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a b s t r a c t

In this work, spectrum sensing for cognitive radios is considered in the presence of mul-
tiple Primary Users (PU) using frequency-hopping communication over a set of frequency
bands. The detection performance of the Fast Fourier Transform (FFT) Average Ratio (FAR)
algorithm is obtained in closed-form, for a given FFT size and number of PUs. The effective
throughput of the Secondary Users (SU) is formulated as an optimization problem with
a constraint on the maximum allowable interference on the primary network. Given the
hopping period of the PUs, the sensing duration that maximizes the SU throughput is de-
rived. The results are validated usingMonte Carlo simulations. Further, an implementation
of the FAR algorithm on the Lyrtech (now, Nutaq) small form factor software defined radio
development platform is presented, and the performance recorded through the hardware
is observed to corroborate well with that obtained through simulations, allowing for im-
plementation losses.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A Cognitive Radio (CR) [2] operates by sensing the spectrum for Primary User (PU) activity, and transmitting only in
frequency bands where the PU signal is observed to be absent. The detection of PU activity is accomplished via Spectrum
Sensing (SS),which is the binary hypothesis testing problemof detecting the presence or absence of a PU in a frequency-band
of interest. SS has received significant research attention over the past decade (see [3–5] for recent tutorial surveys on the
topic). Some of the popular algorithms include Energy Detection (ED), matched filter detection, cyclostationary detection,
etc. Energy based detection, which uses the received signal energy to construct the decision statistic, is popular because it
is simple, easy to implement, and does not assume any information about the structure of the PU signal [6]. However, ED
requires accurate knowledge of the noise variance, and its performance degrades due to noise variance uncertainty [7,8].

In order to maximize the throughput of the CR while simultaneously offering adequate protection to the primary, it is
important to tune the various sensing and transmission related parameters, such as the sensing duration, threshold, transmit
power, etc., considering the primary signal characteristics. The problem of SS is particularly challenging when the primary
users employ Frequency Hopping (FH) signaling, since the CR needs to detect and exploit the available frequency binswithin
the short hop duration of the primary.

✩ This work has appeared in part in [1].
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The focus of this paper is on the detection of FH primary signals. FH signals are typically used in many secure/military
and commercial applications [9], navigation-related applications [10], and in the standards such as IEEE 802.15.1/ Bluetooth
[11,12]. SS of FH primary signals is challenging due to the frequently changing nature of the primary frequency band, and
has received relatively less attention in the CR literature. Somework on the detection of frequency-hopped signals, albeit in
a non-CR context, include [13–15]. In these studies, the received signal is passed through a bank of Band Pass Filters (BPFs),
and a decision on the signal presence in each frequency bin is made from the energy computed in each BPF, in time domain.
In [16], a Fast Fourier Transform (FFT)-based CFAR detection scheme, based on the Cell Averaging Constant False-Alarm Rate
(CA-CFAR) [17,18], whichwe call as the FFT Averaging Ratio (FAR) algorithm in this paper, was proposed for wideband spec-
trum sensing, which is applicable to the detection of the presence or absence of FH primary signals. Although known to be
less robust as compared to several other alternative detection techniques, we choose to work with the FAR algorithm be-
cause of its simplicity and analytical tractability. In terms of implementation on a hardware platform, spectrum sensing has
been recently demonstrated in a non-FH primary environment using off-the-shelf software defined radio platforms [19–23].

To the best of our knowledge, however, past work on detecting FH signals has focused primarily on detecting the
presence or absence of an FH primary signal itself (e.g., [16], [12]), not on detecting and harvesting unoccupied bands for
CR communication within each hop duration. That is, if the primary is declared present, then none of the frequency bins
used by the primary are allowed to be used by the CR. If the primary is declared absent, the CR communicates using all
of the frequency bins over which the primary previously employed FH communication. In the FH-primary case, in each
hop duration, the active primaries occupy only a small subset of the available frequency bins. Most of the frequency bins
are left unoccupied, and can be opportunistically accessed by the CR users, provided they are able to perform fast sensing
and find an unoccupied frequency bin (or a set of unoccupied frequency bins) within each hop duration. In this work, we
investigate the possibility of the CR users opportunistically accessing the bins within the hop-space of the primary that are
unoccupied in each hop duration, as against waiting for all the primary users to be silent before reusing the spectrum. The
goal here is to find unoccupied frequency bins within each hop duration for the CR to communicate in short bursts, thereby
communicating in the same wideband frequency range as the primary, but without causing interference. To this end, in
this paper, we consider energy-based detection of unoccupied bands in the presence of FH primary signals, and evaluate its
efficacy through rigorous theoretical analysis, Monte Carlo simulations, and implementation on a hardware platform. Some
studies in the literature do assume a scenario where the CR users employ a time-slotted communication scheme, with the
initial part being used for sensing and the later part for communication [24,25]. However, to the best of our knowledge, ours
is the first work that considers a cross-layer approach for finding and reusing the available frequency bins within the hop
duration of an FH primary.

