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Codebook Based Precoding and
Power Allocation for MU-MIMO Systems for

Sum Rate Maximization
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Abstract—In this paper, we study the problem of downlink
(DL) sum rate maximization in codebook based multiuser (MU)
multiple input multiple output (MIMO) systems. The user equip-
ments (UEs) estimate the DL channels using pilot symbols sent
by the access point (AP) and feedback the estimates to the AP
over a control channel. We present a closed form expression for
the achievable sum rate of the MU-MIMO broadcast system with
codebook constrained precoding based on the estimated channels,
where multiple data streams are simultaneously transmitted
to all users. Next, we present novel, computationally efficient,
minorization-maximization (MM) based algorithms to determine
the selection of beamforming vectors and power allocation to
each beam that maximizes the achievable sum rate. Our solution
involves multiple uses of MM in a nested fashion. Based on this
approach, we propose and contrast two algorithms, which we call
the square-root-MM (SMM) and inverse-MM (IMM) algorithms.
The algorithms are iterative and converge to a locally optimal
beamforming vector selection and power allocation solution from
any initialization. We evaluate the performance and complexity
of the algorithms for various values of the system parameters,
compare them with existing solutions, and provide further
insights into how they can be used in system design.

Index Terms— Minorization-Maximization, MU-MIMO,
Beamforming, Precoding.

I. INTRODUCTION

The design of downlink precoding and beamforming
schemes for multiuser muliple input multiple output (MU-
MIMO) systems with a large number of antennas at the base
station (BS) or access point (AP) has attracted significant
research interest in recent years [2]–[8]. In typical frequency
division duplex (FDD) systems, the channel state information
(CSI) is first obtained at the UEs using downlink (DL) training,
i.e., from pilot symbols transmitted by the AP. Then, the UEs
send their channel estimates back to the AP over an uplink
(UL) control channel. The AP, upon receiving the channel
estimates, computes a precoding matrix for data transmission
to each of the users. In this paper, we consider an approach
where the AP selects the columns of the precoding matrix
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from a predetermined codebook of beamforming vectors. This
allows the AP the flexibility of either conveying the selected
codebook indices to the UEs over a DL control channel, or
using dedicated pilots to enable the UEs to estimate their
respective effective channels. Codebook based precoding is
also relevant because it is employed (for example) in the
IEEE 802.15.3 and IEEE 802.15ac standards [9], [10]. Our
goal in this context is to determine the optimal selection of
beamforming vectors and power allocation across users, with
possibly multi-stream data transmission to each of the UEs.
This is a non-convex and combinatorial problem, and therefore
hard to solve. We present two novel algorithms based on the
minorization-maximization (MM) framework for maximizing
the sum rate under the codebook constraint. In the process,
we also develop new matrix inequalities that facilitate the use
of the MM approach for optimization. These latter results
could be of independent interest in many other non-convex
optimization problems.

Most of the existing studies on sum rate maximization
in MU-MIMO systems do not consider the problem when
the transmitter is constrained to select its precoding vectors
from a codebook of candidate vectors [11]–[18]. In codebook
based transmission, the columns of the precoding matrices
need to be selected from the codebook. This makes our
problem fundamentally different from, and intrinsically harder,
than the (unconstrained) design of precoding matrices, as the
underlying problem becomes one of allocating beamforming
vectors to users, i.e., an integer optimization problem.

A codebook based approach for beamforming and power
allocation in multiuser multiple input single output (MU-
MISO) systems is considered in [19], where the authors
transform the underlying mixed integer optimization problem
into a structured mixed integer second-order cone program.
They also customize a convex continuous relaxation based
branch-and-cut algorithm to compute an optimal solution
to the beamforming problem. Considering the MU-MIMO
system (where multiple data streams are transmitted to each
user) significantly changes the problem, because interference
between streams assigned to the same UE can be handled via
joint processing of the signals received at the UE antennas.
This is unlike the single antenna UE case, where all inter-
stream interference negatively impacts the data rate.

In [20], the authors consider the beamforming assignment
and power allocation (BAPA) problem for MU-MISO systems.
They introduce a virtual uplink (VUL) to decouple the power
allocations across different UEs, thereby admitting an iterative
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solution. In the case of imperfect CSI at the transmitter, rate-
splitting is shown to be sum-rate optimal [21]–[24], but it
requires successive interference cancellation to remove the
interference caused by the common messages and decode the
private messages of all the users. In contrast, we consider lin-
ear receivers and linear precoding of data using a beamforming
vector codebook, which leads to a solution that is easy to
implement in practical systems.

In this paper, we approach the problem of codebook based
precoding for sum rate maximization using the iterative tech-
nique of minorization-maximization (MM). We bound the
original objective function in multiple stages, which simplifies
the optimization problem and helps in finding a closed-form
analytical solution. Note that, when using an MM approach for
optimizing a non-convex objective function, the key novelty is
to bound the cost function by a surrogate function that is tight
at the current iterate and is easy to optimize. Different bounds
can lead to different convergence and complexity tradeoffs.
We present and compare two alternatives for bounding the
cost function. The resulting algorithms are computationally
simple (e.g., they do not involve any matrix inversion opera-
tions), making them attractive for implementation. Further, as
they are based on the MM principle, they are guaranteed to
converge to a local optimum from any initialization. Our main
contributions in this paper are as follows:

1) We present a closed-form expression for the achievable
sum rate of a codebook based precoding MU-MIMO
broadcast system with minimum mean squared error
(MMSE) channel estimation at the receiver and the feed-
back of imperfect CSI to the transmitter via an error-
free control channel. The achievable sum rate expression
provides us with the objective function for beamforming
vector selection and power allocation.

2) We propose two algorithms for solving the sum rate
maximization problem in MU-MIMO systems. The two
algorithms differ in the way they bound the non-convex
sum rate cost function to arrive at the surrogate cost that
needs to be optimized.

a) Square root MM (SMM) algorithm: Here, we consider
the square-root of the power allocation as the optimiza-
tion variable, and apply minorization three times to
lower-bound the objective function with a quadratic-
form cost function. The surrogate cost function so
obtained admits a closed-form optimal solution.

b) Inverse MM (IMM) algorithm: We use a matrix in-
equality to deal with the matrix inverse term in the
objective function. After two rounds of minorization,
this again leads to a surrogate quadratic lower bound,
and admits a closed-form optimal solution.

We analytically show that the closed-form solutions of
the SMM and IMM algorithms are optimal with respect
to their corresponding surrogate optimization problems.

3) We empirically study the performance of the SMM and
IMM algorithms with respect to the number of users,
codebook size, data SNR, pilot SNR etc. Further, we
illustrate the performance advantage offered by the SMM
and IMM algorithms compared to the WMMSE [12]

and WSRMax [16] approaches as well as a single-user-
optimal codebook based precoding approach, where the
IMM algorithm is used to select the beamforming vector
and power allocation on a per-user basis. The results
demonstrate that jointly choosing beamforming vectors
is necessary to realize the full potential of MU-MIMO
transmission. We compare the sum rate performance and
run times of the MM algorithms with that of CVX [25],
[26], a convex optimization package available online. The
IMM algorithm has significantly lower run time compared
to CVX in the interference-limited regime, which is the
primary domain of interest of our work.

