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Abstract— It is well-known that the impulse response of a wide-
band wireless channel is approximately sparse, in the sensleat
it has a small number of significant components relative to te
channel delay spread. In this paper, we consider the estimain
of the unknown channel coefficients and its support in OFDM
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have been proposed [7], [9]-[13]. In this work, we propose
to formulate the problem of channel estimation in a Sparse
Bayesian Learning (SBL) framework [14], [15]. In [1], we had

proposed SBL-based channel recovery for OFDM systems;

systems using a Sparse Bayesian Learning (SBL) framework W€ expand on this previous work in this paper. Specifically,

for exact inference. In a quasi-static, block-fading scend@o, we

employ the SBL algorithm for channel estimation, and propog

a Joint SBL (J-SBL) and a low-complexity recursive J-SBL
algorithm for joint channel estimation and data detection. In a

time-varying scenario, we use a first order auto-regressivenodel

for the wireless channel, and propose a novel, recursive, e

complexity Kalman filtering-based SBL (K-SBL) algorithm for

channel estimation. We generalize the K-SBL algorithm to otain

the recursive Joint K-SBL algorithm that performs joint cha nnel

estimation and data detection. Our algorithms can efficieny

recover a group of approximately sparse vectors even when ¢
measurement matrix is partially unknown due to the presence
of unknown data symbols. Moreover, the algorithms can fully
exploit the correlation structure in the multiple measurements.
Monte Carlo simulations illustrate the efficacy of the propcsed
techniques in terms of the mean square error and bit error rae

performance.

EDICS: MLR-BAYL, MLR-SLER, SPC-CEST, SPC-
MULT, SPC-DETC

|. INTRODUCTION AND SYSTEM MODEL

Orthogonal Frequency Division Multiplexing (OFDM) is a

well-known multi-carrier modulation technique used in el

emerging communications standards, since it provides hi

spectral efficiency and resilience to multi-path distartad the
wireless channel [2]. Accurate decoding of the transmiad

bits requires compensating for the channel distortion,ctvhi
necessitates estimation of the wireless channel at thévezce
Typically, a set of anchor sub-carriers which carry known
signals (pilots) are used to estimate the channel freque

response [3], [4].

In practice, wireless channels have a large delay spredd wi
a few significant channel tap coefficients, and therefore, t
channel isapproximately sparséa-sparse) in the lag domain.
Several papers in literature have proposed sparse chastirel e

mation techniques (see [5]-[7] and references thereinfhén

efficient techniques (for whicl? < L, whereP is the number

of pilots and L is the length of the channel) that leverag

a

we design novel SBL algorithms for OFDM systems in the
following scenarios: (i) The block-fading case, where the
channel coefficients remain fixed across the OFDM frame
duration and vary in an i.i.d. fashion from frame to frame;
and (ii) the time-varying case, where the channel coefftsien
across successive OFDM symbols are temporally correlated
but have a common support.

A. Problem Formulation and Contributions

In this subsection, we cast the channel estimation problem
in the SBL framework and describe the contributions of
this work. In an OFDM system withV subcarriers, the
instantaneous received signal, denoted yoye CV*!, is
mathematically represented as [2]

y = XFh + v. 1)

Here,F ¢ CV*X (N > L) contains the firstt columns of
the N x N Discrete Fourier Transform (DFT) matrih €
C” is the channel impulse response. The dictionary matrix is
given by & = XF, where the diagonal matriX € CV*V
c%ntains theN transmitted symbols comprising both known
8I|Ot symbols and unknown/-PSK/AM-QAM modulated data
?Iong the diagonal. Each componentvot CV*! is a zero
mean circularly symmetric additive white Gaussian noisth wi
pdf denoted byCA(0,0?), wheres? is the noise variance.
Typically, the communication between the transmitter dred t
receiver occurs in frames consisting &f consecutive OFDM

i

symbols. Suppose that, in a given OFDM symhBlof the
subcarrier locations are pilot subcarriers and the remgini
— P) subcarriers carry unknown data symbols. The system
model pertaining to the@ilot subcarriers can be written as

yp =X, F,h+ v, (2)

context of channel estimation for OFDM systems, spectralfy'€r€¥y is a”x1 vector containing the entries gfsampled

at pilot locations,X,, is a P x P diagonal matrix with the

gnown pilot symbols along its diagonak, is the P x L

this approximate sparsity using Compressed Sensing (GS) q&;" < L) submatrix ofF consisting of the rows corresponding

This work has appeared in part in [1].

to the pilot locations anet, is a P x 1 vector, again consisting
of components o sampled at pilot locations.



In the complex baseband representation, the scalar charprér distributions of the noise;, and the channeh in (2),
impulse responsé|t],t € R can be modeled as a stationarghe a-sparse channel estimation problem is given by
tapped delay line filter in the lag-domain: R )
(P1) h= argmin Hy"_)fri’;l?phlb + log |T'|

~ L ~ h,'YE]RiXI

h[t] = Z hl5[t — Tl], (3) +hHI‘_1h, (4)

=1
_ _ - wheré T' = diagy(1),...,7(L)) and| - | denotes the deter-

where 4[t] is the Dirac delta functionh; and 7, represent minant of a matrix. In the objective function above, the first
the attenuation and propagation delay between the tralsmitem originates from the data likelihood and the other terms
and the receiver path, respectively, and. is the number gre from the Gaussian prior (conditioned g assumed on
of paths [16]. It is known that the wireless channel mode|fq wireless channel. In this paper, we specifically address
obtained using channel sounding experiments exhibit AP roblem of OFDM channel estimation.
imate sparsity in the lag-domain (for e.g., due to non-@erf€ Noe that, the above problem addresses the estimation of
low-pass filtering using raised cosine filtering), as the €04 \ireless channel using pilot subcarriers only. Howeiver
munication bandwidth and sampling frequency increase. [13le oFpM scenario, several subcarriers carry unknown data

Hence, based on these practical considerations, we consigle ye| |n this work, we also consider the problem of joint

the lag-domain filtered channel impulse response, which cgRannel estimation and data detection, which can be stated a
be represented as[t] = g.[t] * h[t] * g,[t], whereg[t] and

g-[t] represent the baseband transmit and receive filterscand (P2) h,X= argmin ”y*ffﬂ +log |T|
represents the convolution operation [12]. Then, the diser hyeR* XeS
time channel can be represented a¢§]) = h[(l — 1)T7, LhHET1h. (5)

