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Abstract— It is well-known that the impulse response of a wide-
band wireless channel is approximately sparse, in the sensethat
it has a small number of significant components relative to the
channel delay spread. In this paper, we consider the estimation
of the unknown channel coefficients and its support in OFDM
systems using a Sparse Bayesian Learning (SBL) framework
for exact inference. In a quasi-static, block-fading scenario, we
employ the SBL algorithm for channel estimation, and propose
a Joint SBL (J-SBL) and a low-complexity recursive J-SBL
algorithm for joint channel estimation and data detection. In a
time-varying scenario, we use a first order auto-regressivemodel
for the wireless channel, and propose a novel, recursive, low-
complexity Kalman filtering-based SBL (K-SBL) algorithm for
channel estimation. We generalize the K-SBL algorithm to obtain
the recursive Joint K-SBL algorithm that performs joint cha nnel
estimation and data detection. Our algorithms can efficiently
recover a group of approximately sparse vectors even when the
measurement matrix is partially unknown due to the presence
of unknown data symbols. Moreover, the algorithms can fully
exploit the correlation structure in the multiple measurements.
Monte Carlo simulations illustrate the efficacy of the proposed
techniques in terms of the mean square error and bit error rate
performance.

EDICS: MLR-BAYL, MLR-SLER, SPC-CEST, SPC-
MULT, SPC-DETC

I. I NTRODUCTION AND SYSTEM MODEL

Orthogonal Frequency Division Multiplexing (OFDM) is a
well-known multi-carrier modulation technique used in several
emerging communications standards, since it provides high
spectral efficiency and resilience to multi-path distortion of the
wireless channel [2]. Accurate decoding of the transmit data
bits requires compensating for the channel distortion, which
necessitates estimation of the wireless channel at the receiver.
Typically, a set of anchor sub-carriers which carry known
signals (pilots) are used to estimate the channel frequency
response [3], [4].

In practice, wireless channels have a large delay spread with
a few significant channel tap coefficients, and therefore, the
channel isapproximately sparse(a-sparse) in the lag domain.
Several papers in literature have proposed sparse channel esti-
mation techniques (see [5]–[7] and references therein). Inthe
context of channel estimation for OFDM systems, spectrally
efficient techniques (for whichP < L, whereP is the number
of pilots andL is the length of the channel) that leverage
this approximate sparsity using Compressed Sensing (CS) [8]

This work has appeared in part in [1].

have been proposed [7], [9]–[13]. In this work, we propose
to formulate the problem of channel estimation in a Sparse
Bayesian Learning (SBL) framework [14], [15]. In [1], we had
proposed SBL-based channel recovery for OFDM systems;
we expand on this previous work in this paper. Specifically,
we design novel SBL algorithms for OFDM systems in the
following scenarios: (i) The block-fading case, where the
channel coefficients remain fixed across the OFDM frame
duration and vary in an i.i.d. fashion from frame to frame;
and (ii) the time-varying case, where the channel coefficients
across successive OFDM symbols are temporally correlated
but have a common support.

A. Problem Formulation and Contributions

In this subsection, we cast the channel estimation problem
in the SBL framework and describe the contributions of
this work. In an OFDM system withN subcarriers, the
instantaneous received signal, denoted byy ∈ C

N×1, is
mathematically represented as [2]

y = XFh+ v. (1)

Here,F ∈ CN×L (N > L) contains the firstL columns of
the N × N Discrete Fourier Transform (DFT) matrix,h ∈
CL is the channel impulse response. The dictionary matrix is
given byΦ = XF, where the diagonal matrixX ∈ C

N×N

contains theN transmitted symbols comprising both known
pilot symbols and unknownM -PSK/M -QAM modulated data
along the diagonal. Each component ofv ∈ CN×1 is a zero
mean circularly symmetric additive white Gaussian noise with
pdf denoted byCN (0, σ2), whereσ2 is the noise variance.
Typically, the communication between the transmitter and the
receiver occurs in frames consisting ofK consecutive OFDM
symbols. Suppose that, in a given OFDM symbol,P of the
N subcarrier locations are pilot subcarriers and the remaining
(N−P ) subcarriers carry unknown data symbols. The system
model pertaining to thepilot subcarriers can be written as

yp = XpFph+ vp, (2)

whereyp is aP×1 vector containing the entries ofy sampled
at pilot locations,Xp is a P × P diagonal matrix with the
known pilot symbols along its diagonal,Fp is the P × L
(P < L) submatrix ofF consisting of the rows corresponding
to the pilot locations andvp is aP×1 vector, again consisting
of components ofv sampled at pilot locations.
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In the complex baseband representation, the scalar channel
impulse responsẽh[t], t ∈ R can be modeled as a stationary
tapped delay line filter in the lag-domain:

h̃[t] =

L̃
∑

l=1

h̃lδ[t− τl], (3)

where δ[t] is the Dirac delta function,̃hl and τl represent
the attenuation and propagation delay between the transmitter
and the receiver pathl, respectively, and̃L is the number
of paths [16]. It is known that the wireless channel models
obtained using channel sounding experiments exhibit approx-
imate sparsity in the lag-domain (for e.g., due to non-perfect
low-pass filtering using raised cosine filtering), as the com-
munication bandwidth and sampling frequency increase [13].
Hence, based on these practical considerations, we consider
the lag-domain filtered channel impulse response, which can
be represented ash[t] = gt[t] ∗ h̃[t] ∗ gr[t], wheregt[t] and
gr[t] represent the baseband transmit and receive filters and∗
represents the convolution operation [12]. Then, the discrete-
time channel can be represented as,h(l) = h[(l − 1)T ],
whereT is the baud interval. The overall channel is repre-
sented ash = (h(1), h(2), . . . , h(L))T . Further, in an SBL
framework, we model the channel ash ∼ CN (0,Γ), where
Γ = diag(γ(1), . . . , γ(L)). Note that if γ(l) → 0, then the
correspondingh(l) → 0 [15], [17].

In wireless channel modeling, the Multipath Intensity Profile
(MIP) is defined as the averaged multipath power profile mea-
sured at a particular location on a measurement grid [18]. The
traditional methods for channel estimation in OFDM systems
assume knowledge of the MIP and use pilots for channel
estimation and tracking [3], or employ iterative techniques
based on the Expectation Maximization (EM) algorithms for
joint channel estimation/tracking and data detection [19], [20].
CS techniques have been proposed for the estimation of the
time-varying channel over all the symbols in a frame when
the channel consists of a few significant nonzero entries but
the path delays are unknown [21]–[23]. Further, approximate
inference methods have been used to solve the problem of
joint channel estimation and decoding in a BICM-OFDM
system, where the time-varying sparse channel is modeled
using a Bernoulli-Gaussian prior [12], [24]. In [25], the
authors design variational message-passing algorithms based
on hierarchical Bayesian prior models for pilot-assisted OFDM
channel estimation.

In this paper, we propose SBL algorithms for exact infer-
ence1 based channel estimation, channel tracking, and data
detection. In addition to the monotonicity property of SBL by
virtue of the EM framework, SBL offers guarantees such as
convergence to the sparsest solution when the noise variance
is zero, and converging to a sparse local minimum irrespective
of the noise variance [15]. In contrast, approximate inference
methods [29], although lower in computational complexity,
do not offer such rigorous convergence guarantees. Given the

1In the machine learning literature (e.g., [26]–[28]), “exact inference” is an
attribute associated with algorithms that obtain the exactposterior distribution
of the hidden/missing variable.

prior distributions of the noisevp and the channelh in (2),
the a-sparse channel estimation problem is given by

(P1) ĥ = argmin
h,γ∈RL×1

+

‖yp−XpFph‖
2
2

σ2 + log |Γ|

+hHΓ−1h, (4)

where2 Γ , diag(γ(1), . . . , γ(L)) and | · | denotes the deter-
minant of a matrix. In the objective function above, the first
term originates from the data likelihood and the other terms
are from the Gaussian prior (conditioned onγ) assumed on
the wireless channel. In this paper, we specifically addressthe
problem of OFDM channel estimation.

