayesian inference using Markov chain Monte Carlo (MCMC) methods are pro-

posed in [39]. The relationship between the compressed sensing and Bayesian exper-

imental design framework is explored in [40]. Also, novel algorithms are proposed,

based on expectation propagation in a sequential setup for large scale problems.

Several papers on Bayesian sparse recovery are based on Bernoulli-Gaussian priors,

also known as spike-and-slab priors. In [41], the authors use the spike-and-slab prior

[42] for sparse unsupervised learning. Further, approximate sparse inference tech-

niques which employ the Bernoulli Gaussian prior are proposed in [43, 44].

It turns out that CS based approaches such as BP and OMP can also be viewed as

a problem in the Bayesian framework, where the goal is to obtain a Maximum A-

posteriori (MAP) estimate of x using a fixed sparsity inducing prior distribution. As an

example, consider a Laplacian prior on x, with distribution p(x;λ) ∝ exp−λ‖x‖1 , where

λ > 0. Let v be the additive Gaussian noise distributed as N (0, σ2I). The MAP esti-

mation problem using such a Laplacian prior is the same as solving (1.5), where λ is
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determined by the parameters of the prior. An approach for estimating x using Lapla-

cian priors has been proposed in [45].

A low-complexity recursive procedure for model selection and minimum mean squared

error (MMSE) estimation in ill-posed linear regression problems using a fast Bayesian

matching pursuit algorithm was proposed in [46, 47]. In [48], the authors present a

sparse reconstruction technique using a distribution agnostic Bayesian matching pur-

suit algorithm. Here, the authors leverage the fast matching pursuit method and obtain

the Bayesian estimates of sparse signals even when the signal prior is non-Gaussian or

unknown using greedy approach.

In this thesis, we focus on SBL, which uses a two-stage hierarchical model on the

unknown vector, as shown in Fig. 1.1. Here, we assume that x ∼ N (0,Γ), where the di-

agonal matrix Γ contains the hyperparameters γ = [γ1, . . . , γL]
T as its diagonal elements.

Further, an Inverse Gamma (IG) hyperprior is assumed for γ, as it leads to a Student-t

prior on the vector x, which, in-turn, is known to be sparsity/compressible vector-

promoting [34]. The significance of using the IG hyperprior arises from the fact that it

is a conjugate to the Gaussian distribution. As a result, it leads to closed-form poste-

rior and marginalized distributions on y [34]. In scenarios where the noise variance is

unknown and random, an IG prior is used for the distribution of the noise variance as

well.

SBL involves joint estimation of the sparse vector x and the hyperparameters, γ. Dif-

ferent updates have been proposed for SBL [34, 35], among which the exact inference

Expectation Maximization (EM) based updates are widely used. In addition to the

monotonicity property of SBL by virtue of the EM framework, SBL offers guarantees
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γj xj

yi

j = 1 : L

IG(a, b) N (0, γj)

i = 1 : N

N (0, σ2)

vk

k = 1 : N

σ2

IG(c, d)

y|x ∼ N (Φx, σ2IN×N )

Figure 1.1: Graphical model of SBL: Two stage hierarchical model with the unknown
sparse vector taking a conditional Gaussian distribution and the hyperparameters tak-
ing an Inverse Gamma distribution.

such as convergence to the sparsest solution when the noise variance is zero, and con-

vergence to a sparse local minimum irrespective of the noise variance [49]. In contrast,

approximate inference methods [44], although lower in computational complexity, do

not offer such rigorous convergence guarantees. In Fig. 1.2 and Fig. 1.3, we plot the

performance of BP, OMP and the SBL techniques to recover a L = 150 length vector of

sparsity S = 30. The plots show that the SBL algorithm can recover the sparse signal

with lower number of measurements as compared to conventional techniques. More-

over, we observe that SBL consistently performs well both when sparse vectors x have

components x(i) ∈ [0, 1] and when x is sparse and consists of highly scaled components.

Although the experiment shows that SBL is a very promising technique, the choice of

employing CS or Bayesian methods primarily depends on the system, its dynamics, the

nature of signals encountered, and the performance metric to be optimized. For e.g., it

has been shown that CS based techniques are effective for MRI applications [7], video

sensing [50], surveillance video processing [51] and coding [6], image processing [52],

and medical imaging [53]. On the other hand, Bayesian techniques have been success-

fully employed in the fields of bioinformatics [54], genome analysis [55], image/visual

tracking [56], neuro-imaging [57, 58] and beamforming [59]. In this thesis, we focus on



Chapter 1. 11

30 40 50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Measurements(N)

P
er

ce
nt

ag
e 

R
ec

ov
er

ed

 

 

SBL
BP
OMP

Figure 1.2: Performance comparison of
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the application of SSR techniques to baseband signal processing for wireless communi-

cations; in particular for the sparse/compressible wireless channel estimation problem

in the framework of a well-known multiplexing technique called Orthogonal Frequency

Division Multiplexing (OFDM).

Until now, we have introduced the optimization problems for SSR, its advantages, al-

gorithms proposed in literature and various applications that feature a linear regression

model with a sparse vector. In the rest of the chapter, we discuss the issues regarding

channel estimation in OFDM systems and throw light on the SBL technique that we

adopt for exploiting sparsity in OFDM channel estimation.

1.3 SSR Techniques for Wireless Communications

In this section, we address the problem of channel estimation in OFDM systems incor-

porating the inherent sparse and approximately sparse nature of the wireless channel.
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Some of the key questions which we address are as follows:

1. Q1 - Why does sparsity arise in wideband wireless channels? (See Sec. 1.3.1)

2. Q2 - When do we encounter an under-determined system of linear equations in

channel estimation problems? (See Sec. 1.3.2)

3. Q3 - What are the conventional channel estimation and the existing sparse channel

recovery methods? (See Sec. 1.3.3)

4. Q4 - What are the contributions of the thesis to the problem of wideband channel

estimation exploiting the sparsity of the channel? (See Sec. 1.3.4)

We focus specifically on OFDM as the underlying air interface technology due to its

ubiquitous use in present-day wireless standards [60, 61].

1.3.1 Sparsity of Wireless Channels in OFDM Systems

In this subsection, we focus on Q1 and present a brief discussion on the nature of OFDM

channels. Here, the sparse signal of interest is the impulse response of wireless chan-

nels. In the complex baseband representation, the impulse response h̃[t], t ∈ R of a wire-

less channel can be modeled as a stationary tapped delay line filter in the lag-domain,

given by

h̃[t] =

L̃∑

l=1

h̃lδ[t− τl], (1.7)

where δ[t] is the Dirac delta function, h̃l and τl represent the attenuation and propaga-

tion delay for the lth path, respectively, and L̃ denotes the total number of resolvable

paths [62].
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Typically, a communication system employs filters at the transmitter and receiver in

order to reduce the adjacent channel power radiation and interference from other trans-

mitters. The transmit and receive filtering operations performed at the respective RF

front ends lead to an equivalent channel given by

h(t) = gt(t) ∗ h̃(t) ∗ gr(t), (1.8)

where h̃(t) is given in (1.7), gt(t) and gr(t) are the baseband transmit and receive filters,

respectively, and ∗ represents the convolution operation. The effect of transmit and re-

ceive filtering can be represented by the convolution with an equivalent Raised Cosine

(RC) filter, with an impulse response given by

r(t) = sinc

(
t

T

)
cos
(
πtβ
T

)

(

1−
(
2βt
T

)2
) , (1.9)

where T is the sampling period and β is the roll-off factor of the RC filter [63]. Hence,

h(t) in (1.8) can be computed as

h(t) =

∫ t

−∞

h̃(τ)sinc

(
t− τ

T

) cos
(

π(t−τ)β
T

)

(

1−
(

2β(t−τ)
T

)2
)dτ. (1.10)

Sampling h(t) at t = nT , we obtain the discrete-time channel impulse response as

h(nT ) =

∫ t

−∞

h̃(τ)sinc
(

n−
τ

T

) cos
(

π(nT−τ)β
T

)

(

1−
(

2β(nT−τ)
T

)2
)dτ. (1.11)

In the ideal case of sample-spaced channel, gt(t) = gr(t) = δ(t) and the sampling in-

stants {0, T, 2T, . . .} coincide with the arrival instants τl, and as a result, the discrete
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version of the channel h̃[nT ] will have exactly L̃ non-zero elements. Thus, the sample

spaced impulse response of a wireless channel exhibits sparsity which, in-turn, moti-

vates us to investigate the use of SSR techniques for the channel estimation problem.

However, in this thesis, we address the larger issue of non-ideal non-sample spaced

channels, as elaborated in the next section. In the sequel, we describe the problem of

channel estimation in an OFDM system and the conventional channel estimation tech-

niques, followed by the issues addressed in this thesis.

1.3.2 OFDM System and the Channel Estimation Problem

Two important technologies for energy-and-bandwidth-efficient wireless communica-

tions that have been developed over the past couple of decades are OFDM and MIMO.

OFDM is known to effectively mitigate the inter-symbol interference caused by the fre-

quency selective fading channel [64]. Multiple-Input Multiple-Output (MIMO) systems

provide spatial diversity, leading to significant gains in the capacity of the time-varying

wireless channel. To reap the advantages of the above two systems, MIMO-OFDM

systems have emerged as the clear choice in nearly all wireless standards [60]. In this

section, we describe the OFDM system model and the problem of channel estimation

in order to address Q2.

The goal of a MIMO-OFDM system is high-rate reliable communication along with

accurate data detection at the output of the decoder. The transmission between the Nt

transmit and the Nr receive antennas takes place through OFDM frames, where every

frame consists of K OFDM symbols. Fig. 1.4 shows the block diagram of a typical
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Figure 1.4: Turbo encoded/decoded transmit and receive chain of a MIMO-OFDM sys-
tem. The dashed box (block shaded in yellow) highlights the proposed algorithms.

Note that the quantities of interest are the channel estimates and output bits {b̂}.

MIMO-OFDM system with N subcarriers, Nt transmit antennas and Nr receive anten-

nas. At the transmitter of the discrete-time MIMO-OFDM system, {b} input bits are

first encoded and interleaved into a new sequence of coded bits, {c}. The coded bits

{c} are mapped into an M-ary complex symbol sequence, which is further divided into

Nt streams. At every transmit antenna, P pilots are inserted in an OFDM frame. The

pilot symbols along with coded data symbols {c} are OFDM modulated and transmit-

ted over the multipath fading channel denoted by hntnr ∈ CL×1 (1.11). Here, nt (nr)

denotes the transmit (receive) antenna index, and L is the length of the channel. After

OFDM demodulation, the signal received at the nth
r receive antenna (for simplicity, we
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consider K = 1 frame here) given by

ynr =
Nt∑

nt=1

XntFhntnr + vnr , nr = 1, . . . , Nr, (1.12)

where the diagonal matrix Xnt ∈ CN×N consists of the pilot as well as the data transmit-

ted over the nth
t transmit antenna, and F ∈ CN×L represents the matrix consisting of the

first L columns of the N ×N DFT matrix. Each component of vnr ∈ CN×1 is a circularly

symmetric additive white Gaussian noise with probability distribution CN (0, σ2). For

the case where Nt = Nr = 1, the system model given in (1.12) simplifies to that of a

SISO-OFDM system given by

y = XFh+ v, (1.13)

where X ∈ CN×N is a diagonal matrix consisting of P pilot symbols and N − P data

symbols, F ∈ CN×L consists of the first L columns of the N ×N Discrete Fourier Trans-

form (DFT) matrix, and v ∈ CN×1 is the additive white Gaussian noise, distributed as

CN (0, σ2IN). Note that we drop the subscripts nt and nr since we set Nt = Nr = 1.

Typically, the observations corresponding to the pilot subcarriers in SISO and MIMO-

OFDM systems are used to estimate the channel, this is referred to as pilot-based esti-

mation. Note that, at the receiver, the diagonal entries of X corresponding to the pilot

subcarriers are known. Simplifying (1.13) further, we sample y at the pilot subcarriers

to obtain yp, given by

yp = XpFph+ vp, (1.14)

By arriving at the signal model in (1.14), we are close to providing an answer to Q2. If h

is sparse, then the model in (1.14) resembles that of (1.1). As a one-to-one comparison,
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note that the observation at the pilot subcarriers, yp corresponds to the y, and the matrix

XpFp corresponds to the known measurement matrix Φ in (1.1). The channel estimation

problem in (1.14) is ill-posed whenever the number of pilots is smaller than the length

of the channel (P < L). If the Multipath Intensity Profile (MIP), defined as the average

multipath power profile measured at a particular location on a measurement grid [65]

of the wireless channel is known, then having P ≥ S is sufficient for estimating the

channel without the need for SSR techniques. However, the MIP depends not only on

the location, but also on a variety of other factors such as the speed of the user (in mobile

communications), the presence of obstacles, environmental fluctuations, etc. Moreover,

measuring the MIP at all possible locations is impractical. Hence, there is a need to

develop methods that can work without requiring the knowledge of the MIP. When the

MIP is unknown, SSR techniques are useful for recovering the channel for the following

reasons:

• The problem of recovering h is ill-posed since L can be significantly larger than

P . In such scenarios, SSR techniques can be used to estimate the sparse channel.

• In order to use conventional techniques, L pilots are required. However, SSR

techniques can recover the sparse vector using P < L pilots. Hence, they allow

larger number of data symbols per OFDM symbol, thereby resulting in better

spectral efficiency compared to conventional systems.

We note that, upon obtaining an estimate of the sparse channel given by ĥ, the in-

formation bits {b̂} can be decoded by feeding the log-likelihood values to the channel

decoder.
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1.3.3 Conventional and Sparsity-exploiting OFDM Channel Estima-

tion Techniques

In this subsection, we discuss the conventional channel estimation techniques for OFDM

systems, followed by existing sparse channel recovery techniques. Hence, we address Q3.

We note that the goal here is to provide an introductory overview of the main ap-

proaches that have been adopted for OFDM channel estimation in the literature. We

refer the readers to later chapters in the thesis for an exhaustive survey of the relevant

literature.

Least Squares (LS) and Minimum Mean Square Error (MMSE) techniques are the two

well-known lag-domain channel estimation techniques for OFDM systems. The least

squares estimate of h is given by [66]

ĥLS = (FH
p X

H
p XpFp)

−1FH
p Xpyp, (1.15)

where ĥLS is the solution to an ℓ2-norm minimization problem. Due to the inverse

operation, the LS estimator works only when P ≥ L, and hence, this method cannot be

used in our regime of interest, i.e., when P < L. On the other hand, the MMSE estimate

is given by [66]

ĥMMSE = (FH
p X

H
p XpFp + Γ−1)−1FH

p Xpyp, (1.16)

where Γ , E[hhH ] denotes the covariance matrix of the channel, also referred to as

the prior information. In the practical wireless channel scenario, this prior information

represents the MIP. Although we can obtain the MMSE estimate when P < L, the

accuracy of the prior information influences the MMSE estimate. Since the support
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information is crucial to the structure of the covariance matrix, reliable information

about the support is required to obtain accurate estimates.

LS and MMSE techniques can also be applied in the frequency domain, where the

goal is to directly estimate the channel Fph [67]. Such techniques also either require the

knowledge of the MIP or require a large number of pilots (P > L), when the MIP is not

available. Further, even though h is sparse, Fph is not sparse, and, as a result, frequency

domain techniques are not useful if one is interested in SSR-based methods for channel

estimation.

CS based sparse OFDM channel estimation using the basis pursuit technique has been

proposed in [8]. Approximate inference Bayesian methods have been used to solve

the problem of joint channel estimation and data decoding in a Bit Interleaved Coded

Modulation (BICM) OFDM system, where the time-varying sparse channel is modeled

using a Bernoulli-Gaussian prior [63, 68]. In [69], the authors propose variational algo-

rithms for pilot-based channel estimation. However, none of the proposed techniques

are Bayesian exact inference techniques.

In the next subsection, we list some practical issues and challenges in using SBL based

techniques for OFDM channel estimation.

1.3.4 Problems Addressed in this Thesis

The work presented in this thesis is motivated by the sparse nature of OFDM channels

and the versatility of the SBL based framework, which makes it applicable to a variety

of practical scenarios in OFDM. The overall theme of this work is to develop methods

that incorporate any available knowledge to efficiently incorporate the prior knowledge
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about OFDM system and devise novel SBL based sparse channel recovery algorithms.

In this section, we present several practically relevant scenarios for OFDM systems,

and state the problems addressed in this thesis. In essence, we provide an answer to

question Q4 raised earlier.

Approximately Sparse Channels

In practice, the impulse response of a wireless channel is not exactly sparse. The chan-

nel models obtained using channel sounding experiments are known to exhibit approx-

imate sparsity in the lag-domain [70]. This behavior is due to the non-ideal low-pass

and pulse shaping filters employed at the transmitter and the receiver for reducing the

spectral leakage and meeting the spectral mask. Further, even without the filtering, the

channel is only approximately sparse in practice because it is, in general, non-sample

spaced: the nonzero values in h(t) do not necessarily occur at precisely the sampling

instants.

A sample instantiation of the lag-domain channel is approximately sparse (a-sparse)

channel used in the simulations and the filtered MIP are depicted in Fig. 1.5. The figure

captures the leakage effect due to finite bandwidth sampling and practical filtering. To

generate the plot, we have used the Pedestrian B channel model [71] with Rayleigh

fading. We have also used RC filtering at the receiver and transmitter with a roll-off

factor of 0.5 [61].

We see that at the sampling frequencies considered, the number of significant channel

taps are far fewer than the weak channel taps in the filtered impulse response, as seen

in Fig. 1.5. Thus, the channel is a-sparse in the lag-domain, and the primary focus of

this thesis is to develop SBL-based techniques for such a-sparse channel estimation and
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Figure 1.5: One sample channel realization of the a-sparse channel, along with the fil-
tered MIP, i.e., the MIP when RC filters are employed at the transmitter and receiver.
The plot shows the strong (> −30 dB) channel taps and filtered-MIP components, to
illustrate that the channel can indeed be modeled as being approximately sparse.

joint channel estimation and data detection.

Joint Channel Estimation and Data Detection

In this thesis, we not only develop methods for pilot-based a-sparse channel estima-

tion, but also for joint channel estimation and data detection. The motivation for jointly

estimating the data and the channel comes from [72, 73], where the authors show that

the MIP-aware EM based joint channel estimation and data detection techniques for a

SISO-OFDM system are far superior compared to the pilot-only LS and the MMSE algo-

rithms. The EM algorithm iteratively estimates the channel h and the unknown trans-

mit data in X, i.e., the decisions on the unknown transmit data X are coalesced with the

pilot symbols and used in the channel estimation process. Naturally, if the decisions on

the data subcarriers are accurate, then the decisions act as pilots, and hence, improve
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the quality of channel estimates. Approximate inference methods have been used to

solve the problem of joint channel estimation and data decoding in a BICM-OFDM

system, where the time-varying sparse channel is modeled using a Bernoulli-Gaussian

prior [63, 68].

In this thesis, we explore such techniques for a-sparse (SISO-OFDM), ga-sparse (MIMO-

OFDM) and ga-csparse (SISO and MIMO-OFDM) channels using exact-inference based

SBL methods. We provide details regarding the nature of ga-sparse and ga-csparse

channels later in the thesis. In particular, the challenge lies in combining the data de-

tection along with channel estimation and obtain an SBL based iterative algorithm with

convergence guarantees.

Block-fading and Time-varying Channels

In this thesis, we first design SBL based algorithms for estimating block-fading chan-

nels, where the channel coefficients remain fixed across the OFDM frame duration and

vary in an i.i.d. fashion from frame to frame. We also address the time-varying nature

of the a-sparse channels caused due to the mobility of the receiver. When the channel

is time-varying, the nonzero channel coefficients vary slowly and are temporally cor-

related, but the MIP of the channel remains constant for several OFDM frames [74],

and hence, the locations of the significant components coincide in successive channel

instantiations. Such channels are group approximately-sparse (ga-sparse).

CS techniques have been proposed for the estimation of the time-varying channel over

all the symbols in a frame when the channel consists of a few significant nonzero en-

tries but the path delays are unknown [75–77]. Approximate inference techniques for

estimating the time-varying sparse vector and support have been proposed in [78]. In
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the context of SBL, block-based methods such as Block SBL (BSBL) and Temporal SBL

(TSBL) algorithms [79] have been proposed to estimate the time-varying correlated

sparse vectors when the correlation among the group-sparse vectors is modeled us-

ing a general correlation structure. In this thesis, we use an autoregressive (AR) model

to capture the time-varying nature of the channel, and design novel, exact-inference

based low complexity Kalman-SBL channel tracking algorithms that exploit the tempo-

rally ga-sparse nature of the channel.

Group Approximately-sparse MIMO-OFDM Channels

In MIMO-OFDM systems, identical transmit and receive filters are employed at the

Nt transmit antennas and the Nr receive antennas, which leads to a-sparse channel

between every pair of transmit and receive antenna. Moreover, such channels are group

sparse, i.e., the locations of significant paths of the NtNr channels coincide. In scenarios

where the MIP is not known, blind methods [80] and techniques based on Compressed

Sensing (CS) using group-sparse based formulation [81, 82] are employed. Specifically,

CS based Simultaneous Orthogonal Matching Pursuit (OMP) [83], modified OMP [84],

subspace OMP [85], group basis Pursuit Denoising and group OMP [86] have been

proposed for ga-sparse pilot-assisted channel estimation in MIMO-OFDM systems.

Although the SISO-OFDM system model given in (1.14) has a one-to-one correspon-

dence with the sparse recovery problem given in (1.1), it is not straightforward to for-

mulate the problem of sparse channel recovery in the MIMO-OFDM framework given

by (1.12). In this work, we first formulate the problem of pilot-assisted and joint ga-

sparse channel estimation and data detection in MIMO-OFDM systems using the SBL
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framework. Later, we design algorithms for both block-fading and time-varying ga-

sparse channels.

Cluster-sparse MIMO and SISO-OFDM Channels

In this thesis, we model the MIMO and SISO-OFDM channel as ga-cluster sparse (ga-

csparse), i.e., every channel consists of clusters where a few clusters have all strong

while most clusters have all weak components. CS based Block OMP (BOMP) has been

proposed for pilot-assisted ga-csparse MIMO-OFDM channel estimation [87].

In this thesis, we focus on recovering block-fading and time-varying ga-csparse chan-

nels using pilot symbols only, and jointly with the transmit data symbols. Since ga-

csparse channels need to estimate a smaller number of hyperparameters compared to

ga-sparse channels, we obtain a low-complexity methods for joint channel estimation

and data detection.

Thus far, we addressed the several generalizations of the basic OFDM system. In the

following section, we list the contents of each chapter along with our contributions, not

only to the literature on OFDM channel estimation, but to the theory of SBL as well.

1.4 Contributions and Outline of the Thesis

In this section, we summarize the thesis by providing a detailed outline of the contents

of the thesis.

In [88], we considered sparse baseband channel where the discrete multipath compo-

nents of the channel are located at the sampling instants, and an ideal low pass filter is

used. We simulated the SBL and the joint-SBL (J-SBL) algorithm for channel estimation
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in an uncoded QPSK modulated SISO-OFDM system, in the presence of a sparse base-

band channel. Further, we used BCRB for both the algorithms in order to benchmark

the MSE performance of the algorithms. From Fig. 1.6, we see that the BCRB averaged
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Figure 1.6: SISO-OFDM System: MSE vs. BCRB for SBL and J-SBL.

over all the channel instantiations forms a tight lower bound for both the SBL and the

J-SBL algorithms. This motivated us to derive a general class of bounds including the

Hybrid, Bayesian and Marginalized Cramér Rao lower bounds for the single and mul-

tiple measurement vector SBL problem of estimating compressible vectors and their

prior distribution parameters in chapter 2. Through simulations, we demonstrate the

dependence of the MSE performance of SBL based estimators on the compressibility

of the vector for several values of the number of observations and at different signal

powers. The contents of this chapter have been published in parts in [89–91].

Figure 1.7 provides a pictorial overview of the rest of the thesis. In chapter 3 we pro-

pose SBL based algorithms for joint a-sparse channel estimation and data detection in
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Figure 1.7: OFDM Systems: different scenarios under which pilot-based channel esti-
mation and joint channel estimation and data detection algorithms are proposed in this
work.

SISO-OFDM systems. In a quasi-static, block-fading scenario, we employ the SBL al-

gorithm for channel estimation, and propose a Joint SBL (J-SBL) and a low-complexity

recursive J-SBL algorithm for joint channel estimation and data detection. In a time-

varying scenario, we use a first order auto-regressive model for the wireless channel,

and propose a novel, recursive, low-complexity Kalman filtering-based SBL (KSBL) al-

gorithm for channel estimation. We generalize the KSBL algorithm to obtain the recur-

sive Joint KSBL algorithm that performs joint channel estimation and data detection.

Monte Carlo simulations illustrate the efficacy of the proposed techniques in terms of

the MSE and coded bit error rate performance. The contents of this chapter have been

published in [90].
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In chapter 4 we propose SBL based algorithms for estimating the ga-sparse and ga-

csparse block-fading and time-varying channels. We propose a bouquet of novel algo-

rithms for pilot-based channel estimation and joint channel estimation and data detec-

tion in MIMO-OFDM systems. In the time-varying scenario, we employ a first order

AR based model for the temporal variation of the wireless ga-sparse and ga-csparse

channels and propose a recursive, low-complexity Kalman filtering and smoothing

framework for joint channel estimation, tracking and data detection. Monte Carlo sim-

ulations illustrate the efficacy of proposed techniques in terms of MSE and coded bit

error rate performance. We demonstrate that the algorithms that exploit the ga-csparse

nature of the wireless channel offers improvement in the MSE and coded BER perfor-

mance. The contents of this chapter have been published in [91, 92].

In chapter 5 of this thesis, we provide a compendium of the algorithms proposed in

this thesis in a generic SBL framework. We demonstrate the MSE and support recovery

performance of the proposed algorithms as compared to the existing CS and SBL based

algorithms using Monte Carlo simulations.
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Chapter 2

Cramér Rao-Type Bounds for Sparse

Bayesian Learning

2.1 Introduction

Recent results in the theory of compressed sensing have generated immense interest

in sparse vector estimation problems, resulting in a multitude of successful practical

signal recovery algorithms. In several applications, such as the processing of natural

images, audio, and speech, signals are not exactly sparse, but compressible, i.e., the mag-

nitudes of the sorted coefficients of the vector follow a power law decay [13]. In [93]

and [94], the authors show that random vectors drawn from a special class of prob-

ability distribution functions (pdf) known as compressible priors result in compressible

vectors. Assuming that the vector to be estimated (henceforth referred to as the un-

known vector) has a compressible prior distribution enables one to formulate the com-

pressible vector recovery problem in the Bayesian framework, thus allowing the use

of Sparse Bayesian Learning (SBL) techniques [34]. In his seminal work, Tipping pro-

posed an SBL algorithm for estimating the unknown vector, based on the Expectation

30



Chapter 2. 31

Maximization (EM) and McKay updates [34]. Since these update rules are known to be

slow, fast update techniques are proposed in [95]. A duality based algorithm for solv-

ing the SBL cost function is proposed in [96], and ℓ1− ℓ2 based reweighting schemes are

explored in [97]. Such algorithms have been successfully employed for image/visual

tracking [56], neuro-imaging [57, 58], beamforming [59], and joint channel estimation

and data detection for OFDM systems [98].

Many of the aforementioned papers study the complexity, convergence and support

recovery properties of SBL based estimators (e.g., [95, 96]). In [94], the general con-

ditions required for the so-called instance optimality of such estimators are derived.

However, it is not known whether these recovery algorithms are optimal in terms of

the Mean Square Error (MSE) in the estimate or by how much their performance can be

improved. In the context of estimating sparse signals, Cramér Rao lower bounds on the

MSE performance are derived in [99–101]. However, to the best of our knowledge, none

of the existing works provide a lower bound on the MSE performance of compressible

vector estimation. Such bounds are necessary, as they provide absolute yardsticks for

comparative analysis of estimators, and may also be used as a criterion for minimiza-

tion of MSE in certain problems [102]. In this chapter, we close this gap in theory by

providing Cramér Rao type lower bounds on the MSE performance of estimators in the

SBL framework.

As our starting point, we consider a linear Single Measurement Vector (SMV) SBL

model given by

y = Φx+ n, (2.1)

where the observations y ∈ RN and the measurement matrix Φ ∈ RN×L are known,
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and x ∈ RL is the unknown sparse/compressible vector to be estimated [103]. Each

component of the additive noise n ∈ RN is white Gaussian, distributed as N (0, σ2),

where the variance σ2 may be known or unknown. The SMV-SBL system model in (2.1)

can be generalized to a linear Multiple Measurement Vector (MMV) SBL model given

by

T = ΦW +V. (2.2)

Here, T ∈ R
N×M represents the M observation vectors, the columns of W ∈ R

L×M are

the M sparse/compressible vectors, and each column of V ∈ RN×M is modeled similar

to n in (2.1) [104]. Since the M vectors in W have a common underlying compressible

distribution, (2.1) is a special case of (2.2) for M = 1.

In typical compressible vector estimation problems, Φ is underdetermined (N < L),

rendering the problem ill-posed. Bayesian techniques circumvent this problem by us-

ing a prior distribution on the compressible vector as a regularization, and computing

the corresponding posterior estimate. To incorporate a compressible prior in (2.1) and

(2.2), SBL uses a two-stage hierarchical model on the unknown vector, as shown in

Fig. 2.1. Here, x ∼ N (0,Υ), where the diagonal matrix Υ contains the hyperparameters

γ = [γ1, . . . , γL]
T as its diagonal elements. Further, an Inverse Gamma (IG) hyperprior

is assumed for γ itself, because it leads to a Student-t prior on the vector x, which is

known to be compressible [34].1 In scenarios where the noise variance is unknown and

random, an IG prior is used for the distribution of the noise variance as well. For the

system model in (2.2), every compressible vector wi ∼ N (0,Υ), i.e., the M compressible

vectors are governed by a common Υ.

1The IG hyperprior is conjugate to the Gaussian pdf [34].
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Figure 2.1: Graphical model for SBL: Two stage hierarchical model with the compress-
ible vector taking a conditional Gaussian distribution and the hyperparameters taking
an Inverse Gamma distribution. The noise is modeled as white Gaussian distributed,
with the noise variance modeled as deterministic/random and known or unknown.

It is well known that the Cramér Rao Lower Bound (CRLB) provides a fundamental

limit on the MSE performance of unbiased estimators [105] for deterministic parame-

ter estimation. For the estimation problem in SBL, an analogous bound known as the

Bayesian Cramér Rao Bound (BCRB) is used to obtain lower bounds [106], by incorpo-

rating the prior distribution on the unknown vector. If the unknown vector consists of

both deterministic and random components, Hybrid Cramér Rao Bounds (HCRB) are

derived [107].

In SBL, the unknown vector estimation problem can also be viewed as a problem in-

volving nuisance parameters. Since the assumed hyperpriors are conjugate to the Gaus-

sian likelihood, the marginalized distributions have a closed form and the Marginal-

ized Cramér Rao Bounds (MCRB) [108] can be derived. For example, in the SBL hy-

perparameter estimation problem, x itself can be considered a nuisance variable and

marginalized from the joint distribution, pY,X|γ(y,x|γ), to obtain the log-likelihood as

L(γ) = log

∫

x

pY,X|Γ(y,x|γ)dx =
−(log |Σy|+ yTΣ−1

y y)

2
, (2.3)
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θ = [γT , xT ]T

Figure 2.2: Summary of the lower bounds derived in this work when the noise variance
is known.

where Σy = σ2I + ΦΥΦT [109]. Henceforth, in this chapter, the function pX(x) repre-

sents the pdf of the random variable X evaluated at its realization x.