where T' is the baud interval. The overall channel is repre-
sented ash = (h(1),h(2),...,h(L))T. Further, in an SBL whereS C C denotesM-QAM/M-PSK constellation from
framework, we model the channel &s~ CAN(0,T'), where which the symbol is transmitted.
I' = diagy(1),...,v(L)). Note that ify(I) — 0, then the Depending on the mobility of the receiver, the channel may
correspondind(l) — 0 [15], [17]. remain essentially constant over the frame duration, or may
In wireless channel modeling, the Multipath Intensity Reofi be slowly time-varying. If the channel is constant, the arsp
(MIP) is defined as the averaged multipath power profile meghannel estimate can be obtained from the pilot subcaiiers
sured at a particular location on a measurement grid [183. Tholving (P1). When the channel is time-varying, typically, the
traditional methods for channel estimation in OFDM systenf®nzero channel coefficients vary slowly and are temporally
assume knowledge of the MIP and use pilots for channedrrelated, but the hyperparameters of the channel remain
estimation and tracking [3], or employ iterative technigueconstant for several OFDM frames [30]. Consequently, the
based on the Expectation Maximization (EM) algorithms fdpcations of the significant components coincide in sudeess
joint channel estimation/tracking and data detection,[[B]]. channel instantiations, i.e., the channels are approgiymat
CS techniques have been proposed for the estimation of giteup-sparse€a-group-sparse). In this work, we cast the chan-
time-varying channel over all the symbols in a frame whemel estimation problem as a a-group-sparse channel egiimat
the channel consists of a few significant nonzero entries aroblem and devise exact Bayesian inference based saution
the path delays are unknown [21]-[23]. Further, approxémaf\pproximate inference techniques for estimating the time-
inference methods have been used to solve the problemvafying sparse vector and support have been proposed in [31]
joint channel estimation and decoding in a BICM-OFDMn the context of SBL, block-based methods such as Block
system, where the time-varying sparse channel is modefBL (BSBL) and Temporal SBL (TSBL) algorithms [32] have
using a Bernoulli-Gaussian prior [12], [24]. In [25], thebeen proposed to estimate the time-varying correlatedsepar
authors design variational message-passing algorithresdbavectors when the correlation among the group-sparse \&ctor
on hierarchical Bayesian prior models for pilot-assist&D® is modeled using a general correlation structure. In cehtra
channel estimation. to the above-mentioned works, the autoregressive (ARg stat
In this paper, we propose SBL algorithms for exact infespace model has been employed to model the correlation
encé based channel estimation, channel tracking, and d&@ong the group sparse vectors and approximate Kalman
detection. In addition to the monotonicity property of SBy. bfiltering techniques have been proposed [29]. Further, CS
virtue of the EM framework, SBL offers guarantees such d&ased Kalman filtering has been proposed in the context of
convergence to the sparsest solution when the noise variagparse correlated vector estimation [33].
is zero, and converging to a sparse local minimum irrespecti  In this work, we adopt the Kalman Filter (KF) based exact
of the noise variance [15]. In contrast, approximate infeee inference, where the temporal variations of the channel are
methods [29], although lower in computational complexitgaptured by an AR model. Moreover, it is known that the
do not offer such rigorous convergence guarantees. Given fiist order AR model accurately captures the local behaviior o
fading wireless channels [34]. The first order AR model for

1In the machine learning literature (e.g., [26]-[28]), “ekinference” is an
attribute associated with algorithms that obtain the epasterior distribution ’Due to the one-to-one correspondence between the vegtand the
of the hidden/missing variable. diagonal matrixI', we use them interchangeably.



the £ channel tap is given by where

hy = phy_1 + uy, (6) ghy, ... hg, v, Xq,..., Xg) = f: IIym—PZZFhmH%
where the Jakes’ Doppler spectrum leadg te Jo (27 f4Ts) € x m=t
R where_Jo(-) is the zeroth order Bessel function of the first + 3 (hm—phma)gf;;)(hm—phmfl) + Klog|T|
kind, f; is the Doppler frequency, aril, is the OFDM symbol m=2
duration [35]. The driving noise; consists of independent +h#T"h;. (12)

componentai (i) ~ CN(0, (1 — p?)v(i)). The initial condi- Lo . .
tion for the a-sparse channel is given hy ~ CA/(0,T). Contributions: In this work, we propose a practical and

When the hyperparameters are known, a KF approach rpé'gwipled approach for joint a-group-sparse channefresti

been used for channel tracking using the pilot symbols [3é on apd data detectlonlln SIS,O'OFD,M systems, that evaguate
Il in Monte-Carlo simulations. First, we show that the

The EM based KF has also been proposed for joint chan . .

tracking and data detection in OFDM systems [35], [37 .roblem in(P1) can b_e solved using the SBL frame\_/vork of

However, these algorithms are not applicable in scenari ]. We n_ext generalize _the SBL framework to obtain the J-
JiL algorithm as a solution t6/°2). A key feature of the J-

where the hyperparameters are unknown and need to L alaorithm is that the ob ; f both the d d
estimated along with the channel tap coefficients and the d algorithm is that the observations from both the data an
pilot subcarriers are incorporated to jointly estinthie a-

symbols. In contrast, we use the exact inference techniqLﬁ §
employed for linear dynamical systems [26], [38] to explol parse chanpel as Wel! as the unknown data. We_ also propose a
the known correlation structure of the channel. We noteltlgat Ow complexity, recursive _‘]'.SBL (RJ'S.BL) algorithm to selv
using an AR state space model, it is possible to significanquljz)‘ We Sh(,)w that the Jo-mt estimation procedure leads to
reduce the computational complexity compared to the bloc§_5|gn|f|cant |mprqvement in the Mean S_quqre Error (MSE)
based a-sparse estimation techniques such as the ARSBL [gé the channel estimate at SNRs of practical interest. Eurth

Since the unknown channels have a common hyperparaff§- Propose a novel, low-complexity K-SBL algorithm as a

ter vector, the joint pdf of thes received OFDM signals and recursive solution td P3). We enhance the K-SBL algorithm
to obtain the JK-SBL algorithm, which is a recursive solatio

the a-group-sparse temporally correlated channels isgye to (P4). The results are summarized in the Table I.

a Although our work focuses on a-sparse channel estimation

P(Ypx b, .. hisy) = H P(Yp.m [ Bm)p(him[hm-137),  for OFDM systems using the SBL framework, the algorithms
m=1 @) we develop are important in their own right due to several

reasons. This is the first paper in the literature that prepos

where Y, x = [yp1,---,¥pk], a@nd, by convention, recursive techniques for exact inference in sparse signal r
we usep(hi|ho;y) £ p(hy;y) whereh; ~ CN(0,T). covery. We show that the joint problems of hyperparameter
To obtain the optimization problem, we considegstimation and data detection separate out in the M-step.

—logp(Yp iy, ... hi;y) and neglect the terms thatThis leads to a simple maximization procedure in the M-
are constant w.r.th and+, to obtain step, with no loss of optimality. The joint algorithms invel
K R estimation of the unknown data symbols, which necessitates
h h — Z ”.Yp,m_Xp,me,mhm”2 . .
f(hi,...,hg, ) > o2 the development of techniques that are capable of handling
x =t partially unknown dictionary matricesFinally, the recursive
+Klog|T|+ 32 (hm—thfl)gfj)(hm—f’hmfl) versions of the algorithms have the advantage of computatio
m=2 ’ simplicity compared to other exact inference methods, evhil
+h{'T"'h;. (8) retaining the performance advantages of SBL estimators.