Note that, the above problem addresses the estimation of
the wireless channel using pilot subcarriers only. However, in
the OFDM scenario, several subcarriers carry unknown data
as well. In this work, we also consider the problem of joint
channel estimation and data detection, which can be stated as

(P2) ĥ, X̂ = argmin
h,γ∈RL×1

+ ,X∈S

‖y−XFh‖22
σ2 + log |Γ|

+hHΓ−1h. (5)

whereS ⊂ C denotesM -QAM/M -PSK constellation from
which the symbol is transmitted.

Depending on the mobility of the receiver, the channel may
remain essentially constant over the frame duration, or may
be slowly time-varying. If the channel is constant, the a-sparse
channel estimate can be obtained from the pilot subcarriersby
solving(P1). When the channel is time-varying, typically, the
nonzero channel coefficients vary slowly and are temporally
correlated, but the hyperparameters of the channel remain
constant for several OFDM frames [30]. Consequently, the
locations of the significant components coincide in successive
channel instantiations, i.e., the channels are approximately
group-sparse(a-group-sparse). In this work, we cast the chan-
nel estimation problem as a a-group-sparse channel estimation
problem and devise exact Bayesian inference based solutions.
Approximate inference techniques for estimating the time-
varying sparse vector and support have been proposed in [31].
In the context of SBL, block-based methods such as Block
SBL (BSBL) and Temporal SBL (TSBL) algorithms [32] have
been proposed to estimate the time-varying correlated sparse
vectors when the correlation among the group-sparse vectors
is modeled using a general correlation structure. In contrast
to the above-mentioned works, the autoregressive (AR) state
space model has been employed to model the correlation
among the group sparse vectors and approximate Kalman
filtering techniques have been proposed [29]. Further, CS
based Kalman filtering has been proposed in the context of
sparse correlated vector estimation [33].

In this work, we adopt the Kalman Filter (KF) based exact
inference, where the temporal variations of the channel are
captured by an AR model. Moreover, it is known that the
first order AR model accurately captures the local behavior of
fading wireless channels [34]. The first order AR model for

2Due to the one-to-one correspondence between the vectorγ and the
diagonal matrixΓ, we use them interchangeably.
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the kth channel tap is given by

hk = ρhk−1 + uk, (6)

where the Jakes’ Doppler spectrum leads toρ = J0(2πfdTs) ∈
R whereJ0(·) is the zeroth order Bessel function of the first
kind, fd is the Doppler frequency, andTs is the OFDM symbol
duration [35]. The driving noiseuk consists of independent
componentsuk(i) ∼ CN (0, (1 − ρ2)γ(i)). The initial condi-
tion for the a-sparse channel is given byh1 ∼ CN (0,Γ).

When the hyperparameters are known, a KF approach has
been used for channel tracking using the pilot symbols [36].
The EM based KF has also been proposed for joint channel
tracking and data detection in OFDM systems [35], [37].
However, these algorithms are not applicable in scenarios
where the hyperparameters are unknown and need to be
estimated along with the channel tap coefficients and the data
symbols. In contrast, we use the exact inference techniques
employed for linear dynamical systems [26], [38] to exploit
the known correlation structure of the channel. We note thatby
using an AR state space model, it is possible to significantly
reduce the computational complexity compared to the block-
based a-sparse estimation techniques such as the ARSBL [39].

Since the unknown channels have a common hyperparame-
ter vector, the joint pdf of theK received OFDM signals and
the a-group-sparse temporally correlated channels is given by

p(Yp,K ,h1, . . . ,hK ;γ) =

K
∏

m=1

p(yp,m|hm)p(hm|hm−1;γ),

(7)

where Yp,K = [yp,1, . . . ,yp,K ], and, by convention,
we use p(h1|h0;γ) , p(h1;γ) where h1 ∼ CN (0,Γ).
To obtain the optimization problem, we consider
− log p(Yp,K ,h1, . . . ,hK ;γ) and neglect the terms that
are constant w.r.t.h andγ, to obtain

f(h1, . . . ,hK ,γ) =
K
∑

m=1

‖yp,m−Xp,mFp,mhm‖
2
2

σ2

+K log |Γ|+
K
∑

m=2

(hm−ρhm−1)
HΓ−1(hm−ρhm−1)
(1−ρ2)

+hH
1 Γ−1h1. (8)

From the equation above, the pilot-based channel estimation
problem forK OFDM symbols can be written as

(P3) ĥ1, . . . , ĥK = argmin
h1,...,hK,γ∈RL×1

+

f(h1, . . . ,hK ,γ).

(9)

Problem(P3) addresses the estimation oftime-varyingwire-
less channels using only the pilot subcarriers. However, as
mentioned earlier, several subcarriers in each of the OFDM
symbols carry unknown data. Hence, we can also consider
the problem of joint time-varying channel estimation and data
detection, by modifying (9) as follows:

(P4) ĥ1, . . . , ĥK , X̂1, . . . , X̂K =

argmin
h1,...,hK ,γ∈RL×1

+ ,X1,...,XK∈S

g(h1, . . . ,hK ,γ,X1, . . . ,XK)

(10)

where

g(h1, . . . ,hK ,γ,X1, . . . ,XK) =
K
∑

m=1

‖ym−XmFhm‖
2
2

σ2

+
K
∑

m=2

(hm−ρhm−1)
HΓ−1(hm−ρhm−1)
(1−ρ2) +K log |Γ|

+hH
1 Γ−1h1. (11)

Contributions: In this work, we propose a practical and
principled approach for joint a-group-sparse channel estima-
tion and data detection in SISO-OFDM systems, that evaluates
well in Monte-Carlo simulations. First, we show that the
problem in(P1) can be solved using the SBL framework of
[15]. We next generalize the SBL framework to obtain the J-
SBL algorithm as a solution to(P2). A key feature of the J-
SBL algorithm is that the observations from both the data and
the pilot subcarriers are incorporated to jointly estimatethe a-
sparse channel as well as the unknown data. We also propose a
low complexity, recursive J-SBL (RJ-SBL) algorithm to solve
(P2). We show that the joint estimation procedure leads to
a significant improvement in the Mean Square Error (MSE)
of the channel estimate at SNRs of practical interest. Further,
we propose a novel, low-complexity K-SBL algorithm as a
recursive solution to(P3). We enhance the K-SBL algorithm
to obtain the JK-SBL algorithm, which is a recursive solution
to (P4). The results are summarized in the Table I.

Although our work focuses on a-sparse channel estimation
for OFDM systems using the SBL framework, the algorithms
we develop are important in their own right due to several
reasons. This is the first paper in the literature that proposes
recursive techniques for exact inference in sparse signal re-
covery. We show that the joint problems of hyperparameter
estimation and data detection separate out in the M-step.
This leads to a simple maximization procedure in the M-
step, with no loss of optimality. The joint algorithms involve
estimation of the unknown data symbols, which necessitates
the development of techniques that are capable of handling
partially unknown dictionary matrices.3 Finally, the recursive
versions of the algorithms have the advantage of computational
simplicity compared to other exact inference methods, while
retaining the performance advantages of SBL estimators.

The rest of this paper is organized as follows. In Sec. II,
we propose algorithms for a-sparse channel estimation using
pilots. In Sec. III, the joint channel estimation and data
detection algorithms are proposed and the implementation
issues are discussed. The efficacy of the proposed techniques
is demonstrated through simulation results in Sec. IV. We offer
some concluding remarks in Sec. V.