We note that, even in the single-user context, our solution to
the problem of selecting multiple beamforming vectors in a
codebook along with their corresponding power allocation is
novel, and a similar solution does not exist in the literature, to
the best of our knowledge. Moreover, our approach can easily
accommodate additional constraints such as a minimum rate
per user for a selected subset of users, etc. Also, codebook
based precoding will necessarily play a role in the next
generation wireless systems like mmWave massive MIMO,
where it is customary to adopt a hybrid precoding architecture
[27] due to the high cost and power consumption in the power
amplifiers and ADCs. For instance, in the analog precoding
stage, due to the finite angular resolution of the analog
phase shifters, codebook based precoding arises naturally. The
solution presented in this paper can be easily adapted to
mmWave hybrid analog-digital beamforming based systems,
by imposing a constraint on the total number of spatial
streams to which nonzero power is allocated. Finally, the
guaranteed convergence and simple implementation makes the
novel bounding technique developed in this paper a potentially
attractive approach for a variety of optimization problems
which arise in MU-MIMO systems.

II. SYSTEM MODEL & PROBLEM STATEMENT

We consider a MU-MIMO system comprised of a AP
equipped with Nt antennas and K users each equipped with
Nr antennas. The UEs and the AP share a codebook C ∈
CNt×N , whose columns consist of N unit-norm beamforming
vectors c1, c2, . . . , cN , with cj ∈ CNt . The complex baseband
channel between the AP and the kth UE is denoted by
Hk ∈ CNr×Nt . The AP sends the data symbol sk(l) to the
kth UE by precoding it using the lth beamforming vector cl,
and the composite signal x ∈ CNt transmitted by the AP is

x =
√
ρdl

K∑
k=1

N∑
l=1

√
Pk (l)clsk(l), (1)

where ρdl is the data signal to noise ratio (SNR). In the sequel,
all powers are normalized with respect to the noise variance,
and we use the SNR and transmit power interchangeably.

Note that this general model allows multiple users to receive
data on the same beamforming vector or multiple beamform-
ing vectors to be assigned to a given user. Ultimately, the
beamforming vector selection and power allocation solution
will ensure that the objective function, namely, the sum rate,
is maximized. Therefore, there is no need to explicitly impose
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constraints such as each beamforming vector should be allotted
to at most one user, or that a user should not be allocated
more than a given number of beamforming vectors. In (1),
the data symbols {sk(l)} for k = 1, . . . ,K, l = 1, . . . , L
are assumed to be independent and identically distributed
(i.i.d.) Gaussian, with zero mean and unit variance. Let
Φk , diag(Pk(1), Pk(2), . . . , Pk(N)) denote a diagonal ma-
trix whose entries contain the fraction of the available power
at the AP that is allocated to kth user on the N beamforming
vectors (hence, tr

(∑K
k=1 Φk

)
= 1). Then, the goal at the

AP is to determine Φk, based on Hk, k = 1, 2, . . . ,K, to
maximize the achievable sum rate in the system. Note that,
Pk(l) = 0 is equivalent to not allotting the lth beamforming
vector in the codebook to the kth user.

Past works in the area, e.g., [19], [20], assume that Hk is
perfectly known at the AP. However, in practice, channel is
estimated using training symbols, which results in imperfect
CSI. Therefore, we first describe the MMSE channel estima-
tion at the UEs using common pilots transmitted by the AP.

A. Downlink Training and Channel Estimation

In the downlink training phase, the AP transmits τp orthog-
onal pilot symbols (τp ≥ Nt) over its Nt antennas. The pilot
signal Xp ∈ CNt×τp satisfies XpX

H
p = INt

. The received
pilot sequence at the kth user, Y

(p)
k ∈ CNr×τp , is given by

Y
(p)
k =

√
ρ
(p)
dl τpHkXp + Wk, (2)

where ρ
(p)
dl is the pilot signal to noise ratio (SNR), and

Wk ∈ CNr×τp is the complex additive white Gaussian noise
(AWGN) whose columns are i.i.d. with mean 0 and covariance
matrix INr , denoted CN (0, INr ). The multiplication of the
transmit symbols by √τp above is to ensure that the total
energy expended over the entire pilot duration is τp. Also,
Hk ∈ CNr×Nt denotes the channel matrix of the kth user,
which contains i.i.d. entries drawn from CN (0, βk), where βk
denotes the combined effect of long term pathloss and large
scale shadowing between the AP and user k.

By multiplying (2) by XH
p on the right, we get Y

(p)′

k ,

Y
(p)
k XH

p =

√
ρ
(p)
dl τpHk + W

′

k, where W
′

k = WkX
H
p ∈

CNr×Nt is the effective noise whose columns are also dis-
tributed as CN (0, INr

). The MMSE estimate of the channel

is given by [28] Ĥk ,
√
ρ
(p)
dl τpβkY

(p)′

k /
(
1 + ρ

(p)
dl τpβk

)
,

and the mean square value of each entry of Ĥk is given by
γk , ρ

(p)
dl τpβ

2
k/
(
1 + ρ

(p)
dl τpβk

)
. Note that, Ĥk is Gaussian

distributed and is uncorrelated with the channel estimation
error H̃k , Hk − Ĥk. This is useful in computing the noise
plus interference covariance matrix, in the next subsection.

B. Derivation of the Achievable Rate

Consider a power allocation matrix Φk, k = 1, 2, . . . ,K.
From (1), the composite signal transmitted by the AP to all the
users can be written compactly as

√
ρdl
∑K
j=1 CΦ

1
2
j sj ∈ CNt

where sj = [sj(1), sj(2), . . . , sj(N)]T is the data transmitted
data to the jth user using the beamforming codebook C, and

ρdl is the downlink SNR. The received signal yk ∈ CNr at
the kth user is given by

yk = Hk

√ρdl K∑
j=1

CΦ
1
2
j sj

+ wk,

where wk ∈ CNr is the complex AWGN at the kth user with
distribution CN (0, INr ).

Given the channel estimate Ĥk at the receiver, the received
signal can be rewritten as

yk =
√
ρdlĤkCΦ

1
2

k sk︸ ︷︷ ︸
Desired signal

+
√
ρdlĤk

K∑
j=1
j 6=k

CΦ
1
2
j sj

+
√
ρdlH̃k

K∑
j=1

CΦ
1
2
j sj + wk.

In order to compute the achievable rate from the above equa-
tion, we need to compute the signal and noise plus interference
covariance matrices, find the signal to interference plus noise
ratio (SINR) and then use the worst case noise theorem [29].
The covariance of the desired signal is ρdlĤkCΦkC

HĤH
k .

We denote the covariance matrix of the noise and interference
of the kth user by Vk. Using the fact that the terms involved
are uncorrelated, it is easy to show that

Vk = INr + ρdlĤkC

K∑
j=1
j 6=k

ΦjC
HĤH

k + ρdlE
[
H̃kxxHH̃H

k

]
︸ ︷︷ ︸
Due to channel est. errors

.

(3)

It is shown in Appendix A that

E
[
H̃kxxHH̃H

k

]
= (βk − γk) INr

. (4)

Substituting (4) in (3) and simplifying, we get

Vk = σ2
kINr +

̂̂Hk

K∑
j=1
j 6=k

Φj
̂̂HH

k , (5)

where ̂̂Hk ,
√
ρdlĤkC and σ2

k , (1 + ρdl (βk − γk)). Now,
since the interference terms are uncorrelated with the desired
signal by virtue of MMSE estimation, using the worst case
noise theorem [29], the achievable rate of the kth user and the
downlink sum rate are given by

Rk = log

∣∣∣∣INr
+ V−1k

̂̂HkΦk
̂̂HH

k

∣∣∣∣ , (6)

Our goal is to maximize the sum rate Rtot =
∑K
k=1Rk under

a total power constraint:

maximize
Φ1,Φ2,...,ΦK

Φk diagonal, p.s.d.