From the equation above, the pilot-based channel estimatio The rest Oflth's_ Eapefr 'S organlzedhas f0||IOWS_' In .Sec. I_I’
problem for & OFDM symbols can be written as we propose algorithms for a-sparse channel estimatiorgusin

R . pilots. In Sec. lll, the joint channel estimation and data
(P3) hy,...,hg = argmin  f(hy,...,hg, 7). detection algorithms are proposed and the implementation
hu,.hicyERD issues are discussed. The efficacy of the proposed technique

(9) is demonstrated through simulation results in Sec. IV. Werof

Problem(P3) addresses the estimation tihe-varyingwire- SOMe concluding remarks in Sec. V.

less channels using only the pilot subcarriers. However, ad\otation: Boldface small letters denote vectors and bold-
mentioned earlier, several subcarriers in each of the OFDfCe capital letters denote matrices. The symipgls and| - |
symbols carry unknown data. Hence, we can also considi§note the transpose and determinant of a matrix, respactiv
the problem of joint time-varying channel estimation antada”IS0, diaga) denotes a diagonal matrix with entries on the

detection, by modifying (9) as follows: diagonal given bya. The pdf of the r_andom variablé&’ _iS_ _
R o R represented gg«) and the random variables and deterministic
(P4) hy,...,hg, Xy,..., Xk = parameters in the pdf are separated using a semicolon. The
arg min gthy, ... hg, v, Xq,..., Xk) , _ _ _
h1.,....,hK.,veRi“.,Xl,m.,XK €S That is, the algorithms are capable of handling the fact, ttiaé to the

10 N — P unknown data symbols iX, the measurement matrié = XF is
( ) partially unknown.



TABLE |
THE MAIN CONTRIBUTIONS OF THIS PAPER

Sl. no. | Novel algorithms proposed Goal Applicability
and Section number
1 SBL in Sec. Il Joint channel, hyperparameter estimatiprBlock-fading channels#1)
2 J-SBL in Sec. llI Joint channel, hyperparameter estimatiprBlock-fading channels #2)
and Recursive J-SBL and data detection
3 K-SBL in Sec. Il Recursive joint channel Time-varying and
and hyperparameter estimation Block-fading channels #3)
4 JK-SBL in Sec. IlI Recursive joint channel, hyperparameter Time-varying and
estimation and data detection Block-fading channels K4)

expectation with respect to a random varialdleis denoted The E-step above requires the posterior density of the spars
asEx(-). The L x L identity matrix is represented &g and vector with the hyperparametey = ~("), which can be

A ® B denotes the Kronecker product &f andB. Thei" expressed as

entry of a vectora and the(i, j)" entry of a matrixA are

represented as(:) and A(4, j), respectively. Throughout the p (h|yp§‘7(7')) =CN(p, X), (16)
paperp as a subscript refers to pilots afvd in the superscript .
refers to the iteration number. whereX = T'") —TM @ (5%1p, + @, T"®]) " &,T"),

andp = 0 *X®/'y,, where®, = X,F,. Notice that the
EM algorithm given by the steps in (14), (15) also solyB3),
where we obtain a MAP estimate of the a-sparse channel, i.e.,

h = p with T' = diagy(")). The M-step in (15) can be
In this section, we propose SBL algorithms for a'grou%impli{:ited to obtain gr™) pin (15)

sparse channel estimation in OFDM systems using pilot sym-

II. CHANNEL ESTIMATION AND TRACKING USING PILOT
SUBCARRIERS

bols, for both block-fading and time-varying channelssgir "™ (i) = arg max By, ., [log p(h; )] (17)
we discuss the SBL algorithm to soly&1), i.e., the problem v()ER
of a-sparse channel estimation usify pilots in the entire = Epjy, iy “h(i)ﬂ = %(i,i) + |M(i)|2. (18)

OFDM frame when the channel is block-fading. Subsequently,
we consider the time-varying channel usiRgpilots in every In (17), the termiEy, ;. . [log p(y,|h; )] has been dropped,
symbol, and propose a novel, recursive approach for a-gro@s it is not a function ofy(i). Note that, since all the

sparse channel estimation, i.e., a solutior{ &3). algorithms proposed in this paper use the EM updates, they
have monotonicity property, i.e., the likelihood is gudesd
A. The SBL Algorithm: Block-Fading Case to increase at each iteration [40], [41].

In the case of multiple OFDM symbols in a block-fading

Here, we propose the SBL algorithm for channel estimatiql, 3 ne|, since the channel remains constant forh@FDM
using pilot subcarriers in a single OFDM symbol; this form§ymbols the system model in (2) is modified as
the basis for the algorithms developed in the sequel. The '

observation model is given by (2). SBL uses a parametrized yp.m = XpmFpmh+vp,m, m=1,... K. (29)

rior in r lutions, given . .
prior to obtain sparse solutions, given by The equation above has a one-to-one correspondence wijth (2)

L ( |h(i)|2> ( since y, , denotes the observations corresponding to pilot

p(h;y) = 1_[(7T’7(i))71 exp ~ () subcarriers in then™ OFDM symbol and®, ,, = X, nFpm
i=1 denotes the matrix consisting of measurements correspondi
Typically, the hyperparameterg can be estimated using theto pilot subcarriers in the:™ OFDM symbol. The steps of the
type-Il ML procedure [14], i.e., by maximizing the marginal SBL algorithm for block-fading channel estimation are give
ized pdfp(yp;y) as in the Appendix A.

We note that the SBL algorithm proposed in this section
is not equipped to use the correlations between the channel
across successive OFDM symbols in a time-varying channel.
Since the above problem cannot be solved in closed formstraightforward approach to exploit the correlation isise a
iterative estimators such as the EM based SBL algorithm [1§|bck_based method, where the estimates of allkhehannel
have to be employed. The sparse chariné$ considered as vectors are obtained jointly using the observations for the
the hidden variable and the ML eStimate’wﬁS obtained in K OFDM Symbo|s [32], [39] However, this joint processing
the M-step. The steps of the algorithm can be given as  of all K OFDM symbols is computationally expensive, as it

i N\ ) requires inverting matrices of the sizéP,; x K P;. In the next
E-step: @ (’Yh( )) = Ehjy,ev0 [log p(yp, b; )] (14) subsection, we propose a recursive approach that is not only
M-step: "+ = argmax Q (’y|’y(T)) . (15)

Lx1
YyeERY

Ymr = arg maxp(}’p; v)- (13)
,YeRixl

4We have found, empirically, that the straightforward aditiation such as
r'©) =1, leads to accurate solutions.



low-complexity compared to the block-based techniques, buhereJ;_; = PPj71|j71Pj]j1-,1 andG,, is the Kalman gain.

also gxplglts the temporal channel corrglatlon across s¥8nb | the above, the SymbOIEmhn—ll P,.\m_1, €tc. have their

resulting in an enhanced channel tracking performance.  ysuyal meanings as in the KF literature [38]. For example,
~ . . th

B. The K-SBL Algorithm: Time-Varying Case h,,m—1 is the channel estimate at the"™ OFDM symbol

. X ) : ) given the observation¥,, ,,—1 = [yp1;---,¥Ypm—1] and
In this subsection, we derive algorithms for tracking thpmlm_1 is the covariance of thex" channel estimate given

slowly time-varyingchannel using an SBL framework to Iearnyp m_1. The above KFS equations are initialized by setting
the hyperparameters along With_the chan_nel coefficierds, i'fl0|;) = 0 andPg, = T. They track the channel in the forward
we solve(P3). We derive recursive techniques based on thérection using the prediction and the filtering equations i
Kalman Filter and Smoother (KFS), with an AR model for thg>2)_(26) andsmooththe obtained channel estimates using
temporal evolution of the channel. Interestingly, the feavork  ine'backward recursions in (27)-(28). However, in the aspa
developed in this section can also be used to accommodgt@nnel tracking problent is unknown. Hence, we propose
detection of the unknown data (i.e., a solution(fo4)), as We  the K-SBL algorithm, which simultaneously estimates the
show in the next section. channel coefficients and also learns the unkndwn

In the time-varying case, the measurement equation giverhecall that the a-aroun-sparse channel has a common hv-
by the OFDM system model, and the state equation given b group-sp y

the first order AR channel model, féf consecutive symbols, phgrparameter set. TT]e jomlt pdf of the recellve.d sllgnals and
are as follows: the a-group-sparse channel fsr OFDM symbols is given by

(7), which leads to the optimization problem as given B}3).