Notation: Boldface small letters denote vectors and bold-
face capital letters denote matrices. The symbols(·)T and| · |
denote the transpose and determinant of a matrix, respectively.
Also, diag(a) denotes a diagonal matrix with entries on the
diagonal given bya. The pdf of the random variableX is
represented asp(x) and the random variables and deterministic
parameters in the pdf are separated using a semicolon. The

3That is, the algorithms are capable of handling the fact that, due to the
N − P unknown data symbols inX, the measurement matrixΦ = XF is
partially unknown.
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TABLE I

THE MAIN CONTRIBUTIONS OF THIS PAPER.

Sl. no. Novel algorithms proposed Goal Applicability
and Section number

1 SBL in Sec. II Joint channel, hyperparameter estimationBlock-fading channels (P1)
2 J-SBL in Sec. III Joint channel, hyperparameter estimationBlock-fading channels (P2)

and Recursive J-SBL and data detection
3 K-SBL in Sec. II Recursive joint channel Time-varying and

and hyperparameter estimation Block-fading channels (P3)
4 JK-SBL in Sec. III Recursive joint channel, hyperparameter Time-varying and

estimation and data detection Block-fading channels (P4)

expectation with respect to a random variableX is denoted
asEX(·). TheL×L identity matrix is represented asIL and
A ⊗ B denotes the Kronecker product ofA andB. The ith

entry of a vectora and the(i, j)th entry of a matrixA are
represented asa(i) andA(i, j), respectively. Throughout the
paper,p as a subscript refers to pilots and(r) in the superscript
refers to the iteration number.

II. CHANNEL ESTIMATION AND TRACKING USING PILOT

SUBCARRIERS

In this section, we propose SBL algorithms for a-group-
sparse channel estimation in OFDM systems using pilot sym-
bols, for both block-fading and time-varying channels. First,
we discuss the SBL algorithm to solve(P1), i.e., the problem
of a-sparse channel estimation usingPb pilots in the entire
OFDM frame when the channel is block-fading. Subsequently,
we consider the time-varying channel usingPt pilots in every
symbol, and propose a novel, recursive approach for a-group-
sparse channel estimation, i.e., a solution to(P3).

A. The SBL Algorithm: Block-Fading Case

Here, we propose the SBL algorithm for channel estimation
using pilot subcarriers in a single OFDM symbol; this forms
the basis for the algorithms developed in the sequel. The
observation model is given by (2). SBL uses a parametrized
prior to obtain sparse solutions, given by

p(h;γ) =

L
∏

i=1

(πγ(i))−1 exp

(

−
|h(i)|2

γ(i)

)

. (12)

Typically, the hyperparametersγ can be estimated using the
type-II ML procedure [14], i.e., by maximizing the marginal-
ized pdfp(yp;γ) as

γ̂ML = argmax
γ∈RL×1

+

p(yp;γ). (13)

Since the above problem cannot be solved in closed form,
iterative estimators such as the EM based SBL algorithm [15]
have to be employed. The sparse channelh is considered as
the hidden variable and the ML estimate ofγ is obtained in
the M-step. The steps of the algorithm can be given as

E-step: Q
(

γ|γ(r)
)

= Eh|yp;γ(r) [log p(yp,h;γ)] (14)

M-step: γ(r+1) = argmax
γ∈RL×1

+

Q
(

γ|γ(r)
)

. (15)

The E-step above requires the posterior density of the sparse
vector with the hyperparameterγ = γ

(r), which can be
expressed as

p
(

h|yp;γ
(r)
)

= CN (µ,Σ), (16)

whereΣ = Γ(r) − Γ(r)ΦH
p

(

σ2IPb
+ΦpΓ

(r)ΦH
p

)−1
ΦpΓ

(r),
andµ = σ−2ΣΦH

p yp, whereΦp = XpFp. Notice that the
EM algorithm given by the steps in (14), (15) also solves(P1),
where we obtain a MAP estimate of the a-sparse channel, i.e.,
ĥ = µ with Γ = diag(γ(r)). The M-step in (15) can be
simplified, to obtain

γ(r+1)(i) = argmax
γ(i)∈R+

Eh|yp;γ(r) [log p(h;γ)] (17)

= Eh|yp;γ(r)

[

|h(i)|2
]

= Σ(i, i) + |µ(i)|2 . (18)

In (17), the termEh|yp;γ(r) [log p(yp|h;γ)] has been dropped,
as it is not a function ofγ(i). Note that, since all the
algorithms proposed in this paper use the EM updates, they
have monotonicity property, i.e., the likelihood is guaranteed
to increase at each iteration [40], [41].4

In the case of multiple OFDM symbols in a block-fading
channel, since the channel remains constant for theK OFDM
symbols, the system model in (2) is modified as

yp,m = Xp,mFp,mh+ vp,m, m = 1, . . . ,K. (19)

The equation above has a one-to-one correspondence with (2),
since yp,m denotes the observations corresponding to pilot
subcarriers in themth OFDM symbol andΦp,m = Xp,mFp,m

denotes the matrix consisting of measurements corresponding
to pilot subcarriers in themth OFDM symbol. The steps of the
SBL algorithm for block-fading channel estimation are given
in the Appendix A.

We note that the SBL algorithm proposed in this section
is not equipped to use the correlations between the channel
across successive OFDM symbols in a time-varying channel.
A straightforward approach to exploit the correlation is touse a
block-based method, where the estimates of all theK channel
vectors are obtained jointly using the observations for the
K OFDM symbols [32], [39]. However, this joint processing
of all K OFDM symbols is computationally expensive, as it
requires inverting matrices of the sizeKPt×KPt. In the next
subsection, we propose a recursive approach that is not only

4We have found, empirically, that the straightforward initialization such as
Γ(0) = IL leads to accurate solutions.
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low-complexity compared to the block-based techniques, but
also exploits the temporal channel correlation across symbols,
resulting in an enhanced channel tracking performance.

B. The K-SBL Algorithm: Time-Varying Case

In this subsection, we derive algorithms for tracking the
slowly time-varyingchannel using an SBL framework to learn
the hyperparameters along with the channel coefficients, i.e.,
we solve(P3). We derive recursive techniques based on the
Kalman Filter and Smoother (KFS), with an AR model for the
temporal evolution of the channel. Interestingly, the framework
developed in this section can also be used to accommodate
detection of the unknown data (i.e., a solution to(P4)), as we
show in the next section.

In the time-varying case, the measurement equation given
by the OFDM system model, and the state equation given by
the first order AR channel model, forK consecutive symbols,
are as follows:

yp,m = Φp,mhm + vp,m, (20)

hm+1 = ρhm + um+1, m = 1, 2, . . . ,K, (21)

whereΦp,m = Xp,mFp,m. Typically, in a KF approach to
(P3), the goal is to recursively estimate the channel state and
its covariance matrix using forward and backward recursions,
given the observationsyp,1, . . . ,yp,K sampled at thePt pilot
subcarriers. In the forward recursion, for each OFDM symbol,
the KF operates on the received symbol to obtain the estimates
of the a-sparse channel as a weighted average of the previous
estimate and the current received symbol. These weights are
given by the the Kalman gain matrix, and are updated for
each OFDM symbol. In the backward recursion, the Kalman
smootherensures that the observations until theK th OFDM
symbol are included in the estimation of the a-sparse channel
corresponding to themth symbol for 1 ≤ m < K. Hence, it
improves the accuracy of the estimates of the previous channel
states in every recursion.