K∑
k=1

log

∣∣∣∣INr
+ V−1k

̂̂HkΦk
̂̂HH

k

∣∣∣∣ , (7)

subject to tr
( K∑
k=1

Φk

)
= 1.

The optimization problem in (7) is nonconvex in
Φ1, . . . ,ΦK due to the V−1k term, and cannot be solved
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in closed-form. Note that, we restrict the power allocation
matrices to be diagonal in order to be implementable under
codebook based precoding. This constrains the precoding
matrices to belong to the finite set of matrices that can be
expressed as the sum of outer products of codebook vectors
weighted by the corresponding power allocation, and makes
the problem significantly harder than unconstrained designs of
precoding matrices [11], [12].

In this work, we propose two algorithms based on the
MM principle, which proceeds by finding a surrogate function
that is a lower bound on the objective function, followed
by maximizing the surrogate cost function, iteratively, until
convergence to a local optimum. An excellent tutorial on the
MM principle can be found in [30].

III. MINORIZATION-MAXIMIZATION ALGORITHMS FOR
SUM RATE MAXIMIZATION

In this section, we present our solutions to the beamforming
vector selection and power allocation problem stated in (7). We
propose two algorithms, namely, the square root MM (SMM)
and inverse MM (IMM) algorithms. These algorithms start
with a common minorization step, and then solve the resulting
optimization problem by two different approaches.

The first step in finding a computationally efficient solution
to (7) is to find a surrogate function which is a lower bound
on the sum rate, and is tight at the current iterate. To this end,
consider the function f(Z,Y) = log

∣∣Z−1Y∣∣, for Z, Y � 0.
This function is convex in Z, Y−1. Hence, we can bound it
from below using the first order Taylor series expansion, as
given by the following Lemma:

Lemma 1: For matrices Z, Y � 0, the function

f(Z,Y) = log
∣∣Z−1Y∣∣

can be lower bounded by

f(Z,Y)≥−
(
log
∣∣∣Z(m)

∣∣∣+tr
(
Z(m)−1

(
Z−Z(m)

))
+log

∣∣∣Y(m)−1
∣∣∣+tr

(
Y(m)

(
Y−1−Y(m)−1

)))
with equality at Z = Z(m) and Y = Y(m). (Later, m will be
used to denote the iteration index).

Returning to our problem, we define an intermediate matrix

Bk , σ2INr
+

K∑
j=1

̂̂HkΦj
̂̂HH

k . (8)

The rate of the kth user in (6) can then be written as Rk =
log
∣∣V−1k Bk

∣∣. Using Lemma 1, we get the following surrogate
optimization problem for (7):

{Φ(m+1)
1 , . . . ,Φ

(m+1)
K }

= argmax
Φ1,...,ΦK

K∑
k=1

{
− tr

(
V

(m)
k

−1(
σ2INr +

K∑
j=1
j 6=k

̂̂HkΦj
̂̂HH

k

))

− tr

(
B

(m)
k

[
σ2INr

+

K∑
j=1

̂̂HkΦj
̂̂HH

k

]−1)}
,

(9)

subject to tr
( K∑
k=1

Φk

)
≤ 1,

where m is the iteration index. Here, we omit the loge 2 term
in the denominator, as it does not affect the solution. In (9), the
quantities V

(m)
k and B

(m)
k are computed by substituting Φ

(m)
k

for Φk in (5) and (8), respectively. Now, if we are able to solve
the surrogate problem in (9), then, starting from an arbitrary
initialization for Φk, the MM procedure iterates between
solving (9) and updating Vk and Bk. By virtue of the fact
that the cost function increases in each iteration and is bounded
above (for example, by the sum of the best rates achievable
by each individual user), such a procedure is guaranteed to
converge to a local optimum from any initialization.

Now, the optimization problem in (9) is a semidefinite
program (SDP). However, the matrices {Φk}k=Kk=1 are coupled
in the objective function and constraints, making it a large
dimensional problem. Due to this, SDP based methods such
as sdpsol to solve (9) can quickly become computationally
prohibitive as the number of users, the size of the codebook,
and/or number of antennas gets large. Hence, there is a need
to find alternative, computationally inexpensive approaches to
solving (9). The proposed SMM and IMM algorithms employ
two different surrogate functions to further lower bound the
objective function, in turn, leading to a surrogate cost function
that is more amenable to optimization. In fact, we are able to
solve the final surrogate problem in closed-form.

Before discussing the SMM and IMM algorithms further,
we define some notation and simplify the first term in the
objective function in (9). Let

Φ , diag (Φ1, . . . ,ΦK) , (10)

Ψk ,
[ ̂̂Hk, . . . ,

̂̂Hk

]
, k = 1, . . . ,K (11)

denote the augmented power allocation and the kth user’s
channel matrices, respectively. In (11), ̂̂Hk is repeated K
times. Also, let

Q ,
K∑
k=1

diag
( ̂̂HH

k V−1k
̂̂Hk, . . . ,0N , . . . ,

̂̂HH

k V−1k
̂̂Hk

)
.

(12)

In the above, the N×N all zero matrix 0N is in the kth block
diagonal position of Q. Excluding the constant noise variance
part, we can rewrite the first term of (9) as

K∑
k=1

tr

(
V

(m)
k

−1( K∑
j=1
j 6=k

̂̂HkΦj
̂̂HH

k

))
= tr

(
Q(m)Φ

)
, (13)

where the superscript m denotes the iteration index, and Q(m)

is obtained by substituting V
(m)
k for Vk in (12). We are now

ready to describe the SMM and IMM algorithms in detail.

A. Square-Root Minorization Maximization Procedure

The square root MM procedure involves working with the
square root of the power allocation matrix Φ. It also involves
two stages of minorization. The result is a surrogate objective
function that is a lower bound on the cost function in (9), is
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tight at the current iterate, and is easy to optimize. First, note
that, with the notation defined in (10) and (11), the second
term in (9) can be written as

−
K∑
k=1

tr

(
F

(m)
k

(
σ2INr

+ ΨkΦΨH
k

)−1
F

(m)
k

H
)
, (14)

where Fk is such that Bk = FHk Fk, and can be computed via
the Cholesky decomposition of Bk. The above cost function
cannot be directly optimized due to the matrix inversion
involved. Hence, we minorize it using the following lemma.

Lemma 2: Let R denote a diagonal p.s.d. square matrix,
and consider the function

f(R) , −tr
(
A
(
B + CRCH

)−1
AH

)
, (15)

where A,B and C are matrices of compatible dimensions, and
B � 0, so that B + CRCH is invertible. Then, for a given
diagonal p.s.d. matrix R(m), f(R) can be lower bounded by

f(R)

≥ g(R|R(m)) , −tr(K̂)

+ tr
((

Ŷ−1X̂HAB−1C + CHB−HAHX̂Ŷ−1
)

R
1
2

−Ŷ−1X̂HX̂Ŷ−1R
1
2 CHB−1CR

1
2

)
, (16)

where

X̂ , AB−1CR(m)
1
2 , Ŷ , I + R(m)

1
2 CHB−1CR(m)

1
2 ,

K̂ , AB−1AH + Ŷ−1X̂HX̂− Ŷ−1X̂HX̂Ŷ−1Ŷ

+ Ŷ−1X̂HX̂Ŷ−1 + X̂Ŷ−1X̂H .