The goal of this chapter is to derive Cramér Rao type lower bounds on the MSE per-

formance of estimators based on the SBL framework. Our contributions are as follows:

• Under the assumption of known noise variance, we derive the HCRB and the

BCRB for the unknown vector θ = [xT ,γT ]T , as indicated in the left half of Fig. 2.2.

• When the noise variance is known, we marginalize nuisance variables (γ or x) and

derive the corresponding MCRB, as indicated in the right half of Fig. 2.2. Since the

MCRB is a function of the parameters of the hyperprior (and hence is an offline

bound), it yields insights into the relationship between the MSE performance of

the estimators and the compressibility of x.

• In the unknown noise variance case, we derive the BCRB, HCRB and MCRB for

the unknown vector θ = [xT ,γT , σ2]T , as indicated in Fig. 2.3.

• We derive the MCRB for a general parametric form of the compressible prior [94]

and deduce lower bounds for two (Student-t and Generalized double Pareto) of
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Figure 2.3: Different modeling assumptions and the corresponding bounds derived in
this work when the noise variance is unknown.

the well-known compressible priors.

• Similar to the SMV-SBL case, we derive the BCRB, HCRB and MCRB for the MMV-

SBL model in (2.2).

Through numerical simulations, we show that the MCRB on the compressible vector

x is the tightest lower bound [108], and that the MSE performance of the EM algo-

rithm achieves this bound at high SNR and as N → L. The techniques used to derive

the bounds can be extended to handle different compressible prior pdfs used in litera-

ture [93]. These results provide a convenient and easy-to-compute benchmark for com-

paring the performance of the existing estimators, and in some cases, for establishing

their optimality in terms of the MSE performance.

The rest of this chapter is organized as follows. In Sec. 2.2, we provide the basic defini-

tions and describe the problem set up. In Secs 2.3 and 2.4, we derive the lower bounds

for the cases shown in Figs. 2.2 and 2.3, respectively. The bounds are extended to the

MMV-SBL signal model in Sec. 2.5. The efficacy of the lower bounds is graphically illus-

trated through simulation results in Sec. 2.6. We provide some concluding remarks in

Sec. 2.7. In the Appendix, we provide proofs for the Propositions and Theorems stated
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in the chapter.

2.2 Preliminaries

As a precursor to the sections that follow, we define the MSE matrix and the Fisher

Information Matrix (FIM) [105], and state the assumptions under which we derive the

lower bounds in this chapter. Consider a general estimation problem where the un-

known vector θ ∈ Rn can be split into sub-vectors θ = [θTr , θ
T
d ]

T , where θr ∈ Rm

consists of random parameters distributed according to a known pdf, and θd ∈ Rn−m

consists of deterministic parameters. Let θ̂(y) denote the estimator of θ as a function of

the observations y. The MSE matrix Eθ is defined as

Eθ , EY,Θr

[

(θ − θ̂(y))(θ − θ̂(y))T
]

, (2.4)

where Θr denotes the random parameters to be estimated, whose realization is given

by θr. The first step in obtaining Cramér Rao type lower bounds is to derive the FIM

Iθ [105]. Typically, Iθ is expressed in terms of the individual blocks of submatrices,

where the (ij)th block is given by

Iθij , −EY,Θr [∇θi
∇T

θj
log pY,Θr ;Θd

(y, θr; θd)]. (2.5)

In this chapter, we use the notation Iθ to represent the FIM under the different modeling

assumptions. For example, when θr 6= ∅ and θd 6= ∅, Iθ represents a Hybrid Information

Matrix (HIM). When θr 6= ∅ and θd = ∅, Iθ represents a Bayesian Information matrix

(BIM). Assuming that the MSE matrix Eθ exists and the FIM is non-singular, a lower
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bound on the MSE matrix Eθ is given by the inverse of the FIM:

Eθ �
(
Iθ
)−1

. (2.6)

It is easy to verify that the underlying pdfs considered in the SBL model satisfy the

regularity conditions required for computing the FIM (see Sec. 5.2.3 in [108]).

We conclude this section by making one useful observation about the FIM in the SBL

problem. An assumption in the SMV-SBL framework is that x and n are independent

of each other (for the MMV-SBL model, T and W are independent). This assumption

is reflected in the graphical model in Fig. 2.1, where the compressible vector x (and

its attribute γ) and the noise component n (and its attribute σ2) are on unconnected

branches. Due to this, a submatrix of the FIM is of the form

Iθγξ = −EX,Y,Γ,Ξ

[
∇γ∇ξ

{
log pY|X,Ξ(y|x, ξ) + log pX,Γ(x,γ) + log pΞ(ξ)

}]
, (2.7)

where there are no terms in which both γ and ξ = σ2 are jointly present. Hence, the cor-

responding terms in the above mentioned submatrix are always zero. This is formally

stated in the following Lemma.

Lemma 1. When θi = γ and θj = σ2, the ijth block matrix of the information matrix Iθ, given

by (2.5), simplifies to Iθij = 0, i.e., to an all zero matrix.

2.3 SMV-SBL: Lower Bounds when σ2 is Known

In this section, we derive lower bounds for the system model in (2.1) for the scenarios

in Fig. 2.2, where the unknown vector is θ = [xT ,γT ]T . We examine different modeling
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assumptions on γ and derive the corresponding lower bounds.

2.3.1 Bounds from the Joint pdf

HCRB for θ = [xT ,γT ]T

In this subsection, we consider the unknown variables as a hybrid of a deterministic

vector γ and a random vector x distributed according to a Gaussian distribution pa-

rameterized by γ. Using the assumptions and notation in the previous section, we

obtain the following proposition.

Proposition 1. For the signal model in (2.1), the HCRB on the MSE matrix Eθ of the unknown

vector θ = [xT ,γT ]T with the parameterized distribution of the compressible signal x given by

N (0,Υ), and with γ modeled as unknown and deterministic, is given by Eθ � (Hθ)−1, where

Hθ ,




Hθ(x) Hθ(x,γ)

(Hθ(x,γ))T Hθ(γ)



 =





(
ΦTΦ
σ2 +Υ−1

)

0L×L

0L×L diag(2γ2
1 , 2γ

2
2 , . . . , 2γ

2
L)

−1



 . (2.8)

Proof: See Appendix A.

Note that the lower bound on the estimate of x depends on the prior information

through the diagonal matrix Υ. In the SBL problem, the realization of the random

parameter γ has to be used to compute the bound above, and hence, it is referred

to as an online bound. Note that the lower bound on the MSE matrix of x is Eθ �
(

ΦTΦ
σ2 +Υ−1

)−1

, which is the same as the lower bound on the error covariance of the

Bayes vector estimator for a linear model (see Theorems 10.2 and 10.3 in [105]), and is

achievable by the MMSE estimator when Υ = diag(γ1, . . . , γL) is known.
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BCRB for θ = [xT ,γT ]T

For deriving the BCRB, a hyperprior distribution is considered on γ, and the resulting x

is viewed as being drawn from a compressible prior distribution. The most commonly

used hyperprior distribution in the literature is the IG distribution [34], where γi, i =

1, 2, . . . , L is distributed as IG
(
ν
2
, ν
2λ

)
, given by

pΓ(γi) ,
(

Γ
(ν

2

))−1 ( ν

2λ

) ν
2
γ
(− ν

2
−1)

i exp

{

−
ν

2λγi

}

; γi ∈ (0,∞), ν, λ > 0. (2.9)

Using the definitions and notation in the previous section, we state the following

proposition.

Proposition 2. For the signal model in (2.1), the BCRB on the MSE matrix Eθ of the unknown

random vector θ = [xT ,γT ]T , where the conditional distribution of the compressible signal x|γ

is N (0,Υ), and the hyperprior distribution on γ is
∏L

i=1 IG
(
ν
2
, ν
2λ

)
, is given by Eθ � (Bθ)−1,

where

Bθ ,




Bθ(x) Bθ(x,γ)

(Bθ(x,γ))T Bθ(γ)



 =





(
ΦTΦ
σ2 + λIL×L

)

0L×L

0L×L
λ2(ν+2)(ν+7)

2ν
IL×L



 . (2.10)

Proof: See Appendix B.

It can be seen from Bθ that the lower bound on the MSE of γ̂(y) is a function of the

parameters of the IG prior on γ, i.e., a function of ν and λ, and it can be computed

without the knowledge of realization of γ. Thus, it is an offline bound.
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2.3.2 Bounds from Marginalized Distributions

MCRB for θ = [γ]

Here, we derive the MCRB for θ = [γ], where γ is an unknown deterministic parameter.

This requires the marginalized distribution pY;γ(y;γ), which is obtained by considering

x as a nuisance variable and marginalizing it out of the joint distribution pX,Y;γ(x,y;γ)

to obtain (2.3). Since γ is a deterministic parameter, the pdf pY;γ(y;γ) must satisfy

the regularity condition in [105]. Using the definitions and notations of the previous

sections, we state the following theorem to obtain the MCRB.

Theorem 1. For the signal model in (2.1), the log likelihood function log pY;γ(y;γ) satisfies the

regularity conditions. Further, the MCRB on the MSE matrix Eγ of the unknown deterministic

vector θ = [γ] is given by Eγ � (Mγ)−1, where the ijth element of Mγ is given by

M
γ
ij =

1

2
(ΦT

j Σ
−1
y Φi)

2, (2.11)

for 1 ≤ i, j ≤ L, where Φi is the ith column of Φ, and Σy = σ2IN×N + ΦΥΦT , as defined

earlier.

Proof: See Appendix C.

To intuitively understand (2.11), we consider a special case of ΦTΦ = NIN×N , and use

the Woodbury’s identity to simplify Σ−1
y , to obtain the (ii)th entry of the matrix Mγ as

M
γ
ii = 2

(
σ2

N
+ γi

)−2

. (2.12)

Hence, the error in γi is bounded as Eγ
ii ≥ 2

(
σ2

N
+ γi

)2

. As N → ∞, the bound reduces
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to 2γ2
i , which is the same as the lower bound on the estimate of γ obtained as the lower-

right submatrix in (2.8). For finite N , the MCRB is tighter than the HCRB.

MCRB for θ = [x]

In this subsection, we assume a hyperprior on γ, which leads to a joint distribution of

x and γ, from which γ can be marginalized. Further, assuming specific forms for the

hyperprior distribution can lead to a compressible prior on x. For example, assuming

an IG hyperprior on γ leads to an x with a Student-t distribution. In [93], the authors

show that sampling from a Student-t distribution with parameters ν and λ results in a

ν-compressible x. The Student-t prior is given by

pX(x) ,

(
Γ((ν + 1)/2)

Γ(ν/2)

)L(
λ

πν

)L/2 L∏

i=1

(

1 +
λx2

i

ν

)−(ν+1)/2

; xi ∈ (−∞,∞), ν, λ > 0,

(2.13)

where ν represents the number of degrees of freedom and λ represents the inverse

variance of the distribution. Using the notation developed so far, we state the following

theorem.

Theorem 2. For the signal model in (2.1), the MCRB on the MSE matrix Ex of the unknown

compressible random vector θ = [x] distributed as (2.13), is given by Ex � (Mx)−1, where

Mx =
ΦTΦ

σ2
+

λ(ν + 1)

(ν + 3)
IL×L. (2.14)

Proof: See Appendix D.

We see that the bound derived depends on the parameters of the Student-t pdf. From

[94], the prior is “somewhat” compressible for 2 < ν < 4, and (2.14) is nonnegative and

bounded for 2 < ν < 4, i.e., the bound is meaningful in the range of ν used in practice.
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Note that by choosing λ to be large (or the variance of x to be small), the bound is

dominated by the prior information, rather than the information from the observations,

as expected in Bayesian bounds [105].

It is conjectured in [108] that, in general, the MCRB is tighter than the BCRB. Analyti-

cally comparing the MCRB (2.14) with the BCRB (2.8), we see that for the SBL problem

of estimating a compressible vector, the MCRB is indeed tighter than the BCRB, since
(

ΦTΦ
σ2 + λ(ν+1)

(ν+3)
IL×L

)−1

�
(

ΦTΦ
σ2 + λIL×L

)−1

.

The techniques used to derive the bounds in this subsection can be applied to any

family of compressible distributions. In [94], the authors propose a parametric form of

the Generalized Compressible Prior (GCP) and prove that such a prior is compressible

for certain values of ν. In the following subsection, we derive the MCRB for the GCP.

2.3.3 General Marginalized Bounds

In this subsection, we derive MCRBs for the parametric form of the GCP. The GCP

encompasses the double Pareto shrinkage type prior [110] and the Student-t prior (2.13)

as its special cases. We consider the GCP on x as follows

pX(x) , KL
L∏

i=1

(

1 +
λ |xi|

τ

ν

)−(ν+1)/τ

; xi ∈ (−∞,∞), τ, ν, λ > 0, (2.15)

where the normalizing constant K , τ
2

(
λ
ν

)1/τ Γ((ν+1)/τ)
Γ(1/τ)Γ(ν/τ)

. When τ = 2, the above dis-

tribution reduces to the Student-t prior as given in (2.13), and when τ = 1, it reduces

to a generalized double Pareto shrinkage prior [110]. Note that the expression for the

GCP in [94] can be obtained from (2.15) by setting λ = 1, and defining ν , s − 1. The

following theorem provides the MCRB for the GCP.
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Theorem 3. For the signal model in (2.1), the MCRB on the MSE matrix Eθ
τ of the unknown

random vector θ = [x], where x is distributed by a GCP in (2.15) is given by Eθ
τ � (Mθ

τ )
−1,

where

Mθ
τ =

ΦTΦ

σ2
+ Tτ , (2.16)

where Tτ = τ2(ν+1)
(ν+τ+1)

(
λ
ν

)2/τ Γ( ν+2
τ )Γ(2− 1

τ )
Γ( 1

τ )Γ(
v
τ )

IL×L.

Proof: See Appendix E.

It is straightforward to verify that for τ = 2, (2.16) reduces to the MCRB derived in

(2.14) for the Student-t distribution. For τ = 1, the inverse of the MCRB can be reduced

to

Mθ
τ =

ΦTΦ

σ2
+

λ2(ν + 1)2

ν(ν + 2)
IL×L. (2.17)

Hence, this method is useful in obtaining a Cramér Rao type lower bound for the es-

timators based on the double Pareto shrinkage prior, which uses the generalized prior

with τ = 1 [110, 111].

Further, we plot the expression (2.16) in Fig. 2.4 and observe that, in general, the

bounds predict an increase in MSE for higher values of τ . Also, the lower bounds

at different signal to noise ratios (SNRs) converge as the value of τ increases at a given

value of N , indicating that increasing τ renders the bound insensitive to the SNR. The

lower bounds also predict a smaller value of MSE for a lower value of ν.

Thus far, we have presented the lower bounds on the MSE in estimating the unknown

parameters of the SBL problem when the noise variance is known. In the next section,

we extend the results to the case of unknown noise variance.
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Figure 2.4: Behavior of the MCRB (2.16) for the parametric form of the GCP, as a func-
tion of τ , ν, N and noise variance ξ.

2.4 SMV-SBL: Lower Bounds when σ2 is Unknown

Let us denote the unknown noise variance as ξ = σ2. In the Bayesian formulation,

the noise variance is associated with a prior, and since the IG prior is conjugate to the

Gaussian likelihood pY|X,Ξ(y|x, ξ), it is assumed that σ2 ∼ IG(c, d) [34], i.e., ξ = σ2 is

distributed as

pΞ(ξ) ,
dc

Γ(c)
ξ(−c−1) exp

{

−
d

ξ

}

; ξ ∈ (0,∞), c, d > 0. (2.18)

Under this assumption, one can marginalize the unknown noise variance and obtain

the likelihood p(y|x) as

p(y|x) ,

∫ ∞

ξ=0

p(y, ξ|x)dξ =
(2d)cΓ

(
N
2
+ c
)

Γ(c)(π)N/2

(
(y−Φx)T (y −Φx) + 2d

)−(N
2
+c)

, (2.19)
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which is a multivariate Student-t distribution. It turns out that the straightforward ap-

proach of using the above multivariate likelihood to directly compute lower bounds

for the various cases given in the previous section is analytically intractable, and that

the lower bounds cannot be computed in closed form. Hence, we compute lower

bounds from the joint pdf, i.e., we derive the HCRB and BCRBs for the unknown vector

θ = [xT ,γT , ξ]T with the MSE matrix Eθ
ξ defined by (2.4).2 Using the assumptions and

notation from the previous sections, we obtain the following proposition.

Proposition 3. For the signal model in (2.1), the HCRB on the MSE matrix Eθ
ξ of the unknown

vector θ = [θ′T , ξ]T , where θ′ = [xT ,γT ]T , with the distribution of the compressible vector x

given by N (0,Υ), where γ is modeled as a deterministic or as a random parameter distributed

as
∏L

i=1 IG
(
ν
2
, ν
2λ

)
, and ξ is modeled as a deterministic parameter, is given by (Hθ

ξ )
−1, where

Hθ
ξ =




Hθ′

0L×1

01×L
N
2ξ2



 . (2.20)

In the above expression, with a slight abuse of notation, Hθ′
is the FIM given by (2.8)

when γ is unknown deterministic and by (2.10) when γ is random.

Proof: See Appendix F.

The lower bound on the estimation of ξ matches with the well known lower bounds

on noise variance estimation (see Sec. 3.5 in [105]). One disadvantage of such a bound

on ξ̂(y) is that the knowledge of the noise variance is essential to compute the bound,

and hence, it cannot be computed offline. Instead, assigning a hyperprior to ξ would

result in a lower bound that only depends on the parameters of the hyperprior, which

2We use the subscript ξ to indicate that the error matrices and bounds are obtained for the case of
unknown noise variance.
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are assumed to be known, allowing the bound to be computed offline. We state the

following proposition in this context.

Proposition 4. For the signal model in (2.1), the HCRB on the MSE matrix Eθ
ξ of the un-

known vector θ = [θ′T , ξ]T , where θ′ = [xT ,γT ]T , with the distribution of the vector x given

by N (0,Υ), where γ is modeled as a deterministic or as a random parameter distributed as

∏L
i=1 IG

(
ν
2
, ν
2λ

)
, and the random parameter ξ is distributed as IG(c, d), is given by (Hθ

ξ )
−1,

where

Hθ
ξ =




Hθ′

0L×1

01×L
c(c+1)(N/2+c+3)

d2



 . (2.21)

In (2.21), Hθ′
is the FIM given in (2.8) when γ is unknown deterministic and by (2.10)

when γ is random.

Proof: See Appendix G.

In SBL problems, a non-informative prior on ξ is typically preferred, i.e., the distribu-

tion of the noise variance is modeled to be as flat as possible. In [34], it was observed

that a non-informative prior is obtained when c, d → 0. However, as c, d → 0, the bound

in (2.21) is indeterminate. In Sec. 2.6, we illustrate the performance of the lower bound

in (2.21) for practical values of c and d.

2.4.1 Marginalized Bounds

In this subsection, we obtain lower bounds on the MSE of the estimator ξ̂(y), in the

presence of nuisance variables in the joint distribution. To start with, we consider the

marginalized distributions of γ and ξ, i.e., pY;γ,ξ(y;γ, ξ) where both, γ and ξ are deter-

ministic variables. Since the unknowns are deterministic, the regularity condition has
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to be satisfied for θ = [γT , ξ]T . We state the following theorem.

Theorem 4. For the signal model in (2.1), the log likelihood function log pY;γ,ξ(y;γ, ξ) satisfies

the regularity condition [105]. Further, the MCRB on the MSE matrix Eθ
ξ of the unknown

deterministic vector θ = [γT , ξ]T is given by Eθ
ξ � (Mθ

ξ )
−1, where

Mθ
ξ ,




Mθ

ξ (γ) Mθ
ξ (γ, ξ)

Mθ
ξ (ξ,γ) Mθ

ξ (ξ)



 , (2.22)

where the ijth entry of the matrix Mθ
ξ (γ) is given by (Mθ

ξ (γ))ij = 1
2

{
(ΦT

j Σ
−1
y Φi)

2
}

, and

Mθ
ξ (ξ) =

1
2
Tr(Σ−2

y ). Further, (Mθ
ξ (γ, ξ))i = (Mθ

ξ (ξ,γ))i =
ΦT

i Σ−2
y Φi

2
, i, j = 1, 2, . . . , L.

Proof: See Appendix H

Remark: From the graphical model in Fig. 2.1, it can be seen that the branches consist-

ing of γi and ξ are independent conditioned on x. However, when x is marginalized,

the nodes ξ and γi are connected, and hence, Lemma 2 is no longer valid. Due to this,

the lower bound on γ depends on ξ and vice versa, i.e., Mθ
ξ (γ) and Mθ

ξ (ξ) depend on

both ξ and Υ = diag(γ) through Σy = ξIN×N +ΦΥΦT .

Thus far, we have presented several bounds for the MSE performance of the estimators

x̂(y), γ̂(y) and ξ̂(y) in the SMV-SBL framework. In the next section, we derive Cramér

Rao type lower bounds for the MMV-SBL signal model.

2.5 Lower Bounds for the MMV-SBL

In this section, we provide Cramér Rao type lower bounds for the estimation of un-

known parameters in the MMV-SBL model given in (2.2). We consider the estima-

tion of the compressible vector w from the vector of observations t, which contain the
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stacked columns of W and T, respectively. In the MMV-SBL model, each column of

W is distributed as wi ∼ N (0,Υ), for i = 1, . . .M , and the likelihood is given by

∏M
i=1 pT|Wi,Ξ(ti|wi, ξ), where pT|WiΞ(ti|wi, ξ) = N (Φwi, ξ) and ξ = σ2. The modeling

assumptions on γ and ξ are the same as in the SMV-SBL case, given by (2.9) and (2.18),

respectively [104].

Using the notation developed in Sec. 2.2, we derive the bounds for the MMV SBL case

similar to the SMV-SBL cases considered in Secs. 2.3 and 2.4. Since the derivation of

these bounds follow along the same lines as in the previous sections, we simply state

results in Table 2.1.

Bound Derived Expression

HCRB on γ̂(y) Hθ
M = diag

(
M
2γ2

i

)

, i = 1, 2 . . . , L

BCRB on γ̂(y) Bθ
M = λ2(ν+2)(M+ν+6)

2ν
IL×L

MCRB on γ̂(y) Mθ
M = [Mθ

ij ],
where Mθ

ij =
M
2
(ΦT

j Σ
−1
y Φi)

2

HCRB on ŵ(y) Hθ
M =

(
ΦTΦ
σ2 +Υ−1

)

⊗ IM×M

BCRB on ŵ(y) Bθ
M =

(
ΦTΦ
σ2 + λIL×L

)

⊗ IM×M

HCRB on ξ̂(y) Hθ
M,ξ =

(
MN
2ξ2

)

BCRB on ξ̂(y) Bθ
M,ξ =

c(MN
2

+c+3)(c+1)

d2

MCRB on [γ̂(y)T , ξ̂(y)]T Mθ
M,ξ = M ×Mθ

ξ

Table 2.1: Cramér Rao Type Bounds for the MMV-SBL Case.

We see that the lower bounds on γ̂(y) and ξ̂(y) are reduced by a factor of M compared

to the SMV case. This is intuitively satisfying, since a higher number of observations are

available for the estimation of the parameters γ and ξ. It turns out that it is not possible

to obtain the MCRB on w in the MMV-SBL setting, since closed form expressions for

the FIM are not available.
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In the next section, we consider two algorithms for SBL, namely the EM algorithm

and the ARD based reweighted ℓ1 algorithm, and numerically illustrate the utility of

the lower bounds.

2.6 Simulations and Discussion

The vector estimation problem in the SBL framework typically involves the joint es-

timation of the hyperparameter and the unknown compressible vector x. Since the

hyperparameter estimation problem cannot be solved in closed form, iterative estima-

tors are employed [34]. In this section, we consider the iterative updates based on the

EM algorithm first proposed in [34]. We also consider the algorithm proposed in [96]

based on the Automatic Relevance Determination (ARD) framework. We plot the MSE

performance in estimating x, γ and ξ with the linear model in (2.1) and (2.2), for the EM

algorithm, labeled EM, and the ARD based Reweighted ℓ1 algorithm, labeled ARD-SBL.

We compare the performance of the estimators against the derived lower bounds.

We simulate the lower bounds for a random underdetermined (N < L) measurement

matrix Φ, whose entries are i.i.d. and standard Bernoulli ({+1,−1}) distributed. A com-

pressible signal of dimension L is generated by sampling from a Student-t distribution

with the value of ν ranging from 2.01 to 2.05, which is the range in which the signal is

“somewhat” compressible, for high dimensional signals [94]. Figure 2.5 shows the de-

cay profile of the sorted magnitudes of L = 1024 i.i.d. samples drawn from a Student-t

distribution for different degrees of freedom and with the value of E(x2
i ) fixed at 10−3.
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Figure 2.5: Decay profile of the sorted magnitudes of i.i.d. samples drawn from a
Student-t distribution.
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Figure 2.6: Plot of the MSE performance of x̂(y), the corresponding MCRB and BCRB
as a function of SNR, where ν = 2.01.
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2.6.1 Lower Bounds on the MSE Performance of x̂(y)

In this subsection, we compare the MSE performance of the ARD-SBL estimator and the

EM based estimator x̂(y). Figure 2.6 depicts the MSE performance of x̂(y) for different

SNRs and N = 750 and 1000, with ν = 2.01. We compare it with the HCRB/BCRB

derived in (2.8), which is obtained by assuming the knowledge of the realization of the

hyperparameters γ. We see that the MCRB derived in (2.14) is a tight lower bound on

the MSE performance at high SNR and N .
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Figure 2.7: Plot of the MSE performance of x̂(y), the corresponding MCRB and BCRB
as a function of ν, where SNR = 40dB.

Figure 2.7 shows the comparative MSE performance of the ARD-SBL estimator and

EM based estimator as a function of varying degrees of freedom ν, at an SNR of 40dB

and N = 1000 and 750. As expected, the MSE performance of the algorithms is better

at low values of ν since the signal is more compressible, and the MCRB and BCRB also

reflect this behavior. The MCRB is a very tight lower bound, especially for high values
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Figure 2.8: Plot of the MSE performance of x̂(y), the corresponding MCRB and BCRB
as a function of N , where SNR = 40dB.

of N . Figure 2.8 shows the comparative MSE performance of the ARD-SBL estimator

and EM based estimator as a function of N , at an SNR of 40dB and for two different

values of ν. The MSE performance of the EM algorithm converges to that of the MCRB

at higher N .

2.6.2 Lower Bounds on the MSE Performance of γ̂(y)

In this subsection, we compare the different lower bounds for the MSE of the estimator

γ̂(y) for the SMV and MMV-SBL system model. Figure 2.9 shows the MSE performance

of γ̂(y) as a function of SNR and M , when γ is a random parameter, N = 1000 and

ν = 2.01. In this case, it turns out that there is a large gap between the performance of

the EM based estimate and the lower bound.
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Figure 2.9: Plot of the MSE performance of γ̂(y) and the corresponding HCRB as a
function of SNR, where N = 1000.

When γ is deterministic, we first note that the EM based ML estimator for γ is asymp-

totically optimal and the lower bounds are practical for large data samples [105]. The

results are listed in Table 2.2. We see that for L = 2048 and N = 1500, the MCRB

and BCRB are tight lower bounds, with MCRB being marginally tighter than the BCRB.

However, as M increases, the gap between the MSE and the lower bounds increases.

SNR(dB) 10 20 30 40

M =
1

MSE 0.054 0.053 0.051 0.050
MCRB 0.052 0.051 0.050 0.049
HCRB 0.049 0.049 0.049 0.049

M = 50
MSE 0.0450 0.039 0.035 0.030

MCRB ×10−2 0.120 0.110 0.100 0.090
HCRB×10−3 0.977 0.977 0.977 0.977

Table 2.2: Values of the MSE of the Estimator γ̂(y), the MCRB and the HCRB, for θd =
[γ] as a Function of SNR, for N = 1500.
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2.6.3 Lower Bounds on the MSE Performance of ξ̂(y)

In this subsection, we compare the lower bounds on the MSE of the estimator ξ̂(y) in

the SMV and MMV-SBL setting. Figure 2.10 shows the MSE performance of ξ̂(y) and

the corresponding HCRB for different values of N and M . Here, ξ is sampled from the

IG pdf (2.18), with parameters c = 3 and d = 0.2.
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Figure 2.10: Plot of MSE performance of γ̂(y) along with the HCRB as a function of N .

When ξ is deterministic, the EM based ML estimator for γ is asymptotically optimal

and the lower bounds are practical for large data samples [105]. Table 2.3 lists the MSE

values of ξ̂(y), the corresponding HCRB and MCRB for deterministic but unknown

noise variance, while the true noise variance is fixed at 10−3. We see that for L = 2048

and N = 1500, the MCRB is marginally tighter than the HCRB. However, when the

noise variance is random, we see from Fig. 2.10 that there is a large gap between the

MSE performance and the HCRB.
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N 1500 1600 1700 1800

M =
1

MSE ×10−8 0.736 0.663 0.636 0.592
MCRB×10−8 0.380 0.340 0.307 0.279
HCRB×10−8 0.133 0.125 0.118 0.111

M = 50
MSE ×10−9 0.930 0.892 0.866 0.847

MCRB×10−10 0.680 0.652 0.614 0.573
HCRB×10−10 0.267 0.250 0.235 0.222

Table 2.3: Values of the MSE of the Estimator ξ̂(y), the MCRB and the HCRB for θd = [ξ],
as a Function of N .

2.7 Conclusions

In this work, we derived Cramér Rao type lower bounds on the MSE, namely, the

HCRB, BCRB and MCRB, for the SMV-SBL and the MMV-SBL problem of estimating

compressible signals. We used a hierarchical model for the compressible priors to ob-

tain the bounds under various assumptions on the unknown parameters. The bounds

derived by assuming a hyperprior distribution on the hyperparameters themselves pro-

vided key insights into the MSE performance of SBL and the values of the parameters

that govern these hyperpriors. We derived the MCRB for the generalized compressible

prior distribution, of which the Student-t and Generalized Pareto prior distribution are

special cases. We showed that the MCRB is tighter than the BCRB. We compared the

lower bounds with the MSE performance of the ARD-SBL and the EM algorithm using

Monte Carlo simulations. The numerical results illustrated the near-optimality of EM

based updates for SBL, which makes it interesting for practical implementations.



Chapter 3

Joint Sparse Channel Estimation and

Data Detection in SISO-OFDM Systems

using Sparse Bayesian Learning

3.1 Introduction and System Model

In practice, wireless channels have a large delay spread with a few significant channel

tap coefficients, and therefore, the channel is approximately sparse (a-sparse) in the lag

domain. Several papers in literature have proposed sparse channel estimation tech-

niques (see [112–114] and references therein). In the context of channel estimation for

OFDM systems, spectrally efficient techniques (for which P < L, where P is the num-

ber of pilots and L is the length of the channel) that leverage this approximate sparsity

using Compressed Sensing (CS) [5] have been proposed [8,63,70,114–116]. In this work,

we propose to formulate the problem of channel estimation in a Sparse Bayesian Learn-

ing (SBL) framework [34, 49]. Specifically, we design novel SBL algorithms for OFDM

systems in the following scenarios: (i) The block-fading case, where the channel coeffi-

cients remain fixed across the OFDM frame duration and vary in an i.i.d. fashion from

56
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frame to frame; and (ii) the time-varying case, where the channel coefficients across

successive OFDM symbols are temporally correlated but have a common support.