For the moment, if we assume thatΓ is known, and if we
denote the posterior mean and the covariance matrix of channel
in the mth OFDM symbol byĥm|m andPm|m, respectively,
for 1 ≤ m ≤ K, then the KFS update equations are as follows
[38], [42]:

for m = 1, . . . ,K do

Prediction:ĥm|m−1 = ρĥm−1|m−1 (22)

Pm|m−1 = ρ2Pm−1|m−1 + (1− ρ2)Γ (23)

Filtering:

Gm = Pm|m−1Φ
H
p,m

(

σ2IPt
+Φp,mPm|m−1Φ

H
p,m

)−1
(24)

ĥm|m = ĥm|m−1 +Gm(yp,m −Φp,mĥm|m−1) (25)

Pm|m = (IL −GmΦp,m)Pm|m−1 (26)

end

for j = K,K − 1, . . . , 2 do

Smoothing:ĥj−1|K = ĥj−1|j−1 + Jj−1(ĥj|K − ĥj|j−1)
(27)

Pj−1|K = Pj−1|j−1 + Jj−1(Pj|K −Pj|j−1)J
H
j−1, (28)

end

whereJj−1 , ρPj−1|j−1P
−1
j|j−1 andGm is the Kalman gain.

In the above, the symbolŝhm|m−1, Pm|m−1, etc. have their
usual meanings as in the KF literature [38]. For example,
ĥm|m−1 is the channel estimate at themth OFDM symbol
given the observationsYp,m−1 = [yp,1, . . . ,yp,m−1] and
Pm|m−1 is the covariance of themth channel estimate given
Yp,m−1. The above KFS equations are initialized by setting
ĥ0|0 = 0 andP0|0 = Γ. They track the channel in the forward
direction using the prediction and the filtering equations in
(22)-(26) andsmooth the obtained channel estimates using
the backward recursions in (27)-(28). However, in the a-sparse
channel tracking problem,Γ is unknown. Hence, we propose
the K-SBL algorithm, which simultaneously estimates the
channel coefficients and also learns the unknownΓ.

Recall that the a-group-sparse channel has a common hy-
perparameter set. The joint pdf of the received signals and
the a-group-sparse channel forK OFDM symbols is given by
(7), which leads to the optimization problem as given by(P3).
We propose the K-SBL algorithm using the EM updates, as
follows:

E-step: Q
(

γ|γ(r)
)

=

Eh1,...,hK |Yp,K ;γ(r) [log p(Yp,K ,h1, . . . ,hK ;γ)] (29)

M-step: γ(r+1) = argmax
γ∈RL×1

+

Q
(

γ|γ(r)
)

. (30)

To compute the E-step given above, we require the posterior
distribution of the unknown a-sparse channel, which is ob-
tained using the recursive update equations given by (22)-(28).
In order to obtain an ML estimate ofγ, K-SBL incorporates
an M-step, which, in turn, utilizes the mean and covariance
of the posterior distribution from the E-step. From (7), the
M-step results in the following optimization problem:

γ
(r+1) = argmax

γ∈RL×1
+

Eh1,...,hK |Yp,K ;γ(r) [c−K log |Γ|

−
K
∑

j=2

(hj − ρhj−1)
HΓ−1(hj − ρhj−1)

(1 − ρ2)
− hH

1 Γ−1h1],

(31)

where c is a constant independent ofγ. As mentioned
earlier, we see that the M-step requires the computa-
tion of ĥj|K , Eh1,...,hK|Yp,K ;γ(r) [hj ], and covariance

Eh1,...,hK |Yp,K ;γ(r) [hjh
H
j ] , Pj|K + ĥj|K ĥH

j|K for j =
1, . . . ,K, which is obtained from (22)-(28). The M-step also
requires the computation ofEh1,...,hK |Yp,K ;γ(r) [hjh

H
j−1] ,

Pj,j−1|K + ĥj|K ĥH
j−1|K for j = K,K − 1, . . . , 2, which we

obtain from [38] as follows:

Pj−1,j−2|K = Pj−1|j−1J
H
j−2 + JH

j−1(Pj,j−1|K

−ρPj−1|j−1)Jj−2. (32)

The above recursion is initialized usingPK,K−1|K = ρ(IL −
GKΦp,K)PK−1|K−1. Using the above expressions, (31) sim-
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plifies as

γ
(r+1) = argmax

γ∈RL×1
+

{

c′ −K log |Γ| − Trace(Γ−1M1|K)

−
1

(1− ρ2)

K
∑

j=2

Trace(Γ−1Mj|K)}, (33)

where c′ is a constant independent ofγ, Mj|K , Pj|K +

ĥj|K ĥH
j|K+ρ2(Pj−1|K + ĥj−1|K ĥH

j−1|K)−2ρRe(Pj,j−1|K +

ĥj|K ĥH
j−1|K) andM1|K , P1|K + ĥ1|KĥH

1|K . Differentiating
(33) w.r.t.γ(i) and setting the resulting equation to zero gives
the update for theith hyperparameter as follows:

γ(r+1)(i) =
1

K





K
∑

j=2

Mj|K(i, i)

(1− ρ2)
+M1|K(i, i)



 , (34)

for i = 1, . . . , L. Thus the K-SBL algorithm learnsγ in the
M-step and provides low-complexity and recursive estimates
of the a-sparse channel in the E-step. This completes the EM
based solution to(P3). The algorithmic representation of the
K-SBL algorithm is given in Appendix B.

Remarks:When ρ = 1, the AR model simplifies toh =
h1 = . . . = hK , and hence, it reduces to the block-fading
channel scenario. The recursive updates in the E-step are given
by the KFS equations (22)-(28), and the M-step is given by

Q(γ|γ(r+1)) = Eh|Yp,K ;γ(r) [c′ − (hHΓ−1h+ log |Γ|)], (35)

which results in the same M-step as that of the SBL algorithm
in the block-fading case. Hence, this algorithm provides a
low-complexity recursive solution to the SBL problem in the
block-fading scenario, which we discuss in detail in Sec. III-
B. At the other extreme, whenρ = 0, the AR model simplifies
to hm = um for m = 1, . . . ,K, i.e., the channels for
OFDM symbols are mutually independent of each other. In this
case, the prediction equations of the KFS equations simplify
as ĥm|m−1 = 0 and Pm|m−1 = Γ, and the expressions
for ĥm|m and Pm|m simplify to the mean and covariance
matrix, as obtained in the SBL algorithm for a single OFDM
symbol. The smoothing equations simplify tôhm−1|m =

ĥm−1|m−1 and Pm−1|m = Pm−1|m−1, i.e., the smoothed
mean and covariance at the(m − 1)th symbol depend only
on observations of the(m− 1)th OFDM symbol, as expected.

Although the algorithms proposed in this section are easy to
implement and computationally simple due to their recursive
nature, they do not utilize all the information available from
the observation vectorsy1, . . . ,yK . Only the pilot subcarriers
are used for channel estimation. Hence, in the next section,
we extend the SBL framework developed in this section to
detect the unknown data. We show how these decisions can
be coalesced into the EM iterations, leading to joint channel
estimation and data detection.

III. JOINT CHANNEL ESTIMATION AND DATA DETECTION

USING PILOT AND DATA SUBCARRIERS

In this section, we start by deriving the J-SBL and the
RJ-SBL algorithm for joint estimation of the unknown a-
sparse channel and transmit data in a block-fading OFDM

M−step:

E−step:

γML

Eh|y,X(r),γ(r)[log p(y,h;X,γ)]

argmaxX Eh|y,X(r),γ(r)[log p(y|h;X)]argmaxγ Eh|y,X(r),γ(r)[log p(h;γ)]

XML

argmaxγ,X{E-step}.

Fig. 1. The J-SBL algorithm: the E-step computes the expectation over the
posterior density ofh. The joint maximization in the M-step simplifies into
two independent maximizations overγ(i) andX. The step inside the dashed
box indicates the new ingredient in the J-SBL algorithm.

system. Subsequently, we consider the time-varying channel,
and generalize the K-SBL to obtain the JK-SBL for jointly
estimating the unknown data and tracking the a-group-sparse
channel. Our proposed algorithms solve the problems(P2)
and (P4) using an SBL framework.