Also, g(R(m)|R(m)) = f(R(m)).
Proof: See Appendix B.

The objective function in (14) is in the same form as the
function in Lemma 2. Applying Lemma 2 to (14), we get

−tr
(
W

(m)
1,k Φ

1
2 + W

(m)
2,k Φ

1
2 SkΦ

1
2

)
, (17)

where

W1,k , −
{

Y−1k XH
k FkΨk + ΨH

k FHk XkY
−1
k

σ2

}
, (18)

W2,k , Y−1k XH
k XkY

−1
k , (19)

and Sk ∈ CKN×KN ,Xk ∈ CNr×KN and Yk ∈ CKN×KN
are defined as

Sk ,
ΨH
k Ψk

σ2
, Xk ,

FKΨkΦ
1
2

σ2
, Yk , IKN + Φ

1
2 SkΦ

1
2 .

Note that, W1,k and W2,k in (18) and (19), are negative
and p.s.d. matrices, and hence, their diagonal entries are
non-positive and non-negative, respectively. Also, Y−1k can
be computed with low complexity using Woodbury matrix
identity (requiring only a Nr × Nr matrix inverse instead of
a KN ×KN matrix inverse). Substituting (17) into (9), we
get the surrogate cost function that needs to be maximized.
Notice that the matrix inversion in (14) has been circumvented
by the use of the lower bound. However, the surrogate cost
function is not yet amenable to a closed-form solution due
to the W

(m)
2,k Φ

1
2 SkΦ

1
2 term in (17). Hence, we minorize the

second term in (17) again to get a cost function that is easy
to optimize. To this end, we need the following Lemma.

Lemma 3: Suppose R is a p.s.d. diagonal matrix, and A
and B are symmetric p.s.d. square matrices. Then, the function
f(R) , −tr (ARBR) can be lower bounded by

f(R) ≥ −tr
(
AR(m)BR(m) −

(
(B− λI)R(m)A

+AR(m) (B− λI)
)

R(m)
)

− tr
((

(B− λI)R(m)A

+AR(m) (B− λI)
)

R
)
− λtr

(
AR2

)
, (20)

where λ is the largest eigenvalue of B. Further, we have
equality in (20) at R = R(m).

Proof: See Appendix C.
Applying Lemma 3 to (17), we get the final lower bound

for (14) as follows:

−
K∑
k=1

tr
(
W

(m)
1,k Φ

1
2 + W

(m)
2,k Φ

1
2 SkΦ

1
2

)
≥ −tr

(
W

(m)
A Φ

1
2 + W

(m)
B Φ

)
, (21)

where

WA ,
K∑
k=1

(
W1,k + (Sk − λmax (Sk) IKN )Φ

1
2 W2,k

)
,

(22)

WB ,
K∑
k=1

λmax (Sk)W2,k, (23)

and λmax(Sk) is the largest eigenvalue of Sk. Note that the
superscript m in (17) and (21) is the iteration index. Also,
we can compute the eigenvalues of Sk by multiplying the

eigenvalues of the smaller dimensional matrix ̂̂HH

k
̂̂Hk/σ

2 by
the number of users in the system. Thus, λmax(Sk) needs to
be computed only once and stored in the memory. Combining
(21) with tr

(
Q(m)Φ

)
in (13), the optimization problem we

wish to solve becomes

{Φ(m+1)} =

argmax
Φ

{
−tr

(
Q(m)Φ + W

(m)
A Φ

1
2 + W

(m)
B Φ

)}
(24)

subject to tr (Φ) ≤ 1.

Lemma 4: The optimization problem in (24) has a locally
optimal solution given by

P (i) =


[
W

(m)
A

]
(i,i)

2

([
W

(m)
B

]
(i,i)

+
[
Q(m)

]
(i,i)

+ η

)


2

, ∀i,

(25)

where η is chosen to satisfy
∑KN
i=1 P (i) = 1.

Proof: See Appendix D.
Using the solution for P (i), one can construct the new

surrogate function that needs to be optimized in the next
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iteration. Iterating the process of computing P (i), we arrive
at a locally optimal joint power and beamforming vector
allocation solution for maximizing the sum rate.

We next present an alternative bounding approach which
leads to a different MM procedure for sum rate maximization.

B. Inverse Minorization Maximization Procedure

We now return to the original optimization problem in (9).
Recall that Φ ∈ RKN×KN is the augmented transmit power
allocation matrix defined in (10). For convenience, let us define
an augmented covariance matrix Φ̃ ∈ R(KN+Nr)×(KN+Nr),
an augmented channel matrix Ψ̃k ∈ CNr×(KN+Nr) and the
matrix Ξk ∈ CNr×Nr as follows:

Φ̃ , diag
(
Φ1, . . . ,ΦK , σ

2INr

)
, (26)

Ψ̃k ,
[ ̂̂Hk, . . . ,

̂̂Hk, INr

]
, (27)

Ξk , Ψ̃kΦ̃Ψ̃H
k , (28)

k = 1, . . . ,K. In the definition of Φ̃ above, the matrix ̂̂Hk

is repeated K times. Then, we can rewrite the term inside
the square brackets in (9) as B

(m)
k Ξ−1k . Note that the matrix

Ξk ∀ k is p.s.d., which will be useful in showing that the
optimization problem has a feasible solution.

In order to develop the IMM procedure, we start with the
following proposition from [31].

Proposition 1: Let R be an m × n matrix and A
be an m × m p.s.d. matrix. We can upper bound the

function f(U) , tr

(
A
(
RURH

)−1)
as f(U) ≤

tr
(
A
(
RU(m)RH

)−1
RU(m)U−1U(m)RH

(
RU(m)RH

)−1)
,

with equality at U = U(m).
Since B

(m)
k � 0 ∀ k, we can apply proposition 1 to

tr
(
B

(m)
k Ξ−1k

)
, which leads to

K∑
k=1

tr
(
B

(m)
k Ξ−1k

)
≤

K∑
k=1

tr
(
B

(m)
k Ξ

(m)
k

−1
Ψ̃kΦ̃

(m)Φ̃−1Φ̃(m)Ψ̃H
k Ξ

(m)
k

−1)
(29)

= tr

(
K∑
k=1

Φ̃(m)Ψ̃H
k Ξ

(m)
k

−1
Ψ̃kΦ̃

(m)Φ̃−1

)
, (30)

where (30) is obtained by recognizing that B
(m)
k Ξ

(m)
k

−1
is the

identity matrix, cyclically permuting the terms, and pulling the
summation over k into the trace function. In (30), the matrix
Φ̃ is diagonal and positive semi-definite, which may become
singular. On the other hand, Proposition 1 assumes it to be an
invertible matrix for deriving the upper bound to the objective
function of the optimization problem and obtain a closed form
solution. However, this does not pose a problem in practice,
because if some of the diagonal entries of Φ̃ become 0, we can
remove the corresponding columns and rows of the matrices
in the left hand side and right hand side of Φ̃ in (29), and form
a new nonsingular Φ̃. During initialization, we allocate equal