3.1.1 Problem Formulation and Contributions

In this subsection, we cast the channel estimation problem in the SBL framework and

describe the contributions of this work. In an OFDM system with N subcarriers, the

instantaneous received signal, denoted by y ∈ CN×1, is mathematically represented

as [64]

y = XFh+ v. (3.1)

Here, F ∈ CN×L (N > L) contains the first L columns of the N × N Discrete Fourier

Transform (DFT) matrix, h ∈ CL is the channel impulse response. The dictionary matrix

is given by Φ = XF, where the diagonal matrix X ∈ CN×N contains the N transmitted

symbols comprising both known pilot symbols and unknown M-PSK/M-QAM mod-

ulated data along the diagonal. Each component of v ∈ CN×1 is a zero mean circularly

symmetric additive white Gaussian noise with pdf denoted by CN (0, σ2), where σ2 is

the noise variance. Typically, the communication between the transmitter and the re-

ceiver occurs in frames consisting of K consecutive OFDM symbols. Suppose that, in

a given OFDM symbol, P of the N subcarrier locations are pilot subcarriers and the

remaining (N − P ) subcarriers carry unknown data symbols. The system model per-

taining to the pilot subcarriers can be written as

yp = XpFph+ vp, (3.2)
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where yp is a P × 1 vector containing the entries of y sampled at pilot locations, Xp is a

P ×P diagonal matrix with the known pilot symbols along its diagonal, Fp is the P ×L

(P < L) submatrix of F consisting of the rows corresponding to the pilot locations and

vp is a P × 1 vector, again consisting of components of v sampled at pilot locations.

As elucidated in chapter 1, the complex baseband representation of the scalar channel

impulse response h̃[t], t ∈ R can be modeled as a stationary tapped delay line filter in

the lag-domain:

h̃[t] =

L̃∑

l=1

h̃lδ[t− τl], (3.3)

where δ[t] is the Dirac delta function, h̃l and τl represent the attenuation and prop-

agation delay between the transmitter and the receiver path l, respectively, and L̃ is

the number of paths [62]. It is known that the wireless channel models obtained using

channel sounding experiments exhibit approximate sparsity in the lag-domain (for e.g.,

due to non-perfect low-pass filtering using raised cosine filtering), as the communica-

tion bandwidth and sampling frequency increase [70]. Hence, based on these practical

considerations, we consider the lag-domain filtered channel impulse response, which

can be represented as h[t] = gt[t]∗ h̃[t]∗ gr[t], where gt[t] and gr[t] represent the baseband

transmit and receive filters and ∗ represents the convolution operation [63]. Then, the

discrete-time channel can be represented as, h(l) = h[(l−1)T ], where T is the baud inter-

val. The overall channel is represented as h = (h(1), h(2), . . . , h(L))T . Further, in an SBL

framework, we model the channel as h ∼ CN (0,Γ), where Γ = diag(γ(1), . . . , γ(L)).

Note that if γ(l) → 0, then the corresponding h(l) → 0 [33, 49].

The traditional methods for channel estimation in OFDM systems assume knowledge

of the MIP and use pilots for channel estimation and tracking [66], or employ iterative
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techniques based on the Expectation Maximization (EM) algorithms for joint channel

estimation/tracking and data detection [72, 73]. CS techniques have been proposed for

the estimation of the time-varying channel over all the symbols in a frame when the

channel consists of a few significant nonzero entries but the path delays are unknown

[75–77]. Further, approximate inference methods have been used to solve the problem

of joint channel estimation and decoding in a BICM-OFDM system, where the time-

varying sparse channel is modeled using a Bernoulli-Gaussian prior [63,68]. In [69], the

authors design variational message-passing algorithms based on hierarchical Bayesian

prior models for pilot-assisted OFDM channel estimation.

In this chapter, we propose SBL algorithms for exact inference1 based channel estima-

tion, channel tracking, and data detection. In addition to the monotonicity property

of SBL by virtue of the EM framework, SBL offers guarantees such as convergence to

the sparsest solution when the noise variance is zero, and converging to a sparse local

minimum irrespective of the noise variance [49]. In contrast, approximate inference

methods [44], although lower in computational complexity, do not offer such rigorous

convergence guarantees. Given the prior distributions of the noise vp and the channel

h in (3.2), the a-sparse channel estimation problem is given by

(P1) ĥ = argmin
h,γ∈RL×1

+

‖yp −XpFph‖
2
2

σ2
+ log |Γ|+ hHΓ−1h, (3.4)

where2 Γ , diag(γ(1), . . . , γ(L)) and | · | denotes the determinant of a matrix. In the

objective function above, the first term originates from the data likelihood and the other

1In the machine learning literature (e.g., [117–119]), “exact inference” is an attribute associated with
algorithms that obtain the exact posterior distribution of the hidden/missing variable.

2Due to the one-to-one correspondence between the vector γ and the diagonal matrix Γ, we use them
interchangeably.
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terms are from the Gaussian prior (conditioned on γ) assumed on the wireless channel.

In this work, we specifically address the problem of OFDM channel estimation.

Note that, the above problem addresses the estimation of the wireless channel us-

ing pilot subcarriers only. However, in the OFDM scenario, several subcarriers carry

unknown data as well. In this work, we also consider the problem of joint channel

estimation and data detection, which can be stated as

(P2) ĥ, X̂ = argmin
h,γ∈RL×1

+ ,X∈S

‖y −XFh‖22
σ2

+ log |Γ|+ hHΓ−1h. (3.5)

where S ⊂ C denotes M-QAM/M-PSK constellation from which the symbol is trans-

mitted.

Depending on the mobility of the receiver, the channel may remain essentially con-

stant over the frame duration, or may be slowly time-varying. If the channel is con-

stant, the a-sparse channel estimate can be obtained from the pilot subcarriers by solv-

ing (P1). When the channel is time-varying, typically, the nonzero channel coefficients

vary slowly and are temporally correlated, but the hyperparameters of the channel re-

main constant for several OFDM frames [74]. Consequently, the locations of the sig-

nificant components coincide in successive channel instantiations, i.e., the channels

are approximately group-sparse (a-group-sparse). In this work, we cast the channel es-

timation problem as a a-group-sparse channel estimation problem and devise exact

Bayesian inference based solutions. Approximate inference techniques for estimating

the time-varying sparse vector and support have been proposed in [78]. In the context

of SBL, block-based methods such as Block SBL (BSBL) and Temporal SBL (TSBL) algo-

rithms [79] have been proposed to estimate the time-varying correlated sparse vectors
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when the correlation among the group-sparse vectors is modeled using a general cor-

relation structure. In contrast to the above-mentioned works, the autoregressive (AR)

state space model has been employed to model the correlation among the group sparse

vectors and approximate Kalman filtering techniques have been proposed [44]. Further,

CS based Kalman filtering has been proposed in the context of sparse correlated vector

estimation [29].

In this work, we adopt the Kalman Filter (KF) based exact inference, where the tem-

poral variations of the channel are captured by an AR model. Moreover, it is known

that the first order AR model accurately captures the local behavior of fading wireless

channels [120]. The first order AR model for the kth channel tap is given by

hk = ρhk−1 + uk, (3.6)

where the Jakes’ Doppler spectrum leads to ρ = J0(2πfdTs) ∈ R where J0(·) is the ze-

roth order Bessel function of the first kind, fd is the Doppler frequency, and Ts is the

OFDM symbol duration [121]. The driving noise uk consists of independent compo-

nents uk(i) ∼ CN (0, (1− ρ2)γ(i)). The initial condition for the a-sparse channel is given

by h1 ∼ CN (0,Γ).

When the hyperparameters are known, a KF approach has been used for channel

tracking using the pilot symbols [122]. The EM based KF has also been proposed for

joint channel tracking and data detection in OFDM systems [121, 123]. However, these

algorithms are not applicable in scenarios where the hyperparameters are unknown

and need to be estimated along with the channel tap coefficients and the data symbols.



Chapter 3. 62

In contrast, we use the exact inference techniques employed for linear dynamical sys-

tems [117, 124] to exploit the known correlation structure of the channel. We note that

by using an AR state space model, it is possible to significantly reduce the computa-

tional complexity compared to the block-based a-sparse estimation techniques such as

the ARSBL [125].

Since the unknown channels have a common hyperparameter vector, the joint pdf of

the K received OFDM signals and the a-group-sparse temporally correlated channels

is given by

p(Yp,K,h1, . . . ,hK ;γ) =
K∏

m=1

p(yp,m|hm)p(hm|hm−1;γ), (3.7)

where Yp,K = [yp,1, . . . ,yp,K], and, by convention, we use p(h1|h0;γ) , p(h1;γ) where

h1 ∼ CN (0,Γ). To obtain the optimization problem, we consider − log p(Yp,K,h1, . . . ,hK ;γ)

and neglect the terms that are constant w.r.t. h and γ, to obtain

f(h1, . . . ,hK ,γ) =
K∑

m=1

‖yp,m−Xp,mFp,mhm‖22
σ2 +K log |Γ|+

K∑

m=2

(hm−ρhm−1)HΓ−1(hm−ρhm−1)
(1−ρ2)

+hH
1 Γ

−1h1. (3.8)

From the equation above, the pilot-based channel estimation problem for K OFDM

symbols can be written as

(P3) ĥ1, . . . , ĥK = argmin
h1,...,hK ,γ∈RL×1

+

f(h1, . . . ,hK ,γ). (3.9)

Problem (P3) addresses the estimation of time-varying wireless channels using only the

pilot subcarriers. However, as mentioned earlier, several subcarriers in each of the

OFDM symbols carry unknown data. Hence, we can also consider the problem of joint
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time-varying channel estimation and data detection, by modifying (3.9) as follows:

(P4) ĥ1, . . . , ĥK , X̂1, . . . , X̂K = argmin
h1,...,hK ,γ∈RL×1

+ ,X1,...,XK∈S

g(h1, . . . ,hK ,γ,X1, . . . ,XK)

(3.10)

where

g(h1, . . . ,hK ,γ,X1, . . . ,XK) =
K∑

m=1

‖ym−XmFhm‖22
σ2 +

K∑

m=2

(hm−ρhm−1)HΓ−1(hm−ρhm−1)
(1−ρ2)

+K log |Γ|+ hH
1 Γ

−1h1. (3.11)

Contributions

In this work, we propose a practical and principled approach for joint a-group-sparse

channel estimation and data detection in SISO-OFDM systems, that evaluates well in

Monte-Carlo simulations. First, we show that the problem in (P1) can be solved us-

ing the SBL framework of [49]. We next generalize the SBL framework to obtain the

J-SBL algorithm as a solution to (P2). A key feature of the J-SBL algorithm is that the

observations from both the data and the pilot subcarriers are incorporated to jointly

estimate the a-sparse channel as well as the unknown data. We also propose a low

complexity, recursive J-SBL (RJ-SBL) algorithm to solve (P2). We show that the joint es-

timation procedure leads to a significant improvement in the Mean Square Error (MSE)

of the channel estimate at SNRs of practical interest. Further, we propose a novel, low-

complexity K-SBL algorithm as a recursive solution to (P3). We enhance the K-SBL

algorithm to obtain the JK-SBL algorithm, which is a recursive solution to (P4). The

results are summarized in the Table 3.1.

Although our work focuses on a-sparse channel estimation for OFDM systems using
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Table 3.1: The main contributions of this chapter.

Sl. no. Novel algorithms proposed Goal Applicability
and Section number

1 SBL in Sec. 3.2 Joint channel, hyperparameter estimation Block-fading channels (P1)
2 J-SBL in Sec. 3.3 Joint channel, hyperparameter estimation Block-fading channels (P2)

and Recursive J-SBL and data detection
3 K-SBL in Sec. 3.2 Recursive joint channel Time-varying and

and hyperparameter estimation Block-fading channels (P3)
4 JK-SBL in Sec. 3.3 Recursive joint channel, hyperparameter Time-varying and

estimation and data detection Block-fading channels (P4)

the SBL framework, the algorithms we develop are important in their own right as de-

scribed in 2. This is the first work in the literature that proposes recursive techniques

for exact inference in sparse signal recovery. We show that the joint problems of hy-

perparameter estimation and data detection separate out in the M-step. This leads to

a simple maximization procedure in the M-step, with no loss of optimality. The joint

algorithms involve estimation of the unknown data symbols, which necessitates the

development of techniques that are capable of handling partially unknown dictionary

matrices.3 Finally, the recursive versions of the algorithms have the advantage of com-

putational simplicity compared to other exact inference methods, while retaining the

performance advantages of SBL estimators.

The rest of this chapter is organized as follows. In Sec. 3.2, we propose algorithms for

a-sparse channel estimation using pilots. In Sec. 3.3, the joint channel estimation and

data detection algorithms are proposed and the implementation issues are discussed.

The efficacy of the proposed techniques is demonstrated through simulation results in

Sec. 3.4. We offer some concluding remarks in Sec. 3.5.

3That is, the algorithms are capable of handling the fact that, due to the N−P unknown data symbols
in X, the measurement matrix Φ = XF is partially unknown.
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3.2 Channel Estimation and Tracking Using Pilot Subcar-

riers

In this section, we propose SBL algorithms for a-group-sparse channel estimation in

OFDM systems using pilot symbols, for both block-fading and time-varying channels.

First, we discuss the SBL algorithm to solve (P1), i.e., the problem of a-sparse channel

estimation using Pb pilots in the entire OFDM frame when the channel is block-fading.

Subsequently, we consider the time-varying channel using Pt pilots in every symbol,

and propose a novel, recursive approach for a-group-sparse channel estimation, i.e., a

solution to (P3).

3.2.1 The SBL Algorithm: Block-fading Case

Here, we propose the SBL algorithm for channel estimation using pilot subcarriers in a

single OFDM symbol; this forms the basis for the algorithms developed in the sequel.

The observation model is given by (2). SBL uses a parametrized prior to obtain sparse

solutions, given by

p(h;γ) =

L∏

i=1

(πγ(i))−1 exp

(

−
|h(i)|2

γ(i)

)

. (3.12)

Typically, the hyperparameters γ can be estimated using the type-II ML procedure [34],

i.e., by maximizing the marginalized pdf p(yp;γ) as

γ̂ML = argmax
γ∈RL×1

+

p(yp;γ). (3.13)

Since the above problem cannot be solved in closed form, iterative estimators such

as the EM based SBL algorithm [49] have to be employed. The sparse channel h is
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considered as the hidden variable and the ML estimate of γ is obtained in the M-step.

The steps of the algorithm can be given as

E-step : Q
(
γ|γ(r)

)
= Eh|yp;γ(r)[log p(yp,h;γ)] (3.14)

M-step : γ(r+1) = argmax
γ∈RL×1

+

Q
(
γ|γ(r)

)
. (3.15)

The E-step above requires the posterior density of the sparse vector with the hyperpa-

rameter γ = γ(r), which can be expressed as

p
(
h|yp;γ

(r)
)
= CN (µ,Σ), (3.16)

where Σ = Γ(r) − Γ(r)ΦH
p

(
σ2IPb

+ΦpΓ
(r)ΦH

p

)−1
ΦpΓ

(r), and µ = σ−2ΣΦH
p yp, where

Φp = XpFp. Notice that the EM algorithm given by the steps in (3.14), (3.15) also solves

(P1), where we obtain a MAP estimate of the a-sparse channel, i.e., ĥ = µ with Γ =

diag(γ(r)). The M-step in (3.15) can be simplified, to obtain

γ(r+1)(i) = argmax
γ(i)∈R+

Eh|yp;γ(r) [log p(h;γ)] (3.17)

= Eh|yp;γ(r)

[
|h(i)|2

]
= Σ(i, i) + |µ(i)|2 . (3.18)

In (3.17), the term Eh|yp;γ(r)[log p(yp|h;γ)] has been dropped, as it is not a function of

γ(i). Note that, since all the algorithms proposed in this work use the EM updates,

they have monotonicity property, i.e., the likelihood is guaranteed to increase at each

iteration [126, 127].4

In the case of multiple OFDM symbols in a block-fading channel, since the channel

4We have found, empirically, that the straightforward initialization such as Γ(0) = IL leads to accurate
solutions.
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remains constant for the K OFDM symbols, the system model in (3.2) is modified as

yp,m = Xp,mFp,mh+ vp,m, m = 1, . . . , K. (3.19)

The equation above has a one-to-one correspondence with (3.2), since yp,m denotes the

observations corresponding to pilot subcarriers in the mth OFDM symbol and Φp,m =

Xp,mFp,m denotes the matrix consisting of measurements corresponding to pilot sub-

carriers in the mth OFDM symbol.

We note that the SBL algorithm proposed in this section is not equipped to use the

correlations between the channel across successive OFDM symbols in a time-varying

channel. A straightforward approach to exploit the correlation is to use a block-based

method, where the estimates of all the K channel vectors are obtained jointly using the

observations for the K OFDM symbols [79, 125]. However, this joint processing of all

K OFDM symbols is computationally expensive, as it requires inverting matrices of

the size KPt × KPt. In the next subsection, we propose a recursive approach that is

not only low-complexity compared to the block-based techniques, but also exploits the

temporal channel correlation across symbols, resulting in an enhanced channel tracking

performance.

3.2.2 The K-SBL Algorithm: Time-varying Case

In this subsection, we derive algorithms for tracking the slowly time-varying channel

using an SBL framework to learn the hyperparameters along with the channel coeffi-

cients, i.e., we solve (P3). We derive recursive techniques based on the Kalman Filter
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and Smoother (KFS), with an AR model for the temporal evolution of the channel. In-

terestingly, the framework developed in this section can also be used to accommodate

detection of the unknown data (i.e., a solution to (P4)), as we show in the next section.

In the time-varying case, the measurement equation given by the OFDM system model,

and the state equation given by the first order AR channel model, for K consecutive

symbols, are as follows:

yp,m = Φp,mhm + vp,m, (3.20)

hm+1 = ρhm + um+1, m = 1, 2, . . . , K, (3.21)

where Φp,m = Xp,mFp,m. Typically, in a KF approach to (P3), the goal is to recursively

estimate the channel state and its covariance matrix using forward and backward re-

cursions, given the observations yp,1, . . . ,yp,K sampled at the Pt pilot subcarriers. In

the forward recursion, for each OFDM symbol, the KF operates on the received sym-

bol to obtain the estimates of the a-sparse channel as a weighted average of the pre-

vious estimate and the current received symbol. These weights are given by the the

Kalman gain matrix, and are updated for each OFDM symbol. In the backward recur-

sion, the Kalman smoother ensures that the observations until the K th OFDM symbol are

included in the estimation of the a-sparse channel corresponding to the mth symbol for

1 ≤ m < K. Hence, it improves the accuracy of the estimates of the previous channel

states in every recursion.

For the moment, if we assume that Γ is known, and if we denote the posterior mean
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and the covariance matrix of channel in the mth OFDM symbol by ĥm|m and Pm|m, re-

spectively, for 1 ≤ m ≤ K, then the KFS update equations are as follows [124, 128]:

for m = 1, . . . , K do

Prediction: ĥm|m−1 = ρĥm−1|m−1 (3.22)

Pm|m−1 = ρ2Pm−1|m−1 + (1− ρ2)Γ (3.23)

Filtering:

Gm = Pm|m−1Φ
H
p,m

(
σ2IPt +Φp,mPm|m−1Φ

H
p,m

)−1
(3.24)

ĥm|m = ĥm|m−1 +Gm(yp,m −Φp,mĥm|m−1) (3.25)

Pm|m = (IL −GmΦp,m)Pm|m−1 (3.26)

end

for j = K,K − 1, . . . , 2 do

Smoothing: ĥj−1|K = ĥj−1|j−1 + Jj−1(ĥj|K − ĥj|j−1) (3.27)

Pj−1|K = Pj−1|j−1 + Jj−1(Pj|K −Pj|j−1)J
H
j−1, (3.28)

end

where Jj−1 , ρPj−1|j−1P
−1
j|j−1 and Gm is the Kalman gain. In the above, the symbols

ĥm|m−1, Pm|m−1, etc. have their usual meanings as in the KF literature [124]. For ex-

ample, ĥm|m−1 is the channel estimate at the mth OFDM symbol given the observations

Yp,m−1 = [yp,1, . . . ,yp,m−1] and Pm|m−1 is the covariance of the mth channel estimate

given Yp,m−1. The above KFS equations are initialized by setting ĥ0|0 = 0 and P0|0 = Γ.

They track the channel in the forward direction using the prediction and the filtering

equations in (3.22)-(3.26) and smooth the obtained channel estimates using the backward
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recursions in (3.27)-(3.28). However, in the a-sparse channel tracking problem, Γ is un-

known. Hence, we propose the K-SBL algorithm, which simultaneously estimates the

channel coefficients and also learns the unknown Γ.

Recall that the a-group-sparse channel has a common hyperparameter set. The joint

pdf of the received signals and the a-group-sparse channel for K OFDM symbols is

given by (3.7), which leads to the optimization problem as given by (P3). We propose

the K-SBL algorithm using the EM updates, as follows:

E-step : Q
(
γ|γ(r)

)
= Eh1,...,hK |Yp,K ;γ(r)[log p(Yp,K,h1, . . . ,hK ;γ)] (3.29)

M-step : γ(r+1) = argmax
γ∈RL×1

+

Q
(
γ|γ(r)

)
. (3.30)

To compute the E-step given above, we require the posterior distribution of the un-

known a-sparse channel, which is obtained using the recursive update equations given

by (3.22)-(3.28). In order to obtain an ML estimate of γ, K-SBL incorporates an M-step,

which, in turn, utilizes the mean and covariance of the posterior distribution from the

E-step. From (3.7), the M-step results in the following optimization problem:

γ(r+1) = argmax
γ∈RL×1

+

Eh1,...,hK |Yp,K ;γ(r) [c−K log |Γ|

−
K∑

j=2

(hj − ρhj−1)
HΓ−1(hj − ρhj−1)

(1− ρ2)
− hH

1 Γ
−1h1], (3.31)

where c is a constant independent of γ. As mentioned earlier, we see that the M-step re-

quires the computation of ĥj|K , Eh1,...,hK |Yp,K ;γ(r)[hj ], and covariance Eh1,...,hK |Yp,K ;γ(r)[hjh
H
j ] ,

Pj|K + ĥj|Kĥ
H
j|K for j = 1, . . . , K, which is obtained from (3.22)-(3.28). The M-step

also requires the computation of Eh1,...,hK |Yp,K ;γ(r)[hjh
H
j−1] , Pj,j−1|K + ĥj|Kĥ

H
j−1|K for
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j = K,K − 1, . . . , 2, which we obtain from [124] as follows:

Pj−1,j−2|K = Pj−1|j−1J
H
j−2 + JH

j−1(Pj,j−1|K − ρPj−1|j−1)Jj−2. (3.32)

The above recursion is initialized using PK,K−1|K = ρ(IL − GKΦp,K)PK−1|K−1. Using

the above expressions, (3.31) simplifies as

γ(r+1) = argmax
γ∈RL×1

+

{

c′ −K log |Γ| − Trace(Γ−1M1|K)−
1

(1− ρ2)

K∑

j=2

Trace(Γ−1Mj|K)

}

,

(3.33)

where c′ is a constant independent of γ, Mj|K , Pj|K+ĥj|Kĥ
H
j|K+ρ2(Pj−1|K+ĥj−1|Kĥ

H
j−1|K)−

2ρRe(Pj,j−1|K+ĥj|Kĥ
H
j−1|K) and M1|K , P1|K+ĥ1|K ĥ

H
1|K . Differentiating (3.33) w.r.t. γ(i)

and setting the resulting equation to zero gives the update for the ith hyperparameter

as follows:

γ(r+1)(i) =
1

K

(
K∑

j=2

Mj|K(i, i)

(1− ρ2)
+M1|K(i, i)

)

, (3.34)

for i = 1, . . . , L. Thus the K-SBL algorithm learns γ in the M-step and provides low-

complexity and recursive estimates of the a-sparse channel in the E-step. This com-

pletes the EM based solution to (P3).

Remarks: When ρ = 1, the AR model simplifies to h = h1 = . . . = hK , and hence, it

reduces to the block-fading channel scenario. The recursive updates in the E-step are

given by the KFS equations (3.22)-(3.28), and the M-step is given by

Q(γ|γ(r+1)) = Eh|Yp,K ;γ(r)[c′ − (hHΓ−1h+ log |Γ|)], (3.35)

which results in the same M-step as that of the SBL algorithm in the block-fading case.
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Hence, this algorithm provides a low-complexity recursive solution to the SBL prob-

lem in the block-fading scenario, which we discuss in detail in Sec. 3.3.2. At the other

extreme, when ρ = 0, the AR model simplifies to hm = um for m = 1, . . . , K, i.e., the

channels for OFDM symbols are mutually independent of each other. In this case, the

prediction equations of the KFS equations simplify as ĥm|m−1 = 0 and Pm|m−1 = Γ,

and the expressions for ĥm|m and Pm|m simplify to the mean and covariance matrix, as

obtained in the SBL algorithm for a single OFDM symbol. The smoothing equations

simplify to ĥm−1|m = ĥm−1|m−1 and Pm−1|m = Pm−1|m−1, i.e., the smoothed mean and

covariance at the (m− 1)th symbol depend only on observations of the (m− 1)th OFDM

symbol, as expected.

Although the algorithms proposed in this section are easy to implement and compu-

tationally simple due to their recursive nature, they do not utilize all the information

available from the observation vectors y1, . . . ,yK . Only the pilot subcarriers are used

for channel estimation. Hence, in the next section, we extend the SBL framework devel-

oped in this section to detect the unknown data. We show how these decisions can be

coalesced into the EM iterations, leading to joint channel estimation and data detection.

3.3 Joint Channel Estimation and Data Detection Using

Pilot and Data Subcarriers

In this section, we start by deriving the J-SBL and the RJ-SBL algorithm for joint esti-

mation of the unknown a-sparse channel and transmit data in a block-fading OFDM

system. Subsequently, we consider the time-varying channel, and generalize the K-SBL
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to obtain the JK-SBL for jointly estimating the unknown data and tracking the a-group-

sparse channel. Our proposed algorithms solve the problems (P2) and (P4) using an

SBL framework.

3.3.1 The J-SBL Algorithm: Block-fading Case

To derive the algorithm for an OFDM frame consisting of K OFDM symbols, we con-

sider h as a hidden variable and [γ,X1, . . . ,XK] as the parameters to be estimated. The

E and the M-steps of the J-SBL algorithm can be given as

E-step : Q(X,γ|X(r),γ(r)) = Eh|y;X(r),γ(r) [log p(y,h;X,γ)] (3.36)

M-step :
(
X(r+1),γ(r+1)

)
= argmax

X,γ∈RL×1
+

Q
(
X,γ|X(r),γ(r)

)
, (3.37)

where X ∈ CNK×NK is a block diagonal matrix consisting of the matrices X1, . . . ,XK

whose diagonal entries consist of symbols from the transmit constellation, and y =

[yT
1 , . . . ,y

T
K ]

T . The posterior density computed in the E-step is p
(
h|y;X(r),γ(r)

)
=

CN (µ,Σ), where

µ = σ−2ΣFH
b X

(r)Hy

Σ =
(

σ−2FH
b X

(r)HX(r)Fb + Γ(r)−1
)−1

, (3.38)

where Fb ∈ CNK×L with Fb = 1K⊗F, where 1K is a vector of all ones. Notice that (3.38)

and (3.16) are different since the former uses the known pilot symbols, Xp ∈ CP×P ,

whereas the latter uses the pilot symbols along with the estimated transmit data, to-

gether given by X(r) in the rth iteration. The proposed algorithm is pictorially depicted

in Fig. 3.1.



Chapter 3. 74

M−step:

E−step:

γML

Eh|y,X(r),γ(r)[log p(y,h;X,γ)]

argmaxX Eh|y,X(r),γ(r)[log p(y|h;X)]argmaxγ Eh|y,X(r),γ(r)[log p(h;γ)]

XML

argmaxγ,X{E-step}.

Figure 3.1: The J-SBL algorithm: the E-step computes the expectation over the poste-
rior density of h. The joint maximization in the M-step simplifies into two independent
maximizations over γ(i) and X. The step inside the dashed box indicates the new in-
gredient in the J-SBL algorithm.

The objective function in the M-step given in (3.37) can be written as

Q
(
X,γ|X(r),γ(r)

)
= c′′ − Eh|y;X(r),γ(r)

[

‖y −XFbh‖
2
2

σ2
+ log |Γ|+ hHΓ−1h

]

(3.39)

where c′′ is a constant independent of γ and X. The objective function given above is the

sum of two independent functions, Eh|y;X(r),γ(r)[log p(y|h;X)] and Eh|y;X(r),γ(r)[log p(h;γ)].

The key aspect of the M-step below is that the function Eh|y;X(r),γ(r)[log p(y|h;X)] is max-

imized over X, which incorporates the information discarded in the M-step of the SBL

algorithm presented in Sec. 3.2.1. Now, since the first term does not depend on γ, we

optimize the second function with respect to γ(i) to obtain γ(r+1)(i) as in the SBL algo-

rithm, given by (3.18). On the other hand, the first function can be optimized by solving

the following problem:

X(r+1)(i, i) = argmin
xi∈S

{
Cb(i, i)|xi|

2 + |y(i)− xiFb(i, :)µ|
2
}

(3.40)

where i ∈ D, D is an index set consisting of the data subcarrier locations, Cb = FbΣFH
b ,
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Fb(i, :) is the ith row of the Fb matrix, µ and Σ are given in (3.38) and S is the constella-

tion from which the symbol is transmitted. Due to the above maximization,

Q(X,γ|X(r),γ(r)) increases monotonically for 1 ≤ r ≤ rmax, where rmax is the maximum

number of iterations. That is,

Q(X(r+1),γ(r+1)|X(r),γ(r)) ≥ Q(X(r),γ(r)|X(r−1),γ(r−1)), for 1 ≤ r ≤ rmax. (3.41)

Note that the above function Q(.) monotonically (in X and γ) approaches the likelihood

function, which in turn is bounded. This guarantees the convergence of the proposed J-

SBL algorithm. Further, by the same reasoning, the convergence guarantee holds good

for the JK-SBL algorithm which will be presented in the sequel.

The J-SBL requires initial estimates of the unknown parameters γ and X. The ini-

tial estimate of Γ is taken to be the identity matrix, as in the previous section. The

initialization of the (KN − Pb) non-pilot data in turn requires an initial channel esti-

mate. Channel estimates using methods like LS and MMSE cannot be used here, as

they require knowledge of the support and the hyperparameters, respectively. Hence,

the initialization of X can be obtained from the channel estimate obtained from a few

iterations of the SBL algorithm from the Pb = P pilots (denoted as ĥSBL). The ML data

detection problem is given by

X(0)(i, i) = argmin
xi∈S

|y(i)− xiFb(i, :)ĥSBL|
2, i ∈ D. (3.42)

J-SBL algorithm is a block-based algorithm, and hence, the complexity of the algo-

rithm is dominated by the E-step, which incurs a complexity of O(N2LK3) [104]. In the

next subsection, we derive a low-complexity, recursive version of the J-SBL algorithm,
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using the K-SBL algorithm with ρ = 1.

3.3.2 Recursive J-SBL Algorithm: Block-fading Case

In this subsection, we derive the recursive joint SBL algorithm which is mathematically

equivalent to the J-SBL algorithm proposed in Sec. 3.3.1, using the framework of the

K-SBL algorithm with ρ = 1, i.e., for the block-fading channel. Hence, we solve the

problem (P3), using a low-complexity RJ-SBL algorithm.