A. The J-SBL Algorithm: Block-Fading Case

To derive the algorithm for an OFDM frame consisting of
K OFDM symbols, we considerh as a hidden variable and
[γ,X1, . . . ,XK ] as the parameters to be estimated. The E and
the M-steps of the J-SBL algorithm can be given as

E-step: Q(X,γ|X(r),γ(r)) =

Eh|y;X(r),γ(r) [log p(y,h;X,γ)] (36)

M-step:
(

X(r+1),γ(r+1)
)

=

argmax
X,γ∈RL×1

+

Q
(

X,γ|X(r),γ(r)
)

, (37)

whereX ∈ CNK×NK is a block diagonal matrix consisting
of the matricesX1, . . . ,XK whose diagonal entries con-
sist of symbols from the transmit constellation, andy =
[yT

1 , . . . ,y
T
K ]T . The posterior density computed in the E-step

is p
(

h|y;X(r),γ(r)
)

= CN (µ,Σ), where

µ = σ−2ΣFH
b X(r)Hy

Σ =
(

σ−2FH
b X(r)HX(r)Fb + Γ(r)−1

)−1

, (38)

whereFb ∈ CNK×L with Fb = 1K⊗F, where1K is a vector
of all ones. Notice that (38) and (16) are different since the
former uses the known pilot symbols,Xp ∈ CP×P , whereas
the latter uses the pilot symbols along with the estimated
transmit data, together given byX(r) in the rth iteration. The
proposed algorithm is pictorially depicted in Fig. 1.

The objective function in the M-step given in (37) can be
written as

Q
(

X,γ|X(r),γ(r)
)

= c′′ − Eh|y;X(r),γ(r)

[

‖y−XFbh‖
2
2

σ2

+ log |Γ|+ hHΓ−1h
]

(39)

wherec′′ is a constant independent ofγ andX. The objective
function given above is the sum of two independent functions,
Eh|y;X(r),γ(r) [log p(y|h;X)] and Eh|y;X(r),γ(r) [log p(h;γ)].
The key aspect of the M-step below is that the function
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Eh|y;X(r),γ(r) [log p(y|h;X)] is maximized overX, which
incorporates the information discarded in the M-step of the
SBL algorithm presented in Sec. II-A. Now, since the first term
does not depend onγ, we optimize the second function with
respect toγ(i) to obtainγ(r+1)(i) as in the SBL algorithm,
given by (18). On the other hand, the first function can be
optimized by solving the following problem:

X(r+1)(i, i) = argmin
xi∈S

{

Cb(i, i)|xi|
2 + |y(i)− xiFb(i, :)µ|

2
}

(40)

wherei ∈ D, D is an index set consisting of the data subcarrier
locations,Cb = FbΣFH

b , Fb(i, :) is the ith row of the Fb

matrix, µ andΣ are given in (38) andS is the constellation
from which the symbol is transmitted. Due to the above
maximization,Q(X,γ|X(r),γ(r)) increases monotonically for
1 ≤ r ≤ rmax, where rmax is the maximum number of
iterations. That is,

Q(X(r+1),γ(r+1)|X(r),γ(r)) ≥

Q(X(r),γ(r)|X(r−1),γ(r−1)), for 1 ≤ r ≤ rmax. (41)

Note that the above functionQ(.) monotonically (inX andγ)
approaches the likelihood function, which in turn is bounded.
This guarantees the convergence of the proposed J-SBL al-
gorithm. Further, by the same reasoning, the convergence
guarantee holds good for the JK-SBL algorithm which will
be presented in the sequel.

The J-SBL requires initial estimates of the unknown pa-
rametersγ andX. The initial estimate ofΓ is taken to be the
identity matrix, as in the previous section. The initialization
of the (KN − Pb) non-pilot data in turn requires an initial
channel estimate. Channel estimates using methods like LS
and MMSE cannot be used here, as they require knowledge of
the support and the hyperparameters, respectively. Hence,the
initialization of X can be obtained from the channel estimate
obtained from a few iterations of the SBL algorithm from the
Pb = P pilots (denoted aŝhSBL). The ML data detection
problem is given by

X(0)(i, i) = argmin
xi∈S

|y(i)−xiFb(i, :)ĥSBL|
2, i ∈ D. (42)

The algorithmic representation of the J-SBL algorithm is
provided in Appendix C. J-SBL algorithm is a block-based
algorithm, and hence, the complexity of the algorithm is domi-
nated by the E-step, which incurs a complexity ofO(N2LK3)
[43]. In the next subsection, we derive a low-complexity,
recursive version of the J-SBL algorithm, using the K-SBL
algorithm withρ = 1.

B. Recursive J-SBL Algorithm: Block-fading Case

In this subsection, we derive the recursive joint SBL al-
gorithm which is mathematically equivalent to the J-SBL
algorithm proposed in Sec. III-A, using the framework of
the K-SBL algorithm withρ = 1, i.e., for the block-fading
channel. Hence, we solve the problem (P3), using a low-
complexity RJ-SBL algorithm.

Consider the state space model in (20) and (21) in the
block-fading case, where the channel remains constant for

K OFDM symbols, with h = h1 = · · · = hK . The
prediction equations of the KFS update equations in (22)-(26)
simplify as ĥm|m−1 = ĥm−1|m−1 , ĥm−1 andPm|m−1 =

Pm−1|m−1 , Pm−1, for m = 1, . . . ,K. Moreover, for
ρ = 1, the smoothing equations in (27)-(28) simplify as
hj−1|K = hj|K and Pj−1|K = Pj|K for j = K, . . . , 1.
Hence, the filtering equations of the KFS updates suffice to
describe the recursions, as follows. Form = 1, . . . ,K, the
E-step of the J-SBL algorithm can be replaced by

Gm = Pm−1Φ
H
m

(

σ2IN +ΦmPm−1Φ
H
m

)−1
(43)

ĥm = ĥm−1 +Gm(ym −Φmĥm−1) (44)

Pm = (IL −GmΦm)Pm−1, (45)

whereΦk denotes the measurement matrix of thekth OFDM
symbol given byΦk = XkF. However, sinceΓ is unknown
andXk is known only at pilot locations, the SBL framework
is incorporated to learn the unknownΓ and unknown data in
Xk. Hence, the update equations given above form the E-step,
while the M-step is the same as that of the J-SBL algorithm,
given by (37). The update forγ is given by,

γ(r+1)(i) = PK(i, i) +
∣

∣

∣ĥK(i)
∣

∣

∣

2

, (46)

whereĥK andPK are given by (44) and (45), respectively.
The unknown data can be detected by solving the following
optimization problem:

X(r+1)(i, i) = argmin
xi∈S

{

|xi|
2C(i, i)

+|y(i)− xiFb(i, :)ĥK |2
}

(47)

wherei ∈ D, C = FbPKFH
b . The initialization ofγ andX(0)

is the same as the J-SBL algorithm of Sec. III-A. The steps of
the RJ-SBL algorithm are listed in Appendix D. The complex-
ity of the RJ-SBL algorithm is dominated by the computation
of Gk, and is given byO(NL2K). Hence, for largeK, the RJ-
SBL algorithm is computationally significantly cheaper than
the J-SBL algorithm.

The E-step of the RJ-SBL is a recursive implementation of
the E-step of the J-SBL algorithm, and the M-steps of the
algorithms are the same. Hence, the algorithms are mathemat-
ically equivalent if the same initializations are employed. This
is illustrated via simulations in Sec. IV (see Fig. 4).

C. The JK-SBL Algorithm: Time-Varying Case

In this section, we generalize the K-SBL algorithm of
Sec. II-B to obtain the JK-SBL algorithm, which utilizes the
observations available at all theN subcarriers and performs
data detection at the(N − Pt) data subcarriers of the OFDM
symbol. The algorithm is recursive in nature, and the channel
estimates forK OFDM symbols are used to jointly estimate
the a-sparse channel and the unknown data of themth, 1 ≤
m ≤ K OFDM symbol. In essence, we solve the problem
given by (P4).