TABLE I.
FLOP COUNT ORDER OF SMM PER ITERATION

Matrix Size Flop Count

Sk KN ×KN K2N2Nr

Xk Nr ×KN KNN2
r

Y−1k KN ×KN KNN3
r

W1,k KN ×KN KN

W2,k KN ×KN K2N2Nr

WA,k KN ×KN K3N3

WB,k KN ×KN KN

WA KN ×KN K2N

WB KN ×KN K2N

or random powers to all the users across all the beamforming
vectors, which makes Φ̃ invertible. Therefore, without loss of
generality, we can assume that Φ̃ is invertible. Further, in the
final iterative algorithm, we compute the power allocations
using closed form expressions, which converge to a stationary
point of the optimization problem. Now, let

Z ,
K∑
k=1

Φ̃Ψ̃H
k Ξ−1k Ψ̃kΦ̃. (31)

Substituting tr
(
Q(m)Φ

)
(from (13)) and (30) into (7), we get

the following surrogate optimization problem:

Φ(m+1) =argmax
Φ�0

{
−tr

(
Q(m)Φ + Z(m)Φ̃−1

)}
(32)

subject to tr (Φ) ≤ 1,

where m is the iteration index.
Lemma 5: The optimization problem in (32) has a locally

optimal solution given by

P (i) =

( [
Z(m)

]
(i,i)[

Q(m)
]
(i,i)

+ η

) 1
2

, i = 1, . . . ,KN, (33)

where η is chosen to satisfy
∑KN
i=1 P (i) = 1.

Proof: See Appendix E.
In each iteration, we bound the cost function using proposi-

tion 1, and maximize the corresponding surrogate cost function
using the solution in (33). Then, we recompute the bounding
function, and the process repeats till convergence. Since (33)
is strictly decreasing in η, we can determine the value of η for
which the solution satisfies the power constraint using a line
search or bisection method [32].

The outcome of both the SMM and IMM procedures is
the matrix Φ, which gives the individual users’ powers across
all the beamforming vectors. The power allocated to the kth

user on the jth beamforming vector can be written using the
solutions from the SMM or IMM procedure as

Pk(j) = P ((k − 1)N + j) . (34)

Pseudo-codes for SMM and IMM are shown in Appendix F.
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TABLE II.
FLOP COUNT ORDER OF IMM PER ITERATION

Matrix Size Flop Count

Ξk Nr ×Nr KNN2
r

Z (KN +Nr) KNN2
r

× (KN +Nr)

Q KN ×KN (Nr +K)N2

C. Computational Complexity

We use floating point operations (flops) to quantify the
computational complexity of the algorithms. We assume that
the multiplication of a p×q matrix with a q×r matrix requires
O(pqr) flops. The per-iteration computational complexity of
the SMM and IMM algorithms are provided in Tables I and II,
respectively. The flop counts account for the structural prop-
erties of the various matrices. For example, while computing
the flop counts for the matrix Z or Q, we only consider the
computations involved in finding the diagonal entries of those
matrices. Also, although the flop count for computing the
matrix Q is mentioned only in Table I, it is common for both
the SMM and IMM algorithms. The overall computational
complexities of the SMM and IMM algorithms are of the order
O(K4N3) and O(K2N2), respectively. Thus, the per-iteration
complexity of IMM is lower than that of the SMM algorithm.
Finally, we note that the complexity of SMM and IMM are
independent of the number of transmit antennas. In practice,
one would typically scale the size of the codebook with the
number of transmit antennas, for example, as N = 2NtB when
a codebook with resolution B-bits per antenna is used. This
can be substituted in the tables to infer the dependence of the
complexity on the number of antennas.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the SMM
and IMM algorithms using Monte Carlo simulations. We
consider Nt = {8, 16, 32, 64, 128} transmit antennas at the
AP and Nr = {1, 2} antennas at each UE. The number of
UEs is varied from K = 1 to 10. The channel coefficients
are drawn i.i.d. from CN (0, 1). The AWGN at the receivers is
also distributed as CN (0, 1) and is independent across receive
antennas. For channel state feedback, we quantize the CSI
using 4 to 8 bits per channel coefficient. The dynamic range of
the channel coefficients typically vary around three times the
standard deviation from the mean, and we set the maximum
and minimum values of the quantization levels accordingly,
and use uniform quantization. We consider the size of the
beamforming codebook varying from N = 64 (6 bits) to
1024 (10 bits), uniformly distributed on the N dimensional
complex unit sphere. The algorithms are initialized randomly
for all the users across all the beams, such that the total
power constraint is satisfied with equality. The algorithms are
run till the normalized increase in the sum rate between two
consecutive iterations is less than 10−4.

We compare the sum rate of the IMM algorithm against
the WMMSE [12] and WSRMax [16] algorithms. These

Sum Rate (bps/Hz)
7.5 8.5 9.5 10.5 11.5 12.5 13.5
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1
K = 4, N = 128, SMM

K = 4, N = 128, IMM

K = 4, N = 64, SMM

K = 4, N = 64, IMM

K = 2, N = 128, SMM

K = 2, N = 128, IMM

K = 2, N = 64, SMM

K = 2, N = 64, IMM

K = 1, N = 128, SMM

K = 1, N = 128, IMM

K = 1, N = 64, SMM

K = 1, N = 64, IMM

Fig. 1. CCDF comparison between SMM and IMM for data SNR = 10 dB,
Nr = 2, Nt = 16. The distribution of the sum rates achieved by SMM and
IMM are almost the same.
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(b) IMM convergence.

Fig. 2. Convergence behavior of the SMM and IMM procedures, K =
4, Nr = 2, Nt = 16, Data SNR = 10 dB.

algorithms use perfect CSI to design the precoder matrix, and
do not consider the codebook constraint in the optimization.
Hence, for comparison with our work, we quantize the precod-
ing vectors output by the above algorithms to the nearest vector
in the codebook, and compare the sum rates achieved. We
also compare against the eigen-mode beamforming (EBF), a
heuristic precoding approach (User-BFVec Selection) in which
each UE maximizes its achievable sum rate using the IMM
algorithm and feeds back the selected beamforming vectors to
the AP, and the use of CVX [25], [26] to solve (9).
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Fig. 3. Sum rate vs. K, N = 512, Nr = 2, Nt = 16, data SNR = 20 dB.
The sum rate improves with the number of CSI quantization bits, but beyond
6 bits, the performance improvement is negligible.
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Fig. 4. Sum rate vs. K, N = 512, Nr = 2, Nt = 16, CSI quantized
to 6 bits. The sum rate improves with pilot SNR, but the improvement is
marginal once the pilot SNR exceeds the data SNR.

Figure 1 shows the complementary cumulative distribution
function (CCDF) of the achieved sum rates for the SMM and
IMM algorithms at an SNR of 10 dB. We see that the two
approaches offer similar sum rates. Figure 2 illustrates that
although both SMM and IMM algorithms exhibit monotonic
convergence, IMM converges much faster than SMM. This
highlights the impact of the choice of the surrogate function
on the rate of convergence [31]. In SMM, we apply the
minorization three times to lower bound the objective function,
whereas, in IMM, the minorization is applied twice. Also,
SMM makes use of the first order Taylor series expansion,
whereas, IMM uses a matrix inequality to find the surrogate
function. These differences result in the different rates of
convergence of the two procedures. We note that the associated
matrix inequalities (Lemmas 2, 3, and Proposition 1) are
potentially be useful in other problem scenarios. Given their
similar performance, in the sequel, we do not include the SMM
algorithm in the performance plots, to avoid clutter.