Consider the state space model in (3.20) and (3.21) in the block-fading case, where

the channel remains constant for K OFDM symbols, with h = h1 = · · · = hK . The

prediction equations of the KFS update equations in (3.22)-(3.26) simplify as ĥm|m−1 =

ĥm−1|m−1 , ĥm−1 and Pm|m−1 = Pm−1|m−1 , Pm−1, for m = 1, . . . , K. Moreover, for ρ =

1, the smoothing equations in (3.27)-(3.28) simplify as hj−1|K = hj|K and Pj−1|K = Pj|K

for j = K, . . . , 1. Hence, the filtering equations of the KFS updates suffice to describe

the recursions, as follows. For m = 1, . . . , K, the E-step of the J-SBL algorithm can be

replaced by

Gm = Pm−1Φ
H
m

(
σ2IN +ΦmPm−1Φ

H
m

)−1
(3.43)

ĥm = ĥm−1 +Gm(ym −Φmĥm−1) (3.44)

Pm = (IL −GmΦm)Pm−1, (3.45)

where Φk denotes the measurement matrix of the kth OFDM symbol given by Φk =

XkF. However, since Γ is unknown and Xk is known only at pilot locations, the SBL

framework is incorporated to learn the unknown Γ and unknown data in Xk. Hence,

the update equations given above form the E-step, while the M-step is the same as that
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of the J-SBL algorithm, given by (3.37). The update for γ is given by,

γ(r+1)(i) = PK(i, i) +
∣
∣
∣ĥK(i)

∣
∣
∣

2

, (3.46)

where ĥK and PK are given by (3.44) and (3.45), respectively. The unknown data can

be detected by solving the following optimization problem:

X(r+1)(i, i) = argmin
xi∈S

{

|xi|
2C(i, i) + |y(i)− xiFb(i, :)ĥK |

2
}

(3.47)

where i ∈ D, C = FbPKF
H
b . The initialization of γ and X(0) is the same as the J-SBL

algorithm of Sec. 3.3.1. The complexity of the RJ-SBL algorithm is dominated by the

computation of Gk, and is given by O(NL2K). Hence, for large K, the RJ-SBL algorithm

is computationally significantly cheaper than the J-SBL algorithm.

The E-step of the RJ-SBL is a recursive implementation of the E-step of the J-SBL al-

gorithm, and the M-steps of the algorithms are the same. Hence, the algorithms are

mathematically equivalent if the same initializations are employed. This is illustrated

via simulations in Sec. 3.4 (see Fig. 3.4).

3.3.3 The JK-SBL Algorithm: Time-varying Case

In this section, we generalize the K-SBL algorithm of Sec. 3.2.2 to obtain the JK-SBL al-

gorithm, which utilizes the observations available at all the N subcarriers and performs

data detection at the (N − Pt) data subcarriers of the OFDM symbol. The algorithm is

recursive in nature, and the channel estimates for K OFDM symbols are used to jointly

estimate the a-sparse channel and the unknown data of the mth, 1 ≤ m ≤ K OFDM

symbol. In essence, we solve the problem given by (P4).
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Our starting point, again, is the state space model given by (3.20) and (3.21). Using

the observations YK = [y1, . . . ,yK ], the recursive updates of the mean and the covari-

ance of the posterior distribution are given by (3.22)-(3.28), with yp,m and Φp,m replaced

by ym and Φm, respectively. Thus, the JK-SBL algorithm uses the observations avail-

able at all the N subcarriers. Further, since Γ and data at the non-pilot subcarriers are

unknown, the SBL framework leads to the objective function for the M-step given by

Q
(

X1, . . . ,XK ,γ|X
(r)
1 , . . . ,X

(r)
K ,γ(r)

)

= c′′′ − E
h1,...,hK |YK ;X

(r)
1 ,...,X

(r)
K ,γ(r)

[
K∑

j=1

‖yj−XjFhj‖
2

σ2

+K log |Γ|+
K∑

j=2

(hj−ρhj−1)HΓ−1(hj−ρhj−1)

(1−ρ2)
+ hH

1 Γ
−1h1

]

, (3.48)

where c′′′ is a constant independent of γ and X1, . . . ,XK . The expression above is a

sum of terms which are independent functions of γ and XK , denoted as Q
(
γ|γ(r)

)
and

Q
(

X1, . . . ,XK |X
(r)
1 , . . . ,X

(r)
K

)

, respectively. Further, we see that Q
(
γ|γ(r)

)
is the same

as the expression in (3.33). Hence, the learning rule for γ follows from the M-step of the

K-SBL algorithm, and is given by (3.34). The expression for Q
(

X1, . . . ,XK |X
(r)
1 , . . . ,X

(r)
K

)

is given by

Q
(

X1, . . . ,XK |X
(r)
1 , . . . ,X

(r)
K

)

= c− E
h1,...hK |YK ;X

(r)
1 ,...,X

(r)
K ,γ(r)

[
K∑

m=1

‖ym−XmFhm‖2

σ2

]

.

(3.49)

As mentioned earlier, the M-step requires the computation of

ĥj|K , E
h1,...,hK |Yp,K ;X

(r)
1 ,...,X

(r)
K ,γ(r)[hj], and covariance E

h1,...,hK |Yp,K ;X
(r)
1 ,...,X

(r)
K ,γ(r)[hjh

H
j ] ,

Pj|K + ĥj|Kĥ
H
j|K for j = 1, . . . , K, which are given by the KFS equations of the E-step.
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The maximization of Q
(

X1, . . . ,XK|X
(r)
1 , . . . ,X

(r)
K

)

in (3.49) leads to the following op-

timization problem for Xm:

X(r+1)
m (i, i) = argmin

xi∈S

{

|xi|
2Cm(i, i) + |ym(i)− xiF(i, :)ĥm|K |

2
}

, 0 ≤ m ≤ K, i ∈ D

(3.50)

where Cm = FPm|KF
H and F(i, :) represents the ith row of the matrix F. The iterations

of the JK-SBL proceed similar to the K-SBL algorithm, except for the additional M-step

to estimate the unknown data. Also, the measurement matrix is given by Φ
(r)
m in the

rth iteration of the mth OFDM symbol, instead of the Φp,m used in the K-SBL algorithm,

which consisted of pilot subcarriers only. We provide a pictorial representation of the

overall JK-SBL algorithm in Fig. 3.2. We use the channel estimate obtained from a few

iterations of the K-SBL algorithm using Pt pilots (denoted as ĥKSBL) to obtain the initial

estimate X
(0)
m for 0 ≤ m ≤ K as

X(0)
m (i, i) = argmin

xi∈S
|ym(i)− xiF(i, :)ĥKSBL|

2, i ∈ D. (3.51)

M−step

E−Step

γ(r),X
(r)
1 , . . . ,X

(r)
K

Smooth: ĥj−1|K, Pj−1|K

Update: ĥj|j, Pj|j

Predict: ĥj|j−1, Pj|j−1

j = 1, 2, . . . , K

Figure 3.2: Block diagram depicting the JK-SBL algorithm. The a-sparse channel is
estimated and tracked in the E-step, while the M-step learns the unknown hyperpa-
rameters γ and detects the unknown transmit data X1, . . . ,XK .

Thus far, we proposed algorithms for joint a-sparse channel estimation and data de-

tection in block-fading and time-varying channels in OFDM systems. We now discuss
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some implementation aspects of the proposed algorithms.

3.3.4 Discussion

In this subsection, we discuss the implementation of the proposed exact inference al-

gorithms, and contrast their complexity with the block-based Autoregressive-SBL (AR-

SBL) algorithm [125] and the approximate inference algorithm [44].

Consider the estimation of the wireless channels when the data is observed up to the

K th OFDM symbol. First, in the forward recursion, (3.22)-(3.26) are applied recursively

until we reach the K th OFDM symbol. Hence, in the forward recursion, we store the

values of ĥj|j, ĥj|j−1, Pj|j and Pj|j−1 for j = 1, 2, . . . , K. Next, we apply the backward

recursion using the Kalman smoother given by (3.27)-(3.28), i.e., KFS is applied to the

whole sequence of observations before updating γ. The Kalman smoother helps to

utilize all the information available in both the past and future symbols, and hence

improves the channel estimates. For the K-SBL and JK-SBL algorithms, the smoothed

mean and covariance are required for the computation of the M-step.

The K-SBL and JK-SBL algorithms are iterative in nature, and the filtering and smooth-

ing equations are executed in the E-step of every iteration using the hyperparameters

obtained in the M-step of the previous iteration and the unknown data for K symbols.

Hence, the E-step performs exact inference, by obtaining the exact posterior distribu-

tion of the a-sparse channel, given the estimate of the hyperparameters. Exact infer-

ence ensures that the likelihood function increases at each EM iteration. However, the

price paid for the exact inference methods is their higher complexity, as has been well-

demonstrated by the simulation results in [44].
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Using a flop-count analysis [129], for K (K > 1) OFDM symbols, the computations of

the K-SBL and JK-SBL algorithms are dominated by the computation of the JK−1 term

in the smoothing step, which has a complexity of O(KL3) per iteration. In a block-

based method such as the ARSBL, the computation of the covariance matrix Σ incurs

a complexity of O(K3P 2
t L) per iteration. Hence, we see that if the number of OFDM

symbols to be tracked are such that KPt > L, the complexity of the ARSBL algorithm

is larger than the K-SBL algorithm. In other words, the K-SBL algorithm is a good

choice among the exact inference techniques when the number of OFDM symbols to be

tracked is large.

The proposed recursive algorithms are very flexible. For example, a pruning step,

where small channel coefficients or hyperparameters are set to zero, can be incorpo-

rated between iterations. This leads to a reduced support set, which in turn results in

faster convergence and lower complexity [9]. However, pruning may eliminate some

of the basis vectors of the measurement matrix before achieving convergence and result

in support recovery errors.

The improved channel estimation accuracy achieved by using the SBL techniques can

lead to performance enhancements in different ways. As will be demonstrated in the

next section, the BER performance can be improved, in both uncoded and coded sys-

tems. An additional approach could be to reduce, or optimize, the pilot density, with

the aim of maximizing the outage capacity [70, 114].



Chapter 3. 82

3.4 Simulation Results

In this section, we demonstrate the performance of the proposed channel estimation al-

gorithms through Monte Carlo simulations. We consider the parameters in the 3GPP/LTE

broadband standard [60, 61]. We use a 3MHz OFDM system with 256 subcarriers, with

a sampling frequency of fs = 3.84MHz, resulting in an OFDM symbol duration of

∼ 83.3µs with Cyclic Prefix (CP) of 16.67µs (64 subcarriers). The length of the a-sparse

channel (L) is taken to be equal to the length of the CP. Each OFDM frame consists of

K = 7 OFDM symbols, which is also known as an OFDM slot. The data is transmitted

using a rate 1/2 Turbo code with QPSK modulation. For the Turbo code generation, we

use the publicly available software [130], which uses a maximum of 10 Turbo iterations.

A sample instantiation of the a-sparse channel used in the simulations and the fil-

tered MIP are depicted in Fig. 3.3. The figure captures the leakage effect due to finite

bandwidth sampling and practical filtering. To generate the plot, we have used the

Pedestrian B channel model [71] with Rayleigh fading. We have also used raised cosine

filtering at the receiver and transmitter with a roll-off factor of 0.5 [61]. At the sampling

frequencies considered, the number of significant channel taps are far fewer than the

weak channel taps in the filtered impulse response, as seen in Fig. 3.3. In the following

subsections, we present the simulation results for the block fading and time varying

scenarios.

3.4.1 Block-fading Channel

In this subsection, we consider a block-fading channel and use Pb = 44 pilot subcar-

riers, uniformly placed in each OFDM symbol. Each OFDM frame consists of K = 7
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Figure 3.3: One sample channel realization of the a-sparse channel, along with the fil-
tered MIP, i.e., the MIP when raised cosine filters are employed at the transmitter and
receiver. The plot also shows the strong (> −30 dB) and weak (< −30 dB) channel taps
and filtered-MIP components, to illustrate that the channel can indeed be modeled as
being approximately sparse.

OFDM symbols. We implement the SBL and the J-SBL algorithm and plot the MSE

performance of both the algorithms in Fig. 3.4, using a convergence criteria of ǫ = 10−9

and rmax = 200 for both the algorithms. We compare the MSE performance of the

proposed algorithms with the CS based channel estimation technique [8], and the MIP-

aware methods: pilot-only MIP-aware estimation [66] and the MIP-aware joint data and

channel estimation algorithm, which we refer to as the EM-OFDM algorithm [72]. From

Fig. 3.4, we observe that the SBL algorithms perform better than the MIP-unaware, non-

iterative schemes such as the Frequency Domain Interpolation (FDI) technique. Among

the iterative methods, the J-SBL algorithm performs an order of magnitude better than

the SBL algorithm, especially at higher values of SNR, while being within 3 dB from the
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MIP-aware EM-OFDM algorithm. The J-SBL jointly detects the (KN − Pb) data sym-

bols along with the estimating channel, resulting in a significantly lower overall MSE.

As mentioned earlier, the RJ-SBL is mathematically equivalent to, and computationally

simpler than, the J-SBL algorithm. Hence, they have the same performance.
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Figure 3.4: MSE performance of SBL, J-SBL/RJ-SBL algorithms compared to FDI [67],
CS [8], MIP-aware pilot-only [66] and EM [72] schemes in a block-fading channel, with
Pb = 44 pilot subcarriers, as a function of SNR in dB.

The coded and the uncoded BER performance of the EM, J-SBL and a genie receiver,

i.e., a receiver with perfect knowledge of the channel (labeled as Genie), is shown in

Fig. 3.5. We also compare the performance with SBL and MIP-aware pilot-only channel

estimation followed by data detection. The BER performance of the RJ-SBL is superior

that of the SBL and CS algorithms in both coded and uncoded cases. The MIP-aware

pilot-only estimation method has a better BER performance compared to RJ-SBL for

SNRs < 15 dB, in both coded and the uncoded cases. Also, the MIP-aware EM-OFDM



Chapter 3. 85

algorithm outperforms the proposed RJ-SBL algorithm by 3 dB. This is because, in the

block-fading case, J-SBL algorithm suffers due to error propagation from the large num-

ber of data symbols that are simultaneously detected.
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Figure 3.5: BER performance of the proposed algorithms in a block-fading channel,
with Pb = 44 pilot subcarriers, as a function of Eb/N0.

3.4.2 Slowly Time-varying Channel

In this section, we consider a slowly time-varying channel, simulated according to a

Jakes’ model [131] with a normalized fade rate of fdTs = 0.001 and Pt = 44 pilot sub-

carriers in every OFDM symbol. The MSE performance of the K-SBL and the JK-SBL

algorithms are plotted against SNR in Fig. 3.6 and compared with the per-symbol MIP-

unaware FDI [67], and the per-symbol J-SBL and the SBL algorithm. Figure 3.6 also

shows the performance of the optimal MIP-aware Kalman tracking algorithm [121]
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which considers all the subcarriers as carrying pilot symbols. The SBL and the J-SBL al-

gorithms are not designed to exploit the temporal correlation in the channel, and hence,

they perform 7-8 dB poorer than their recursive counterparts, the K-SBL and the JK-SBL

algorithms. At higher SNR, we observe that the performance of the JK-SBL algorithm

is only 2 dB worse than the MIP-aware Kalman tracking algorithm with all subcarriers

being pilot subcarriers.
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Figure 3.6: MSE performance of different schemes in a time-varying channel, compared
to the optimal Kalman tracker [121] with fdTs = 0.001 and Pt = 44, as a function of SNR
in dB.

In Fig. 3.7, we depict the BER performance of the proposed algorithms. We see that,

in the coded case, while the JK-SBL performs about 2 dB better than the J-SBL algo-

rithm, it is only a fraction of a dB away from performance of the genie receiver which

has perfect channel knowledge. The JK-SBL outperforms pilots-only based channel
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estimation using the K-SBL and the SBL algorithms by a large (4-5 dB) margin. Fur-

ther, it outperforms the MIP-aware EM-OFDM algorithm, since the latter is unaware

of the channel correlation, and performs channel estimation on a per-OFDM symbol

basis; while the JK-SBL algorithm exploits its knowledge of the channel correlation to

improve the channel estimates.

5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/N0

B
E
R

 

 

SBL
J−SBL
K−SBL
EM−OFDM
JK−SBL
Genie

Solid: Uncoded
Dashed: Coded

Figure 3.7: BER performance of different schemes in a time-varying channel with fdTs =
0.001 and Pt = 44, as a function of Eb/N0.

In Fig. 3.8, we study the MSE performance of K-SBL and the JK-SBL algorithm across

the OFDM frame as a function of the OFDM symbol index for SNRs of 10 and 30 dB. It

is observed that after an initial reduction in the MSE, the MSE tends to remain more or

less unchanged throughout the frame, especially at an SNR of 30 dB, indicating that the

algorithms learn the hyperparameters within the first few OFDM symbols. Hence, this

study shows that at a given SNR, it is possible to restrict the number of OFDM sym-

bols over which the proposed algorithms need to learn the hyperparameters. After the
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hyperparameters are estimated, channel tracking can be accomplished using the con-

ventional MIP-aware Kalman tracking algorithm. This can lead to additional reduction

in the computational complexity of the algorithms.
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Figure 3.8: MSE performance of the K-SBL and the JK-SBL algorithms, as a function of
the OFDM symbol index with fdTs = 0.001 and Pt = 44.

3.5 Conclusions

In this work, we considered the joint approximately sparse channel estimation and data

detection for block-fading and time-varying channels in SISO-OFDM systems, from the

perspective of SBL. To estimate the a-sparse block-fading channel, we proposed the SBL

algorithm and generalized it to obtain the J-SBL algorithm for joint a-sparse channel es-

timation and data detection. Furthermore, we obtained a mathematically equivalent

low-complexity RJ-SBL algorithm. For the time-varying channels, we used a first order

AR model to capture the temporal correlation of the a-sparse channel and proposed a
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novel K-SBL algorithm, using which we tracked the a-sparse channel. We generalized

the K-SBL algorithm to obtain the JK-SBL algorithm for joint channel estimation and

data detection. We discussed the implementation issues of the recursive algorithms and

showed that the proposed algorithms entail a significantly lower computational com-

plexity compared to the previously known SBL techniques. Simulation results showed

that the proposed recursive techniques exploit the temporal correlation of the channel,

leading to an enhanced channel estimation and data detection capability compared to

the per-symbol SBL and J-SBL algorithms, and also learn the hyperparameters within a

few OFDM symbols.



Chapter 4

Joint Channel Estimation and Data

Detection in MIMO-OFDM Systems: A

Sparse Bayesian Learning Approach

4.1 Introduction

Multiple Input Multiple Output (MIMO) technology combined with Orthogonal Fre-

quency Division Multiplexing (OFDM) is the air-interface solution for next-generation

broadband wireless systems and standards [64]. Most MIMO-OFDM wireless stan-

dards such as DVB-T, IEEE 802.11a, IEEE 802.16e etc., employ pilot-based channel es-

timation for data decoding. However, this approach necessitates the transmission of

known pilots symbols on a set of anchor subcarriers per transmit antenna, leading to

severe overheads on the spectral efficiency. In this chapter, we propose novel MIMO-

OFDM channel estimation techniques using far fewer pilots compared to the conven-

tional methods [66,67], by exploiting the inherent, approximate sparsity of the physical

wireless channel.

In this chapter, we model the NtNr spatially uncorrelated MIMO-OFDM wireless

90
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Figure 4.1: Turbo encoded/decoded transmitter and receiver chain of a MIMO-OFDM
system. The dashed box (block shaded in yellow) highlights the proposed algorithms.

Note that, the quantities of interest are the channel estimates ĥ11, . . . , ĥNtNr and output

bits {b̂}.

channels as (a) group approximately-sparse (ga-sparse), and (b) group approximately-

cluster sparse (ga-csparse). Further, we formulate the channel estimation problem in

block-fading and time-varying channels and investigate both pilot-only channel esti-

mation and joint channel estimation and data detection. Our goal is to design novel

algorithms exploiting the structure in ga-sparse and ga-csparse channels for channel

estimation and data detection in MIMO-OFDM systems.

4.1.1 Background and Literature Survey

In this subsection, we present the basic set-up of the coded MIMO-OFDM system con-

sidered in this work and formulate the problem of pilot-based channel estimation and

joint channel estimation and data detection in a MIMO-OFDM system using the Multi-

ple Measurement Vector (MMV) framework.
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The goal of a MIMO-OFDM system is accurate data detection at the output of the de-

coder. We assume that the transmissions between the Nt transmit and the Nr receive

antennas take place through OFDM frames, where every frame consists of K OFDM

symbols. In this work, we consider both the block-fading channel, where the channel

coefficients remain fixed across the OFDM frame duration and vary in an i.i.d. fashion

from frame to frame, and the slowly time-varying channel, where the channel coeffi-

cients can vary across the OFDM frame duration. Fig. 4.1 shows the block diagram of a

typical MIMO-OFDM system with N subcarriers, Nt transmit antennas and Nr receive

antennas. At the transmitter of the discrete-time MIMO-OFDM system, {b} input bits

are first encoded and interleaved into a sequence of coded bits, {c}. The coded bits {c}

are mapped into an M-ary complex symbol sequence, which is split into Nt streams.

At each transmit antenna, Pb pilots are inserted in an OFDM frame in the case of block-

fading channels, and Pt pilots are inserted in every OFDM symbol of an OFDM frame

in the case of time-varying channels. The pilot symbols along with coded data sym-

bols {c} are OFDM modulated and transmitted over the multipath fading channel of

the kth OFDM symbol, denoted by hntnr ,k ∈ CL×1. Here, nt (nr) denotes the transmit

(receive) antenna index, and L is the length of the channel. After OFDM demodulation,

the signal received at the nth
r receive antenna of the kth OFDM symbol is given by

ynr ,k =
Nt∑

nt=1

Xnt,kFhntnr,k + vnr,k, nr = 1, . . . , Nr, (4.1)

where the diagonal matrix Xnt,k ∈ CN×N consists of the pilot and data transmitted over

the nth
t transmit antenna and kth OFDM symbol, and the matrix F ∈ C

N×L consists

of the first L columns of the N × N DFT matrix. Each component of vnr ,k ∈ CN×1
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is an circularly symmetric additive white Gaussian noise with probability distribution

CN (0, σ2).

In the complex baseband representation, the time domain channel impulse response,

denoted by h̃ntnr ,k[t], t ∈ R, can be modeled as a stationary tapped delay-line filter in

the lag domain:

h̃ntnr ,k[t] =

L̃∑

l=1

h̃ntnr,k,lδ[t− τl], (4.2)

where δ[t] is the Dirac delta function, h̃ntnr,k,l and τl represent the attenuation and prop-

agation delay, respectively, on the path l, and L̃ is the number of resolvable paths

[62]. Wireless channel models obtained using channel sounding experiments, on the

other hand, exhibit approximate sparsity in the lag domain, for e.g., due to non-perfect

low-pass filtering using raised cosine filtering [70]. Based on these practical consid-

erations, we model the lag domain filtered channel impulse response as, hntnr,k[t] =

gt[t] ∗ h̃ntnr ,k[t] ∗ gr[t], where gt[t] and gr[t] represent the baseband transmit and re-

ceive filters employed at the transmit and receive antennas, and ∗ represents the con-

volution operation. The corresponding discrete-time channel can be represented as

hntnr,k(l) = hntnr,k[(l − 1)T ], where T is the baud interval. The overall channel is rep-

resented as hntnr ,k = [hntnr ,k(1), hntnr ,k(2), . . . , hntnr ,k(L)]
T . In addition, it is known that

the sample-spaced representation of h̃ntnr,k[t] between different transmit and receive

antenna pairs are group-sparse [81, 82], i.e., the locations of non-zero elements of the

sparse vectors coincide. Since gt[t] and gr[t] are identical for every transmit and receive

antenna, we deduce that the locations of the significant components in hntnr,k also co-

incide across the entire MIMO-OFDM system. In this work, we consider the following

scenarios:
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• hntnr ,k is group approximately-sparse (ga-sparse), i.e., the NtNr wireless channels

consists of a few strong components and several weak components, and the time-

lags of strong and weak components between transmit and receive antenna pairs

coincide.

• hntnr ,k is group approximately-cluster sparse (ga-csparse), i.e., the NtNr ga-sparse

wireless channels consists of clusters such that the components of a given cluster

are all strong or all weak. In addition, there are only a few clusters consisting of

strong components.

Now, to estimate the ga-sparse and ga-csparse channels, we rewrite (4.1) in an MMV

framework [104, 132]. Here, in the kth OFDM symbol, the observations from the Nr

receivers form an observation matrix, Yk, which is related to the vectors in the channel

matrix, Hk, through a common dictionary Φk, as follows:

[y1,k, . . . ,yNr,k]
︸ ︷︷ ︸

Yk∈CN×Nr

= Xk(INt
⊗ F)

︸ ︷︷ ︸

Φk∈CN×LNt







h11,k . . . h1Nr ,k

...
...

hNt1,k . . . hNtNr ,k







︸ ︷︷ ︸

Hk∈CLNt×Nr

+ [v1,k, . . . ,vNr,k]
︸ ︷︷ ︸

Vk∈CN×Nr

, (4.3)

where the overall transmit data matrix Xk ∈ C
N×NNt is given by Xk , [X1,k,X2,k, . . . ,XNt,k].

At the P pilot subcarriers, the MIMO-OFDM system model can be written as

Yp,k = Φp,kHk +Vp,k, (4.4)

where Yp,k ∈ CP×Nr , Φp,k ∈ CP×LNt and Vp,k ∈ CP×Nr are obtained by sampling Yk, Φk

and Vk at the pilot subcarriers, respectively.

Several channel estimation techniques for MIMO-OFDM systems have been proposed
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in literature. Conventional pilot-based interpolation techniques based on frequency

domain Least Squares (LS) or Minimum Mean Square Error (MMSE) based methods

[66, 67] and lag domain LS and MMSE [66]. These methods do not provide reliable es-

timates when Pb < L unless the prior knowledge of the the average multipath power

profile measured at a particular location, also known as the Multipath Intensity Pro-

file (MIP) of the channel [65], is known. In scenarios where the MIP is not known,

blind methods [80] and techniques based on Compressed Sensing (CS) [81, 82] have

been employed. Specifically, CS based simultaneous Orthogonal Matching Pursuit

(OMP) [83], Modified OMP [84], Simultaneous Basis Pursuit Denoising and Simulta-

neous OMP [86] have been proposed for pilot-assisted ga-sparse channel estimation in

MIMO-OFDM systems. Further, CS based Block OMP (BOMP) has been proposed for

pilot-assisted ga-csparse MIMO-OFDM channel estimation [87]. In general, CS based

methods recover an approximately sparse vector by recovering the s significant non-

zero coefficients [133]: a large value of s guarantees recovery accuracy, but requires a

correspondingly large number of measurements. Bayesian algorithms such as the Tem-

poral SBL (TSBL) [79] have been proposed for recovery of temporally correlated group-

sparse vectors, by modeling the correlation among the group-sparse vectors using a

general correlation structure. However, due to the generality of the correlation struc-

ture assumed, the complexity of such algorithms quickly becomes prohibitive as the

time-window over which estimation is performed increases, making these algorithms

unsuitable for OFDM channel tracking.

If the MIP is known, it is well-known that incorporating the observations available
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at the data subcarriers into channel estimation using joint data detection and chan-

nel estimation techniques enhance the quality of channel estimates in MIMO-OFDM

systems [132]. Recently, we showed that such joint approximately sparse channel esti-

mation and data detection schemes enhance the quality of channel estimates in SISO-

OFDM systems [90]. However, using multiple SISO-OFDM estimators in parallel to ob-

tain estimators in the MIMO-OFDM context does not benefit from the spatial ga-sparse

and the ga-csparse nature of the channel. The novelty of this work lies in formulating

the problem such that the proposed Bayesian techniques for joint channel estimation

and data detection harness the group and cluster-sparse nature of the wireless chan-

nels. To the best of the authors’ knowledge, this is the first study in which such schemes

are proposed for MIMO-OFDM systems.

4.1.2 Problem Formulation and Contributions

In this work, we propose Sparse Bayesian Learning (SBL)-based methods [34,49] for ga-

sparse and ga-csparse channel estimation and data detection in MIMO-OFDM systems.

Among the known Bayesian sparse signal recovery techniques [44,45], SBL exhibits the

Expectation Maximization (EM) based monotonicity property, and offers guarantees

such as convergence to the sparsest solution when the noise variance is zero, and con-

vergence to a sparse local minimum, irrespective of the noise variance [49]. The SBL

framework models the sparse channel vector to be estimated as follows:

• The ga-sparse channel is modeled as hntnr,k ∼ CN (0,Γ), where the so-called hy-

perparameters Γ = diag(γ(1), . . . , γ(L)) are common for the NtNr channels over

1 ≤ k ≤ K, i.e., the channels are spatially and temporally ga-sparse. Note that, if

γ(l) → 0, then the corresponding hntnr,k(l) → 0 for all the NtNrK channels [33,49].
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• The ga-csparse channel hntnr ,k is modeled as consisting of B clusters, each of

length M , as follows:

hntnr,k = [hntnr,k(1), . . . , hntnr ,k(M)
︸ ︷︷ ︸

hntnr,1k∈C
1×M

; . . . ; hntnr ,k((M − 1)B + 1), . . . , hntnr ,k(MB)
︸ ︷︷ ︸

hntnr,Bk∈C1×M

],

(4.5)

for 1 ≤ k ≤ K. Here, the ga-csparse structure is exploited by modeling the bth

cluster of the channel, hntnr,bk, as N (0, γ(b)IM), where γ(b) is an unknown hyper-

parameter, such that, when γ(b) = 0, the bth block of hntnr,k is zero [134]. In ad-

dition, the different clusters of the ga-csparse channel are mutually uncorrelated,

and hence, the overall covariance matrix of hntnr,k is a block-diagonal matrix with

principal blocks given by γ(b)IM , 1 ≤ b ≤ B.

The above prior models facilitate the estimation of the channel under the SBL frame-

work, as they lead to closed-form solutions to the E and M steps of the EM algorithm.

We note that the model need not match the true channel statistics: The goal here is

to develop novel channel estimation and data detection algorithms that offer a coded

BER performance comparable to that of a genie-aided MIP-aware receiver that has ex-

act knowledge of the channel support. In particular, the above prior model results in

sparse solutions to the channel vector, accurate channel estimation, and superior coded

BER performance, while requiring far fewer pilot symbols compared to conventional

methods that do not exploit the structured sparsity of the channel.

Depending on the mobility of the receiver, the ga-sparse and the ga-csparse chan-

nels may remain constant over the frame duration (block-fading), or may be slowly

time-varying. When the channel is time-varying, the nonzero channel coefficients vary
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Figure 4.2: Pictorial representation of the algorithms proposed in this work.

slowly and are temporally correlated, but the locations of significant components of the

channel remain constant for several OFDM frames [74]. In addition, it is known that

a first order autoregressive (AR) model accurately captures the temporal behavior of

fading wireless channels [120]. The channel evolution under the first order AR model

is given by

hntnr,k = ρhntnr ,k−1 + untnr ,k, (4.6)

where ρ = J0(2πfdTs), J0(·) is the zeroth order Bessel function of the first kind, fd is

the Doppler frequency, and Ts is the OFDM symbol duration [121]. The driving noise

untnr ,k is distributed as CN (0, (1− ρ2)γ(i)IM).

The main contributions of this chapter are pictorially depicted in Fig. 4.2, and are

as follows. First, for recovering ga-sparse channels in the MMV framework (4.3), we

propose the following algorithms:

• In Sec. 4.2, we adapt the multiple response MSBL algorithm [104] and propose the

novel Kalman MSBL (KMSBL) for pilot-based channel estimation in block-fading

channels and time-varying channels, respectively.
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• In Sec. 4.3, we propose the joint-MSBL (J-MSBL) and joint-KMSBL (J-KMSBL) al-

gorithms for joint channel estimation/tracking and data detection in the block-

fading and time-varying scenarios, respectively.

Next, in the context of recovering ga-csparse channels, we propose the following al-

gorithms:

• In Sec. 4.4, we propose the Block MSBL (BMSBL) and Kalman BMSBL (KBMSBL)

algorithms for pilot-based ga-csparse channel estimation in block-fading and time-

varying channels, respectively.

• In Sec. 4.5, we propose the and Joint-BMSBL (J-BMSBL) and Joint-KBMSBL (J-

KBMSBL) algorithms for joint channel tracking and data detection in the block-

fading and time-varying scenario, respectively.