Our contributions are as follows:

• We extend the FAR algorithm [16] for detecting unoccupied frequency bins within the hop duration in a multiuser
FH-PU scenario, and derive closed-form expressions for the probabilities of false alarm and detection, as a function of the
detection threshold, number of averaging frames, and the SNRs of the primary signal in the occupied bands (Section 3.1).
We consider the FAR algorithm for detection because of its computational simplicity and ease of implementation in a
software defined radio environment.

• We define a utility metric to quantify the throughput of the CR, and obtain the CR sensing duration that maximizes the
throughput while satisfying a constraint on the maximum allowable interference to the PUs (Section 3.2).

• We implement the FAR Algorithm on a Lyrtech (now. Nutaq) Small Form Factor Software Defined Radio Development
Platform (Lyrtech SFF SDR DP), and validate the implementation by comparing its performance with that obtained from
the analysis and simulations (Sections 4 and 5).

Allowing for implementation losses of about 1 dB, the results obtained from the hardware corroborate well with those
obtained through theory as well as Monte Carlo simulations. We conclude, therefore, that the FAR algorithm is an easy-to-
implement and effective solution to the SS problem with an FH-PU network.

The rest of the paper is organized as follows. The system model and the FAR algorithm are given in Section 2. The
associated probabilities of false-alarm and detection of the FAR algorithm as applied to SS with FH primary signals are
derived in Section 3.1, and the optimum sensing duration that maximizes the CR throughput is derived in Section 3.2. The
implementation of the FAR algorithm on the Lyrtech SFF SDRDP is discussed in Section 4. Finally, Section 5 discussesMonte-
Carlo simulations and experimental results, and Section 6 concludes the paper.

2. Systemmodel and FAR algorithm

2.1. System model

In an FH network, each PU occupies a frequency bin for a period of time, known as the hopping period, or the hop duration
(Nh samples). In successive hop periods, the PUs synchronously switch to new frequency bins chosen according a pseudo-
random sequence. The hop sequence followed by the primary users is not available at the CR nodes. Hence, in each hop
duration, the task of the CR is to identify unoccupied frequency bins as quickly as possible and transmit its data, before
sensing again during the next hop period of the primary network.
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Fig. 1. Typical frequency-band occupancies in a multiple FH-PU network.

Suppose the CRwishes to find a spectrum hole of bandwidthW Hzwithin awider band of interest of bandwidth BHz. Let
B = KW i.e., the bandwidth B consists of K contiguous, non-overlapping bins (Bartlett spectrum estimation technique). In
ourmodel,W is fixed. It is equal to the bandwidth of a single frequency bin of the FHprimary system; andwe assume that the
CR operates in chunks of bandwidth W . We assume that, at any given hop duration, each active primary user occupies one
of the K bins, as shown in Fig. 1. The shaded bins in Fig. 1 represent the bins occupied by the PUs at some given hop interval;
there are L active PUs in the figure. The pseudo-random primary signal hopping pattern is unknown to the CR users, and can
bewellmodeled as an i.i.d. random sequence, independent across users, and uniformly distributed over the K bins [15,26]. In
general, this hopping sequence can be random, or predefined and deterministic. Since the hopping sequence is unknown at
the CR users, they need to sense the spectrum to find empty frequency bins prior to communicating. If the primary hopping
sequence is known at the CR users, the problem becomes almost trivial: the CR users can pick any or all of the frequency
bins that are unoccupied in each hop duration, and use them for the secondary communications. The CR down-converts
the received signal, band-limits it to B Hz, and samples it at a rate of fs ≥ 2B samples/s. In this paper, for simplicity, we
assume that the number of active PUs, denoted by L, is known. In practice, since the number of active PUs typically varies
very slowly compared to the bin occupancy patterns, it can be estimated and tracked based on the sensing outcomes [27].
Let u ∈ {0, 1}K represent the primary occupancy pattern, where u(k) takes the value 0 or 1, depending on whether the kth
frequency band is free or occupied, respectively.