Ypm = Ppmhm + Vpm, (20) We propose the K-SBL algorithm using the EM updates, as
hyi1 = phy + Uy, m=1,2,... K, (21) follows:
where ®, ,, = X, ,,F, . Typically, in a KF approach to )
(P3), the goal is to recursively estimate the channel state and E-Step: @ ('YW ) =
its covariance matrix using forward and backward reCUSSION  E, |y, iy [108p(Yp i, b, ... B )] (29)
given the observationg, 1, ...,y x sampled at the®, pilot (r+1) )
subcarriers. In the forward recursion, for each OFDM symbol ~ M-step: v = argmax ) (‘Y|’Y ) - (30)

L x
the KF operates on the received symbol to obtain the estimate yeRY ™

of the a-sparse channel as a weighted average of the previous
estimate and the current received symbol. These weights afecOmpute the E-step given above, we require the posterior
given by the the Kalman gain matrix, and are updated f@istribution of the unknown a-sparse channel, which is ob-
each OFDM symbol. In the backward recursion, the Kaimdained using the recursive update equations given by @@)-(
smootherensures that the observations until thd" OFDM  In order to obtain an ML estimate of, K-SBL incorporates
symbol are included in the estimation of the a-sparse chianA8 M-step, which, in turn, utilizes the mean and covariance
corresponding to then™ symbol for1 < m < K. Hence, it of the posterior distribution from the E-step. From (7), the
improves the accuracy of the estimates of the previous eanil-step results in the following optimization problem:
states in every recursion.

For the moment, if we assume thEtis known, and if we ~ ~(*+Y = arg maxEy,  pojv, cyo € — Klog|T|

denote the posterior mean and the covariance matrix of éann yerL X!
in the m™ OFDM symbol byh,,,, andP,,,,, respectively, K (h, — ph;,_)AT=(h, — ph, )
for 1 <m < K, then the KFS update equations are as follows — -~ PR — 1= PR pHp-lp),
[38], [42]: = (1—p?)
form=1,...,K do (31)
Prediction:hy, ;1 = phy, —1jm—1 (22) where ¢ is a constant independent of. As mentioned
Pojm—1 = pQPm,”m,1 +(1- p2)F (23) earlier, we see that the M-step requires the computa-
Filtering: tion of hjx = Eu  n.v,«~»[hjl, and covariance
H A " . H .
_ H 2 H ! ]Ehl,...,hK|Yp,K;7<T>[hjhj] = Pjix + hyghjj, for j =
(F'm - Pin\mflq’p,m (U Ip, + ‘bv,mPAmlmfl‘I’p.,m) (24) 1,..., K, which is obtained from (22)-(28). T he M-step also
W m = Bm—1 + G (Ypm — @pombBijm—1) (25) requires th(? corpputation OEn,  hgev, o [E] £
Poojm = (I — G ®p ) Prnjim—1 (26) Pjj-1x + hjhi ), for j = K, K —1,...,2, which we
end obtain from [38] as follows:

forj=K,K—1,...,2 do

T » : . P 1ok =PI+ I (P 1k
Smoothingh;_yx =h;_1;_1 +Jj—1(hjjx —hy);-1) i=1,5=2| g=ti=1dj—2 T J5-1 (51

(27) —PPj1jj-1)d -2 (32)

P yjx =Pj1o1+3;0(Pjx —Pj-1)3fL,, (28)

) The above recursion is initialized usi®x x—1x = p(Ir —
en

Gg®, x)Pxk_1x-1. Using the above expressions, (31) sim-



plifies as E-step: {Eh‘y,xm,a,m[bgp(y«, h; X, )] J

~"Y = arg max {¢ — Klog|T'| - TraCE{I‘_lMHK)

1 K
—1
~ T 2 TracdT T M)}, (33) S
j=2 [arg maxy Eyjy x4 ) [log p(h; )] ] E [arg maxx ]Eh‘y_x(,)v,y(,)[logp(y\h; X)] ]

where ¢’ is a constant independent of M; x £ Pjjx + e [ . 12T !

b chf 4+ 2P +h_qchi ) —2pRe(P; i1 x +

AJ‘K AZJIK P ( J-1K A I-1K ]T”K)AH p e( 5 1_‘K_ Fig. 1. The J-SBL algorithm: the E-step computes the exfientaver the
hj\Khj,uK) andM g = Py + hl\Kh1|K- Differentiating  posterior density oh. The joint maximization in the M-step simplifies into
(33) W_r_t_'y(i) and setting the resulting equation to zero givelo independent maximizations ove(i) and X. The step inside the dashed
the update for theth hyperparameter as follows: box indicates the new ingredient in the J-SBL algorithm.

iy L[ My (i) -
Y () = K Z (fl, 02) + My (id) |, (34) system. Subsequently, we consider the time-varying channe
and generalize the K-SBL to obtain the JK-SBL for jointly
for ¢ =1,..., L. Thus the K-SBL algorithm learns in the estimating the unknown data and tracking the a-group-spars
M-step and provides low-complexity and recursive estimatehannel. Our proposed algorithms solve the problémg)
of the a-sparse channel in the E-step. This completes the Ekid (P4) using an SBL framework.
based solution t§P3). The algorithmic representation of the

K-SBL algorithm is given in Appendix B. A. The J-SBL Algorithm: Block-Fading Case

Remarks:Whenp = 1, the AR model simplifies th = To derive the algorithm for an OFDM frame consisting of

hy = ... = hy ,and hence, it reduces to the block-fading symbols, we considdn as a hidden variable and
channel scenario. The recursive updates in the E-step\ae gi

=2

. i i oor v,X1,...,Xk] as the parameters to be estimated. The E and
by the KFS equations (22)-(28), and the M-step is given b he M-steps of the J-SBL algorithm can be given as
(r+1)y — I (WHp-1
Q(yly ) = EhIYp,K;‘Y(” [ — (h” T~ h +log|T|)], (35) E-step: Q(X, 7|x(7')7 7(7')) —
which results in the same M-step as that of the SBL algorithm Epjyx ~ [logply,h; X, v)] (36)

in the block-fading case. Hence, this algorithm provides a

. r+1 r+1 _
low-complexity recursive solution to the SBL problem in the M-step: (X( ) )) =

block-fading scenario, which we discuss in detail in Sek. || arg max Q (X AIX ™) ’Y(T)) 37)

B. At the other extreme, whem= 0, the AR model simplifies X yeRLX! ’ ’ ’

to h,, = u, for m = 1,...,K, i.e., the channels for

OFDM symbols are mutually independent of each other. In thighere X € CV**N* is a block diagonal matrix consisting
case, the prediction equations of the KFS equations siynpl®f the matricesX;, ..., X whose diagonal entries con-
as flm‘m,1 = 0 and P,,,,—; = T, and the expressionsSist of symbols from the transmit constellation, apd=

for h,,,, and P,,,,, simplify to the mean and covariancelY1 - --» Y] - The posterior density computed in the E-step

matrix, as obtained in the SBL algorithm for a single OFDNE P (hly; X, ~(") = CN (s, ), where
symbol. The smoothing equations simplify lh,n_l‘m =
By 1jm1 @ndP,, 1, = P, 11, i€, the smoothed . o
mean and covariance at thex — 1) symbol depend only x = (J*QFEX(” XME, + 10 ) . (38)

on observations of thén — 1)!" OFDM symbol, as expected.