Our starting point, again, is the state space model given by
(20) and (21). Using the observationsYK = [y1, . . . ,yK ],
the recursive updates of the mean and the covariance of
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the posterior distribution are given by (22)-(28), withyp,m

and Φp,m replaced byym and Φm, respectively. Thus, the
JK-SBL algorithm uses the observations available at all the
N subcarriers. Further, sinceΓ and data at the non-pilot
subcarriers are unknown, the SBL framework leads to the
objective function for the M-step given by

Q
(

X1, . . . ,XK ,γ|X
(r)
1 , . . . ,X

(r)
K ,γ(r)

)

= c′′′

−E
h1,...,hK |YK ;X

(r)
1 ,...,X

(r)
K

,γ(r)

[

K
∑

j=1

‖yj−XjFhj‖
2

σ2

+K log |Γ|+
K
∑

j=2

(hj−ρhj−1)
HΓ−1(hj−ρhj−1)
(1−ρ2)

+ hH
1 Γ−1h1

]

, (48)

where c′′′ is a constant independent ofγ andX1, . . . ,XK .
The expression above is a sum of terms which are inde-
pendent functions ofγ and XK , denoted asQ

(

γ|γ(r)
)

and Q
(

X1, . . . ,XK |X
(r)
1 , . . . ,X

(r)
K

)

, respectively. Further,

we see thatQ
(

γ|γ(r)
)

is the same as the expression in (33).
Hence, the learning rule forγ follows from the M-step of the
K-SBL algorithm, and is given by (34). The expression for
Q
(

X1, . . . ,XK |X
(r)
1 , . . . ,X

(r)
K

)

is given by

Q
(

X1, . . . ,XK |X
(r)
1 , . . . ,X

(r)
K

)

= c

− E
h1,...hK |YK ;X

(r)
1 ,...,X

(r)
K

,γ(r)

[

K
∑

m=1

‖ym−XmFhm‖
2

σ2

]

.

(49)

As mentioned earlier, the M-step requires the computa-
tion of ĥj|K , E

h1,...,hK |Yp,K ;X
(r)
1 ,...,X

(r)
K

,γ(r) [hj ], and co-

variance E
h1,...,hK |Yp,K ;X

(r)
1 ,...,X

(r)
K

,γ(r) [hjh
H
j ] , Pj|K +

ĥj|K ĥH
j|K for j = 1, . . . ,K, which are given by

the KFS equations of the E-step. The maximization of
Q
(

X1, . . . ,XK |X
(r)
1 , . . . ,X

(r)
K

)

in (49) leads to the follow-
ing optimization problem forXm:

X(r+1)
m (i, i) = argmin

xi∈S

{

|xi|
2Cm(i, i)

+|ym(i)− xiF(i, :)ĥm|K |2
}

, 0 ≤ m ≤ K, i ∈ D

(50)

whereCm = FPm|KFH andF(i, :) represents theith row of
the matrixF. The steps of the JK-SBL algorithm are listed
in Appendix E. The iterations of the JK-SBL proceed similar
to the K-SBL algorithm, except for the additional M-step to
estimate the unknown data. Also, the measurement matrix is
given byΦ(r)

m in the rth iteration of themth OFDM symbol,
instead of theΦp,m used in the K-SBL algorithm, which
consisted of pilot subcarriers only. We provide a pictorial
representation of the overall JK-SBL algorithm in Fig. 2. We
use the channel estimate obtained from a few iterations of
the K-SBL algorithm usingPt pilots (denoted aŝhKSBL) to
obtain the initial estimateX(0)

m for 0 ≤ m ≤ K as

X(0)
m (i, i) = argmin

xi∈S
|ym(i)−xiF(i, :)ĥKSBL|

2, i ∈ D. (51)

M−step

E−Step

γ
(r),X

(r)
1 , . . . ,X

(r)
K

Smooth: ĥj−1|K , Pj−1|K

Update: ĥj|j, Pj|j

Predict: ĥj|j−1, Pj|j−1

j = 1, 2, . . . , K

Fig. 2. Block diagram depicting the JK-SBL algorithm. The a-sparse channel
is estimated and tracked in the E-step, while the M-step learns the unknown
hyperparametersγ and detects the unknown transmit dataX1, . . . ,XK .

Thus far, we proposed algorithms for joint a-sparse channel
estimation and data detection in block-fading and time-varying
channels in OFDM systems. We now discuss some implemen-
tation aspects of the proposed algorithms.

D. Discussion

In this subsection, we discuss the implementation of the
proposed exact inference algorithms, and contrast their com-
plexity with the block-based Autoregressive-SBL (ARSBL)
algorithm [39] and the approximate inference algorithm [29].

Consider the estimation of the wireless channels when the
data is observed up to theK th OFDM symbol. First, in the
forward recursion, (22)-(26) are applied recursively until we
reach theK th OFDM symbol. Hence, in the forward recursion,
we store the values of̂hj|j , ĥj|j−1, Pj|j and Pj|j−1 for
j = 1, 2, . . . ,K. Next, we apply the backward recursion
using the Kalman smoother given by (27)-(28), i.e., KFS is
applied to the whole sequence of observations before updating
γ. The Kalman smoother helps to utilize all the information
available in both the past and future symbols, and hence
improves the channel estimates. For the K-SBL and JK-SBL
algorithms, the smoothed mean and covariance are required
for the computation of the M-step.

The K-SBL and JK-SBL algorithms are iterative in nature,
and the filtering and smoothing equations are executed in the
E-step of every iteration using the hyperparameters obtained
in the M-step of the previous iteration and the unknown data
for K symbols. Hence, the E-step performs exact inference,
by obtaining the exact posterior distribution of the a-sparse
channel, given the estimate of the hyperparameters. Exact
inference ensures that the likelihood function increases at
each EM iteration. However, the price paid for the exact
inference methods is their higher complexity, as has been well-
demonstrated by the simulation results in [29].

Using a flop-count analysis [44], forK (K > 1) OFDM
symbols, the computations of the K-SBL and JK-SBL algo-
rithms are dominated by the computation of theJK−1 term in
the smoothing step, which has a complexity ofO(KL3) per
iteration. In a block-based method such as the ARSBL, the
computation of the covariance matrixΣ incurs a complexity
of O(K3P 2

t L) per iteration. Hence, we see that if the number
of OFDM symbols to be tracked are such thatKPt > L,
the complexity of the ARSBL algorithm is larger than the
K-SBL algorithm. In other words, the K-SBL algorithm is a
good choice among the exact inference techniques when the
number of OFDM symbols to be tracked is large.
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The proposed recursive algorithms are very flexible. For
example, a pruning step, where small channel coefficients or
hyperparameters are set to zero, can be incorporated between
iterations. This leads to a reduced support set, which in
turn results in faster convergence and lower complexity [1].
However, pruning may eliminate some of the basis vectors
of the measurement matrix before achieving convergence and
result in support recovery errors.

The improved channel estimation accuracy achieved by us-
ing the SBL techniques can lead to performance enhancements
in different ways. As will be demonstrated in the next section,
the BER performance can be improved, in both uncoded and
coded systems. An additional approach could be to reduce, or
optimize, the pilot density, with the aim of maximizing the
outage capacity [7], [13].

IV. SIMULATION RESULTS

In this section, we demonstrate the performance of the
proposed channel estimation algorithms through Monte Carlo
simulations. We consider the parameters in the 3GPP/LTE
broadband standard [45], [46]. We use a3MHz OFDM system
with 256 subcarriers, with a sampling frequency offs =
3.84MHz, resulting in an OFDM symbol duration of∼ 83.3µs
with Cyclic Prefix (CP) of 16.67µs (64 subcarriers). The
length of the a-sparse channel (L) is taken to be equal to
the length of the CP. Each OFDM frame consists ofK = 7
OFDM symbols, which is also known as an OFDM slot.
The data is transmitted using a rate1/2 Turbo code with
QPSK modulation. For the Turbo code generation, we use the
publicly available software [47], which uses a maximum of
10 Turbo iterations.