The CR collects Ns = N M data samples, groups them into M frames of N samples each, and applies an N-point FFT on
each frame (possibly, withwindowing, to control the side-lobes) [28,29]. Thus, the sensing duration isNs/fs. Also,N is chosen
to be a positive integer multiple of K , and an integer power of 2. In each frame, multiple FFT bins are grouped to represent
the samples from each of the K PU bands. This is done to reduce the spectral leakage due to the FFT. For every Ns, there are
many combinations ofM and N possible. In our analysis, we fix N and varyM , since, in practical implementations, N is fixed
based on the hardware capability. The received baseband samples inmth frame are represented as [1]

ȳm = x̄m + z̄m, m = 0, 1, . . . ,M − 1,

where ȳm ,

ym[0], ym[1], . . . , ym[N − 1]

T , x̄m ,

xm[0], xm[1], . . . , xm[N − 1]

T and z̄m ,

zm[0], zm[1], . . . , zm[N − 1]

T
represent the received samples, the received PU signal component and the thermal noise component at the receiver,
respectively. We assume that zm[n] ∼ CN (0, σ 2), and i.i.d. across all m, n, where CN (µ, ν) represents a circularly
symmetric complex Gaussian distribution with mean µ and variance ν.

Let Q represent the N × N FFT matrix, with (p, q)th entry equal to 1
√
N
exp


−j 2πpqN


, 0 ≤ p, q ≤ N − 1. Let Ȳm , Q ȳm,

X̄m , Q x̄m and Z̄m , Q z̄m. When the kth band is vacant, the samples in the (N/K) frequency bins corresponding to the kth
band are modeled as [29]

Ȳm(ℓ) = Z̄m(ℓ), ℓ =
kN
K
,
kN
K

+ 1, . . . ,
(k + 1)N

K
− 1, (1)

with m = 0, . . . ,M − 1. Here, m denotes the frame index within the sensing duration. On the other hand, when the kth
band is occupied, the corresponding received samples at the CR are modeled as

Ȳm(ℓ) = X̄m(ℓ)+ Z̄m(ℓ), ℓ =
kN
K
,
kN
K

+ 1, . . . ,
(k + 1)N

K
− 1, (2)

with m = 0, . . . ,M − 1, where X̄m(ℓ) represents the received PU signal in the ℓth FFT bin and the Mth frame, including
the effect of path loss, shadowing and multipath fading. Let SNR(p), p = 0, . . . , L − 1 denote the distinct SNR values of
the L PUs, which are assumed to be known. The approach easily extends to the unknown SNR case also, by considering a
conservative design that assumes a certain minimum SNR on the occupied bins. This minimum SNR is typically mandated
by the primary network, in the form of the minimum SNR at which the CR users are required to be able to sense the primary
signal at a certain pre-specified reliability level. The goal of the SS module in the CR is to determine the presence (denoted
H1) or absence (denoted H0) of the primary signal using the observations Ȳm(k) described above.
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Let P(k) be the average energy overM consecutive frames in the kth band, and Ptot be the average energy over all K bands
and M frames. Therefore, for k = 0, 1, . . . , K − 1 [28,29],

P(k) ,
1
M

M−1
m=0

N
K −1
q=0

Ym


kN
K

+ q
2 , Ptot =

K−1
k=0

P(k).

Note that, the above model assumes that the CR is aware of the hop instant of the PU network, i.e., it is aware of the time
instants when the PUs possibly change their frequency bands. The hop instants can be determined using the FAR algorithm
itself during an initial sensing/calibration phase, where the CR node detects changes in the hop pattern over time. This
technique, described in detail in Section 4.1, is used in the hardware implementation of FAR in this paper.