Although the algorithms proposed in this section are easyWhereF, € CN**F with F, = 1 ® F, wherel ¢ is a vector
implement and computationally simple due to their recersi@f all ones. Notice that (38) and (16) are different since the
nature, they do not utilize all the information availablerfr former uses the known pilot symbolX,, € C"*”, whereas
the observation vectors,, . ..,y x. Only the pilot subcarriers the latter uses the pilot symbols along with the estimated
are used for channel estimation. Hence, in the next sectigi@nsmit data, together given By(") in the " iteration. The
we extend the SBL framework developed in this section ®yoposed algorithm is pictorially depicted in Fig. 1.
detect the unknown data. We show how these decisions cadhe objective function in the M-step given in (37) can be
be coalesced into the EM iterations, leading to joint channéritten as

~NH
p = o 2ZFEXM 7y

imation an ion. ) A r —XFuh|3

estimation and data detectio Q (X, 7[X") 4} = ¢ — By o [Ily KEe I
[1l. JOINT CHANNEL ESTIMATION AND DATA DETECTION +log [T +h" T~ 'h] (39)
USING PILOT AND DATA SUBCARRIERS where¢” is a constant independent gfand X. The objective

In this section, we start by deriving the J-SBL and th&inction given above is the sum of two independent functions
RJ-SBL algorithm for joint estimation of the unknown af,,.x o [logp(ylh; X)] and Eyy.xo) 4o [logp(h;¥)].
sparse channel and transmit data in a block-fading OFDWMhe key aspect of the M-step below is that the function



Eply;x ) ) [log p(y/h; X)] is maximized overX, which K OFDM symbols, withh = h; = --- = hg. The
incorporates the information discarded in the M-step of th@rediction equations of the KFS update equations in (28)-(2
SBL algorithm presented in Sec. II-A. Now, since the firstrter simplify as ;1 = hy 1)1 2 hypoy @and P, 1 =
does not depend ofy, we optimize the second function withP,,,_;,,,_, £ P,,_y, for m = 1,...,K. Moreover, for
respect toy(i) to obtainy"*+1) (i) as in the SBL algorithm, p = 1, the smoothing equations in (27)-(28) simplify as
given by (18). On the other hand, the first function can bie;,_, x = hjx andP;_yx = Pj for j = K,... 1.
optimized by solving the following problem: Hence, the filtering equations of the KFS updates suffice to

1)/ - . . 9 . . 5, describe the recursions, as follows. Far= 1,..., K, the
X i) = are it {0 il + |y (@) — wiFo(i, Jul’} E-step of the J-SBL algorithm can be replaced by

(40)

wherei € D, D is an index set consisting of the data subcarrier
locations,C;, = FbEFf, Fy(i,:) is thei™ row of the F,
matrix, 2 and = are given in (38) and is the constellation Pp =1L — Gn®m)Pm_1, (45)

from which the symbol is transmitted. Due to the abov\?/herei’k denotes the measurement matrix of #& OFDM
maximizationQ (X, v|X (), 4(")) increases monotonically for

. i symbol given by®;, = X, F. However, sincd" is unknown
L = 7 < Tmaxy Where rmay is the maximum number of onqx, is known only at pilot locations, the SBL framework
iterations. That is, is incorporated to learn the unknowhand unknown data in
QX+ A r+1) X (1) ~()) > Xi. Hence, the update equations given above form the E-step,
. . o — hile the M-step is the same as that of the J-SBL algorithm
XM XD A=) for 1< 7 < rmaxe (41) s ’
QXA ) for LS S Tmae (41) given by (37). The update foy is given by,

G =P 1@ (0°Iy + @,P,,1®1) 1 (43)
B = B 1 + G (Y — ®puin 1) (44)

Note that the above functiaf(.) monotonically (inX and-) .
approaches the likelihood function, which in turn is bouhde D (G) = Py (i, ) + ‘hK(i)
This guarantees the convergence of the proposed J-SBL al- _ _
gorithm. Further, by the same reasoning, the converger¢@erehx and Py are given by (44) and (45), respectively.
guarantee holds good for the JK-SBL algorithm which wilfhe unknown data can be detected by solving the following
be presented in the sequel. optimization problem:

The J-SBL requires initial estimates of the unknown pa- (r 1) s o . 2y

o ) : X = ; ,

rametersy andX. The initial estimate oI is taken to be the (i) ai:%gsm {|$ Fot9)
identity matrix, as in the previous section. The initiatina . D2
of the (KN — P,) non-pilot data in turn requires an initial Hy() = 2iFo(i, ] } (47)
channel estimate. Channel estimates using methods like \kﬁ
ahnd MMSE car:jnor: b(; used here, as they require Il(noxgﬁggqé) he same as the J-SBL algorithm of Sec. IlI-A. The steps of
the support and the hyperparameters, respectively. € the RJ-SBL algorithm are listed in Appendix D. The complex-

initialization of X can be obtained from the channel estimalﬁy of the RJ-SBL algorithm is dominated by the computation
obtained from a few iterations of the SBL algorithm from the Gy, and is given byO(N L2K). Hence, for largéy, the RJ-

Py, = P pilots (denoted ahspr). The ML data detection g “540rithm is computationally significantly cheaperrtha

2
; (46)

erei € D, C = F,PxF{. The initialization ofy andX(®)

problem is given by the J-SBL algorithm.
X (i,4) = argmin |y(i)—x;F (i, )hspr|?, ie€D. (42) The E-step of the RJ-SBL is a recursive implementation of
©i €8 the E-step of the J-SBL algorithm, and the M-steps of the

The algorithmic representation of the J-SBL algorithm iglgorithms are the same. Hence, the algorithms are mathemat
provided in Appendix C. J-SBL algorithm is a block-basetfally equivalent if the same initializations are employ&dis
algorithm, and hence, the complexity of the algorithm is gomis illustrated via simulations in Sec. IV (see Fig. 4).
nated by the E-step, which incurs a complexity)fN? L K3)

[43]. In the next subsection, we derive a low-complexitys The JK-SBL Algorithm: Time-Varying Case
recursive version of the J-SBL algorithm, using the K-SBL

algorithm with p = 1. In this section, we generalize the K-SBL algorithm of

Sec. II-B to obtain the JK-SBL algorithm, which utilizes the
) . ) observations available at all th¥ subcarriers and performs
B. Recursive J-SBL Algorithm: Block-fading Case data detection at theV — P;) data subcarriers of the OFDM
In this subsection, we derive the recursive joint SBL akymbol. The algorithm is recursive in nature, and the chianne
gorithm which is mathematically equivalent to the J-SBlestimates fork’ OFDM symbols are used to jointly estimate
algorithm proposed in Sec. lll-A, using the framework ofhe a-sparse channel and the unknown data ofntife 1 <
the K-SBL algorithm withp = 1, i.e., for the block-fading m < K OFDM symbol. In essence, we solve the problem
channel. Hence, we solve the proble?3], using a low- given by (P4).
complexity RJ-SBL algorithm. Our starting point, again, is the state space model given by
Consider the state space model in (20) and (21) in tif20) and (21). Using the observatioNsx = [y1,...,y k],
block-fading case, where the channel remains constant tbe recursive updates of the mean and the covariance of



the posterior distribution are given by (22)-(28), wigh ., E-Step

and &, ,,, replaced byy,, and ®,,, respectively. Thus, the i=12... K M-step
JK-SBL algorithm uses the observations available at all the P’ES'C“_}E\HF')PJ\H A0, XX
N subcarriers. Further, sincE and data at the non-pilot Update: b, P