The joint counterparts of the proposed algorithms, wherein a joint ML estimation of

both the hyperparameters and the data is performed, leads to significant enhancement

in the quality of channel estimates. In the M-step, this joint estimation problem sepa-

rates as independent optimization problems, leading to a simple, computationally inex-

pensive maximization procedure, with no loss of optimality. This, in turn, leads to sig-

nificant improvement in the coded Bit Error Rate (BER) performance compared to the

pilot-based and conventional methods. The algorithms proposed to handle the time-

varying channel conditions fully exploit the correlation structure of the channel, result-

ing in gains of 1−2 dB in the coded BER performance, as illustrated using Monte Carlo

simulations. Further, we propose novel, implementation-friendly structures which lead

to a lower computational load for ga-csparse channels.
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4.2 Channel Estimation and Tracking Using Pilot Subcar-

riers for Ga-sparse Channels

In this section, we propose algorithms for ga-sparse channel estimation and tracking,

using the pilot-subcarriers Yp,k in (4.4), in both block-fading (the MSBL algorithm) and

time-varying (the KMSBL algorithm) scenarios.

4.2.1 The MSBL Algorithm

In the MSBL framework, multiple group-sparse vectors are recovered from multiple ob-

servation vectors [104] with a parameterized prior incorporated to obtain group-sparse

solutions. The prior density is given by

p(H;Γ) =

Nr∏

nr=1

p(hnr ;Γ), (4.7)

where hnr represents the nth
r column of H, given by hnr = [hT

1nr
, . . . ,hT

Ntnr
]T , with a

prior pdf of hnr ∼ CN (0,Γb), Γb = INt ⊗ Γ which control the variances of elements

in H. The hyperparameters in Γ = diag(γ), where γ = [γ(1), γ(2), . . . , γ(L)]T , can be

estimated using the type-II ML procedure [34], i.e., by maximizing the marginalized

pdf p(yp,nr ;γ)
1 at the nth

r receive antenna, as follows:

γML(i) = argmax
γ(i)∈R+

p(yp,nr ;γ); 1 ≤ i ≤ L. (4.8)

1Here, we describe the MSBL algorithm for k = 1, and hence, we drop the subscript k in yp,nr
and

Yp.
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Since the above problem cannot be solved in closed form, iterative estimators such as

the EM based2 MSBL algorithm [104] are employed. In this approach, H is treated as

the hidden variable, and the posterior distribution of H is obtained in the E-step and

the ML estimate of γ is obtained in the M-step. The steps of the algorithm are given as

E-step : Q(γ|γ(r)) = EH|Yp;γ(r)[log p(Yp,H;γ)] (4.9)

M-step : γ(r+1)(i) = argmax
γ(i)∈R+

Q(γ|γ(r)), (4.10)

for 1 ≤ i ≤ L, and the E and M steps are iterated until convergence. The E-step requires

the posterior distribution p(H|Yp;γ
(r)), which can be obtained from the likelihood at

the nth
r receiver, as follows:

p(yp,nr |hnr) =
1

(πσ2)Nr
exp

(

−
‖yp,nr −Φphnr‖

2
2

σ2

)

. (4.11)

Combining the likelihood and the prior distribution, the posterior distribution of hnr is

given by p
(
hnr |yp,nr ;γ

(r)
)
∼ CN (µnr ,Σ), with mean and covariance given by

µnr = σ−2ΣΦH
p yp,nr , Σ =

(

ΦH
p Φp

σ2
+ Γ

(r)
b

−1

)−1

. (4.12)

Here, Γ
(r)
b is the hyperparameter value in the rth iteration and Σ is common to all receive

antenna, and hence, independent of the subscript nr.

The M-step, given by (4.10), can be simplified to obtain the update equation for γ as

γ(r+1)(i) =
1

NtNr

Nr∑

nr=1

Nt−1∑

nt=0

(
|µnr(i+ ntL)|

2 +Σ(i+ ntL, i+ ntL)
)
. (4.13)

2Note that, all the algorithms proposed in the chapter use EM-based updates, and hence, they have a
convergence guarantee to a local optima, with the likelihood increasing in each iteration [127].



Chapter 4. 102

Note that, in the above equation, the ga-sparse nature of the channel results in the

update of γ which is averaged over the NtNr channels of the MIMO-OFDM system. For

a SISO-OFDM system, Nt = Nr = 1, and the above expression simplifies to the one

obtained in [90].

The E-step involves computing the posterior mean and variance of the ga-sparse

MIMO-OFDM channel as given in (4.12), incurring a computational complexity given

by O(P 2
b L) [104], while M-step computes the hyperparameter update as given in (4.13),

incurring a computational complexity of O(NtNrL). In practice, it is found that an ini-

tial estimate for Γ given by Γ(0) = IL×L is sufficient for the MSBL algorithm.

In the case of multiple OFDM symbols in a block-fading channel, the channel remains

constant for the K OFDM symbols. The system model in (4.4) can be used for channel

estimation, such that the number of observations corresponding to pilot subcarriers is

Pb.

The MSBL algorithm, in the current form, cannot benefit from the correlation that

exists in time-varying channels across OFDM symbols. In the following subsection,

we extend MSBL algorithm to obtain the recursive KMSBL algorithm which exploits

the temporal correlation across OFDM symbols, resulting in a significant performance

improvement when the channel is slowly time-varying.

4.2.2 The KMSBL Algorithm

In this subsection, we describe the KMSBL algorithm which tracks the NtNr ga-sparse

MIMO-OFDM channels by exploiting both the group-sparsity and the temporal chan-

nel correlation using a Kalman filter and smoother (KFS) based recursive framework.

In the time-varying scenario, the state space equations for k = 1, 2, . . . , K − 1 are as
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follows:

Yp,k = Φp,kHk +Vp,k, (4.14)

Hk+1 = ρHk +Uk+1, (4.15)

where Φp,k = [Φp,1,k, . . . ,Φp,Nt,k], Φp,nt,k , Xp,nt,kFp,nt ∈ C
Pt×L, Xp,nt,k ∈ C

Pt×Pt is a

diagonal matrix consisting of pilots symbols transmitted from the nth
t antenna in the

kth OFDM symbol, and Fp,nt ∈ CPt×L is a truncated DFT matrix consisting of the first

L columns and the Pt rows corresponding to the pilot subcarriers of the nth
t transmit

antenna. Further, Hk consists of the Nr channels corresponding to the kth OFDM sym-

bol, i.e., Hk = [h1,k, . . . ,hNr ,k] where hnr ,k = [hT
1nr ,k

, . . . ,hT
Ntnr ,k

]T . In the above equation,

we define H0 , 0NtL×Nr , where 0NtL×Nr is an NtL × Nr matrix of zeros. Note that the

columns of the matrix Uk+1 contain the driving noise vectors, unr ,k+1 which consists of

independent components unr ,k+1(i) ∼ CN (0, (1 − ρ2)γ(i)). The initial condition for the

ga-sparse channel is given by h1 ∼ CN (0,Γ).

The EM steps of the KMSBL algorithm are as follows:

E-step : Q
(
γ|γ(r)

)
= EH1,...,HK |Yp;γ(r)[log p(Yp,H1, . . . ,HK ;γ)]

M-step : γ(r+1) = argmax
γ∈RL×1

+

Q
(
γ|γ(r)

)
. (4.16)

In the above expression, Yp , [Yp,1, . . . ,Yp,K] represents the overall observation ma-

trix.

To compute the E-step given above, we require the posterior distribution of the un-

known ga-sparse channel Hk. For this, we employ the Kalman based recursive update

equations. The Kalman Filtering and Smoothing (KFS) equations for K OFDM symbols
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are as follows [90, 124, 128]:

for k = 1, . . . , K do

Prediction: Ĥk|k−1 = ρĤk−1|k−1 (4.17)

Pk|k−1 = ρ2Pk−1|k−1 + (1− ρ2)Γb (4.18)

Filtering:

Gk = Pk|k−1Φ
H
p,k

(
σ2IPt +Φp,kPk|k−1Φ

H
p,k

)−1
(4.19)

Ĥk|k = Ĥk|k−1 +Gk(yp,k −Φp,kĤk|k−1) (4.20)

Pk|k = (INtL −GkΦp,k)Pk|k−1 (4.21)

end (4.22)

for j = K,K − 1, . . . , 2 do

Smoothing:

Ĥj−1|K = Ĥj−1|j−1 + Jj−1(Ĥj|K − Ĥj|j−1) (4.23)

Pj−1|K = Pj−1|j−1 + Jj−1(Pj|K −Pj|j−1)J
H
j−1 (4.24)

end (4.25)

where Jj−1 , ρPj−1|j−1P
−1
j|j−1 and Gk is the Kalman gain matrix. In the above, the

symbols Ĥk|k−1, Pk|k−1, etc. have their usual meanings as in the KF literature [124]. For

example, Ĥk|k−1 is the channel estimate at the kth OFDM symbol given the observations

Yp,k−1; Pk|k−1 is the covariance of the kth channel estimate given Yp,k−1, etc. The above

KFS equations are initialized by Ĥ0|0 = 0 and P0|0 = Γb = Γ⊗ INt .

In order to simplify (4.16), we use the joint pdf of the observations Yp and H1, . . . ,HK ,
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given by

p(Yp,H1, . . . ,HK ;γ) =
K∏

k=1

p(Yp|H1, . . . ,HK)p(Hk|Hk−1;γ). (4.26)

Since Hk consists of columns hnr ,k for 1 ≤ nr ≤ Nr, the M-step results in the following

optimization problem:

γ(r+1) = argmax
γ∈RL×1

+

EH1,...,HK |Yp;γ(r)[KNr log |Γb|+
1

(1− ρ2)

Nr∑

nr=1

K∑

k=2

[
(hnr ,k − ρhnr ,k−1)

HΓ−1
b

(hnr ,k − ρhnr ,k−1) + hH
nr ,1Γ

−1
b hnr,1]

]
. (4.27)

We see that the M-step requires the computation of

Ĥj|K , EH1,...,HK |Yp;γ(r)[Hj ], and the covariance EH1,...,HK |Yp;γ(r)[HjH
H
j ] , Pj|K+Ĥj|KĤ

H
j|K

for j = 1, . . . , K, which is obtained from (4.17)-(4.25). The M-step also requires the com-

putation of EH1,...,HK |Yp;γ(r)[HjH
H
j−1] , Pj,j−1|K + Ĥj|KĤ

H
j−1|K for j = K,K − 1, . . . , 2,

which we obtain from [124] as follows:

Pj−1,j−2|K = Pj−1|j−1J
H
j−2 + JH

j−1(Pj,j−1|K − ρPj−1|j−1)Jj−2. (4.28)

The above recursion is initialized using PK,K−1|k = ρ(INtL −GKΦp,K)PK−1|K−1. Using

the above expressions, the optimization problem in (4.27) can be written as

γ(r+1) = argmin
γ∈RL×1

+

{

KNtNr log |Γ|+
Nt∑

nt=1

Tr(Γ−1Mnt,1|K) +
1

(1−ρ2)

K∑

j=2

Nt∑

nt=1

Tr(Γ−1Mnt,j|K)},

(4.29)

where Mnt,1|K ∈ CL×L is the submatrix consisting of rows and columns (nt − 1)L

through ntL from the matrix M1|K , NrPj|K+Ĥj|KĤ
H
j|K+ρ2(NrPj−1|K+Ĥj−1|KĤ

H
j−1|K)−
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2ρRe(NrPj,j−1|K + Ĥj|KĤ
H
j−1|K). Similarly, Mnt,j|K ∈ CL×L is the submatrix of Mj|K ,

NrP1|K + Ĥ1|KĤ
H
1|K , consisting of rows and columns (nt − 1)L through ntL. Since the

individual channel components of hnr,k given by hntnr,k for 1 ≤ nt ≤ Nt are governed

by γ, we note that the update of γ is averaged over the Nt components via the summa-

tion over nt. Differentiating (4.29) w.r.t. γ(i) and setting the resulting expression to zero

and solving for γ gives the update for the ith hyperparameter as follows:

γ(r+1)(i) =

[

1
KNtNr

(
K∑

j=2

Nt∑

nt=1

Mnt,j|K(i, i)

(1− ρ2)
+Mnt,1|K(i, i)

)]+

, (4.30)

for i = 1, . . . , L. Thus the KMSBL algorithm learns γ in the M-step and provides low-

complexity and recursive estimates of the ga-sparse channel in the E-step.

Remarks: When ρ = 1, H1 = . . . = HK , and hence, the channel is constant across the

OFDM frame, i.e., the channel is block-fading. Substituting ρ = 1 in (4.17)-(4.25), the

KFS update equations collapse to the following three equations:

Gk = Pk−1|k−1Φ
H
p,k(σ

2IPt +Φp,kPk−1|k−1Φ
H
p,k)

−1 (4.31)

Ĥk|k = Ĥk−1|k−1 +Gk(Yp,k −Φp,kĤk−1|k−1) (4.32)

Pk|k = (INtL −GkΦp,k)Pk−1|k−1. (4.33)

Further, when ρ = 1, the M-step of (4.27) simplifies to the M-step of MSBL given in

(4.10).

The KMSBL algorithm proposed in this section is a generalized version of the KSBL

algorithm proposed in [90] for pilot-based SISO-OFDM channel estimation, i.e., setting

Nt = Nr = 1 in the KMSBL algorithm leads to the KSBL algorithm. However, in con-

trast to the KSBL algorithm, the KMSBL algorithm is capable of harnessing the spatial
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sparsity that exists in the MIMO-OFDM channel, and hence track Nr correlated channel

vectors governed by a common γ.

In order to estimate the wireless channel when the data is observed up to the K th

OFDM symbol, (4.17)-(4.21) are applied recursively until we reach the K th OFDM sym-

bol in the forward recursion. We store the values of Ĥj|j, Ĥj|j−1, Pj|j and Pj|j−1 for

j = 0, . . . , K in the forward recursion. Next, we apply the backward recursion using

the Kalman smoother given by (4.23)-(4.25), i.e., KFS is applied to the whole sequence

of observations before updating γ. The Kalman smoother helps to utilize all the infor-

mation available in both the past and future symbols, and hence improves the channel

estimates.

Using a flop-count analysis [129], the complexity of the KMSBL algorithm is domi-

nated by the computation of Jk−1 in the smoothing step, which has a complexity of

O(KL3) per iteration per receive antenna. Hence, if KPt > L, the complexity of the

block-based ARSBL algorithm [79] is higher than the KMSBL algorithm. Thus, the

KMSBL algorithm is a good choice among the exact inference techniques when the

number of OFDM symbols to be tracked is large [90].

Although the algorithms proposed in this section are simple to implement, they are

based on the pilot subcarriers only, and do not utilize the data subcarriers. In the fol-

lowing section, we propose such joint channel estimation and data detection schemes

for ga-sparse channel estimation.
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E-step: Q(γ,X|γ(r),X(r)) = EH|Y;γ(r),X(r)[log p(H,Y;γ,X)]

M-step: argmaxγ,XQ(γ,X|γ(r),X(r))

X(r+1) = argmaxXQ(X|X(r))γ(r+1) = argmaxγ Q(γ|γ(r))

Figure 4.3: The J-MSBL algorithm: E-step computes the expectation over the posterior
density of H. The joint maximization in the M-step simplifies into two independent
maximizations over γ and X. The dashed box indicates the novelty in the J-MSBL
approach.

4.3 Joint Channel Estimation/Tracking and Data Detec-

tion Using Pilot and Data Subcarriers for Ga-sparse

Channels

In this section, we derive the novel J-MSBL and J-KMSBL algorithms that generalize

the pilot-based MSBL and KMSBL algorithms for joint ga-sparse channel estimation

and data detection in MIMO-OFDM systems. Further, using the recursive J-KMSBL

algorithm, we show that a low-complexity recursive variant of J-MSBL can be derived

using the KFS update equations given in (4.17)-(4.25).

4.3.1 The J-MSBL Algorithm

In this subsection, we derive the J-MSBL algorithm for joint estimation of the ga-sparse

channels and the transmit data. To derive this algorithm, we modify the MSBL frame-

work to include both the hyperparameters and the data transmitted in K OFDM sym-

bols as unknown variables. That is, we consider H in (4.3) as the hidden variable and
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(

γ,X , [X11, . . . ,Xntk, . . . ,XNtK ]
)

as the parameters to be estimated. Here, Xntk con-

sists of the data corresponding to the nth
t antenna in the kth OFDM symbol. The E and

the M-steps of the J-MSBL algorithm can be given as

E-step : Q(γ,X|γ(r),X(r)) = EH|Y;γ(r)[log p(Y,H;γ,X)]

M-step :
(
γ(r+1),X(r+1)

)
= argmax

γ∈RL×1
+ ,X:xi∈S

Q(γ,X|γ(r),X(r)), (4.34)

where xi is an element in X, and S is the constellation from which the symbols are

transmitted. The E-step computes the posterior distribution at every receive antenna,

and is given as p(hnr |ynr ;γ
(r),X(r)) ∼ CN (µnr ,Σ), where

µnr = σ−2ΣΦH
b ynrk, Σ =

(

σ−2ΦH
b Φb + Γ(r)−1

)−1

, (4.35)

for the K OFDM symbols in a frame. In (4.35), Φb = [ΦT
1 , . . . ,Φ

T
K ]

T , and for 1 ≤ k ≤ K,

Fb = 1Nt ⊗ F, Φk = Fbblkdiag(X
(r)
1k , . . . ,X

(r)
Ntk

) and ynr,k = [yT
1,k, . . . ,y

T
Nr ,k

]T .

At the outset, solving the optimization problem in the M-step in (4.34) seems an uphill

task, as it involves joint optimization over X and γ. However, in (4.34), the optimization

problem w.r.t. to γ and X can be decoupled as the sum of two independent functions,

Q(X|X(r)) , EH|Y;γ(r),X(r)[log p(Y|H;X)] and Q(γ|γ(r)) , EH|Y;γ(r),X(r)[log p(H;γ)]. This

is schematically illustrated in Fig. 4.3.3 Further, we see that Q(γ|γ(r)) of the MSBL al-

gorithm and the J-MSBL algorithm are identical, and hence, upon optimizing Q(γ|γ(r))

with respect to γ(i), we obtain the expression for γ(r+1)(i) as in the MSBL algorithm,

3Notice that (4.10) and (4.34) are different, since the former uses the measurement matrix containing
only the known pilot symbols, Φp, whereas the latter uses the measurement matrix consisting of pilot
symbols along with the estimated data, together given by Φ(r).
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given by (4.10). Further, the objective function to obtain X, i.e., Q(X|X(r)), can be de-

rived as follows:

Q(X|X(r)) = EH|Y;γ(r),X(r)

[

log
Nr∏

nr=1

p(ynr ,k|hnr ;X)

]

= −EH|Y;γ(r),X(r)

[
Nr∑

nr=1

‖ynr,k −Φbhnr‖
2
2

]

. (4.36)

and hence, the optimization problem for X is given by

X
(r+1)
11 (i, i), . . . , X

(r+1)
NtK

(i, i) = argmin
x1,...,xNt∈S

C(i, i) +

Nr∑

nr=1

|ynr,k(i)−
Nt∑

nt=1

xnt,kFb(i, :)µnr |
2,

(4.37)

where i ∈ D, D is an index set consisting of the data subcarrier locations, C = ΦΣΦH ,

Fb(i, :) is the ith row of the Fb matrix, µnr and Σ are given in (4.35). The computational

complexity of this algorithm is dominated by the inverse operation in (4.35), and is

O(K2N2LNt).

As stated in the previous section, the initial estimate of Γ is taken to be the identity

matrix. The initialization of the (KNNt − PbNt) data symbols in turn requires an initial

channel estimate. Hence, the initialization of X is obtained from the channel estimate

obtained from a few iterations of the MSBL algorithm from the Pb pilots (denoted as

ĥMSBL). The ML data detection problem for obtaining the initial data estimates is given

by

X
(0)
1 (i, i), . . . , X

(0)
Nt

(i, i) = argmin
x1,...,xNt∈S

|ynr,k(i)−
Nt∑

nt=1

xntFb(i, :)ĥMSBL|
2, i ∈ D. (4.38)

In order to obtain the solution for both (4.37) and (4.38), we need to find the vector

[x1, . . . , xNt ] that jointly minimizes (4.37). Although we can solve this problem with
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moderate complexity for MIMO-OFDM systems with Nt up to 4 [60], the complexity

of this problem is high for large values of Nt. In such scenarios, one can use sphere

decoding [132].

In the following section, we discuss the pilot-based and joint channel estimation and

data detection for time-varying ga-sparse MIMO-OFDM channels.

4.3.2 The J-KMSBL Algorithm

In this section, we generalize the KMSBL algorithm of Sec. 4.2.2 to obtain the J-KMSBL

algorithm, which utilizes the observations available at the N subcarriers of the K OFDM

symbols, and performs data detection at the (N − Pt) data subcarriers of the OFDM

symbol. Generalizing the J-MSBL to the J-KMSBL algorithm involves incorporating an

E-step that exploits the correlation in the time-varying channels such that the algorithm

is recursive in nature, and the smoothed channel estimates obtained for the K OFDM

symbols are used to jointly estimate the ga-sparse channel and the unknown data of the

K OFDM symbols.

Our starting point, again, is the state space model given by (4.15). The EM update

equations in this context are given by

E-step : Q(γ,X|γ(r),X(r)) = EH1,...,HK |Y;γ(r)[log p(Y,H1, . . . ,HK ;γ,X)]

M-step :
(
γ(r+1),X(r+1)

)
= argmax

γ∈RL×1
+ ,X:xi∈S

Q(γ,X|γ(r),X(r)), (4.39)

where X comprises of the data transmitted on the K OFDM symbols, as defined in

the previous subsection. Since the J-KMSBL algorithm uses the observations available

at all the N subcarriers of an OFDM symbol, the recursive updates of the mean and
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the covariance of the posterior distribution are given by (4.17)-(4.25), with Yp and Φp

replaced by Y and Φ, respectively. Further, since Γ and data at the non-pilot subcarriers

are unknown, the objective function in the M-step given by

Q
(
X,γ|X(r),γ(r)

)
= c−KNr log |Γb| − EH1,...,HK |Y;X,γ(r)





K∑

j=1

Nr∑

nr=1

σ−2

∥
∥
∥
∥
∥
ynr ,j −

Nt∑

nt=1

Xnt,jFhntnr ,j

∥
∥
∥
∥
∥

2

−
K∑

j=2

Nr∑

nr=1

(hnr ,j − ρhnr ,j−1)
HΓ−1

b (hnr ,j − ρhnr ,j−1)

(1− ρ2)
− hH

nr,1Γ
−1
b hnr ,1

]

, (4.40)

where c is a constant independent of γ and X. The expression above is a sum of terms

which are independent functions of γ and Xk , [X1,k, . . . ,XNt,k] for 1 ≤ k ≤ K, de-

noted as Q
(
γ|γ(r)

)
and Q

(

Xk|X
(r)
k

)

, 1 ≤ k ≤ K, respectively. Further, we see that

Q
(
γ|γ(r)

)
is the same as (4.29). Hence, the learning rule for γ follows from the M-step

of the KMSBL algorithm, and is given by (4.30). The expression for Q
(

Xk|X
(r)
k

)

is given

by

Q
(

Xk|X
(r)
k

)

= EHk |Y;X(r),γ(r)



c−
Nr∑

nr=1

σ−2

∥
∥
∥
∥
∥
ynr ,k −

Nt∑

nt=1

Xnt,kFhntnr ,k

∥
∥
∥
∥
∥

2


 . (4.41)

The M-step requires Ĥk|K , EHk|Y;X(r),γ(r)[Hk] and Pk|K , EHk |Y;X(r),γ(r)[HkH
H
k ], which

are given by the KFS equations of the E-step. The maximization of Q
(

Xk|X
(r)
k

)

in (4.41)

leads to the following optimization problem for Xk:

X
(r+1)
1,k (i, i), . . . , X

(r+1)
Nt,k

(i, i) = argmin
x1,...,xNt∈S

C(i, i) +

Nr∑

nr=1

|ynr(i)−
Nt∑

nt=1

xntF(i, :)ĥnr ,k|K|
2,

(4.42)

where i ∈ D, D is an index set consisting of the data subcarrier locations, C = ΦPk|KΦ
H ,
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F(i, :) is the ith row of F and ĥnr ,k|K is the nth
r column of Ĥk|K . Note that, in contrast to

the expression for C in (4.37), the above expression is a function of Pk|k since the co-

variance is computed recursively.

Data detection in the M-step results in the measurement matrix Φ
(r)
k in the rth itera-

tion and kth OFDM symbol. Hence, the iterations of the J-KMSBL comprise the KFS

update equations that incorporate Φ
(r)
k instead of the pilot-only Φp,k used in the KSBL

algorithm. Further, the data detection in the M-step necessitates the initialization of

transmit data, X
(0)
k for 0 ≤ k ≤ K. We use the channel estimate obtained from a few

iterations of the KMSBL algorithm from the Pt pilots (denoted as ĥKMSBL) to obtain the

initial estimate X
(0)
k for 0 ≤ k ≤ K and i ∈ D as

X
(0)
1,k(i, i), . . . , X

(0)
Nt,k

(i, i) = argmin
x1,...,xNt∈S

|ynr(i)−
Nt∑

nt=1

xntF(i, :)ĥKMSBL|
2. (4.43)

As mentioned in Sec. 4.2.2, when ρ = 1, the channel is block-fading in nature. Employ-

ing Pb pilots in an OFDM frame, we can emulate the block-fading scenario described in

Sec. 4.3.1, and hence implement the J-MSBL algorithm recursively using KFS equations

given by (4.33). Further, the M-step of the J-KMSBL algorithm is given by (4.30) and

(4.43).

Thus far, we focussed on recovering the block-fading and time-varying ga-sparse

channels using pilot-only and joint techniques. Next, we design pilot-only and joint

channel estimation and data detection algorithms for group approximately cluster-sparse

block-fading and time-varying channels.
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4.4 Channel Estimation and Tracking Using Pilot Subcar-

riers for Ga-csparse Channels

In this section, we model the channel as ga-csparse, i.e., the entries of the approxi-

mately sparse channel are constrained to lie in a few clusters. The ga-csparse channel

hntnr consists of B blocks each of length M , with each block containing all strong or

all weak components, and the strong component clusters are few in number. The para-

metric prior modeling in SBL can be extended to the ga-csparse channels by assigning a

hyperparameter γc(i) to the ith cluster, 1 ≤ i ≤ B, instead of the ith component, as given

in Sec. 4.2.1. That is, a B length hyperparameter vector γc is associated with the pdf of

hntnr , such that every M length cluster of the channel is distributed as CN (0, γc(i)).

First, we propose the Block MSBL (BMSBL) for pilot-based ga-csparse block-fading

channel estimation in a MIMO-OFDM framework and propose to implement the BMSBL

algorithm using the parallel cluster MSBL (PCMSBL) approach [135], which is same as

the BMSBL in performance but has the advantage of computational complexity as it

allows for the parallel implementation of the algorithm. Thereafter, we develop the

Kalman-BMSBL (KBMSBL) algorithm for pilot-based ga-csparse time-varying channel

estimation, and propose to implement the algorithm using the low-complexity Nested

MSBL (NMSBL) approach [135].

4.4.1 The BMSBL Algorithm

In this subsection, we propose the Block MSBL (BMSBL) algorithm for pilot-based

estimation of the block-fading ga-csparse channels, by generalizing the BSBL algo-

rithm [134] to the multiple measurement scenario. That is, we recover the Nr ga-csparse
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channels, hnr ,m from Nr observation vectors, ynr ,m. Note that setting Nr = Nt = 1 leads

to the SISO-OFDM problem, making the proposed algorithm backward compatible for

the SISO-OFDM ga-csparse channel estimation.

The EM algorithm for ML estimation of the parameter γc in the BMSBL framework is

as follows:

E-step : Q
(
γc|γ

(r)
c

)
= E

H|Yp;γ
(r)
c
[log p(Yp,H;γc)]

M-step : γ(r+1)
c = argmax

γc∈R
B×1
+

Q
(
γc|γ

(r)
c

)
. (4.44)

The posterior distribution in the E-step above can be derived as p(hnr |yp,nr ;γ
(r)
c ) ∼

CN (µc,nr ,Σc), where

µc,nr = ΣcΦ
H
p yp,nr , Σc = σ−2

(

ΦH
p Φp

σ2
+ (Γc ⊗ IM)−1

)−1

(4.45)

Observe that the MSBL Sec. 4.2.1 and the BMSBL algorithms differ in the prior distri-

bution of H. The log-likelihood of the ga-csparse channel H is given by

log p(H;γc) = c′ −NtNr log |(Γc ⊗ IM)| −
Nt∑

nt=1

Nr∑

nr=1

hH
ntnr

(Γc ⊗ IM)−1
hntnr , (4.46)

where c′ is a constant independent of γc. Maximizing Q
(

γc|γ
(r)
c

)

in (4.44) w.r.t. γc, we

obtain the following

γ(r+1)
c (i) = argmin

γc∈R+

MNtNr log |Γc|+ E
H|Yp;γ

(r)
c

Nr∑

nr=1

[
Nt∑

nt=1

(Γc ⊗ IM)−1Tr[hntnrh
H
ntnr

]

]

.

(4.47)
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Simplifying the above, we obtain

γ(r+1)
c (i) =

1

MNtNr

M∑

m=1

Nr∑

nr=1

Nt∑

nt=1

Σc,ntnr(m,m) + |µc,ntnr(m)|2. (4.48)

Note that, in contrast to (4.13), we obtain the averaging over the size of the cluster,

since γ
(r+1)
c (i) is common to the entries of the cluster. Further, since the vectors are ga-

csparse over Nt transmit and Nr receive antenna, we obtain the update, γ
(r+1)
c (i) which

is averaged over NtNr channels of the MIMO-OFDM system.

Implementation of BMSBL

Here, we discuss the implementation of the BMSBL algorithm. We employ the PCSBL

approach [135] which can significantly decrease the complexity of the proposed BMSBL

approach.

The complexity of the BMSBL algorithm is dominated by the computation of the pos-

terior covariance matrix Σc, which incurs a computational load of O(N2MB). In [135],

we proposed an approach for estimating cluster-sparse signals and showed that the

block-based algorithm in [134] is amenable to a parallel cluster SBL (PCSBL) imple-

mentation.

We employ the PCSBL approach to handle multiple measurements, as depicted in

Fig. 4.4, where the ga-csparse channel is recovered by solving M parallel problems.

The M-step is simply the average of the hyperparameter updates obtained from the M

parallel problems per receive antenna. This approach incurs a maximum computational

load of O(P 3
b ), i.e., the complexity does not scale with L = MB.

The BMSBL algorithm is designed for block-fading channels, and cannot avail itself
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EHM

EH1

Figure 4.4: Block Diagram of the PCMSBL algorithm depicting M parallel branches.

of the temporal correlation in time-varying channels. In the following subsection, we

propose a recursive KBMSBL algorithm for time-varying ga-csparse channel estimation

that exploits its temporal correlation.

4.4.2 The KBMSBL Algorithm

In this subsection, we derive an algorithm for tracking the slowly time-varying ga-csparse

MIMO-OFDM channel using the SBL framework. As in Sec. 4.2.2, we employ an AR

model for the temporal evolution of the ga-csparse channel and derive recursive KFS

based techniques. In addition, we propose a nested SBL approach [135] which fa-

cilitates the implementation of the proposed algorithm using M parallel Kalman fil-

ters/smoothers.

We formulate the ga-csparse channel estimation problem by modeling the channel

corresponding to the kth OFDM symbol as hnr,k ∼ CN (0, (Γc ⊗ IM)). We model the

temporal variation of every cluster in the ga-csparse channel using the first order AR

model as given in (4.15), i.e.,

hntnr,mk = ρhntnr,mk−1 + untnr,mk, (4.49)
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for 1 ≤ m ≤ M , where untnr,mk is spatio-temporally white, i.e., untnr,mk ∼ CN (0, (1 −

ρ2)γ(m)IM). The E and M steps for pilot-based ga-csparse channel estimation are given

by

E-step : Q
(
γc|γ

(r)
c

)
= E

H1,...,HK |Yp;γ
(r)
c
[log p(Yp,H1, . . . ,HK ;γc)] (4.50)

M-step : γ(r+1)
c = argmax

γc∈R
B×1
+

Q
(
γc|γ

(r)
c

)
. (4.51)

The posterior distribution of H1, . . . ,HK can be efficiently evaluated using the KFS

equations given in (4.17) - (4.25), by replacing Γb by Γcb , (INt ⊗ (Γc ⊗ IM)).