A sample instantiation of the a-sparse channel used in the
simulations and the filtered MIP are depicted in Fig. 3. The
figure captures the leakage effect due to finite bandwidth
sampling and practical filtering. To generate the plot, we
have used the Pedestrian B channel model [48] with Rayleigh
fading. We have also used raised cosine filtering at the receiver
and transmitter with a roll-off factor of0.5 [46]. At the
sampling frequencies considered, the number of significant
channel taps are far fewer than the weak channel taps in the
filtered impulse response, as seen in Fig. 3. In the following
subsections, we present the simulation results for the block
fading and time varying scenarios.

A. Block-fading channel

In this subsection, we consider a block-fading channel and
use Pb = 44 pilot subcarriers, uniformly placed in each
OFDM symbol. Each OFDM frame consists ofK = 7 OFDM
symbols. We implement the SBL and the J-SBL algorithm and
plot the MSE performance of both the algorithms in Fig. 4,
using a convergence criteria ofǫ = 10−9 and rmax = 200
for both the algorithms. We compare the MSE performance
of the proposed algorithms with the CS based channel estima-
tion technique [10], and the MIP-aware methods: pilot-only
MIP-aware estimation [3] and the MIP-aware joint data and
channel estimation algorithm, which we refer to as the EM-
OFDM algorithm [19]. From Fig. 4, we observe that the SBL

0 10 20 30 40 50 60 70
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−50
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d
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Channel Realization
Strong Channel taps
Weak Channel taps
Filtered MIP
Filtered MIP: Strong components
Filtered MIP: Weak components

Fig. 3. One sample channel realization of the a-sparse channel, along with
the filtered MIP, i.e., the MIP when raised cosine filters are employed at the
transmitter and receiver. The plot also shows the strong (> −30 dB) and
weak (< −30 dB) channel taps and filtered-MIP components, to illustrate
that the channel can indeed be modeled as being approximately sparse.

algorithms perform better than the MIP-unaware, non-iterative
schemes such as the Frequency Domain Interpolation (FDI)
technique. Among the iterative methods, the J-SBL algorithm
performs an order of magnitude better than the SBL algorithm,
especially at higher values of SNR, while being within3 dB
from the MIP-aware EM-OFDM algorithm. The J-SBL jointly
detects the(KN−Pb) data symbols along with the estimating
channel, resulting in a significantly lower overall MSE. As
mentioned earlier, the RJ-SBL is mathematically equivalent
to, and computationally simpler than, the J-SBL algorithm.
Hence, they have the same performance.
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Fig. 4. MSE performance of SBL, J-SBL/RJ-SBL algorithms compared to
FDI [4], CS [10], MIP-aware pilot-only [3] and EM [19] schemes in a block-
fading channel, withPb = 44 pilot subcarriers, as a function of SNR in
dB.

The coded and the uncoded BER performance of the EM,
J-SBL and a genie receiver, i.e., a receiver with perfect knowl-
edge of the channel (labeled asGenie), is shown in Fig. 5. We
also compare the performance with SBL and MIP-aware pilot-
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only channel estimation followed by data detection. The BER
performance of the RJ-SBL is superior that of the SBL and CS
algorithms in both coded and uncoded cases. The MIP-aware
pilot-only estimation method has a better BER performance
compared to RJ-SBL for SNRs< 15 dB, in both coded and
the uncoded cases. Also, the MIP-aware EM-OFDM algorithm
outperforms the proposed RJ-SBL algorithm by3 dB. This is
because, in the block-fading case, J-SBL algorithm suffersdue
to error propagation from the large number of data symbols
that are simultaneously detected.
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EM−OFDM
Genie

Solid: Uncoded
Dashed: Coded

Fig. 5. BER performance of the proposed algorithms in a block-fading
channel, withPb = 44 pilot subcarriers, as a function ofEb/N0.

B. Slowly time-varying channel

In this section, we consider a slowly time-varying channel,
simulated according to a Jakes’ model [49] with a normalized
fade rate offdTs = 0.001 andPt = 44 pilot subcarriers in
every OFDM symbol. The MSE performance of the K-SBL
and the JK-SBL algorithms are plotted against SNR in Fig. 6
and compared with the per-symbol MIP-unaware FDI [4], and
the per-symbol J-SBL and the SBL algorithm. Figure 6 also
shows the performance of the optimal MIP-aware Kalman
tracking algorithm [35] which considers all the subcarriers as
carrying pilot symbols. The SBL and the J-SBL algorithms
are not designed to exploit the temporal correlation in the
channel, and hence, they perform7-8 dB poorer than their
recursive counterparts, the K-SBL and the JK-SBL algorithms.
At higher SNR, we observe that the performance of the JK-
SBL algorithm is only2 dB worse than the MIP-aware Kalman
tracking algorithm with all subcarriers being pilot subcarriers.

In Fig. 7, we depict the BER performance of the proposed
algorithms. We see that, in the coded case, while the JK-SBL
performs about2 dB better than the J-SBL algorithm, it is
only a fraction of a dB away from performance of the genie
receiver which has perfect channel knowledge. The JK-SBL
outperforms pilots-only based channel estimation using the K-
SBL and the SBL algorithms by a large (4-5 dB) margin.
Further, it outperforms the MIP-aware EM-OFDM algorithm,
since the latter is unaware of the channel correlation, and
performs channel estimation on a per-OFDM symbol basis;
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Fig. 6. MSE performance of different schemes in a time-varying channel,
compared to the optimal Kalman tracker [35] withfdTs = 0.001 andPt =
44, as a function of SNR in dB.

while the JK-SBL algorithm exploits its knowledge of the
channel correlation to improve the channel estimates.
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Fig. 7. BER performance of different schemes in a time-varying channel
with fdTs = 0.001 andPt = 44, as a function ofEb/N0.

In Fig. 8, we study the MSE performance of K-SBL and
the JK-SBL algorithm across the OFDM frame as a function
of the OFDM symbol index for SNRs of10 and 30 dB. It
is observed that after an initial reduction in the MSE, the
MSE tends to remain more or less unchanged throughout the
frame, especially at an SNR of30 dB, indicating that the algo-
rithms learn the hyperparameters within the first few OFDM
symbols. Hence, this study shows that at a given SNR, it is
possible to restrict the number of OFDM symbols over which
the proposed algorithms need to learn the hyperparameters.
After the hyperparameters are estimated, channel trackingcan
be accomplished using the conventional MIP-aware Kalman
tracking algorithm. This can lead to additional reduction in
the computational complexity of the algorithms.
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Fig. 8. MSE performance of the K-SBL and the JK-SBL algorithms, as a
function of the OFDM symbol index withfdTs = 0.001 andPt = 44.
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V. CONCLUSIONS

In this paper, we considered the joint approximately sparse
channel estimation and data detection for block-fading and
time-varying channels in SISO-OFDM systems, from the
perspective of SBL. To estimate the a-sparse block-fading
channel, we proposed the SBL algorithm and generalized
it to obtain the J-SBL algorithm for joint a-sparse channel
estimation and data detection. Furthermore, we obtained a
mathematically equivalent low-complexity RJ-SBL algorithm.
For the time-varying channels, we used a first order AR model
to capture the temporal correlation of the a-sparse channeland
proposed a novel K-SBL algorithm, using which we tracked
the a-sparse channel. We generalized the K-SBL algorithm
to obtain the JK-SBL algorithm for joint channel estimation
and data detection. We discussed the implementation issues
of the recursive algorithms and showed that the proposed al-
gorithms entail a significantly lower computational complexity
compared to the previously known SBL techniques. Simulation
results showed that the proposed recursive techniques exploit
the temporal correlation of the channel, leading to an enhanced
channel estimation and data detection capability comparedto
the per-symbol SBL and J-SBL algorithms, and also learn the
hyperparameters within a few OFDM symbols.