Smooth: 1:1_,,1\1{, Pk

subcarriers are unknown, the SBL framework leads to the
objective function for the M-step given by

Fig. 2. Block diagram depicting the JK-SBL algorithm. Themarse channel
(r) (r) N is estimated and tracked in the E-step, while the M-stem&tiie unknown
Q (Xla oo Xk, ’7|X1 Yo 7XK 7’7(7)) =c hyperparametersy and detects the unknown transmit d&a, ..., X k.

N f: ly; =X, Fh; |
hi,.hi | YisX 7L X 0 = o?

Thus far, we proposed algorithms for joint a-sparse channel

K (h;—ph; )HI"I(h~— h; 1) . . . . . . .
+Klog || + ) 2t s estimation and data detection in block-fading and timeyivay
.7 (1-p%) . . .
J=2 channels in OFDM systems. We now discuss some implemen-
+ h{T 'hy], (48) tation aspects of the proposed algorithms.
where¢””’ is a constant independent §f and X1, ..., Xk.

The expression above is a sum of terms which are ind§- piscussion
pendent functions ofy and Xy, denoted asQ (v|vy") . . . _ _
and Q X1,---,XK|X§7'),_..,X%)), respectively. Further, In this subseqﬂon, we dISCU.SS the implementation .of the
N i o roposed exact inference algorithms, and contrast their- co
we see that) (y|y!")) is the same as the expression in (33 lexity with the block-based Autoregressive-SBL (ARSBL)

Hence, the learning rule foy follows from the M-step of the 5orithm [39] and the approximate inference algorithm][29
K-SBL algorithm, and is given by (34). The expression for Consider the estimation of the wireless channels when the

Q (Xb XX 7X§§)) is given by data is observed up to th&™ OFDM symbol. First, in the
") ") forward recursion, (22)-(26) are applied recursively ung
Q (le sy XX X ) =c reach thek™ OFDM symbol. Hence, in the forward recursion,
K we store the values oh;;, h;;_;, P;; and P;;_; for
2 . .
_F " N Hy—XﬁithmH i j = 1,2,...,K. Next, we apply the backward recursion
B R G X Lz_; using the Kalman smoother given by (27)-(28), i.e., KFS is

(49) applied to the whole sequence of observations before upgati
As mentioned earlier, the M-step requires the computd: The quman smoother helps to utilize all the information
tion of hix 2 K o o lh;], and co- avallable in both the pa_st and future symbols, and hence
i BB Y, 1 X0 Xy improves the channel estimates. For the K-SBL and JK-SBL
e e Y s XL XD () [hjhi] = Py + algorithms, the smoothed mean and covariance are required
hj‘KhﬁK for 7 = 1,...,K, which are given by for the computation of the M-step.
the KFS equations of the E-step. The maximization of The K-SBL and JK-SBL algorithms are iterative in nature,
Q (Xl, e ,XK|X§"), e ,X%) in (49) leads to the follow- and the filtering and smoothing equations are executed in the
ing optimization problem foiX,,: E-step of every iteration using the hyperparameters obdain
in the M-step of the previous iteration and the unknown data
for K symbols. Hence, the E-step performs exact inference,
. by obtaining the exact posterior distribution of the a-spar
Hym (i) — ziF (4, 3)hm|K|2}a 0<m<K,ieD channel, given the estimate of the hyperparameters. Exact
(50) inference ensures that the likelihood function increases a

each EM iteration. However, the price paid for the exact
whereC,, = FP,, xF andF(i,:) represents thé" row of P b

nference methods is their higher complexity, as has bedin we
the matrixF. The steps of the JK-SBL algorithm are Iiste(ij J Piexity

) ; ) ; -~ demonstrated by the simulation results in [29].
in Appendix E. The iterations of the JK-SBL proceed similar y [29]

to the K-SBL algorithm, except for the additional M-step to Using a flop-count a_naIyS|s [44], foK (K > 1) OFDM
. : S}/mbols, the computations of the K-SBL and JK-SBL algo-
estimate the unknown data. Also, the measurement matrix

given by <I>5,’;) in the ™ iteration of them™ OFDM symbol, rithms are o_Iomlnated by. the computation O.f the_, ti"“ in
. : . .’ the smoothing step, which has a complexity@fK L°) per
instead of the®, ,, used in the K-SBL algorithm, which . .
; P . . .~ iteration. In a block-based method such as the ARSBL, the
consisted of pilot subcarriers only. We provide a pictoria . : . .
representation of the overall JK-SBL algorithm in Fig. 2 W(e:omputatlon of the covariance matrk incurs a complexity
P g 9. <. Wae O(K3P?L) per iteration. Hence, we see that if the number

;Jhsee Ktt]SeB(I:_hZF r:)er:tr?;t'?s?;}omﬁé?se? d]:arr?g;ez ;%W |tera;t|t% ns é)ff OFDM symbols to be tracked are such th&t?, > L,
9 i P KSBL the complexity of the ARSBL algorithm is larger than the

. . . (0)
obtain the initial estimat&.," for 0 <m < K as K-SBL algorithm. In other words, the K-SBL algorithm is a
X0(i,4) = arg min |ym (i) —2:F (i, )hxspr|?,i € D. (51) good choice among the exact inference techniques when the
z;€8 number of OFDM symbols to be tracked is large.

variance E
h;

XT(YZ--&-l)(Z" i) = argmin {|xi|20m(i7 i)

Ti€



The proposed recursive algorithms are very flexible. For

example, a pruning step, where small channel coefficients or Th St o
hyperparameters are set to zero, can be incorporated betwee ol ¥ Waak Channel taps
iterations. This leads to a reduced support set, which in g 8 E:gzgm:gg\j\;ref;lg;%gme
turn results in faster convergence and lower complexity [1] sol L O
However, pruning may eliminate some of the basis vectors LR "4
of the measurement matrix before achieving convergence and 5 _,, @ %éb
result in support recovery errors. % ¢ '.

The improved channel estimation accuracy achieved by us-  _| %% . ,
ing the SBL techniques can lead to performance enhancement: Q;% Q%&
in different ways. As will be demonstrated in the next sectio _Zoof} &@é)
the BER performance can be improved, in both uncoded and &
coded systems. An additional approach could be to reduce, or  _,, ‘ ‘ ‘ ‘ LR
optimize, the pilot density, with the aim of maximizing the L TV

outage capacity [7], [13].