The logarithm of the conditional prior distribution is given by

log p(Hk|Hk−1;Γc) = KNr log |Γcb| −

Nr∑

nr=1

K∑

k=2

(hnr,k − ρhnr ,k−1)
HΓ−1

cb (hnr,k − ρhnr ,k−1)

(1− ρ2)

−
Nr∑

nr=1

hH
nr ,1Γ

−1
cb hnr ,1, (4.52)

Note that, in the above expression, Γ−1
cb imposes the ga-csparse structure on the channel

for K OFDM symbols. The M-step of KBMSBL can be simplified as follows:

γ(r+1)
c = argmin

γc∈R
B×1
+

E
H1,...,HK |Yp;Γ

(r)
c
[KNr log |Γcb|

+
K∑

k=2

Nr∑

nr=1

(hnr ,k − ρhnr ,k−1)
HΓ−1

cb (hnr ,k − ρhnr ,k−1)

(1− ρ2)
+

Nr∑

nr=1

hH
nr,1Γ

−1
cb hnr ,1]. (4.53)

Using (4.52), and invoking the fact that Γcb = (INt ⊗ (Γc ⊗ IM)), we can simplify (4.53)
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as

γ(r+1)
c = argmin

γc∈R
B×1
+

KMNrNt log |Γc|+
Nt∑

nt=1

Tr(Γ−1
cb Mcnt,1|K)

+ 1
(1−ρ2)

K∑

k=2

Nt∑

nt=1

Tr(Γ−1
cb Mcnt,k|K), (4.54)

where Mcnt,j|K consists of rows and columns (nt − 1)L through ntL from the matrix

Mc,j|K , NrPj|K+Ĥj|KĤ
H
j|K+ρ2(NrPj−1|K+Ĥj−1|KĤ

H
j−1|K)−2ρRe(NrPj,j−1|K+Ĥj|KĤ

H
j−1|K).

Likewise, Mcnt,1|k consists of rows and columns (nt − 1)L through ntL from the matrix

Mc,1|k , NrP1|k + Ĥ1|kĤ
H
1|k. Note that, in the above expressions, Pj|k and Ĥj|k are a

function of γc, unlike (4.29), where the expressions are a function of γ. Differentiating

(4.54) w.r.t. γc(i) and setting the resulting equation to zero gives the update for the ith

hyperparameter as follows:

γ(r+1)
c (i) = 1

MKNtNr

(
Nt∑

nt=1

K∑

k=2

M∑

m=1

Mm,cnt,j|K

(1−ρ2)
+

Nt∑

nt=1

M∑

m=1

Mm,cnt,1|K

)

, (4.55)

where, Mm,cnt,j|K consists of rows and columns (B− 1)M through BM from the matrix

Mcnt,j|K and Mm,cnt,1|K consists of rows and columns (B − 1)M through BM from the

matrix Mm,cnt,1|K . Thus the KBMSBL algorithm learns γc in the M-step and provides

low-complexity and recursive estimates of the time-varying ga-csparse channel in the

E-step using the KFS framework.

Implementation of KBMSBL

The complexity of the KBMSBL algorithm is dominated by the term Jk−1, whose com-

putational complexity is given by O(KL3). In [135], we proposed a low-complexity,

Nested SBL (NSBL) approach for estimating cluster-sparse signals. In this approach,
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we introduce auxiliary variables tntnr ,k ∈ CN×1, such that

tntnr,k = Φnt,khntnr ,kc + zntnr ,kc. (4.56)

The structuring of the vectors hntnr,kc is crucial for the NSBL algorithm since it directly

affects the computational complexity. Here, we construct a vector hntnr ,kc, such that it

consists of sub-vectors governed by a common hyperparameter vector γc, i.e.,

hntnr ,kc = [hntnr,1k(1), hntnr,2k(1), . . . , hntnr,Bk(1), . . . , hntnr ,1k(M),

hntnr,2k(M), . . . , hntnr ,Bk(M)]. (4.57)

Accordingly, Φnt,k consists of the columns of Φk corresponding to entries of hntnr,kc.

Although zntnr,kc cannot explicitly obtained, we note that its covariance can be written

as zntnr,kc ∼ CN (0, βmσ
2IN) where, 0 ≤ βm ≤ 1 and

∑M
m=1 βm = 1. [135]. Further,

using tnr,k =
[
tT1nr,k

, . . . , tTNtnr ,k

]
, we construct the matrix Tk ∈ CNtML×Nr by stacking

t1,k, . . . , tNr,k as its columns. The auxiliary variable matrix Tk decomposes the problem

of tracking ga-csparse channels into a problem of tracking M length ga-sparse channel

component vectors.

The NSBL technique is implemented using two EM loops, one nested within the other,

as depicted in Fig. 4.5. The outer EM loop consists of updating the posterior distribu-

tion of Tk for 1 ≤ k ≤ K, and the inner EM loop consists of updating the posterior

distribution of the ga-csparse channel using the KFS framework across the K OFDM

symbols.

The inner EM loop in the NSBL algorithm is amenable to parallel implementation

as M parallel KFS chains. Each KFS chain incurs a computational load of O(KB3),
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Figure 4.5: Block Diagram of the NSBL approach.

since the parallel chains track a vector in a lower dimension (B). The computational

complexity of the outer loop of the NSBL approach dominates the overall complexity

of the algorithm, and hence, the complexity of NSBL is given by O(K3M2P 2
t L). Note

that, in contrast to KBMSBL which incurs a computational complexity of O(KL3), the

complexity of the NSBL approach scales linearly in L. Hence, the NSBL approach leads

to an efficient implementation of the proposed KBMSBL algorithm for large L.

In the following section, we briefly discuss the generalization of the BMSBL and

KBMSBL approaches to joint channel estimation and data detection in time-varying

ga-csparse MIMO-OFDM channels, before presenting our simulation results.

4.5 Joint Channel Estimation/Tracking and Data Detec-

tion Using Pilot and Data Subcarriers for Ga-csparse

Channels

In this section, we develop the novel J-BMSBL and J-KBMSBL algorithm that generalize

the pilot-based BMSBL and KBMSBL algorithms for joint ga-cparse channel estimation

and data detection in MIMO-OFDM systems.

Here, the unknown variables are not only the hyperparameters but also the unknown

transmit data symbols in the entire OFDM frame. We consider H as the hidden variable,
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and, in contrast to BMSBL and KBMSBL, we consider [γc,X], where X , [X1, . . . ,XNt ],

as the parameters to be estimated.

Note that the BMSBL/KBMSBL algorithms differ from the ga-sparse based

MSBL/KMSBL algorithms in the cluster-based hierarchical channel model, which, in

turn, affects the posterior mean and variance of the channel. These posterior statistics

affect the updates of γc as shown in (4.47) and (4.53). The updates of the transmit data

[X1, . . . ,XNt ] in the case of J-BMSBL, and [γc,X1, . . . ,Xk] in the case of J-KBMSBL, can

be obtained from the posterior estimates of the ga-csparse channel, from the E-step.

Hence, the update equation for the transmit data remains the same as (4.37) and (4.42).

4.6 Simulation Results

In this section, we demonstrate the performance of the proposed channel estimation al-

gorithms using Monte Carlo simulations. We consider the parameters in the 3GPP/LTE

broadband standard [60,61]. We use a 3MHz 2× 2 MIMO-OFDM system with 256 sub-

carriers, with a sampling frequency of fs = 3.84MHz, resulting in an OFDM symbol

duration of ∼ 83.3µs with Cyclic Prefix (CP) of 16.67µs (64 subcarriers). The length of

ga-sparse channel (L) is taken to be equal to the length of the CP. Each frame of the

MIMO-OFDM system consists of K = 7 OFDM symbols. The data is transmitted using

a rate 1/2 turbo code with QPSK modulation. For the turbo code generation, we use

publicly available software [130], which uses a maximum of 10 turbo iterations. We use

a convergence criterion of ǫ = 10−9 and rmax = 200 for all the algorithms. Further, we

use a raised cosine filtering in every receive and transmit antenna chain with a roll-off

factor of 0.5 [61] and the Pedestrian B channel model [71], which leads to approximately
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sparse channels at the sampling frequencies considered [90].

4.6.1 Block-fading Ga-sparse and Ga-csparse Channels

In this subsection, we consider the pilot-only channel estimation and joint channel es-

timation and data detection in block-fading ga-sparse and ga-csparse channels. Each

OFDM frame consists of K = 7 OFDM symbols, with Pb = 44 uniformly placed pilots

in an OFDM frame of each transmitter. We implement the MSBL and the J-MSBL al-

gorithm for ga-sparse and BMSBL and J-BMSBL algorithms (with block sizes of 4 and

6) in the case of ga-csparse block-fading channels, and plot the MSE and the coded

BER performance of the algorithms in Fig. 4.6 and Fig. 4.7, respectively. We compare

the performance of the proposed algorithms with the CS based Simultaneous OMP

(SOMP) [12] using 50 pilots, MIP-aware methods: pilot-only MIP-aware estimation [66]

and the MIP-aware joint data and channel estimation algorithm, which we refer to as

the EM-OFDM algorithm [132].

From the top half of Fig. 4.6, we observe that the MSBL algorithms performs at least

1 dB better than the CS based SOMP technique. Since the proposed MSBL technique

exploits spatial sparsity, it performs 5 dB better than the symbol-by-symbol SBL algo-

rithm in [90]. We also observe that since BMSBL exploits the cluster-sparse structure,

it outperforms the MSBL by 2 − 2.5 dB. The bottom half of Fig. 4.6 depicts the MSE

performance of joint data detection techniques that detect the (KN − Pb) data symbols

along with estimating the channel, resulting in a significantly lower overall MSE com-

pared to pilot-only schemes. We see that among the joint SBL based iterative methods,

the J-MSBL algorithm performs an order of magnitude better than the MSBL algorithm,
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especially at higher values of SNR. Further, we see that J-BMSBL has a superior perfor-

mance compared to J-MSBL and the symbol-by-symbol J-SBL [90]. Note that, J-BMSBL

is less than a dB from the MIP-aware (support-aware) EM-OFDM algorithm.
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Figure 4.6: MSE performance in block-fading channels as a function of SNR in dB: Top:
symbol-by-symbol SBL vs. MSBL vs. BMSBL. Bottom: J-SBL vs. J-MSBL vs. J-BMSBL.
Pb = 44, ga-csparse: Solid curves - block size = 4, Dashed-dot curves - block size = 6.

The coded BER performance of the proposed schemes is compared with the MIP-

aware EM-OFDM and with a genie receiver, i.e., a receiver with perfect knowledge of

the channel (labeled as Genie), in Fig. 4.7. We also compare the performance with

MSBL, BMSBL and MIP-aware pilot-only channel estimation followed by data detec-

tion. First, we observe that the MSBL algorithm performs 2 dB better than the SOMP

scheme, while being more than a dB poorer than the BMSBL scheme. Further, the J-

BMSBL technique, performs 1 dB better than the BMSBL scheme and 0.5 dB better
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than the J-MSBL scheme and only 0.5 dB away from the MIP-aware pilot-only tech-

nique. Since the MIP-aware pilot-only technique estimates the channel from an overde-

termined system of equations, it outperforms the MIP-unaware pilot-only techniques.

Moreover, at lower SNRs (between 0 − 10 dB), the joint channel estimation and data

detection techniques are prone to errors in the detected transmit data, and hence, they

are outperformed by MIP-unaware pilot-only techniques.

0 1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0

B
E

R

 

 

SOMP
MSBL
BMSBL
J−MSBL
J−BMSBL
MIP−aware pilot−only
MIP−aware EM−OFDM
Genie

Solid − Cluster size: 4
Dashed dot− Cluster size: 6

Figure 4.7: Coded BER performance of the proposed algorithms in a block-fading chan-
nel, with Pb = 44 pilot subcarriers, as a function of Eb/N0.

4.6.2 Time-varying Ga-sparse and Ga-csparse Channels

In this section, we consider a slowly time-varying channel, simulated according to a

Jakes’ model [131] with a normalized fade rate of fdTs = 0.001 and Pt = 44 pilot sub-

carriers in every OFDM symbol.

The MSE performance of the proposed algorithms as a function of SNR are depicted
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in Fig. 4.8. In the top half of the plot, we demonstrate that the pilot-only KMSBL algo-

rithm performs 5−7 dB better than the MSBL and symbol-by-symbol J-SBL algorithms,

since the KMSBL algorithm exploits the temporal correlation and joint sparsity in time-

varying channels. Further, we demonstrate that the KBMSBL technique which exploits

the approximate cluster-sparsity performs 1.5 − 2.5 dB better than the KMSBL algo-

rithm, while being 5−6 dB away from the MIP-aware Kalman tracking algorithm [121].

However, the J-KBMSBL algorithm performs 5 dB better than its pilot-only counter-

part, i.e., the KBMSBL algorithm, while being less than a dB away from the MIP-aware

Kalman tracking algorithm. The MIP-aware algorithm performs joint channel estima-

tion and data detection, i.e., uses an MIP-aware EM algorithm which implements the

channel estimation in the E-step using a Kalman tracker, and detects the transmit data

in the M-step.

In the bottom half of Fig. 4.8, we demonstrate the performance of joint channel esti-

mation and data detection schemes in time-varying channels. First, we observe that the

symbol-by-symbol J-SBL algorithm that is not designed to exploit the temporal corre-

lation performs 5-6 dB poorer than the recursive KMSBL and JKMSBL algorithms. At

higher SNR, we observe that the performance of the JKMSBL algorithm is 2 dB away

from the MIP-aware Kalman tracking algorithm. In contrast to pilot-only schemes, J-

KMSBL and J-KBMSBL have the same performance, while being 1 dB away from the

MIP-aware Kalman tracking algorithm. The gains due to modeling the channel as being

cluster-sparse diminishes as the algorithm effectively has a higher number of known

symbols to work with due to accurate detection of transmit data, especially at higher

SNRs.
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Figure 4.8: MSE performance in time-varying channels as a function of SNR in dB:
Top: symbol-by-symbol SBL vs. MSBL vs. KMSBL vs. KBMSBL, Bottom: J-SBL vs.
J-MSBL vs. J-KMSBL vs. J-KBMSBL, compared with the MIP-aware Kalman tracker
[121]. fdTs = 0.001 and Pt = 44. Cluster-sparse: Solid curves - block size = 4, Dashed-
dot curves - block size = 6.
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In Fig. 4.9, we depict the coded BER performance of the proposed algorithms. We

see that, while the proposed algorithms perform better than the SOMP algorithm by

a margin larger than 2.5 dB, the J-KBMSBL is only a fraction of a dB away from per-

formance of the MIP-aware Kalman receiver and the genie receiver which has perfect

channel knowledge. The J-KSBL outperforms the pilots-only KMSBL by a margin of

0.5 dB. Further, the ga-csparse KBMSBL and J-KBMSBL algorithms perform better than

their ga-sparse counterparts, i.e., KMSBL and J-KMSBL, by a margin of 0.5dB.
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Figure 4.9: Coded BER performance of different schemes in a time-varying channel
with fdTs = 0.001 and Pt = 44, as a function of Eb/N0.

In both block-fading and time-varying channel conditions, the algorithms proposed

for ga-csparse channels outperform their ga-sparse counterparts, affirming that exploit-

ing the cluster-sparse nature of the channel does offer better performance in MIMO-

OFDM channels. Intuitively, modeling the channel using γ ∈ R
L×1
+ leads to over-fitting,

which can be overcome by modeling the channel using γc ∈ R
B×1
+ , where B < L. We

also observe that the performance is better for a block size of M = 6 (i.e., B = 10 blocks)
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compared to M = 4 (i.e., B = 15 blocks), demonstrating that M = 6 is more appropri-

ate for modeling the MIMO-OFDM channel, as it reduces the over-fitting compared

to M = 4. We have seen, empirically, that M = 10 (i.e., B = 6 blocks) performs worse

than M = 6. This is because M = 10 is perhaps an overly parsimonious model for the

channel, leading to model mismatch and associated estimation errors. In general, the

value of M needs to be tuned depending on the channel behavior, the transmit-receive

filtering used, the sampling frequency, etc. A deeper study of the choice of M is beyond

the scope of this chapter.

4.7 Conclusions

In this chapter, we considered the pilot-only channel estimation and joint channel esti-

mation and data detection for block-fading and time-varying ga-sparse and ga-csparse

channels in MIMO-OFDM systems, using the SBL framework. In the block-fading sce-

nario, to estimate the ga-sparse and ga-csparse channels, we presented an adaptation

of the MSBL and BMSBL algorithms. We also generalized them to obtain the J-MSBL

and J-BMSBL algorithms for joint ga-sparse and ga-csparse channel estimation and data

detection, respectively.

In the time-varying scenario, we used a first order AR model to capture the tempo-

ral correlation of the channel and proposed the pilot-only based KMSBL and KBMSL

algorithms, respectively. We generalized these algorithms to obtain the J-KMSBL and

J-KBMSBL algorithms, respectively, for joint channel estimation and data detection. We

discussed the computational aspects of the proposed algorithms and showed that the

proposed recursive algorithms entail a significantly lower computational complexity
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compared to the previously known SBL based techniques. Further, we discussed effi-

cient implementation structures for ga-csparse channels in both block-fading and time-

varying cases.

Simulation results showed that (i) joint algorithms outperformed their pilot-only coun-

terparts, especially at higher SNRs, (ii) recursive techniques outperformed the symbol-

by-symbol algorithms, and (iii) algorithms proposed in the context of ga-csparse chan-

nels outperformed their ga-sparse counterparts. Thus, it is, in general, beneficial to ex-

ploit any available structure in the sparsity of the signal being estimated. Future work

can study the use of the algorithms developed in this chapter for other applications

besides channel estimation and data detection in wireless communications.
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On the Recovery of Sparse and

Structured Sparse Signals Using Sparse

Bayesian Learning

5.1 Introduction

In problems of sparse learning and regression, in order to obtain sparse estimates,

Bayesian inference is performed by incorporating a prior distribution on the vector to

be recovered. Typically, the prior density contains a set of free parameters that are capa-

ble of inducing sparsity: the sparse vector estimation task involves inferring the values

of such parameters based on the observed data. Lately, Bayesian methods for sparse

recovery have found widespread applications as they often lead to simple, convergent

algorithms accompanied by efficient implementations. Typically, Bayesian methods in-

volve deriving the full posterior distribution of the missing variables conditioned on

the observations, hence providing valuable statistical information as compared to CS

based techniques that provide point estimates. In dynamic, time-varying scenarios that

131
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involve recovering sparse vectors, the statistical information obtained from the poste-

rior distribution is used to obtain predictive densities, which potentially lead to future

states that are sparse [34]. Furthermore, in the context of structured sparsity, it has

been found that it is hard to adapt non-Bayesian sparse recovery algorithms to scenar-

ios where sparse signals exhibit inter and intra-vector correlations. In contrast, it is

simple to incorporate structured sparsity using Bayesian methods by employing these

constraints into the hierarchy of prior distributions or hierarchy of mixture distribu-

tions, which intuitively behave as a constraint on the space of all possible structured

sparse solutions [44,79]. In addition, Bayesian methods infer the number of non-sparse

components automatically, and hence, do not necessitate the information regarding the

level of sparsity.

In this thesis, we focus on a popular Bayesian technique known as Sparse Bayesian

Learning (SBL), which uses a parameterized prior to promote sparsity through a pro-

cess of evidence maximization [34]. The prior distribution used in SBL regularizes

the overcomplete problem given in (5.5), thereby circumventing its ill-posed nature.

SBL uses a two-stage hierarchical distribution on the unknown vector, as shown in

Fig. 1.1. Here, x ∼ N (0,Γ), where the diagonal matrix Γ contains the hyperparame-

ters γ = [γ1, . . . , γL]
T as its diagonal elements. In order to obtain an explicit posterior

density function and yet promote sparsity, a conjugate Inverse Gamma (IG) hyperprior

parameterized by a and b is assumed for γ, i.e.

γ ∼ IG(a, b), a > 0, b > 0. (5.1)

By marginalizing over γ, the distribution of sparse vector x parameterized by a and b
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can be obtained as

p(x|a, b) =

∫

p(x|γ)p(γ; a, b)dγ (5.2)

∝
L∏

l=1

(

b+
x(l)2

2

)(a+ 1
2)
, (5.3)

which is a Student-t prior on the vector x [34]. Further, note that as a, b → 0, the

Student-t distribution is given by

p(x|a = 0, b = 0) ∝
L∏

l=1

1

|x(l)|
. (5.4)

Such a prior is strongly peaked around x(i) = 0, and consequently, the overall prior

p(x) is sparsity promoting.

An empirical SBL technique which incorporates a Student-t prior with a = b = 0

was first proposed by Tipping for learning the sparse vector, based on the Expectation

Maximization (EM) and McKay updates [34]. Several results that elucidate the general

behavior of the nonconvex SBL cost function and solid theoretical justification for using

the EM-based update equations are provided in [49]. Specifically, the authors prove

that the global minima of the SBL cost function is always achieved at the maximally

sparse solution in the absence of noise, and, irrespective of noise, the local minima

are sparse. SBL based algorithms have been successfully employed for image/visual

tracking [56], neuro-imaging [57, 58], beamforming [59], and joint channel estimation

and data detection for OFDM systems [90].

The Single Measurement Vector (SMV) SBL system model given by

y = Φx+ n, (5.5)
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as described in (1.1). The model given above can be generalized to a Multiple Measure-

ment Vector (MMV) SBL model given by

Y = ΦX+V, (5.6)

where, Y ∈ CN×K represents the K observation vectors stacked as its columns. The

columns of X ∈ CL×K represent the K sparse/compressible vectors, and each column

of V ∈ C
N×K is modeled as i.i.d. and with the same distribution as n in (1.1) [104].

Albeit related, a more general MMV system model is given by

yk = Φkxk + vk, for 1 ≤ k ≤ K. (5.7)

Note that compared to (5.6), the equation given above involves K distinct matrices

Φ1, . . . ,ΦK for different instantiations of the sparse vector, i.e., the system model given

above collapses to (5.6) when Φ = Φ1 = . . . = ΦK , and to (5.5) for K = 1.

Several extensions of SBL have been proposed that handle group sparsity, cluster spar-

sity and correlation constraints in (5.6). In [104], the authors have proposed the MSBL

algorithm for simultaneous recovery of sparse columns of X from measurements in Y.

Consider a scenario where the columns of X are correlated, i.e., for i 6= j,

E[xix
H
j ] = B, (5.8)

where xi and xj represents two distinct columns of X and B is a covariance matrix such

that B(i, j) 6= 0 for i 6= j, i.e., B is not a diagonal matrix. In order to recover columns of

X in such scenarios, the Temporal SBL (TSBL) algorithm has been proposed [79]. TSBL

converts the problem in the MMV framework to a problem in the SMV framework
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by vectorizing XT , i.e., xc = vec(XT ). Then, the MMV recovery problem in (5.6) can

be reformulated as a problem of estimating the vector xc in an SMV formulation, as

follows:

yc = Φcxc + vc, (5.9)

where Φc ∈ CN×MB is given as Φc = Φ ⊗ IK is the restructured measurement ma-

trix. Further, vc is the ambient noise given by vc = vec(VT ). By construction, the

vector xc consists of correlated non-zero entries which occur in clusters, and hence,

such vectors are called as block-sparse or cluster-sparse. From (5.9), we see that the

problem of recovering correlated MMV vectors can be formulated as a cluster-sparse

vector recovery problem, where the inter-vector correlation is manifested as intra-vector

correlation, and in particular intra-cluster correlation. There are several applications

where cluster sparsity and intra-vector correlation arise naturally (see [136] and refer-

ences therein). In particular, strong intra-cluster correlation has been observed in EEG,

ECG and several physiological signals [137]. Popular CS based approaches include

those which exploit cluster sparsity in linear models using mixed penalty such as the

ℓ1 − ℓ2 and ℓ1 − ℓ∞ [138–140] and techniques such as block matching pursuit, block

orthogonal matching pursuit [139], and block-CoSamp [141]. However, none of the

techniques based on CS exploit the intra-cluster correlation in the cluster-sparse signal.

In the SBL framework, a cluster-sparse vector recovery algorithm known as the BSBL

algorithm [134, 142] is proposed, which, in addition to incorporating the cluster-sparse
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structure into the Bayesian framework, also exploits the intra-cluster correlation.1 Fur-

thermore, when the intra-block correlation is not known, the BSBL framework uses

an approximate heuristic to estimate the intra-block correlation from the observations

themselves, in an MMV setup.

5.1.1 Proposed Algorithms

In this subsection, we describe the novel SBL-based algorithms proposed in this thesis.

These algorithms are proposed in the context of group-sparse and cluster-sparse sig-

nals, and they offer efficient and low-complexity solutions. We also provide a variant

of SBL that addresses recovery of partially known measurement matrices jointly with

the recovery of sparse vectors.

First, we consider the problem of recovering correlated vectors x1, . . . ,xK which have

a common support in an generalized MMV framework, as given in (5.7). We formu-

late the recovery of correlated vectors using a recursive framework by modeling the

correlation using a first order AR model leading to the state space model given by

yk = Φkxk + vk, (5.10)

xk = ρxk−1 + zk, k = 1, 2, . . . , K, (5.11)

where, by definition, x0 , 0L, where 0L represents an L-length vector of zeros, ρ repre-

sents the AR co-efficient. Also, zk is the the noise driving the state sequence, consisting

1A subtle difference between the TSBL and the BSBL algorithm lies in the structure of the measure-
ment matrix. In the TSBL algorithm, the measurement matrix is restructured in order to facilitate cluster-
sparse vector recovery, and hence, the measurement matrix is of the form Φ ⊗ IK . However, the BSBL
algorithm recovers the cluster-sparse vectors in the presence of generic measurement matrices.
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of independent components given by zk(i) ∼ CN (0, (1 − ρ2)Γ). The recursive formu-

lation along with the nature of the prior distributions allows us to use the Kalman

filtering and smoothing (KFS) framework. Such a KFS framework is amenable to an

efficient implementation of the proposed algorithm, which we refer to as the Kalman

SBL (KSBL) algorithm. We show that when K is large, the proposed algorithm is of

significantly lower complexity compared to the TSBL algorithm.

In the context of cluster-sparse signals with intra-cluster correlation, we propose the

Nested SBL (NSBL) algorithm. Unlike the BSBL and the ARSBL algorithm [134], we

obtain closed form EM based updates for estimating the correlation coefficient. Further,

when intra-block correlation is absent, we simplify the NSBL approach and propose the

PCSBL algorithm. While the PCSBL algorithm offers the same performance as the BSBL

algorithm, we show that PCSBL is based on a divide and conquer approach and hence

amenable to parallel implementation.

Another novel algorithm proposed in this thesis learns the partially unknown dictio-

nary matrix jointly with recovery of the sparse vector in an SBL framework. Consider

the system model given by

y = Aψx+ n. (5.12)

The expression given above is identical to (1.1), with Φ = Aψ. Letψ be a known matrix

such as the Fourier or the wavelet basis. We consider a scenario where A is diagonal

with some missing entries. We elegantly generalize the conventional SBL based EM

framework in order to incorporate the estimation of diagonal entries of A in the M-step

of the SBL algorithm. We show that such an algorithm continues to enjoy the likelihood

monotonicity property of the conventional SBL framework. Further, using Monte Carlo
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simulations, we also show that incorporating the missing entries of A into the update

equations leads to superior MSE and support recovery efficiency as compared to the

SBL framework where only known entries of A are included. Until now, we described

the problem setup and provided an overview of the algorithms proposed in this thesis.

In the next section, we describe the SBL algorithm which is the basis of the novel SSR

algorithms proposed in this thesis.

5.2 Sparse Bayesian Learning

Here, we describe the SBL algorithm for the recovery the sparse vector x from (1.1).

SBL uses a parametrized prior to obtain sparse solutions, given by

p(x;γ) =
L∏

i=1

(πγ(i))−1 exp

(

−
|x(i)|2

γ(i)

)

. (5.13)

Typically, the hyperparameters γ can be estimated using the type-II ML procedure [34],

i.e., by maximizing the marginalized pdf p(y;γ) as

γ̂ML = argmax
γ∈RL×1

+

p(y;γ). (5.14)

Since the above problem cannot be solved in closed form, iterative estimators such

as the EM based SBL algorithm [49] have to be employed. The sparse channel h is

considered as the hidden variable and the ML estimate of γ is obtained in the M-step.
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The steps of the algorithm can be given as

E-step : Q
(
γ|γ(r)

)
= Ex|y;γ(r)[log p(y,x;γ)] (5.15)

M-step : γ(r+1) = argmax
γ∈RL×1

+

Q
(
γ|γ(r)

)
. (5.16)

The E-step above requires the posterior density of the sparse vector with the hyperpa-

rameter γ = γ(r), which can be expressed as

p
(
x|y;γ(r)

)
= CN (µ,Σ), (5.17)

where Σ = Γ(r) − Γ(r)ΦH
(
σ2IN +ΦΓ(r)ΦH

)−1
ΦΓ(r), and µ = σ−2ΣΦHy. The M-step

in (5.16) can be simplified, to obtain

γ(r+1)(i) = argmax
γ(i)∈R+

Ex|y;γ(r) [log p(x;γ)] (5.18)

= Ex|y;γ(r)

[
|x(i)|2

]
= Σ(i, i) + |µ(i)|2 . (5.19)

In (5.18), the term Ex|y;γ(r)[log p(y|x;γ)] has been discarded, as it is not a function of

γ(i). Note that the EM framework enjoys the monotonicity property, i.e., the likelihood

is guaranteed to increase at each iteration [126, 127]. We have found, empirically, that

the straightforward initialization such as Γ(0) = IL leads to accurate solutions. Note

that this algorithm recovers the sparse vector with no additional constraints on x such

as its sparsity level etc.

In the following section, we discuss the generalizations of the SBL framework for

estimation of group-sparse and cluster-sparse signals.
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5.3 SBL: Group and Cluster Sparsity

In this section, we discuss various extensions of SBL that exploit the group and cluster

sparsity in sparse vectors. First, we consider recovering M vectors in (5.6)/(5.7), where

the columns of X are group-sparse, i.e., locations of non-zero entries of the vectors

coincide, leading to several zero rows in X. Subsequently, we consider the problem of

recovery of cluster-sparse vectors from (5.9), where clusters are equi-sized and consist

of either all zero or all non-zero entries. We consider cluster-sparse signals where the

entries of non-zero clusters are correlated within the cluster and independent between

clusters.

In this chapter, we design algorithms which exploit the intra-cluster correlation when

the correlation is known. Further, when the correlation is unknown, we provide EM

based update equations for learning the correlation.

5.3.1 Existing Algorithms for Group Sparsity: MSBL and TSBL

In this subsection, we first describe the MSBL algorithm [104] for recovery of uncor-

related group-sparse vectors in X from the observation matrix Y in (2.2). Next, we

describe the TSBL algorithm [79] for recovering the group-sparse correlated vectors.

MSBL

MSBL incorporates a parameterized prior to obtain sparse solutions in regression, which

can be written as

p(X;Γ) =

K∏

k=1

p(xk;Γ), (5.20)
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where xk represents the kth column of X, with prior density given by xk ∼ CN (0,Γ).