APPENDIX

A. Algorithmic Representation: SBL

Input : yp, Φp, rmax andǫ.
Initialize γ

(0) = IL, Set difference= 1, r = 0
while (difference> ǫ andr < rmax)
E-step: µ = σ−2ΣΦH

p yp

Σ = Γ(r) − Γ(r)ΦH
p

(

σ2IPb
+ ΦpΓ

(r)ΦH
p

)−1
ΦpΓ

(r)

M-step: γ(r+1)(i) = Σ(i, i) + |µ(i)|2 for i = 1, 2, . . . , L
difference, ‖γ(r+1) − γ

(r)‖22, r ← r + 1
end
Output : µ, γ(r)

B. Algorithmic Representation: K-SBL

Input : yp,1, . . . ,yp,K ; Φp,1, . . . ,Φp,K ; rmax andǫ
Set difference= 1, r = 0, γ(0) , IL
while (difference> ǫ andr < rmax)
E-step: SetP0|0 = Γ(r); ĥ0|0 = 0

for m = 1, . . . ,K do
Prediction:ĥm|m−1 = ρĥm−1|m−1

Pm|m−1 = ρ2Pm−1|m−1 + (1− ρ2)Γ(r)

Filtering:Gm = Pm|m−1Φ
H
p,m

(

σ2IPt
+ Φp,mPm|m−1Φ

H
p,m

)−1

ĥm|m = ĥm|m−1 + Gm(yp,m −Φp,mĥm|m−1)
Pm|m = (IL −GmΦp,m)Pm|m−1

end for
Smoothing: SetPK,K−1|K = ρ(IL −GKΦp,K)PK−1|K−1

for j = K,K − 1, . . . , 2 do
Jj−1 = ρPj−1|j−1P

−1
j|j−1

andJj−2 = ρPj−2|j−2P
−1
j−1|j−2

ĥj−1|K = ĥj−1|j−1 + Jj−1(ĥj|K − ĥj|j−1)

Pj−1|K = Pj−1|j−1 + Jj−1(Pj|K −Pj|j−1)J
H
j−1

Pj−1,j−2|K = Pj−1|j−1J
H
j−2 + JH

j−1(Pj,j−1|K

−ρPj−1|j−1)J
H
j−2

Mj|K , Pj|K + ĥj|K ĥH
j|K + ρ2(Pj−1|K + ĥj−1|K ĥH

j−1|K)−

2ρRe(Pj,j−1|K + ĥj|K ĥH
j−1|K)

end for
M-step: M1|K , P1|K + ĥ1|K ĥH

1|K

γ(r+1)(i) = 1
K

(

∑K
j=2

Mj|K (i,i)

(1−ρ2)
+ M1|K(i, i)

)

for i = 1, . . . , L.

Compute the difference, ‖γ(r+1) − γ
(r)‖22, r ← r + 1

end while
Output : ĥm|K , 1 ≤ m ≤ K; γ̂ = γ

(r)

C. Algorithmic Representation: J-SBL

Input : y, Fb, rmax andǫ
Initialize γ

(0) = IL, X̂(0)
1 , . . . , X̂

(0)
K

using (42), set difference= 1, r = 0
while (difference> ǫ andr < rmax)
E-step: Φ(r) = FbX

(r)H ; µ = σ−2ΣΦ(r)Hy

Σ = Γ(r) − Γ(r)Φ(r)H
(

σ2INK + Φ(r)Γ(r)Φ(r)H
)−1

Φ(r)Γ(r)

M-step: γ(r+1)(i) = Σ(i, i) + |µ(i)|2 for i = 1, 2, . . . , L
Cb = FbΣFH

b ; For i ∈ D,
X(r+1)(i, i) = argminxi∈S

{

|xi|
2Cb(i, i) + |y(i)− xiFb(i, :)µ|

2
}

difference, ‖γ(r+1) − γ
(r)‖22, r ← r + 1

end
Output : µ, γ̂ = γ

(r) , X̂ = X(r)

D. Algorithmic Representation: RJ-SBL

Input : y, F, Fb, rmax, andǫ
Initialize γ

(0) = IL, X(0) using (42), set difference= 1, r = 0
while (difference> ǫ andr < rmax)
Φ

(r)
j

= X
(r)
j

F, for j = 1, . . . ,K

E-step: SetP0 = Γ(r); ĥ0 = 0

for m = 1, . . . ,K do

Gm = Pm−1Φ
(r)
m

H
(

σ2IN + Φ(r)
m Pm−1Φ

(r)
m

H
)−1

ĥm = ĥm−1 + Gm(ym −Φ(r)
m ĥm−1)

Pm =
(

IL −GmΦ(r)
m

)

Pm−1

end for
M-step: γ(r+1)(i) = PK(i, i) + |hK(i)|2 for i = 1, 2, . . . , L
C = FbPKFH

b ; For i ∈ D,

X(r+1)(i, i) = argminxi∈S

{

|xi|
2C(i, i) + |y(i)− xiFb(i, :)ĥK |

2
}

Compute the difference, ‖γ(r+1) − γ
(r)‖22, r ← r + 1

end while
Output : ĥK|K , γ̂ = γ

(r)
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E. Algorithmic Representation: JK-SBL
Input : y1, . . . ,yK , F, rmax andǫ.
Initialize X

(0)
1 , . . . ,X

(0)
K

using (51),Φ(0)
m = X(0)

m F

Set difference= 1, r = 0, γ(0) , IL
while (difference> ǫ andr < rmax)
E-step: SetP0|0 = Γ(r) , ĥ0|0 = 0

for m = 1, . . . ,K do
Prediction:ĥm|m−1 = ρĥm−1|m−1

Pm|m−1 = ρ2Pm−1|m−1 + (1 − ρ2)Γ(r)

Filtering: Gm = Pm|m−1Φ
(r)
m

H
(

σ2IN + Φ(r)
m Pm|m−1Φ

(r)
m

H
)−1

ĥm|m = ĥm|m−1 + Gm(yp,m −Φ(r)
m ĥm|m−1)

Pm|m = (IL −GmΦ(r)
m )Pm|m−1

end for
Smoothing: SetPK,K−1|K = ρ(IL −GKΦ

(r)
K

)PK−1|K−1

for j = K,K − 1, . . . , 2 do
Jj−1 = ρPj−1|j−1P

−1
j|j−1

andJj−2 = ρPj−2|j−2P
−1
j−1|j−2

ĥj−1|K = ĥj−1|j−1 + Jj−1(ĥj|K − ĥj|j−1)

Pj−1|K = Pj−1|j−1 + Jj−1(Pj|K −Pj|j−1)J
H
j−1

Pj−1,j−2|K = Pj−1|j−1J
H
j−2 + JH

j−1(Pj,j−1|K −

ρPj−1|j−1)J
H
j−2

Mj|K , Pj|K + ĥj|K ĥH
j|K + ρ2(Pj−1|K + ĥj−1|K ĥH

j−1|K)

−2ρRe(Pj,j−1|K + ĥj|K ĥH
j−1|K)

end for
M-step: M1|K , P1|K + ĥ1|K ĥH

1|K

γ(r+1)(i) = 1
K

(

∑K
j=2

Mj|K (i,i)

(1−ρ2)
+ M1|K(i, i)

)

for i = 1, . . . , L.

X(r+1)
m (i) = argminxi∈S

{

|xi|
2Cm(i, i)

+|ym(i)− xiF(i, :)ĥm|K|
2
}

, i ∈ D, Φ(r+1)
m = X(r+1)

m F, 1 ≤ m ≤ k

end for
Compute the difference, ‖γ(r+1) − γ

(r)‖22, r ← r + 1
end while
Output : ĥm|K , 1 ≤ m ≤ K, γ̂K = γ

(r), X̂m = X(r)
m , 1 ≤ m ≤ K
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