Fig. 3. One sample channel realization of the a-sparse ehaalong with
IV. SIMULATION RESULTS the filtered MIP, i.e., the MIP when raised cosine filters arglyed at the
transmitter and receiver. The plot also shows the strang—<30 dB) and
In this section, we demonstrate the performance of theak « —30 dB) channel taps and filtered-MIP components, to illustrate

proposed channel estimation algorithms through MontecCa#fat the channel can indeed be modeled as being approxymgiafse.
simulations. We consider the parameters in the 3GPP/LTE
broadband standard [45], [46]. We us8NMHz OFDM system

with 256 subcarriers, with a sampling frequency 6f = 5igorithms perform better than the MIP-unaware, non-ileea
3.84MHz, resulting in an OFDM symbol duration 6f 83.31.s  schemes such as the Frequency Domain Interpolation (FDI)
with Cyclic Prefix (CP) 0f16.67us (64 subcarriers). The technique. Among the iterative methods, the J-SBL algorith
length of the a-sparse channél)(is taken to be equal 10 herforms an order of magnitude better than the SBL algorithm
the length of the CP. Each OFDM frame consistshof= 7  ggpecially at higher values of SNR, while being wittindB
OFDM symbols, which is also known as an OFDM slotom the MIP-aware EM-OFDM algorithm. The J-SBL jointly
The data is transmitted using a ratg2 Turbo code With getects thé X' N — P,) data symbols along with the estimating
QPSK modulation. For the Turbo code generation, we use §gannel, resulting in a significantly lower overall MSE. As
publicly available software [47], which uses a maximum of,entioned earlier, the RJ-SBL is mathematically equivialen

10 Turbo iterations. ~ to, and computationally simpler than, the J-SBL algorithm.
A sample instantiation of the a-sparse channel used in hgce they have the same performance.

simulations and the filtered MIP are depicted in Fig. 3. The
figure captures the leakage effect due to finite bandwidth

sampling and practical filtering. To generate the plot, we 10' ‘
have used the Pedestrian B channel model [48] with Rayleigh ; #e + —=
fading. We have also used raised cosine filtering at thevecei 10 ocs

and transmitter with a roll-off factor of).5 [46]. At the o ‘9‘;?;_awarep"m_onl ]

sampling frequencies considered, the number of significant %—E—J-m b
. —x— RJ-SBL

channel taps are far fewer than the weak channel taps in the ;57 —— EM_OFDM ]

filtered impulse response, as seen in Fig. 3. In the following
subsections, we present the simulation results for thekbloc 10°
fading and time varying scenarios.

MSE

\e\o

A. Block-fading channel 107
In this subsection, we consider a block-fading channel and
use P, = 44 pilot subcarriers, uniformly placed in each 2

OFDM symbol. Each OFDM frame consists &f = 7 OFDM

symbols. We implement the SBL and the J-SBL algorithm angly 4. msg performance of SBL, J-SBL/RJ-SBL algorithms paned to
plot the MSE performance of both the algorithms in Fig. 4DI [4], CS [10], MIP-aware pilot-only [3] and EM [19] schemién a block-
using a convergence criteria ef= 10~° and Tmaw = 200 fading channel, withP, = 44 pilot subcarriers, as a function of SNR in
for both the algorithms. We compare the MSE performance’

of the proposed algorithms with the CS based channel estima-

tion technique [10], and the MIP-aware methods: pilot-only The coded and the uncoded BER performance of the EM,
MIP-aware estimation [3] and the MIP-aware joint data an#tSBL and a genie receiver, i.e., a receiver with perfecttno
channel estimation algorithm, which we refer to as the EMedge of the channel (labeled@sni e), is shown in Fig. 5. We
OFDM algorithm [19]. From Fig. 4, we observe that the SBlalso compare the performance with SBL and MIP-aware pilot-



10

only channel estimation followed by data detection. The BER 0

performance of the RJ-SBL is superior that of the SBL and CS N N N
algorithms in both coded and uncoded cases. The MIP-aware 100 L B I
pilot-only estimation method has a better BER performance -
compared to RJ-SBL for SNRs 15 dB, in both coded and 10 ks

the uncoded cases. Also, the MIP-aware EM-OFDM algorithm —&— IK-SBL
outperforms the proposed RJ-SBL algorithmyB. This is Co MIP-aware Kalman
because, in the block-fading case, J-SBL algorithm sutfaes -

to error propagation from the large number of data symbols 107

that are simultaneously detected.

cs 10° i i i
SBL 10 15 20 25 30
MIP-aware pilot-only, SNR

V+ O3 x 0O

Fig. 6. MSE performance of different schemes in a time-vagychannel,
compared to the optimal Kalman tracker [35] wifh7s = 0.001 and P; =
44, as a function of SNR in dB.

»
Ry Wy

107} R - 1 while the JK-SBL algorithm exploits its knowledge of the

g Q\ \ O\ Solid: Uncoded . . .

N RN Dashed: Coded channel correlation to improve the channel estimates.
x
<
10—5 I I L I
5 10 15 20 25 30

Ey/No

Fig. 5. BER performance of the proposed algorithms in a bfading
channel, withP, = 44 pilot subcarriers, as a function d;/No. |

Solid: Uncoded
Dashed: Coded

B. Slowly time-varying channel
In this section, we consider a slowly time-varying channel, 1070 N

BER

. . : . X W
simulated according to a Jakes’ model [49] with a normalized \\\f); 'S'\E;b .
fade rate off,7, = 0.001 and P, = 44 pilot subcarriers in i \‘\“g J-seL

10 z

every OFDM symbol. The MSE performance of the K-SBL
and the JK-SBL algorithms are plotted against SNR in Fig. 6
and compared with the per-symbol MIP-unaware FDI [4], and 10° ‘ ‘ ‘ ‘
the per-symbol J-SBL and the SBL algorithm. Figure 6 also Ey/No
shows the performance of the optimal MIP-aware Kalman
tracking algorithm [35] which considers all the subcagias Fig. 7. BER performance of different schemes in a time-vayychannel
carrying pilot symbols. The SBL and the J-SBL algorithm&/th fa”s = 0.001 and P = 44, as a function o, /No.
are not designed to exploit the temporal correlation in the
channel, and hence, they perforfr8 dB poorer than their
recursive counterparts, the K-SBL and the JK-SBL algorghm In Fig. 8, we study the MSE performance of K-SBL and
At higher SNR, we observe that the performance of the Jikhe JK-SBL algorithm across the OFDM frame as a function
SBL algorithm is only2 dB worse than the MIP-aware Kalmanof the OFDM symbol index for SNRs of0 and 30 dB. It
tracking algorithm with all subcarriers being pilot sub@ans. is observed that after an initial reduction in the MSE, the
In Fig. 7, we depict the BER performance of the proposedSE tends to remain more or less unchanged throughout the
algorithms. We see that, in the coded case, while the JK-SBiame, especially at an SNR 86 dB, indicating that the algo-
performs about dB better than the J-SBL algorithm, it isrithms learn the hyperparameters within the first few OFDM
only a fraction of a dB away from performance of the genisymbols. Hence, this study shows that at a given SNR, it is
receiver which has perfect channel knowledge. The JK-SRiossible to restrict the number of OFDM symbols over which
outperforms pilots-only based channel estimation usiegdh the proposed algorithms need to learn the hyperparameters.
SBL and the SBL algorithms by a large-§ dB) margin. After the hyperparameters are estimated, channel tradédng
Further, it outperforms the MIP-aware EM-OFDM algorithmbe accomplished using the conventional MIP-aware Kalman
since the latter is unaware of the channel correlation, atrdcking algorithm. This can lead to additional reduction i
performs channel estimation on a per-OFDM symbol basibie computational complexity of the algorithms.