The hyperparameters in Γ are estimated using the type-II ML procedure [34], i.e., by

maximizing the marginalized pdf p(yk;γ) as follows:

γML(i) = argmax
γ(i)∈R+

p(yk;γ), 1 ≤ i ≤ L. (5.21)

As in the case of SBL, the above problem cannot be solved in closed form. Unlike the

SBL algorithm, the above problem involves solving for x1, . . . ,xK , for which iterative

estimators such as the EM based MSBL algorithm [104] are employed. In order to use

the MSBL algorithm, X is treated as the hidden variable and the posterior distribution

of X is obtained in the E-step, and the updates of γ is obtained in the M-step. The steps

of the algorithm are given as

E-step : Q(γ|γ(r)) = EX|Y;γ(r)[log p(Y,X;γ)] (5.22)

M-step : γ(r+1)(i) = argmax
γ(i)∈R+

Q(γ|γ(r)), (5.23)

for 1 ≤ i ≤ L, and these steps are iterated until convergence. The E-step requires the

posterior distribution p(X|Y;γ(r)), which can be obtained from the likelihood given by

p(yk|xk) =
1

(πσ2)K
exp

(

−
‖yk −Φxk‖

2
2

σ2

)

. (5.24)

Combining the likelihood and the prior distribution, the posterior distribution of xk is

given by p
(
xk|yk;γ

(r)
)
∼ CN (µmsbl,k,Σmsbl), with mean and covariance given by

µmsbl,k = σ−2ΣmsblΦ
Hyk Σmsbl =

(
ΦHΦ

σ2
+ Γ(r)−1

)−1

. (5.25)
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Here, Γ(r) is the hyperparameter update in the rth iteration.

The M-step given by (5.23), can be simplified to obtain the update equation for γ as

γ(r+1)(i) =
1

K

K∑

k=1

(
K∑

k=1

µmsbl,k(i)
2 + Σmsbl(i, i)

)

. (5.26)

Note that, in the above equation, the group-sparse nature of the channel results in the

update of γ which is averaged over the K instantiations of the sparse vector.

The MSBL algorithm consists of executing the E and the M steps iteratively, until the

algorithm reaches convergence, i.e., the difference
∥
∥γ(r) − γ(r−1)

∥
∥
2

2
≤ ǫ, where ǫ is a

small value, for e.g. ǫ = 10−6. The E-step involves computing the posterior mean and

variance of the sparse vector as given in (5.25), incurring a computational complexity

given by O(N2L) [104], while M-step computes the hyperparameter update as given in

(5.26). In practice, it is found that an initial estimate for Γ given by

Γ(0) = IL×L, (5.27)

is sufficient for the MSBL algorithm.

In Fig. 5.1 and Fig. 5.2, we compare the the MSE performance and the support recovery

of the MSBL algorithm with the CS based Simultaneous OMP (SOMP) technique [83],

the conventional SBL and the OMP algorithms [12], which are unaware of the group-

sparse nature of the vectors. First, we observe that SBL based techniques have a better

MSE performance compared to CS based greedy techniques such as the OMP and the

SOMP algorithms. MSBL also outperforms the conventional SBL algorithm, i.e., utiliz-

ing the group-sparse nature of the channel leads to superior support recovery and MSE

performance.
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Figure 5.1: MSE performance of the
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Figure 5.2: Success rate of the the al-
gorithms MSBL and SBL compared to
SOMP and OMP algorithms for SNR
= 20, L = 64 and S = 3.

TSBL

Here, we describe the TSBL algorithm proposed in [79]. As mentioned earlier, the TSBL

algorithm recovers the group-sparse vectors by transforming the MMV model in (2.2)

to an SMV model.

As in the case of MSBL, each column of X is governed by a prior density given by

xk ∼ CN (0,Γ). However, since the group-sparse columns are correlated, the prior

density associated with every row of X (the ith row of X is denoted as x(i, :)), is as

follows:

p(x(i, :);γ(i),Bi) = CN (0,γ(i)Bi), 1 ≤ i ≤ N (5.28)

where γ(i) is the hyperparameter associated with each row of X, i.e., γ(i) = 0 corre-

sponds to a zero row of the matrix, and Bi is a non-diagonal positive definite matrix

that captures the correlation structure of x(i, :).

Let y = vec(YH) ∈ CNM×1, D = Φ⊗ IL and x = vec(XH) and v = vec(VH). Then the
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system model given in (2.2) can be rewritten as

y = Dx+ v. (5.29)

Hence, in the process of converting a MMV model to the SMV model, a row-sparse

matrix X is transformed into a cluster-sparse vector x. The row correlation of X governs

the correlation of the ith cluster of x, i.e., the ith cluster is correlated according to Bi.

Using the likelihood and the prior distribution given in (5.28), we obtain the posterior

distribution using Bayes’ rule, as follows:

p(x|y;γ) = N (µtsbl,Σtsbl), (5.30)

where the posterior mean and covariance are given by

µtsbl = σ−2ΣtsblD
Hy,

Σtsbl = Σ0 −Σ0D
H(σ2INK +DΣ0D

H)−1DΣ0, (5.31)

where Σ0 is a block diagonal matrix with the ith block diagonal entry given by γ(i)Bi.

Here, Σ0 represents the overall covariance matrix of the cluster-sparse vector x. In

order to avoid the over-fitting, a single positive definite matrix B = B1 = . . . = BN is

used to model all the covariance matrices.

In the M-step, the update equations for the unknown parameters can be obtained as
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follows:

γ(i) = Tr
[

B−1(Σi
tsbl + µ

i
tsblµ

i
tsbl

H
)
]

(5.32)

B =
1

M

M∑

m=1

Σi
tsbl + µ

i
tsblµ

i
tsbl

H

γ(i)
(5.33)

σ2 =
‖y −Dµtsbl‖

2 + σ2[ML− Tr(ΣtsblΣ0)]

NM
, (5.34)

where Σi
tsbl = Σtsbl((i− 1)L+ 1 : iL, (i− 1)L+ 1 : iL) and µi

tsbl = µtsbl((i− 1)L+ 1 : iL).

The posterior mean, covariance and the update equations together constitute the TSBL

algorithm.

A special case of TSBL algorithm is considered in [125], where the correlation among

the entries of the ith row (1 ≤ k ≤ K) of X is modeled using a first order AR model as

follows:

xk+1(i) = ρxk(i) +
√

(1− ρ2)zk+1(i), (5.35)

where ρ is the AR coefficient, zk(i) ∼ CN (0, γ(i)) and xk(i) ∼ CN (0, γ(i)).

TSBL and the ARSBL algorithms are computationally complex since the measure-

ment matrix is tranformed from a N × L matrix to a NK × KL matrix. As a low-

complexity alternative to TSBL/ARSBL, we propose the KSBL algorithm [90] in the

following subsection. In contrast to the ARSBL algorithm, we show that the update

equations of the KSBL algorithm involve measurement matrices of dimension N × L

and not NK × KL. Moreover, the KSBL algorithm is capable of recovering correlated

simultaneously sparse vectors for the general system model given in (5.7).
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5.3.2 Proposed Technique: Kalman SBL

In this section, we describe the KSBL algorithm [90] which is a recursive, low-complexity

recovery technique based on the Kalman Filter and Smoother (KFS). The algorithm

works by fitting a first order AR model for the temporal evolution of the sparse vectors.

As explained in the previous section, x1, . . . ,xM are considered to be simultaneously

sparse and correlated. We model the correlation using a first order AR process given by

(5.35). The correlation in columns of X is given by

xk = ρxk−1 + zk, k = 1, . . . , K, (5.36)

where by definition, x0 = 0L. The state space model comprises of the measurement

equation given by in (5.7), and the state equation given by the first order AR channel

model in (5.36). The joint pdf of the observations and the K sparse vectors is given by

p(Y,x1, . . . ,xK ;γ) =

K∏

k=1

p(yk|xk)p(xk|xk−1;γ). (5.37)

We propose the KSBL algorithm using the EM updates, as follows:

E-step : Q
(
γ|γ(r)

)
= Ex1,...,xK |Y;γ(r)[log p(Y,x1, . . . ,xK ;γ)] (5.38)

M-step : γ(r+1) = argmax
γ∈RL×1

+

Q
(
γ|γ(r)

)
. (5.39)

To compute the E-step given above, we require the posterior distribution of the un-

known a-sparse channel, which is obtained using the KFS recursive update equations
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given as follows [124, 128]:

for k = 1, . . . , K do

Prediction: x̂k|k−1 = ρx̂k−1|k−1 (5.40)

Pk|k−1 = ρ2Pk−1|k−1 + (1− ρ2)Γ (5.41)

Filtering:

Gk = Pk|k−1Φ
T
k

(
σ2IN +ΦkPk|k−1Φ

T
k

)−1
(5.42)

x̂k|k = x̂k|k−1 +Gk(yk −Φkx̂k|k−1) (5.43)

Pk|k = (IL −GkΦk)Pk|k−1 (5.44)

end

for j = K,K − 1, . . . , 2 do

Smoothing: x̂j−1|K = x̂j−1|j−1 + Jj−1(x̂j|K − x̂j|j−1) (5.45)

Pj−1|K = Pj−1|j−1 + Jj−1(Pj|K −Pj|j−1)J
T
j−1 (5.46)

end

where the mean and the covariance matrix of sparse vector in the kth instant is repre-

sented by x̂k|k and Pk|k, respectively, for 1 ≤ k ≤ K, Jj−1 , ρPj−1|j−1P
−1
j|j−1 and Gk is

the Kalman gain. In the above, the symbols x̂k|k−1, Pk|k−1, etc. have their usual mean-

ings as in the KF literature [124]. For example, x̂k|k−1 is the estimate of the kth sparse

vector given the observations Yk−1 = [y1, . . . ,yk−1] and Pk|k−1 is the covariance of the

kth channel estimate given Yk−1. The above KFS equations are initialized by setting

x̂0|0 = 0L and P0|0 = Γ.

Typically, in a Kalman Filtering (KF) approach, the goal is to recursively estimate the
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channel state and its covariance matrix using forward and backward recursions, given

the observations Y. In the forward recursion, the KF operates on the observations to

obtain the estimates of the sparse vector as a weighted average of the previous estimate

and the current received symbol using prediction and the filtering equations in (5.40)-

(5.44). These weights are given by the the Kalman gain matrix, and are updated for

each sparse vector. In the backward recursion, the Kalman smoother ensures that the

observations of the K instantiations are included in the estimation of the sparse vector

corresponding to the kth instant for 1 ≤ k < K using (5.45)-(5.46). Hence, it improves

the accuracy of the estimates of the sparse vectors in every recursion.

In order to obtain an ML estimate of γ, KSBL incorporates an M-step, which, in turn,

utilizes the mean and covariance of the posterior distribution from the E-step. From

(5.37), the M-step results in the following optimization problem:

γ(r+1) = argmin
γ∈RL×1

+

Ex1,...,xK |Y;γ(r)

[

K log |Γ|+
K∑

j=2

(xj − ρxj−1)
HΓ−1(xj − ρxj−1)

(1− ρ2)
+ xH

1 Γ
−1x1

]

.

(5.47)

As mentioned earlier, we see that the M-step requires the computation of x̂j|K ,

Ex1,...,xK |Y;γ(r)[xj ], and covariance Ex1,...,xK |Y;γ(r)[xjx
T
j ] , Pj|K+x̂j|Kx̂

H
j|K for j = 1, . . . , K,

which is obtained from (5.40)-(5.46). The M-step also requires the computation of

Ex1,...,xK |Y;γ(r)[xjx
T
j−1] , Pj,j−1|K + x̂j|Kx̂

T
j−1|K for j = K,K − 1, . . . , 2, which we obtain

from [124] as follows:

Pj−1,j−2|K = Pj−1|j−1J
T
j−2 + JT

j−1(Pj,j−1|K − ρPj−1|j−1)Jj−2. (5.48)

The above recursion is initialized using PK,K−1|K = ρ(IL −GKΦK)PK−1|K−1. Using the
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above expressions, (5.47) simplifies as

γ(r+1) = argmin
γ∈RL×1

+

{

K log |Γ|+ Trace(Γ−1M1|K) +
1

(1− ρ2)

K∑

j=2

Trace(Γ−1Mj|K)

}

, (5.49)

where Mj|K , Pj|K + x̂j|Kx̂
T
j|K + ρ2(Pj−1|K + x̂j−1|Kx̂

T
j−1|K)−2ρRe(Pj,j−1|K + x̂j|Kx̂

T
j−1|K)

and M1|K , P1|K + x̂1|Kx̂
T
1|K . Differentiating (5.49) w.r.t. γ(i) and setting the resulting

equation to zero gives the update for the ith hyperparameter as follows:

γ(r+1)(i) =
1

K

(
K∑

j=2

Mj|K(i, i)

(1− ρ2)
+M1|K(i, i)

)

, (5.50)

for i = 1, . . . , L. Thus the KSBL algorithm learns γ in the M-step and provides low-

complexity and recursive estimates of the correlated simultaneously sparse vectors in

the E-step.

Using a flop-count analysis [129], for K (K > 1) group-sparse vectors, the compu-

tations of the KSBL algorithm is dominated by the computation of the JK−1 term in

the smoothing step, which has a complexity of O(KL3) per iteration. In ARSBL/TSBL,

the computation of the covariance matrix Σ incurs a complexity of O(K3N2L) per it-

eration. Hence, we see that if the number of OFDM symbols to be tracked are such

that KN > L, the complexity of the ARSBL/TSBL algorithm is larger than the KSBL

algorithm. In other words, the KSBL algorithm is a good choice among SBL based tech-

niques when the number of group-sparse vectors is large.

In Fig. 5.4 and Fig. 5.3, we demonstrate the support recovery and the MSE perfor-

mance of KSBL algorithm as compared to conventional SBL and the OMP algorithms,

which are unaware of the correlated group-sparse nature of sparse vectors. Note that

KSBL uses distinct measurement matrices for every k, and hence, we cannot implement
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Figure 5.3: MSE performance of the
KSBL algorithm compared to SBL
and OMP algorithms and support-
aware Kalman filter for N = 30, L =
64 and S = 3.
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Figure 5.4: Success rate of the KSBL
algorithm compared to SBL and OMP
algorithms for SNR = 20, L = 64 and
S = 3.

TSBL and ARSBL algorithms in such a scenario. We see that KSBL which benefits from

group sparsity and temporal correlation among sparse vectors has a superior perfor-

mance compared to SBL and OMP algorithms.

Furthermore, the KSBL algorithm can be generalized to learn ρ as well. The Q(·)

function in the E-step w.r.t. ρ is given by

Q
(
ρ|ρ(r)

)
= c′′ − (K − 1) log(1− ρ2)− Ex1,...,xK |YK ;ρ(r)

[
∑K

j=2
(xj−ρxj−1)HΓ−1(xj−ρxj−1)

(1−ρ2)

]

= c′′ − (K − 1) log(1− ρ2)− 1
(1−ρ2)

Tr {T1 − ρ(T2 +T3) + ρ2T4} , (5.51)
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where,

T1 = Γ−1
∑K

j=2[Pj|k + x̂j|kx̂
H
j|k]

T2 = Γ−1
∑K

j=2[Pj,j−1|k + x̂j|kx̂
H
j−1|k]

T3 = Γ−1
∑K

j=2[Pj,j−1|k + x̂j−1|kx̂
H
j|k]

T4 = Γ−1
∑K

j=2[Pj−1|k + x̂j−1|kx̂
H
j−1|k]. (5.52)

Differentiating the above expression w.r.t. ρ, we get

∂(Q
(
ρ|ρ(r)

)
)

∂ρ
=

2(K − 1)ρ

(1− ρ2)
−

2ρ

(1− ρ2)2
Tr
{
T1 − ρ(T2 +T3) + ρ2T4

}

−
1

(1− ρ2)
Tr {−T2 −T3 + 2ρT4} . (5.53)

Hence, ρ can be obtained as a solution to the cubic equation

2(K− 1)ρ3−Tr {T2 +T3} ρ
2− [2(K− 1)− 2Tr {T1 +T4)}]ρ−Tr {T2 +T3} = 0, (5.54)

subject to the constraint 0 < ρ ≤ 1.

In the following subsection, we discuss the cluster-sparse recovery problem based on

the system model given in (5.9). Further, we discuss existing SBL based techniques for

the recovery of cluster-sparse vectors from (5.9) and propose novel techniques such as

the NSBL approach that overcomes the in the existing SBL based techniques.
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5.3.3 Existing Algorithms for Cluster Sparsity: BSBL

In this section, we present the BSBL algorithm [134] recovering cluster-sparse vectors

from an underdetermined set of linear equations as given in (5.9). Unlike the exist-

ing CS based techniques, BSBL is capable of handling intra-block correlation in block-

sparse vectors.

BSBL

In this subsection, we present the BSBL algorithm proposed in [134] for recovery of

cluster-sparse vectors in the presence of unknown intra-block correlation.

We consider the system model given in (5.9), where the unknown L = BM length

cluster-sparse vector x consists of B blocks denoted by b1, . . . ,bB, as follows:

xc = [x11, x12, . . . , x1M
︸ ︷︷ ︸

bH
1 ∈C1×M

; . . . ; xB1, xB2, . . . , xBM
︸ ︷︷ ︸

bH
B∈C1×M

]. (5.55)

The M entries of each cluster bi are constrained to be either all-zero or all-nonzero. In

the cluster-sparse framework, the underlying structure is exploited by modeling bi ∼

CN (0, γiBi), where γi is an unknown hyperparameter such that when γi = 0, the ith

cluster of xc is zero [134]. Here, Bi ∈ CM×M is a positive-definite covariance matrix that

captures the intra-block correlation of the ith block, which is also unknown. Moreover,

different clusters are mutually uncorrelated, and hence, the cluster-sparse vector xc ∼

CN (0,Σ0), where Σ0 is a block-diagonal matrix with principal blocks given by γiBi,

1 ≤ i ≤ B.
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The posterior mean and covariance are given by

µbsbl = σ−2ΣbsblΦ
H
c yc,

Σbsbl = Σ0− Σ0Φ
H
c (σ

2IN +ΦcΣ0Φ
H
c )

−1ΦcΣ0, (5.56)

Note that the subtle different between the BSBL framework and the TSBL framework

arises in the construction of the measurement matrix - the BSBL framework employs a

general measurement matrix Φc, while the TSBL assumes a block-diagonal matrix. As

a consequence, the learning rules for the unknown parameters γc,B (B = Bi, 1 ≤ i ≤

B), σ2 remain the same as in (5.34).

Since learning the entire matrix B could lead to over fitting, B is further constrained

such that it depends on a single parameter [134]. A first-order AR process with param-

eter ρ is suitable in such scenarios. The corresponding correlation matrix of each block

is given by

B =










1 ρ . . . ρM−1

ρ ρ2 . . . ρM−2

...
...

...
...

ρM−1 ρM−1 . . . 1










(5.57)

When ρ is unknown, an EM based closed form update for ρ is not available in the BSBL

framework. The approach adopted in [134] is to heuristically look for a correlation ma-

trix which is close to B especially along the main diagonal and the main sub-diagonal.

Such a non-EM based, heuristic update procedure offers satisfactory performance and

reasonably fast convergence in practice. However, it disrupts the EM based monotonic-

ity properties of the BSBL algorithm.

In order to overcome the above drawback of a heuristic update method, we propose
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the Nested SBL approach. In the following subsection, we show that, using the NSBL

approach, we are able to provide a convergent, low-complexity solution to the problem

of cluster-sparse recovery with EM based updates for all the unknowns.

5.3.4 Proposed Technique: NSBL

In this subsection, we describe the NSBL algorithm [135], which is based on a divide

and conquer approach: the problem of estimating a high-dimensional cluster-sparse

vector is reformulated as a set of smaller problems, each involving the estimation of

low-dimensional correlated group-sparse vectors. We show that the NSBL framework

enjoys the unique distinction of being a low-complexity recovery technique comprising

of EM based updates for the unknown intra-block correlation, unlike the BSBL algorithm

which uses a heuristic method to estimate the unknown intra-block correlation.

NSBL

The NSBL algorithm is an EM-based convergent technique which is capable of recov-

ering cluster-sparse vectors in the presence of unknown intra-block correlation (B 6=

IM ). As a special case, the NSBL approach can be simplified to a Parallel Cluster

SBL (PCSBL) approach for the case when the entries within a block are not correlated

(B = IM ).

As depicted in Fig. 5.6, restructuring the cluster-sparse vector xc, the problem of recov-

ering xc from yc is equivalent to finding the vectors x1, . . . ,xM , where xi = [x1i, . . . , xBi].

Since bi ∼ CN (0, γiBi) for 1 ≤ i ≤ B, xi ∼ CN (0,Γc) where Γc = diag(γc(1), . . . , γc(B)),

i.e., x1, . . . ,xM represent group-sparse vectors.



Chapter 5. 155
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Figure 5.5: Restructuring the block-sparse recovery problem such that the B length
vectors x1, . . . ,xM are group-sparse vectors.

By rearranging the columns of Φc, the system model in (5.9) can be equivalently writ-

ten as

yc =
M∑

m=1

tm, where tm , Φmxm + nm, 1 ≤ m ≤ M. (5.58)

In (5.58), Φm ∈ CN×B consists of the columns of Φc such that the coefficients corre-

sponding to its columns are given by xm. Although nm cannot be explicitly obtained,

we note that its covariance can be written as nm ∼ CN (0, βmσ
2IN) where, 0 ≤ βm ≤ 1

and
∑M

m=1 βm = 1. If tm is known, recovering xm from tm is a group-sparse recovery

problem [104] in a lower dimensional space (B), as compared to the dimension of the

original problem (MB). Here, we focus on recovering the cluster-sparse vector by re-

covering its group-sparse components x1, . . . ,xM , using the restructured problem given

by (5.58).

The conventional SBL framework in Sec. 5.2 treats (yc,xc) in (5.9) as the complete data,

and xc as the hidden variable. However, for the reformulated system model in (5.58),

it is necessary to augment the set of hidden variables xc with t = [tT1 , . . . , t
T
M ]T since t

is also hidden [143]. Accordingly, the complete information is given by (yc, t,xc), and

(t,xc) constitute the hidden variables. Since closed-form expressions for the maximum

likelihood estimates of the unknown parameter γc cannot be obtained, we adopt the
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iterative EM algorithm for estimating γc, as follows:

E-step : Q
(
γc|γ

(r)
c

)
= E

t,xc|yc;γ
(r)
c
[log p(yc, t,xc;γc)]

M-step : γ(r+1)
c = argmax

γc∈R
B×1
+

Q
(
γc|γ

(r)
c

)
. (5.59)

The E-step in (5.59) requires the computation of p(t,xc|yc;γ
(r)
c ), which is given by

p(t,xc|yc;γ
(r)
c ) = p(xc|t,yc;γ

(r)
c )p(t|yc;γ

(r)
c ) = p(xc|t;γ

(r)
c )p(t|yc;γ

(r)
c ). (5.60)

Hence, the E-step can be rewritten as

E-step : Q
(
γc|γ

(r)
c

)
= E

t|yc;γ
(r)
c

︸ ︷︷ ︸

Et

E
xc|t;γ

(r)
c

︸ ︷︷ ︸

Exc

[log p(yc, t,xc;γc)]. (5.61)

To compute Q(γc|γ
(r)
c ), we first compute the posterior distribution p(t|yc;γ

(r)
c ) using the

likelihood p(tm|xm) = CN (Φmxm, βmσ
2IN) for 1 ≤ m ≤ M , and the prior p(xc;γc) =

CN (0,ΓB). Given H = 1M ⊗ IN , where 1M is a M length vector of ones, and yc = Ht,

we have p(t|yc;γ
(r)
c ) = CN (µt,Σt), where

µt = (R+ΦBΓBΦ
H
B )H

H(H(R+ΦBΓBΦ
H
B )H

H)−1yc

Σt = (R+ΦBΓBΦ
H
B )− (R+ΦBΓBΦ

H
B )H

H(H(R+ΦBΓBΦ
H
B )H

H)−1H(R+ΦBΓBΦ
H
B ).

(5.62)

Here, ΦB ∈ C
NM×BM is a block diagonal matrix with Φ1, . . . ,ΦM along the diagonal,

and ΓB = B⊗ Γc, where Γc = diag(γc). The block diagonal matrix R has mth diagonal

entry Rm = βmσ
2IN . Note that the posterior mean µt ∈ CMN×1 consists of M vectors,

µt1, . . . ,µtM such that Hµt = yc, i.e., yc =
M∑

m=1

µtm .
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The posterior distribution p(xc|t;γ
(r)
c ) depends on the correlation between the vectors

x1, . . . ,xM . We model the intra-block correlation (i.e., correlation among x1, . . . ,xM )

using a first-order AR model. The first order AR model is a widely accepted model,

and is used in a variety of applications [144–146]. It also has the advantage that it

avoids over-fitting [134] and allows for a Kalman filtering based learning framework.

The evolution of the mth group-sparse vector is modeled as

xm = ρxm−1 + um, m = 1, . . . ,M, (5.63)

where the driving noise um is distributed as um(i) ∼ CN (0, (1−ρ2)γ(i)), ρ ∈ R is the AR

coefficient and 0 ≤ ρ ≤ 1. Overall, this leads to a common correlation matrix given by

B1 = . . . = BB = B = Toep([1, ρ, . . . , ρM−1]), where Toep(a) represents the symmetric

Toeplitz matrix defined by its first row a [134]. The state space model for tm and xm is

given as

tm = Φmxm + nm, (5.64)

xm = ρxm−1 + um, m = 1, . . . ,M. (5.65)

Since x1, . . . ,xM are group-sparse, from the above model, we have

p(t,x1, . . . ,xM ;γc) =

M∏

m=1

p(tm|xm)p(xm|xm−1;γc), (5.66)

where p(x1|x0;γc) , p(x1;γc). Using (5.66), the posterior distribution of the sparse vec-

tors p(x1, . . . ,xM |t;γ(r)
c ) is computed using the recursive Kalman Filter and Smoother
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(KFS) equations for 1 ≤ m ≤ M as follows [124, 128]:

for m = 1, . . . ,M do

Prediction: x̂m|m−1 = ρx̂m−1|m−1 (5.67)

Pm|m−1 = ρ2Pm−1|m−1 + (1− ρ2)Γc (5.68)

Filtering: Gm = Pm|m−1Φ
T
m

(
σ2IN +ΦmPm|m−1Φ

T
m

)−1
(5.69)

x̂m|m = x̂m|m−1 +Gm(tm −Φmx̂m|m−1) (5.70)

Pm|m = (IB −GmΦm)Pm|m−1 (5.71)

end

for j = M,M − 1, . . . , 2 do

Smoothing: x̂j−1|m = x̂j−1|j−1 + Jj−1(x̂j|m − x̂j|j−1) (5.72)

Pj−1|m = Pj−1|j−1 + Jj−1(Pj|m −Pj|j−1)J
T
j−1 (5.73)

end,

where Jj−1 = ρPj−1|j−1P
−1
j|j−1 and Gm is the Kalman gain matrix. The above mentioned

KFS equations are initialized by setting x̂0|0 = 0B , i.e., a B length zero vector, and P0|0 =

Γc. The E-step requires the computation of E
x1,...,xM |t;γ

(r)
c
[xjx

T
j−1] , Pj,j−1|m+ x̂j|mx̂

T
j−1|m

for m = M,M − 1, . . . , 2, which we obtain from [124] as follows:

Pj−1,j−2|m = Pj−1|j−1J
T
j−2 + JT

j−1(Pj,j−1|m − ρPj−1|j−1)Jj−2. (5.74)

The above recursion is initialized using Pm,m−1|M = ρ(IB −GmΦm)Pm−1|m−1. Note that

xi|M and Pi|M , 1 ≤ i ≤ M represent the posterior mean and covariance of x given t,

respectively.
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The expectation Et involves computing p(t|yc;γ
(r)
c ) using (5.62). As mentioned ear-

lier, ΓB is given by ΓB = B ⊗ Γc. The KFS equations in (5.67)-(5.75) constitute the Ex

step, after which we compute Et. However, due to the recursive nature of the inner

E-step, Ex, the expectation of µxm w.r.t. the posterior density of t is a recursive function

of tm, . . . , t1. As M increases, the complexity of computing such a recursive expecta-

tion becomes prohibitive. In order to circumvent this problem, we employ an alternate

technique, known as the Nested EM approach [147]. This monotonically convergent

approach allows us to simplify the overall algorithm into an inner and outer EM loop,

while the unknown parameter γc is the common factor between the two loops. We call

this algorithm as the NSBL algorithm, where the nested E- and M-steps are given as

E-step : Q
(

γc|γ
(r+ k

K
)

c ,γ(r)
c

)

= E
t|yc;γ

(r)
c

[

E
x1,...,xM |t;γ

(r+ k
K

)
c

[log p(yc, t,x1, . . . ,xM ;γc)]

]

M-step : γ
(r+ k+1

K
)

c = argmax
γc∈R

B×1
+

Q
(

γc|γ
(r+ k

K
)

c ,γ(r)
c

)

. (5.75)

The inner EM loop is initialized by γ
(r+ 0

K
)

c = γ
(r)
c . Note that, when γc is updated in

every iteration, only the inner E-step (Ex = E
x1,...,xM |t;γ

(r+ k
K )

c

[·]) is updated. The overall

NSBL algorithm is executed by nesting one EM loop within the other, as depicted in

Fig. 5.6. The inner EM loop consists of Ex and the corresponding posterior distribution

is given by (5.67)-(5.71). Further, the M-step for the inner EM loop is given by

γ(r+ (k+1)
K

)(i) = 1
M

(
M∑

j=2

Mj|M (i,i)

(1−ρ2)
+M1|M (i, i)

)

(5.76)

for 1 ≤ i ≤ B, where Mj|M , Pj|M+x̂j|M x̂T
j|M+ρ2(Pj−1|M+x̂j−1|M x̂T

j−1|M)−2ρ(Pj,j−1|M+

x̂j|M x̂T
j−1|M) and M1|M , P1|M + x̂1|M x̂T

1|M . After K iterations of the inner EM loop, we

obtain γ
r+

K
K

c = γr+1
c , which affects the posterior distribution of t. The outer EM loop
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y µt,Σt

xm|M ,Pm|M , 1 ≤ m ≤ M

γ(r+ k

K
), ρr+

k

K

γ(r+1), ρ(r+1)

γ̂, ρ̂
Et

Ex
M-step

γ(r+ k

K
), ρr+

k

K

Figure 5.6: Pictorial representation of the Nested SBL implementation.

consists of updating the posterior distribution of t given in (5.62).

An update step for the unknown correlation coefficient ρ can also be incorporated into

the M-step of the NSBL algorithm. The correlation coefficient ρ(r+
(k+1)

K
) in the (r+ (k+1)

K
)th

iteration is obtained as a solution to the cubic equation

(2B(M−1))ρ3+Tr {T2 +T3} ρ
2−Tr {T2 +T3}− [2B(M−1)−2Tr {T1 +T4)}]ρ = 0,

(5.77)

where the matrices T1 through T4 are defined as

T1 = Γ−1
c

∑M
j=2[Pj|M + x̂j|M x̂T

j|M ], (5.78)

T2 = Γ−1
c

∑M
j=2[Pj,j−1|M + x̂j|M x̂T

j−1|M ], (5.79)

T3 = Γ−1
c

∑M
j=2[Pj,j−1|M + x̂j−1|M x̂T

j|M ], (5.80)

T4 = Γ−1
c

∑M
j=2[Pj−1|M + x̂j−1|M x̂T

j−1|M ]. (5.81)

Among the possible solutions of the above cubic equation, we pick the ρ ∈ R that

satisfies 0 ≤ ρ ≤ 1.

Using a flop-count analysis [129], we note that the computations in BSBL are domi-

nated by the E-step, which incurs a computational complexity of O(N2MB). On the
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other hand, NSBL consists of two EM loops, where the maximum complexity of the

outer and inner EM loop are O(N2MB) and O(MB3), respectively. Typically, in the

nested EM approach, the number of inner EM iterations are fixed, so that the outer EM

loop is guaranteed to converge, and the inner EM loop ensures likelihood increase [147].