Figure 3 shows the achievable sum rate vs. the number of
users, with N = 512, Nr = 2, Nt = 16 and data SNR 20 dB.
The sum rate improves with finer quantization of channel
estimates, as expected. However, increasing the number bits
of quantization beyond 6 has a negligible impact on the
performance. So, we have merged the curves for 6 bits and 8
bits to avoid clutter.
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Fig. 5. Sum rate vs. pilot SNR for K = 8, N = 512, Nr = 2, Nt = 16,
CSI quantized to 6 bits. We observe a monotonic increase in the sum rate
with pilot and data SNR. Eventually, the sum rate saturates beyond a certain
level of the pilot SNR but the saturation point moves to the right as the data
SNR increases.

Figure 4 shows the achievable sum rate vs. the number of
users, with N = 512, Nr = 2, Nt = 16 and CSI quantized
to 6 bits per channel coefficient. We have merged the 10 dB
and 20 dB pilot SNR plots, as their performances were very
similar. While the sum rate increases, the rate of increase
decreases with the number of users. As K is increased from
K = 1, the algorithm has a larger number of choices to assign
resources, which improves the sum rate. However, this only
offers a marginal benefit at a given pilot/data SNR for large
K. Also, the sum rate improvement with pilot SNR becomes
marginal once it exceeds the data SNR. Thus, the AP can
use these results to determine the pilot and data transmission
powers in order to, for example, maximize energy efficiency
while achieving a desired rate.

Figure 5 shows the sum rate vs. the pilot SNR, with N =
512,K = 8, Nr = 2, Nt = 16, and CSI quantized to 6 bits.
The sum rate monotonically increases with the pilot SNR, but
saturates as the pilot SNR exceeds the data SNR, as observed
earlier. From the achievable sum rate expression, the tipping
point occurs when the channel estimation error variance is of
the same order as that of the AWGN. The channel estimation
error decreases linearly with the pilot SNR, while the residual
interference caused due to channel estimation error increases
linearly with the data SNR. Hence, if the pilot power scales
linearly with the data power, it results in a roughly constant
interference in the denominator of the SINR. Interestingly, this
intuition continues to hold for the sum rate even after the
beams and corresponding data powers are optimally chosen by
the IMM algorithm. Hence, increasing the pilot SNR beyond
the data SNR only marginally improves the sum rate, and the
system becomes noise and multiuser interference limited.

Figure 6 shows the sum rate vs. the data SNR, with N =
512, K = 8, Nr = 2, Nt = 16 and CSI quantized to 6 bits.
The sum rate initially increases linearly with the data SNR, but
begins to saturate once the data SNR exceeds the pilot SNR.
For example, the sum rates achieved with pilot SNR = 10 dB
and 20 dB match till a data SNR of 10 dB, with the sum rate
increasing linearly with the data SNR. Beyond a data SNR
of 10 dB, the performance with pilot SNR = 10 dB becomes
limited by channel estimation errors, and the sum rate starts
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Fig. 6. Sum rate vs. data SNR for K = 8, N = 512, Nr = 2, Nt = 16,
CSI quantized to 6 bits. We observe a monotonic increase in the sum rate
with pilot and data SNR. The sum rate performance for the values of pilot
SNRs 10 dB and 20 dB are almost the same till the data SNR reaches 10 dB
beyond which they diverge.

to saturate. This behavior is consistent with the observations
made for Fig. 5. We also illustrate the sum rate performance
of the WMMSE algorithm Fig. 6. We see that the sum rate
performance of WMMSE is far inferior than that achieved
by the MM based approaches when its precoder outputs are
quantized to the nearest vectors in the codebook. The sum rate
obtained using the non-codebook based WMMSE is higher
than that of the MM algorithms, but it comes with the high
overhead of conveying the precoding matrices to the users. For
example, at a data SNR of 10 dB, the sum rate achieved by
the unconstrained WMMSE is 36 bps/Hz (not shown in the
figure), but when the precoders are quantized to the nearest
beamforming vectors in the codebook, it drastically reduces
to 6.46 bps/Hz. This illustrates the importance of considering
the codebook constraint while solving the beamforming vector
assignment and power allocation problem.

In Fig. 6, we also show the performance of the eigen mode
beamforming (EBF) and a heuristic precoding approach (User-
BFVec Selection) in which each UE maximizes its achievable
sum rate using the IMM algorithm and feeds back the selected
beamforming vectors to the AP. In the EBF method, each UE
chooses the beamforming vectors as the Nr dominant right
singular vectors, and feeds back their quantized versions. In
our simulations, we use 32 bits to quantize each selected beam-
forming vector. Note that, the feedback overhead associated
with this is higher than the feedback overhead associated with
the IMM approaches. The EBF approach outperforms the IMM
algorithm at low SNRs. This is because the noise dominates
the interference, and the multiuser interference term does not
significantly affect the achievable rate. At higher SNRs, the
multiuser interference terms dominate the noise terms, and
the IMM algorithm performs better than the other approaches
as it is able to mitigate the multiuser interference through
the joint selection of BF vectors. Also, User-BFVec selection
approach performs worse than the IMM algorithm because of
its inability to suppress the multiuser interference. Note that
the feedback associated with this approach is the same as that
of the IMM algorithm.

Figure 7 shows the sum rate performance vs. the codebook
size (in bits), with K = 10, Nr = 2 and Nt = 16. The sum
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Fig. 7. Sum rate vs. codebook size for K = 10, Nr = 2, Nt = 16, CSI
quantized to 6 bits. We observe a monotonic increase in the sum rate with
pilot and data SNR. As the codebook size increases, the AP has more number
of beamforming vectors to choose resulting in an increase in the sum rate
performance.

1 2 4 6 8 10
Number of Users

0

5

10

15

S
u

m
 R

a
te

 (
b

p
s
/H

z
)

IMM, Data SNR = 20 dB

CVX, Data SNR = 20 dB

IMM, Data SNR = 10 dB

CVX, Data SNR = 10 dB

IMM, Data SNR = 0 dB

CVX, Data SNR = 0 dB

IMM, Data SNR = -10 dB

CVX, Data SNR = -10 dB

Fig. 8. Sum Rate vs. K with Nr = 1, Nt = 32, Pilot SNR=20 dB,
N = 1024 for SMM, IMM and CVX. We see that the MM based algorithms
and CVX converge to almost same sum rate for various values of data SNR.

rate increases linearly with the codebook size, as the AP has
more choices to select the beamforming vectors, which helps
in canceling the multiuser interference. Note that, although the
complexity of the problem increases with the codebook size,
if the computational resources are limited, the IMM algorithm
can be stopped at any iteration, resulting in a correspondingly
effective solution. The figure also compares the the SMM and
IMM algorithms with the WMMSE and WSRMax procedures.
The sum rates achieved by WMMSE and WSRMax when
the precoding vectors are quantized to the nearest vectors
in the codebook are far inferior compared to that achieved
by the proposed algorithms. Once again, this illustrates the
importance of accounting for the codebook constraint while
solving the sum rate optimization problem.