EM-OFDM
JK-SBL
Genie

#**+DOO
$
[}
'g
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—A— K-SBL, SNR = 10dB
—A— JK-SBL, SNR = 10dB

B. Algorithmic Representation: K-SBL

11

- % - K-SBL, SNR = 30dB
= %= JK-SBL, SNR = 30dB|

—

P

o L

5

4
OFDM Symbol Index

Fig. 8. MSE performance of the K-SBL and the JK-SBL algorithras a
function of the OFDM symbol index withf;7s = 0.001 and P; = 44.
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Input: yp1,.. P, K Tmaz ande

Set difference= 1, r = 0, v(9) £ 1,

while (difference> € andr < rm,q2)

E-step SetPg)o = I'™); hojp = 0

form=1,..., K do R
Prediction:h,,, |, —1 = phy 11
Pom-1= PP 1jm-1+(1— p?)r™
Filtering: G, = Py 1 @5 (0'2Ipt + Qp,m,Pm‘m,légm)
l:lm\m = 1:lm\m—l + G (Yp,m — <I>p,mﬁ'nﬂm—l)
Poim =IL —Gm®pm)Pmjm-1

end for

Smoothing: SeP i k—11x = p(Ir — GrxPp,K)Pr 11K -1

forj=K,K—-1 d
Jj—1=pP;1; Py andJ;_s = pP;_5; 5P
hj_1jx =hj_y;-1 +J;-1(byx —hy-1)
Piyx =Pj 121 +J;-1(Pjix —=Pjj;1)d
Pi1jo2ix = P11, + 370, (P ok
—PPi1m) I, A )
M, x =2 Pk Jrhju(hﬁk +p*(P_1 1k +hj—1\Kh;‘q71\K)7
2pRe(P; ; 11k + by hi’ k)

end for R R

M-step: M| £ Py + hyehil

” . M g (i,1) ) .
ek "+ () = (T, TGS o by

S Yp, K> <I)p,l,

-1

.
J=1li—=2

H
j—1

K

o2 for e =1,...,L.

B Compute the differencé ||yt — 4|12, r 741

end while
output: h,, |, 1 <m < K; 4 =~

V. CONCLUSIONS

In this paper, we considered the joint approximately sparse
channel estimation and data detection for block-fading and
time-varying channels in SISO-OFDM systems, from the. Algorithmic Representation: J-SBL
perspective of SBL. To estimate the a-sparse block-fading
channel, we proposed the SBL algorithm and generalized

it to obtain the J-SBL algorithm for joint a-sparse chann
estimation and data detection. Furthermore, we obtaineg
mathematically equivalent low-complexity RJ-SBL algbnit.

For the time-varying channels, we used a first order AR mod
to capture the temporal correlation of the a-sparse chamtel
proposed a novel K-SBL algorithm, using which we tracke
the a-sparse channel. We generalized the K-SBL algorith
to obtain the JK-SBL algorithm for joint channel estimatio

a| Input: y, Fo, "max ande

Initialize v = 1., X', ..., X using (42), set difference- 1, r = 0
Qwhile (difference> € andr < runaz)
E-step @™ = F, XM 4 = 07258 )
e|==T" - rOgemH (021NK + q,(r)pmq,(r)H) “tempm
M-step: vtV (4) = (4, i) + |p(i)|? fori =1,2,..., L
C, = F,SF; Fori € D,
d X030, 0) = argmin,, ¢ s {|2:Co (1) + [y(0) — 2:Fy (i, )l }
Mdifference2 ||~ — ()12 p 41
N end N
output: p, 4 = ~, X = x("

r H

)

and data detection. We discussed the implementation iss
of the recursive algorithms and showed that the proposed
gorithms entail a significantly lower computational conxit

CcS
al-

compared to the previously known SBL techniques. Simutatio
results showed that the proposed recursive techniquesiexpl

the temporal correlation of the channel, leading to an ecéén
channel estimation and data detection capability comptred

D. Algorithmic Representation: RJ-SBL

the per-symbol SBL and J-SBL algorithms, and also learn t
hyperparameters within a few OFDM symbols.

APPENDIX
A. Algorithmic Representation: SBL

Input: y,, @5, "mae ande.

Initialize ~v(©) = I, Set difference= 1, r = 0

while (difference> e a}r)dr < Tmax)

E-step pu = 0’22<I>p Yo .
5=r" -1t (4’15, + &,rV &) &,0"
M-step: vV (4) = (4, i) + |p(i)|? fori =1,2,..., L
difference2 ||yt — (M2 — 41

end

)

Cinput: y, F, Fy, rimaz, ande

Initialize v = I, X(® using (42), set difference= 1, r = 0

while (difference> € andr < ry,42)

" =xVF forj=1,...,

E-step SetPy = T'("); hy =0

form=1,...,K do

H H

G =Pu1@0) " (o*1y + @0 P12
By =hy 1+ Go(ym — @5 by 1)

—1

Pr= (1L = Gn®()) Prs
end for
M-step: v(" V) (i) = Pg(4,1) + |hr (d)|% fori = 1,2,...,L

C=F,PxF, ;ForieD,
X0 (0,4) = argming, s {|2:|2C0,1) + |y(i) — 2:F (i, Dbl }
Compute the differencé ||y tD — M2 r 41

end while
()

Output: g, v

Output: flmx, =~




E. Algorithmic Representation: JK-SBL

Input: yq,...
Initialize X{”, ..., X {2 using (51),# = X(OF
Set dlfference; 1L, r=0,v
while (difference> e andrA< Tmaz)
E-step SetPg|q = I‘(
for m =1,

PWL\WL = (IL - Gvnq)g:;,))Pm,\m,—l
end for
Smoothing: SePK’K,HK = p(Ir — Gkég))PK,l‘K,l
for j = K, K — ,2do

PP _1pj-1) T,

, YK, Fy Timasx ande.

0 27y,

vhoo=0

Prediction: hmm 1= PR 1m

Pojm—1=p P, m—1+ 1 —p 2y

Filtering: G, = Pm‘m,ltﬂ;) ( 2In + P 1(}(7‘)}1)
flm\m = l:lm\m—l + G (Yp,m — ‘}gy:)ﬁm\m—l)

J; 1—PPJ 1— 1P]\J 1andJ Q—PPJ 25— QPJ 1)j—2

hy_ oy =hy_yo1 + 351 (hyx —hypo) .
P 1k =Pj_1—1 +J;- 1(P | K ;Pj\jfl)‘]zq—l
Pjaj-1dj—2 + J1(Pj5-ux —

P12k

Mk 2Pk + h]\KhJ‘K + 2Pk Jl'hj—l\Kh;Ifl\K)
—2pRe(P; ;1K +hJ\KhJ 1\K)

end for

M-step: My rc £ Pyxc + hy bl

- . M g (i,1) .. .

FED () = += f:z 7&‘5})2) + Ib[lu((z.,z)> fori =1,...,L.

X(T+1)(i) = drgminz cs {\11\ Chr(i,1)

Hym (7) = 2 F (i, Db |2} i € D, @G = XUFVF, 1 <m <k

end for

Compute the differencé ||y D — ~M 12— r 41

end while .

output: hyy e, 1 <m < K, 4x =7, X, =X, 1 <m < K
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