Consequently, the complexity of the NSBL algorithm is dominated by O(N2MB). How-

ever, since the number of outer EM iterations are far lower than that of BSBL, the NSBL

entails a lower computational complexity than the BSBL approach.
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Figure 5.7: MSE performance of the
NSBL as compared to BSBL, BOMP,
SBL and OMP algorithms for N = 40,
L = 100, B = 5 and S = 1.
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Figure 5.8: Success rate of the NSBL
as compared to BSBL, BOMP, SBL
and OMP algorithms for SNR = 40,
L = 100, B = 5 and S = 1.

In Fig. 5.7 and Fig. 5.8, we demonstrate the MSE performance and the support recov-

ery performance of the NSBL algorithm as compared to BSBL [134] and the conven-

tional SBL and the OMP algorithms, which are unaware of the correlated cluster-sparse

nature of sparse vectors. Since the NSBL algorithm employs EM based updates for up-

dating the unknown correlation co-efficient ρ unlike the heuristic updates based BSBL

algorithm, NSBL has a superior performance compared to the BSBL algorithm. Further,
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we see that the cluster-sparse structure aware NSBL and the BSBL algorithms have a

superior performance compared to SBL and OMP algorithms.

Remarks: In the literature on cluster-sparse vector recovery, past work has mainly fo-

cused on sparse vectors that consist of clusters where intra-cluster correlation is absent,

i.e., B = IB [138,139]. The NSBL proposed earlier has a very simple form when B = IB,

which we refer to as the PCSBL algorithm.

WhenB = IB , the vectors x1, . . . ,xM are uncorrelated, and hence, we have p(xc|t;γc) =

∏M
m=1 p(xm|tm;γc). This decomposes the cluster-sparse recovery problem in (5.9) into

a MMV problem [104], where the goal is recovering group-sparse vectors x1, . . . ,xM

from multiple measurements µt1, . . . ,µtM . The posterior distribution of xm is given by

p(xm|tm;γ
(r)
c ) = N (µxm,Σxm), where µxm = β−1

m σ−2ΣxmΦ
T
mtm and

Σxm =
(

ΦT
mΦm

βmσ2 + Γ
(r)
c

−1
)−1

. Using the posterior distribution computed above, the up-

date for γc is obtained as follows:

γ(r+1)
c = argmax

γc∈R
B×1
+

E
t,xc|yc;γ

(r)
c
[log p(t,xc;γc)]

= argmax
γc∈R

B×1
+

(c′ − E
t|yc;γ

(r)
c
E
xc|t;γ

(r)
c
[
xT
c Γ

−1
B xc

2
+ 1

2
log |ΓB|]) (5.82)

In the above expression, log |ΓB| simplifies as M log |Γc| and xT
c Γ

−1
B xc =

M∑

m=1

xT
mΓ

−1
c xm.

Further, E
xc|t;γ

(r)
c
[xT

mΓ
−1
c xm] = Tr(Γ−1

c (Σxm +µxmµ
T
xm

)). Substituting for µxm , we obtain

the overall optimization problem in the M-step as

γ(r+1)
c = argmin

γc∈R
B×1
+

(c′ + M
2
log |Γc|+

1
2

M∑

m=1

Tr(Γ−1
c Σxm)Tr

(

Γ−1
c

ΣxmΦT
mRmΦmΣxm

β2
mσ4 )

)

, (5.83)

where Rm = Σtm+µtmµ
T
tm

, Σtm ∈ RN×N is the mth entry of blkdiag(Σt) and blkdiag(A)
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returns the block diagonal matrices of A. Maximizing (5.83) w.r.t. γc, we get

γ(r+1)
c =

1

M

M∑

m=1

diag
(

Σxm + ΣxmΦT
mRmΦmΣxm

β2
mσ4

)

. (5.84)

The proposed PCSBL and the BSBL algorithm [142] are mathematically equivalent for

the case when B = IB. However, the PCSBL approach allows for parallel implementa-

tion of the algorithm, since the cluster-sparse vector is recovered by solving M parallel

problems. Further, from (5.84), we see that the overall M-step is simply the average of

the hyperparameter updates obtained from the M parallel problems.

Note that several cluster-sparse extensions of the algorithms proposed in the context

of group-sparse signals are possible. For e.g., a simple modification of the prior den-

sity leads to the cluster-sparse variant of the MSBL algorithm, which we refer to as the

BMSBL algorithm, for the recovery of multiple uncorrelated cluster-sparse vectors in

an MMV framework. Similarly, a modification in the prior density following a mod-

ification in the AR model leads to the KBMSBL algorithm as the block-sparse MMV

variant of the KSBL algorithm in order to track multiple correlated cluster-sparse vec-

tors in the MMV framework. The novelty in the proposed algorithms lies in effectively

incorporating the block-sparse structure of the vectors in the prior pdf, leading to effec-

tive utilization of the information regarding the structure of the vectors. In chapter 4,

we consider such cluster-sparse variants of the algorithms proposed in this chapter for

OFDM channel estimation and tracking.

Until now, we have considered scenarios where the measurement matrices are com-

pletely known. In the following section, we consider a case when Φ is not known

completely; some entries of Φ are missing. In particular, we propose algorithms that
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facilitate learning the missing entries along with sparse vector estimation in a general

SBL framework.

5.3.5 Partially Unknown Measurement Matrix and SBL

In the algorithms proposed thus far, we assumed that the sparse vector x is unknown

and Φ is completely known. In this section, we consider a partially known measure-

ment matrix, i.e., a measurement matrix in which a few entries are missing. Since SBL

uses an EM based framework, we show that SBL can be elegantly extended not only

to estimate such missing variables, but also incorporate their estimates into the update

equations of unknown parameters.

When Φ is partially known, the unknown parameter set is given by Θ = [Φ,γ]. The

EM algorithm in such a case is given by

E-step: Q(Θ|Θ(r)) = Ex|y;Θ(r) [log(p(y,x; Θ))]

M-step: Θ(r+1) = argmax
Θ

Q(Θ|Θ(r)) (5.85)

The E-step given above can be further simplified as

log(p(y,x; Θ)) = log(p(y|x;Φ)) + log(p(x;γ)) (5.86)

The Q(Θ|Θ(r)) function in the E-step given above splits into two independent functions,

as follows:

Q(Θ|Θ(r)) = Ex|y;Θ(r) [log(p(y|x;Φ))] + Ex|y;Θ(r) [log(p(x;γ))] (5.87)
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The optimization problem w.r.t. the missing variables in Φ can be given by

Q(Φ|Φ(r)) = Ex|y;Θ(r) [log(p(y|x;Φ))] , (5.88)

since other terms in (5.87) are independent of the missing variables in Φ. Further,

Q(Φ|Φ(r)) is independent of x and parameters of the pdf of x. Specifically, the miss-

ing entries of Φ are independent of the sparse vector estimation process, and in turn

independent of the inherent structure of the sparse vector (the sparse vector being cor-

related, group-sparse or cluster-sparse). Hence, the expressions given above hold for

all the algorithms proposed in this chapter.

Since estimating all the entries in Φ leads to overfitting, we restrain ourselves to mea-

surement matrices of the form Φ = Aψ, where A is a diagonal matrix with a few

missing entries and ψ is a known basis matrix (such as wavelet or Fourier). Such ma-

trices are naturally found in applications such as OFDM channel estimation and data

detection [89]. The function Q(Φ|Φ(r)) given above simplifies as

Q(Φ|Φ(r)) = Ex|y;A(r)

[
log(p(y|x;A(r)))

]
(5.89)

As discussed earlier, the update for γ depends on the optimization problem with ob-

jective function given by the second term in (5.87). The optimization problem w.r.t A is

given by

A(r+1) = argmax
A

Q(Φ|Φ(r))

= argmax
A

Ex|y;A(r)

[

−
(y −Aψx)T (y −Aψx)

σ2

]

(5.90)
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The optimization problem given above can be simplified as

A(r+1) = argmin
A

[
yTAψµsbl + µ

T
sblψ

TATy− yTAψ[µsblµ
T
sbl +Σsbl]ψ

TATy
]

(5.91)

The above expression can be solved in closed form to obtain the update equation for

elements of A as follows:

a = (Yψµsbl + µ
T
sblψ

TYT )−1Yψµsbl, (5.92)

where Y = diag(y) and a = diag(A). The theory of EM algorithm shows that Q(Θ|Θ(r))

increases monotonically for 1 ≤ r ≤ rmax, where rmax is the maximum number of itera-

tions. That is,

Q(Θ(r+1)|Θ(r)) ≥ Q(Θ(r)|Θ(r−1)), for 1 ≤ r ≤ rmax. (5.93)

Note that the above function Q(.) monotonically (in Θ) approaches the likelihood func-

tion, which in turn is bounded. This guarantees the convergence of the proposed

approach. Further, the convergence guarantee holds for correlated/uncorrelated or

sparse/block-sparse type of sparse vectors as well.

In Fig. 5.9 and Fig. 5.10, we demonstrate the MSE performance and the support re-

covery performance of the SBL algorithm as compared to the novel J-SBL algorithm. In

order to run the SBL algorithm, we assume that the diagonal values of A are known at

a few locations, and some of the entries are missing. Since the J-SBL incorporates esti-

mates of the missing entries as well as the observations corresponding to the missing

entries of A, it outperforms the SBL algorithm, both in MSE and support recovery.
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Figure 5.9: MSE performance of the
SBL compared to J-SBL for N = 30,
L = 64 and S = 3.
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Figure 5.10: Success rate of the SBL
compared to J-SBL for SNR = 20, L =
64 and S = 3.

5.4 Conclusions

In this chapter, we summarized the novel algorithms proposed in this thesis. We first

stated the SBL and the MSBL algorithm. In order to handle inter-vector correlation

in the MMV framework, we derived the KSBL algorithm as a low-complexity alterna-

tive to the known TSBL and ARSBL algorithm. The KSBL algorithm exploited the KFS

framework, while the correlated sparse vectors were modeled using a first order AR

model. In the context of recovering cluster-sparse vectors, we proposed the NSBL algo-

rithm in order to exploit the intra-cluster correlation. First, we showed that in contrast

to the heuristic updates of the correlation coefficient in the BSBL algorithm, the NSBL

framework consists of EM updates with global convergence guarantee to a local opti-

mum, i.e., it converges to a local minimum from any initial point. The NSBL and the

PCSBL algorithms entail a complexity much lower than the BSBL algorithm. We also

extended the SBL framework to jointly update a partially known matrix along with
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recovering the sparse vector. Using Monte Carlo simulations, we presented a perfor-

mance comparison of the proposed algorithms and their SBL and CS based counter-

parts.



Chapter 6

Conclusions and Future Work

In this thesis, we investigated the Bayesian learning technique known as sparse Bayesian

learning for the problem of channel estimation and data detection in approximately-

sparse (a-sparse) SISO and MIMO-OFDM systems. We also derived Cramér Type lower

bounds to benchmark the performance of the SBL based estimators in the presence of

compressible vectors. The concluding remarks of this thesis are summarized below.

6.1 Conclusions

In chapter 2, we derived Cramér Rao type lower Bounds (CRB) on the MSE for the sin-

gle measurement and the multiple measurement SBL problem of estimating compress-

ible signals. In particular, we derived the hybrid, Bayesian and marginalized CRBs

under various assumptions on the unknown parameters, using a hierarchical model

for the compressible priors. The derived bounds provided key insights into the MSE

performance of SBL and the values of the parameters that govern these hyperpriors.

We showed that the MCRB is tighter than the BCRB. We compared the lower bounds

with the MSE performance of the ARD-SBL and the EM algorithm using Monte Carlo

169
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simulations. The numerical results illustrated the near-optimality of EM based updates

for SBL, which makes it interesting for practical implementations.

Chapter 3 considered joint approximately sparse channel estimation and data detec-

tion for block-fading and time-varying channels in SISO-OFDM systems, using SBL-

based techniques. To estimate the a-sparse block-fading channel, we proposed the pilot-

based SBL algorithm and the J-SBL algorithm for joint a-sparse channel estimation and

data detection, and a mathematically equivalent low-complexity RJ-SBL algorithm. For

time-varying channels, we used a first order AR model to capture the temporal corre-

lation of the a-sparse channel and proposed a novel pilot-based KSBL algorithm. We

generalized the KSBL algorithm to obtain the J-KSBL algorithm for joint channel esti-

mation and data detection. We discussed the implementation issues of the recursive

algorithms and showed that the proposed algorithms entail a significantly lower com-

putational complexity compared to the previously known SBL techniques. Simulation

results showed that the proposed recursive techniques are able to exploit the temporal

correlation of the channel, resulting in an enhanced channel estimation and data detec-

tion capability compared to the per-symbol SBL and J-SBL algorithms, and also learn

the hyperparameters within a few OFDM symbols.

In chapter 4, we considered pilot-only channel estimation and joint group a-sparse

(ga-sparse) and group a-cluster sparse (ga-cpsarse) channel estimation and data detec-

tion for block-fading and time-varying channels in MIMO-OFDM systems, using the

SBL framework. To estimate the ga-sparse and ga-csparse block-fading channels, we

adapted the existing MSBL and BMSBL algorithms and generalized it to obtain the J-

MSBL and J-BMSBL algorithms, respectively, for joint ga-sparse and ga-csparse channel
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estimation and data detection. We used a first order AR model to capture the temporal

correlation of the ga-sparse and ga-csparse channels and proposed a novel pilot-only

KMSBL and KBMSL algorithms, respectively. We generalized these algorithms to ob-

tain the J-KMSBL and J-KBMSBL algorithms, respectively, for joint channel estimation

and data detection. We discussed the computational aspects of the proposed algorithms

and showed that the proposed recursive algorithms entail a significantly lower compu-

tational complexity compared to the previously known SBL based techniques. Further,

we also discussed efficient implementation structures for ga-csparse channels in block-

fading and time-varying scenarios. Simulation results showed that (i) joint algorithms

outperformed their pilot-only counterparts, (ii) recursive techniques outperformed the

per-symbol algorithms, and (iii) algorithms proposed in the context of ga-csparse chan-

nels outperformed their ga-csparse counterparts.

In chapter 5 of this thesis, we summarized the algorithms proposed in this thesis in a

generic SBL framework. We showed that many of the proposed algorithms are capable

of handling correlated sparse vectors along with being efficient and low-complexity.

We demonstrated the efficacy of the proposed techniques (MSE and support recovery

performance) as compared to the existing CS and SBL based algorithms using Monte

Carlo simulations. We also showed that these performance improvements come at a

minimal computational cost. In some cases, exploiting the structure in the sparse signal

enables us to improve both the performance and computational complexity.
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6.2 Future Work

Some interesting directions for future work are as follows.

• In the Kalman based KSBL framework for correlated sparse MMVs, the EM frame-

work involves a fixed-interval type smoothing. Further, this necessitates batch

processing and not online processing of the observations. It would be interesting

to derive fixed-lag type smoother for estimating correlated sparse MMVs.

• In this work, we have assumed the noise to be white across the measurements. It

would be interesting to study the effect of colored noise along with exploring the

learning rules for the same.

• Throughout this work, we propose SBL based iterative receivers where we per-

form data detection and employ the detected symbols as pilots in the channel

estimation procedure. The channel estimates are used to compute the log likeli-

hood ratios and decode the data bits. It would be interesting to explore SBL based

iterative receivers that perform joint channel estimation and data decoding.
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Appendix for Chapter 2

A.1 Proof of Proposition 1

Using the graphical model of Fig. 1.1 in (2.5), Hθ(x) is computed as

Hθ(x) , −EY,X;γ

[
∇2

x log pY,X;γ(y,x;γ)
]

= −EY,X;γ

[

∇x

(
ΦT (y−Φx)

σ2 −Υ−1x
)]

= ΦTΦ
σ2 +Υ−1. (A.1)

Similarly, it is straightforward to show that ∇x∇γ log pY,X;γ(y,x;γ) = diag
(

x1

γ2
1
, x2

γ2
2
, . . . , xL

γ2
L

)

.

Since xi are zero mean random variables,

Hθ(γ,x) = −EY,X;γ [∇γ∇x log pY,X;γ(y,x;γ)] = 0L×L. (A.2)

Further,

Hθ(γ) , −EY,X;γ

[
∇2

γ(log pY|X(y|x) + log pX;γ(x;γ))
]
. (A.3)
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Now, since log pX;γ(x;γ) =
∑L

i=1 log pX;γ(xi;γi), we get,

∂2 log pX;γ(x;γ)

∂γiγj
=







1
2γ2

i
− x2

i

γ3
i

if i = j

0 if i 6= j.
(A.4)

Taking −EX;γ(·) on both the sides of the equation above and noting that EX;γ(x
2
i ) = γi,

we obtain

Hθ(γ) = diag

(

−EX;γ

[
∂2 log pX;γ(x;γ)

∂γ2
i

])

= diag

([
1

2γ2
1

, . . . ,
1

2γ2
L

])

. (A.5)

This completes the proof.

A.2 Proof of Proposition 2

Using the graphical model of Fig. 1.1 in (2.5), Bθ(x) is computed as

Bθ(x) , −EY,X,Γ

[
∇2

x log pY,X,Γ(y,x;γ)
]

= −EY,X,Γ

[

∇x

(
ΦT (y−Φx)

σ2 −Υ−1x
)]

= EΓ

[
ΦTΦ
σ2 +Υ−1

]

(A.6)

= ΦTΦ
σ2 + EΓ

[
Υ−1

]
. (A.7)

The expression for EΓ [Υ
−1] w.r.t. γi is given by,

EΓ

[
1
γi

]

= Kγ

∫ ∞

γi=0

γ
(− ν

2
−2)

i exp
{

− ν
2λγi

}

dγi (A.8)

= Kγ
Γ(ν2+1)

( ν
2λ)

ν
2
+1

∫ ∞

γi=0

IG
(

ν
2
+ 1,

ν

2λ

)

dγi

︸ ︷︷ ︸

=1

= λ, (A.9)
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since Kγ =
(

ν
2λ

)ν/2 (
Γ
(
ν
2

))−1
. Hence, the overall bound is given by

Bθ(x) =
ΦTΦ

σ2
+ λIL×L. (A.10)

Using the graphical model of Fig. 1.1 in (2.5), for θ = [xT ,γT ]T , Bθ(γ) is defined as

Bθ(γ) , −EY,X,Γ

[
∇2

γ

(
log pY|X(y|x)

+ log pX|Γ(x|γ) + log pΓ(γ)
)]

. (A.11)

Since the expressions for log pX|Γ(x|γ) and log pΓ(γ) are separable and symmetric w.r.t.

γi, the off-diagonal terms of Bθ(γ) are zero, and it is sufficient to evaluate the diagonal

terms

−EY,X,Γ

(
∂2(log pX|Γ(x|γ)+log pΓ(γ))

∂γ2
i

)

. Differentiating the expression w.r.t. γi twice,

∂2
(
log pX|Γ(x|γ) + log pΓ(γ)

)

∂γ2
i

= −
(ν + 1)

2γ2
i

+
ν

λγ3
i

. (A.12)

The expression for −EΓ

[

− (ν+1)
2γ2

i
+ ν

λγ3
i

]

is given by

EΓ

[
(ν+1)
2γ2

i
− ν

λγ3
i

]

=

Kγ

∫∞

γi=0

[
(ν+1)γ−2

i

2
−

νγ−3
i

λ

]

γ
(− ν

2
−1)

i exp{− ν
2λγi

}dγi, (A.13)

where Kγ =
(

ν
2λ

)ν/2 (
Γ
(
ν
2

))−1
. After some manipulation, it can be shown that the above

integral reduces to

−EΓ

[

−
(ν + 1)

2γ2
i

+
ν

λγ3
i

]

=
λ2(ν + 2)(ν + 7)

2ν
. (A.14)
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Using (2.5), the (ij)th component of the matrix Bθ(γ,x) is obtained as

(Bθ(γ,x))ij =
∂2 log pX|Γ(x|γ)

∂γi∂xi

= −
xi

γ2
i

, (A.15)

and Bθ(x,γ) = (Bθ(γ,x))T . Since EX|Γ(xi) = 0, Bθ(γ,x) = 0L×L. This completes the

proof.

A.3 Proof of Theorem 1

To establish the regularity condition, the first order derivative of the log likelihood

log pY;γ(y;γ) is required. This, in turn, requires the evaluation of ∂ log |Σy|

∂γj
and

∂yTΣ−1
y y

∂γj
.

The derivative of the log likelihood w.r.t. γj is obtained using the chain rule [148] as

follows:

∂ log |Σy|

∂γj
= Tr

{(
∂ log |Σy|

∂Σy

)T
∂Σy

∂γj

}

= Tr
{
(Σ−1

y )TΦjΦ
T
j

}
= ΦT

j Σ
−1
y Φj . (A.16)

Here, we have used the identity ∇X log |X| = X−1 [148], and results from vector calcu-

lus [148] to obtain ∂Σy

∂γj
= ΦjΦ

T
j , where Φj is the jth column of Φ. Similarly, the derivative

of yTΣ−1
y y can be obtained as

∂yTΣ−1
y y

∂γj
= Tr

{(
∂yTΣ−1

y y

∂Σ−1
y

)T ∂Σ−1
y

∂γj

}

= −ΦT
j Σ

−1
y yyTΣ−1

y Φj , (A.17)
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and hence,

∂

∂γj
log pY;γ(y;γ) = −

(

ΦT
j Σ

−1
y Φj − ΦT

j Σ
−1
y yyTΣ−1

y Φj

2

)

. (A.18)

Taking EY;γ(·) on both the sides of the above equation, it can be seen that

EY;γ

[
∂

∂γj
log pY;γ(y;γ)

]

= −

(
ΦT

j Σ−1
y Φj−ΦT

j Σ−1
y {EY;γ (yyT )}Σ−1

y Φj

2

)

= 0, (A.19)

since EY(yy
T ) = Σy. Hence, the pdf satisfies the required regularity constraint.

Using the regularity condition above, the MCRB for θ = [γ] is obtained by computing

the second derivative of the log likelihood, as follows:

−
∂2

∂γiγj
log pY,γ(y;γ) =

1

2

∂

∂γi
(ΦT

j Σ
−1
y Φj − (ΦT

j Σ
−1
y y)2)

=
1

2
Tr
{
ΦjΦ

T
j (−Σ−1

y ΦiΦ
T
i Σ

−1
y )
}

− (ΦT
j Σ

−1
y y)Tr







(

∂(ΦT
j Σ

−1
y y)

∂Σ−1
y

)T
∂Σ−1

y

∂γi







=
1

2
ΦT

j (−Σ−1
y ΦiΦ

T
i Σ

−1
y )Φj−

(ΦT
j Σ

−1
y y)yT

(
−Σ−1

y ΦiΦ
T
i Σ

−1
y

)
Φj . (A.20)

Taking −EY;γ(·) on both the sides of the above expression, we obtain

(Mγ)ij , −EY;γ

[
∂2 log pY;γ(y;γ)

∂γiγj

]

=
(ΦT

j Σ
−1
y Φi)

2

2
, (A.21)

as stated in (2.11). This completes the proof.
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A.3.1 Proof of Theorem 2

The proof follows from the proof for Theorem 3 in Appendix H by substituting τ = 2.

A.3.2 Proof of Theorem 3

The MCRB for estimation of the compressible random vector with θ = [x] is given by

Mx = −EY,X[∇2
x log pY,X(y,x)]

= −EY,X[∇
2
x log pY|X(y|x) +∇2

x log pX(x)]. (A.22)

The first term above is given by

−EY,X

[
∇2

x log pY|X(y|x)
]
= −EY,X

[

∇x
ΦT (y−Φx)

σ2

]

= −EY,X

[
−ΦTΦ

σ2

]

= ΦTΦ
σ2 . (A.23)

Note that pX(x) is not differentiable if any of its components xi = 0. However, the

measure of xi = 0 is zero since the distribution is continuous, and hence, this condition

can be safely ignored. Note that

∂ log pX(x)
∂xi

=







− (ν+1)λ
ν

xτ−1
i(

1+
λxτi
ν

) if xi > 0

(−1)τ (ν+1)λ
ν

xτ−1
i(

1+(−1)τ
λxτi
ν

) if xi < 0.
(A.24)

First, we consider the case of xi > 0. Differentiating the above w.r.t. xi again, we obtain

∂
∂x2

i
log pX(x) =

−(ν+1)λ(τ−1)
ν

xτ−2
i(

1+
λxτ

i

ν

) + λ2τ(ν+1)
ν2

x2τ−2
i

(

1+
λxτ

i

ν

)2 . (A.25)
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Taking −EX(·) on both sides of the above equation, we get

−EX

(
∂

∂x2
i
log pX(x)

)

= K(ν+1)λ
ν

∞∫

0

{
(τ−1)xτ−2

i
(

1+
λxτ

i

ν

)(ν+τ+1)/τ −
λτx2τ−2

i

ν

(

1+
λxτ

i

ν

)(ν+2τ+1)/τ }dxi. (A.26)

The above can be simplified using the transformation ti =
λxτ

i

ν
and using

∫∞

0
tu−1

(1+t)u+vdt =

Γ(u)Γ(v)
Γ(u+v)

, we get

− EX

(
∂

∂x2
i
log pX(x)

)

= K(ν+1)(τ−1)
τ

(
λ
ν

)1/τ

Γ
(
1− 1

τ

)
{

Γ
(
ν+τ+2

τ

)

−
1
τ
Γ
(
ν+2
τ

)

Γ
(
v+2τ+1

τ

)

}

for xi > 0. (A.27)

For the case of xi < 0, we see that the integral simplifies to the integral given in (A.26).

Hence, the overall expression is given by

−EX

(
∂

∂x2
i
log pX(x)

)

= K(ν+1)2(τ−1)
τ(ν+τ+1)

(
λ
ν

)1/τ

Γ
(
1− 1

τ

)

{

Γ
(
ν+2
τ

)

Γ
(
v+τ+1

τ

)

}

. (A.28)

Substituting the expression for K in the above, we get

−EX

(
∂

∂x2
i
log pX(x)

)

= τ2(ν+1)
(ν+τ+1)

(
λ
ν

)2/τ Γ
(
ν+2
τ

)

Γ
(

2−
1
τ

)

Γ
(
1
τ

)

Γ( vτ )
. (A.29)

Combining the expression above and (A.23), we obtain the MCRB in (2.17).

A.4 Proof of Proposition 3

In this case, we define θ′ = [xT ,γT ]T and hence, θ = [θ′T , ξ]T . In order to compute the

HCRB, we need to find Hθ
ξ (ξ), H

θ
ξ (θ

′) and Hθ
ξ (θ

′, ξ). We have log pY,X;γ,ξ(y,x;γ, ξ) =
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log pY|X;ξ(y|x; ξ)+log pX;γ(x;γ), where ξ = σ2. Using (2.5), the submatrix Hθ
ξ (θ

′) = Hθ′
,

i.e., the same as computed earlier in (2.8). Hence, we focus on the block matrices that

occur due to the additional parameter ξ. First, Hθ
ξ (ξ) is computed as in Sec. 3.6 in [105],

from which, −EY,X;ξ

[

− N
2ξ2

]

= N
2ξ2

.

From Lemma 2, it directly follows that Hθ
ξ (γ, ξ) = 0L×1. Using (2.5), we compute

Hθ
ξ (x, ξ) as follows:

Hθ
ξ (x, ξ) = EX(EY|X;ξ(Φ

Ty −ΦTΦx)). (A.30)

Since EY|X;ξ(y) = Φx, EX(Φ
T (Φx)−ΦTΦx) = 0L×1. This completes the proof.

A.5 Proof of Proposition 4

In this case, we define θ , [θ′T , ξ] and θ′ , [xT ,γT ]T . In order to compute the HCRB,

we need to find Hθ
ξ (ξ), H

θ
ξ (θ

′) and Hθ
ξ (θ

′, ξ). Using (2.5), the expression for Hθ
ξ (θ

′) is the

same as computed earlier in (2.8). Since ξ is random, the expectation operator includes

an expectation over ξ, and hence,

Hθ
ξ (ξ) = −EY,X,Ξ

[
∂2

∂ξ2
(log pY|X,Ξ(y|x, ξ) + log pΞ(ξ))

]

= EΞ

(
N/2−c−1

ξ2
+ 2d

ξ3

)

. (A.31)

The above expectation is evaluated as

Hθ
ξ (ξ) =

(N/2−c−1)dc

Γ(c)

∞∫

ξ=0

ξ−2ξ(−c−1) exp
{

−d
ξ

}

dξ +

2d(c+1)

Γ(c)

∞∫

ξ=0

ξ−3ξ(−c−1) exp
{

−d
ξ

}

dξ =
c(c+1)(N

2
+c+3)

d2
. (A.32)
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To find the other components of the matrix, we compute Hθ
ξ (θ

′, ξ) = (Hθ
ξ (ξ, θ

′))T , which

consists of Hθ
ξ (γ, ξ) and Hθ

ξ (x, ξ). From Lemma 2, Hθ
ξ (γ, ξ) = 0L×1. Using the definition

of Hθ
ξ (x, ξ), we see that Hθ

ξ (x, ξ) = (Hθ
ξ (ξ,x))

T = 0L×1, from (A.30) and since pΞ(ξ) is

not a function of xi. Thus, we obtain the FIM given by (2.21).

A.6 Proof of Theorem 4

The proof of Theorem 3 requires the regularity condition to be satisfied when the noise

variance is unknown. In (A.19), we showed that the log likelihood function satisfies the

regularity condition when θ = [γ]. In this subsection, we show that the log likelihood

log(pY,γ,ξ(y,γ, ξ)) in (2.3) satisfies the regularity condition w.r.t. ξ. Differentiating the

log likelihood w.r.t. ξ and taking −EY;γ,ξ(·) on both the sides of the equation,

∂
∂ξ

log(pY;γ,ξ(y,γ, ξ)) =
1
2

∂
∂ξ
(− log |Σy| − yTΣ−1

y y)

= −1
2

[
Tr(Σ−1

y )− Tr(yyT (Σ−1
y Σ−1

y ))
]
, (A.33)

EY;γ,ξ

[
Tr(−1

2
Σ−1

y ) + 1
2
Tr(yyT (Σ−1

y Σ−1
y ))

]

= 1
2

[
Tr(Σ−1

y )− Tr(Σ−1
y )
]
= 0. (A.34)

Hence, the regularity condition is satisfied. From (A.21), we have (Mθ
ξ (γ))ij = −

(ΦT
j Σ−1

y Φi)
2

2
.

To obtain Mθ
ξ (ξ), we differentiate (A.33) w.r.t. ξ to obtain

∂2

∂ξ2
(log pY;γ,ξ(y;γ, ξ)) =

1

2
Tr(Σ−2

y )− Tr(yyT (Σ−3
y )). (A.35)
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Taking −EY;γ,ξ(·) on both sides of the above equation,

Mθ
ξ (ξ) = −EY;γ,ξ

[
1
2
Tr(Σ−2

y )− Tr(yyTTr(Σ−3
y ))

]

= Tr(Σ−2
y )− 1

2
Tr(Σ−2

y ) = 1
2
Tr(Σ−2

y ). (A.36)

The vector Mθ
ξ (γ, ξ) is found by differentiating (A.18) w.r.t. ξ and taking the negative

expectation:

(Mθ
ξ (γ, ξ))i = EY;γ,ξ

[
∂
∂ξ

(
ΦT

i Σ−1
y Φi−ΦT

i Σ−1
y yyTΣ−1

y Φi

2

)]

=
1

2
ΦT

i Σ
−2
y Φi. (A.37)

Since Mθ
ξ (ξ,γ) = (Mθ

ξ (γ, ξ))
T , the ith term of (Mθ

ξ (ξ,γ))i =
1
2
ΦT

i Σ
−2
y Φi. The MCRB Mθ

ξ

can now be obtained by combining the expressions in (A.21), (A.36) and (A.37); this

completes the proof.
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