In Figure 8, we compare the sum rates achieved by directly
solving (9) using CVX with the MM based algorithms. We
see that both solutions converge to almost the same sum
rates. However, the IMM algorithm exhibits faster run time, as
shown in Figures 9 and 10. In these figures, we plot the ratio
of the run times of the IMM and the convex solver CVX for
various values of data SNRs and number of transmit antennas
and number of users. The pilot SNR and the codebook size
are set to 20 dB and {512, 1024}, respectively. We observe
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= 20 dB, Nr = 1, N = 512,K = 8.

that as the data SNR increases, IMM converges much faster
than the CVX package. This is thanks to the closed form
expressions obtained for the final optimization problem. Also,
as the number of transmit antennas increases, the ratio of the
run times of CVX and IMM increases, which shows that IMM
converges faster for large MIMO systems.

V. CONCLUSIONS

We proposed two procedures, named square root MM
(SMM) and inverse MM (IMM), to solve the problem of
codebook based DL sum rate maximization in a FDD MU-
MIMO broadcast system. Both SMM and IMM procedures
find a locally optimal allocation of beamforming vectors and
data signal powers to each user, so as to maximize the DL sum
rate. These procedures are based on a nested application of the
MM principle to lower bound the objective function, which is
then maximized in an iterative fashion. The novelty of the
algorithms lies in the choice of the surrogate functions used
to bound the objective function. We also proved the optimality
of the solutions to the surrogate optimization problems, as a
consequence of which, the SMM and IMM algorithms reach a
local optimum of the overall sum rate from any initialization.

We empirically illustrated the dependence of the achieved
sum rate on the number of antennas, users, pilot power, and
size of the codebook. We compared the sum rate of the SMM
and IMM algorithms with that of WMMSE and WSRMax
algorithms from the existing literature. The comparisons il-
lustrated the importance of accounting for the codebook con-
straint while solving the sum rate optimization problem. Future
work could include a theoretical analysis of the dependence
of the optimal sum rate on parameters such as the codebook
size, pilot/data SNR, and number of antennas.

APPENDIX A
DERIVATION OF (4)

We simplify the covariance matrix of interest as follows:

E
[
H̃kxxHH̃H

k

]
= E

H̃kC

K∑
j=1

ΦjC
HH̃H

k


= E

[
H̃kCΦ

1
2 Φ

1
2 CHH̃H

k

]

= E




h̃
(1)
k

T

...

h̃
(Nr)
k

T

[√P (1)c1, . . . ,
√
P (N)cN

]

×


√
P (1)cH1

...√
P (N)cHN

[h̃(1)
k

∗
, . . . , h̃

(Nr)
k

∗]

= E



√
P (1)cT1 h̃

(1)
k . . .

√
P (N)cTN h̃

(1)
k

...
...

...
√
P (1)cT1 h̃

(Nr)
k . . .

√
P (N)cTN h̃

(Nr)
k



×


√
P (1)h̃

(1)
k

H

c∗1 . . .
√
P (1)h̃

(Nr)
k

H

c∗1
...

...
...

√
P (N)h̃

(1)
k

H

c∗N . . .
√
P (N)h̃

(Nr)
k

H

c∗N




= (βk − γk)
N∑
n=1

P (n)INr

= (βk − γk) tr

 K∑
j=1

Φj

 INr
= (βk − γk) INr

. (35)

In the above derivation, P (n) =
∑N
j=1 Pj(n), i.e., the sum

of powers allocated to all the users in the nth beamforming

vector. Also, h̃
(l)
k denotes the lth row of the matrix H̃k.

APPENDIX B
PROOF OF LEMMA 2

Using the Woodbury identity for the inverse term in the
function f in (15), we get

−tr
(

A

(
B−1 −B−1CR

1
2

(
I + R

1
2 CHB−1CR

1
2

)−1
×R

1
2 CHB−1

)
AH

)
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=− tr
(
AB−1AH

)
+ tr

(
XY−1XH

)
, (36)

where X , AB−1CR
1
2 and Y , I+R

1
2 CHB−1CR

1
2 . The

function tr
(
XY−1XH

)
is jointly convex in X and Y, and,

can be minorized using a first order Taylor series. The complex
matrix differential of XY−1XH is computed as follows [33]:

tr
(
d
(
XY−1XH

))
= tr

(
Y−1XHdX−Y−1XHXY−1dY + XY−1dXH

)
.

Thus, around the point (X̂, Ŷ), (36) can be lower bounded as

−tr(AB−1AH) + tr
(
XY−1XH

)
≥ −tr(AB−1AH) + tr

(
Ŷ−1X̂H

(
X− X̂

)
−Ŷ−1X̂HX̂Ŷ−1

(
Y − Ŷ

)
+ X̂Ŷ−1

(
X− X̂

)H)
= −tr(K̂)+tr

(
Ŷ−1X̂HAB−1CR

1
2

− Ŷ−1X̂HX̂Ŷ−1R
1
2 CHB−1CR

1
2

+X̂Ŷ−1
(
AB−1CR

1
2

)H)
= −tr(K̂)+tr

(
Ŷ−1X̂HAB−1CR

1
2

+ CHB−HAHX̂Ŷ−1R
1
2

−Ŷ−1X̂HX̂Ŷ−1R
1
2 CHB−1CR

1
2

)
,

where K̂ is as defined in Lemma 2. Finally, grouping the
constant matrices together, we get (16).

APPENDIX C
PROOF OF LEMMA 3

We lower bound the function f(R) using λ, the largest
eigenvalue of the matrix B, as follows:

f(R) = −tr
(
AR(B− λI)R + λAR2

)
= −tr

(
ARCR + λAR2

)
, (37)

where C , (B− λI). The complex matrix differential of the
first term in (37) is [33]

tr (d(ARCR)) = tr (CRA(dR) + ARC(dR)) .

Hence, around the previous iterate R(m), a lower bound on f
can be written as

f(R) ≥ −tr
(
AR(m)BR(m)

)
− tr

((
CR(m)A + AR(m)C

)(
R−R(m)

))
− λtr

(
AR2

)
. (38)

Grouping the constant terms in (38) together and substituting
for C, we get (20).

APPENDIX D
PROOF OF LEMMA 4

Note that (24) is a separable convex optimization problem,
which can be solved in closed form using the Lagrangian

method. The Lagrangian for (24) is given by
KN∑
i=1

(
[Q(m)](i,i)P (i) + [W

(m)
A ](i,i)P (i)

1
2 + [W

(m)
B ](i,i)P (i)

)
+ η

(
KN∑
i=1

P (i)− 1

)
, (39)

where P (i), i = 1, 2, . . . ,KN denote the diagonal entries
of Φ. Note that the sign of the objective function in (24) has
been flipped while forming the Lagrangian, which makes it a
minimization problem. By straightforward differentiation with
respect to P (i) in (39), we obtain the closed form solution

P (i) =


[
W

(m)
A

]
(i,i)

2

([
W

(m)
B

]
(i,i)

+
[
Q(m)

]
(i,i)

+ η

)


2

, (40)

where η is chosen to satisfy
∑KN
i=1 P (i) = 1. Since the P (i) in

(40) is strictly decreasing in η, it can be found using a simple
line search or the bisection method [32].

Now, we show that the solution in (40) satisfies the second
order sufficiency condition for optimality. That is, we show
that the Hessian matrix of the Lagrangian in (39) is positive
definite. The Hessian matrix of the Lagrangian in (39) is
diagonal, with the ith diagonal entry −[W(m)

A ](i,i)/(4P
3/2(i)),

where P (i) is given by (40). Thus, we need to show that the
diagonal entries of WA are strictly negative.

For simplicity and without loss of generality, we assume that
σ2 = 1. First, we simplify the first term, W1,k, of WA in (22).
Note that, W1,k, defined in (19), is a negative semidefinite
matrix, as it is the sum of the matrix

(
−Y−1k XH

k FkΨk

)
and

its conjugate transpose. The first term Y−1k XH
k FkΨk becomes(

IKN + Φ
1
2 SkΦ

1
2

)−1
Φ

1
2 ΨHFHk FkΨ

=
(
IKN + Φ

1
2 SkΦ

1
2

)−1
Φ

1
2 ΨH

(
INr + ΨkΦΨH

k

)
Ψk

=
(
Φ−

1
2 + SkΦ

1
2

)−1
(IKN + SkΦ)Sk

= Φ
1
2 Sk.

Thus, W1,k can be written as

W1,k = −
(
Φ

1
2 Sk + SkΦ

1
2

)
. (41)

Define λ̂k , λmax(Sk). The term
(
Sk − λ̂kIKN

)
Φ

1
2 W2,k in

the expression for WA in (22) becomes(
Sk − λ̂kIKN

)
Φ

1
2

(
IKN + Φ

1
2 SkΦ

1
2

)−1
Φ

1
2 ΨH

k

×
(
INr

+ ΨkΦΨH
k

)
ΨkΦ

1
2

(
IKN + Φ

1
2 SkΦ

1
2

)−1
=
(
Sk − λ̂kIKN

)
ΦSkΦ

1
2

(
IKN + Φ

1
2 SkΦ

1
2

)−1
. (42)

Combining (41) and (42), we get the term inside the summa-
tion in the expression for WA in (22) as follows:

−Φ
1
2 Sk − SkΦ

1
2 +

(
Sk − λ̂kIKN

)
ΦSkΦ

1
2



12

×
(
IKN + Φ

1
2 SkΦ

1
2

)−1
= −

(
Φ

1
2 Sk + SkΦ

1
2 + Φ

1
2 SkΦ

1
2 SkΦ

1
2 + λ̂kΦSkΦ

1
2

)
×
(
IKN + Φ

1
2 SkΦ

1
2

)−1
= −Φ

1
2 Sk −

(
IKN + λ̂kΦ

)
SkΦ

1
2

(
IKN + Φ

1
2 SkΦ

1
2

)−1
.

(43)

Now, we simplify the term
(

SkΦ
1
2

(
IKN + Φ

1
2 SkΦ

1
2

)−1)
in (43). This becomes

Sk

(
Φ−

1
2 + Φ

1
2 Sk

)−1
= Sk

(
Φ

1
2 −Φ (IKN + SkΦ)

−1
SkΦ

1
2

)
(44)

=
(
Sk − Sk

(
Φ−1 + Sk

)−1
Sk

)
Φ

1
2 . (45)

Here, the right hand side of (44) is obtained by applying the
Woodbury matrix identity to the inverse term in the left hand
side. Substituting (45) in (43), we get

WA = −
K∑
k=1

{
Φ

1
2 Sk + (IKN + λmax (Sk)Φ)WA1,kΦ

1
2

}
,

where WA1,k , Sk − Sk
(
Φ−1 + Sk

)−1
Sk. Since Sk is

symmetric and p.s.d., the diagonal entries of Φ
1
2 Sk are non-

negative. Moreover, since Hk is drawn from a continuous
valued distribution, the diagonal entries of Φ

1
2 Sk are strictly

positive with probability 1. Also, (IKN + λmax (Sk)Φ), and
Φ

1
2 are diagonal matrices with strictly positive entries on the

diagonal. Finally, it is easy to show that the diagonal entries of
WA1,k are also non-negative. For this, it suffices to show that

the diagonal entries of
{

Sk − Sk

(
1

λmax(Φ)IKN + Sk

)−1
Sk

}
are non-negative, where λmax(Φ) is the largest eigenvalue of
the matrix Φ. The eigenvalues of this matrix are given by
λ(Sk)/ (1 + λmax (Φ)λ (Sk)), where λ(Sk) is an eigenvalue
of Sk. These eigenvalues are non-negative, and hence the
eigenvalues of WA1,k are also non-negative. Moreover, since
Hk is drawn from a continuous valued distribution, the di-
agonal entries of WA1,k are strictly positive with probability
1. Therefore, the diagonal entries of WA are strictly nega-
tive, thus satisfying the second order sufficient conditions for
optimality of the surrogate optimization problem in (24).

APPENDIX E
PROOF OF LEMMA 5

The objective function is quadratic in Φ, and is therefore
amenable to optimization. Further, the problem in (32) is
separable in the optimization variables, and can be solved
using the Lagrangian method to obtain a closed form solution.
The Lagrangian is given by

KN∑
i=1

([
Q(m)

]
(i,i)

P (i) +
[
Z(m)

]
(i,i)

1

P (i)

)

+ η

(
KN∑
i=1

P (i)− 1

)
. (46)

Note that, the negative sign in the optimization problem in
(32) is removed while forming the Lagrangian, making it a
minimization problem. By differentiating (46) with respect to
P (i), we obtain (33).

Now, we show that the solution to the surrogate convex
optimization problem in (33) satisfies the second order suf-
ficiency condition for optimality. The Hessian matrix of the
Lagrangian in (46) is diagonal, with the ith diagonal entry
{2[Z(m)](i,i)/P (i)

3}, where P (i) is given by (33). Thus, we
need to show that the diagonal entries of Z are strictly positive.

Without loss of generality, we assume that σ2 = 1. We can
simplify each term inside the summation in (31) as follows:

Φ̃

(
S̃k − S̃k

(
Φ̃−1 + S̃k

)−1
S̃k

)
Φ̃,

where S̃k , Ψ̃H
k Ψ̃k. By following a similar procedure as done

for showing the optimality of the SMM solution in (40), we
can show that the diagonal entries of Z are strictly positive
with probability 1, and hence it satisfies the second order
sufficient conditions for optimality of the solution (33) to the
surrogate optimization problem (32).

APPENDIX F

The pseudo codes for the SMM and IMM algorithms are
provided in Algorithm 1 and 2, respectively.

Algorithm 1 SMM

Input: Ĥ1, . . . , ĤK ,C,K, ρdl
Output: P1(1), . . . , P1(N), . . . , PK(1), . . . , PK(N)

1: Initialize P1(1), . . . , P1(N), . . . , PK(1), . . . , PK(N) to
satisfy the total power constraint.

2: Compute ̂̂Hk =
√
ρdlĤkC, k = 1, 2, . . . ,K.

3: Compute Ψ1, . . . ,ΨK using (11).
4: repeat
5: Compute Φ using (10).
6: Compute Q using (12).
7: Compute WA, WB using (22), (23).
8: Calculate Lagrange multiplier η using line search to

satisfy maximum power constraint.
9: Compute P (i) using (25), i = 1, 2, . . . ,KN .

10: for k = 1 to K do
11: for i = 1 to N do
12: Compute Pk(i) using (34).
13: end for
14: end for
15: until convergence
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