2.2. The FAR algorithm

In this subsection, we briefly describe the detection technique investigated in this paper, namely, the FAR algorithm. This
algorithm is same as the FFT-based CFARdetector proposed in [16],which, in turn, is based on thewell-knownCell Averaging
Constant False AlarmRate (CA-CFAR) detection technique used in RADAR literature [18]. However, the setup in [16] assumes
L = 1, as opposed to our case where L ≥ 1. We work with the FAR algorithm because it is computationally simple, and,
therefore, easily implementable on a hardware platform with limited resources. The FAR decision statistic for the kth band
is given by [28,29,16]

TM(k) ,
P(k)
Ptot

, k = 0, . . . , K − 1. (3)

The presence of a PU on the kth band is detected by comparing TM(k)with a threshold τ , as follows:

TM(k)
H1
≷
H0

τ . (4)

In the following section, we derive the per-band probabilities of false-alarm (PFA) and signal detection (PD) of the FAR
algorithm, as a function of τ and M , for a given N .

3. Performance analysis and optimization

3.1. Probabilities of false alarm and detection

The following lemma presents the expressions for the false alarm and detection probabilities of the FAR algorithm,
denoted by PFA and PD, respectively.

Lemma 1. For the FAR algorithm-based detection scheme in (4), the signal detection and false-alarm probabilities are given by:

PD(k, γ ,M,N, K , SNRtot) = 1 −


E1k
G1k
γ
D1k/2

D1k
2 B


D1k
2 ,

F1k
2

 × 2F1


D1k

2
,
D1k + F1k

2
; 1 +

D1k

2
,−

E1k
G1k

γ


, (5)

PFA(γ ,M,N, K , SNRtot) = 1 −
(G0γ )

MN
K

MN
K B


MN
K ,

D0
2

 × 2F1


MN
K
,
MN
K

+
D0

2
; 1 +

MN
K
,−G0γ


, (6)

where the parameters are as defined below,

G0 , 2 −
K − 1

K − 1 +
1
N SNRtot

, D0 ,
M
K

SNRtot + MN


3
2

−
3
2K

+
K − 2 + 1/K

2K − 2 +
4
N SNRtot


,

G1k , 2 −
1

1 +
1
N SNR(k)

, D1k ,
MN
K


3
2

+
1
N
SNR(k)+

1
2 +

1
N SNR(k)


,

E1k , 2 −
K − 1

K − 1 +
1
N SNR

(k)
tot

, F1k ,
M
K

SNR(k)tot + MN


3
2

−
3
2K

+
K − 2 + 1/K

2K − 2 +
4
N SNR

(k)
tot


,

SNRtot ,

L−1
p=0

SNR(p), SNR(k)tot ,

L−1
p=0,≠k

SNR(p), and SNR(p) ,

1
M

M−1
m=0

|Xm(p)|2

σ 2

K

(7)
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with γ , τ
1−τ ∈ [0,∞), B(·, ·) denoting the beta function [30, Sec. 8.38], and 2F1(·, ·; ·; ·) representing the Gauss’

hypergeometric function [30, Sec. 9.1].

Proof. See Appendix A.1. �

With the expressions for the false alarm and detection probabilities in hand, the per-band detection threshold to satisfy
a target PFA (or PD) constraint can be fixed by using numerical techniques. Note that, 2F1(a, b; c; d) converges if the real part
of c − a + b is > 0. Hence, K , N and M should satisfy {1 −

2MN
K −

D0
2 } > 0. Substituting for D0, it is easy to verify that the

function converges for allM and N , provided K > 1 and L ≥ 1. Note that L = 0 corresponds to the trivial situation when no
active PUs are present. The CR can freely transmit in any of the bands in this case.

From the expressions of PFA and PD, it should be noted that the FAR algorithm is not robust to noise variance uncertainty,
as opposed to the CA-CFAR based techniques studied earlier [29,16], the main reason being the presence of multiple PUs.
The values of PFA and PD at a given bin k is not only dependent on SNR(k), but also on SNRtot.

3.2. Optimum sensing duration

Clearly, a longer sensing duration results inmore accurate sensing, but leaves less timewithin each hop duration for data
transmission; we wish to find the right trade-off between the two effects. To this end, we now derive the sensing duration
that maximizes the CR throughput, subject to a constraint on PU protection. When there are L active PUs, at any time,
K − L bands are available, and L bands are busy. On average, the CR correctly declares (K − L)(1 − PFA(γ ,M,N, K , SNRtot))
bands as available, and it incorrectly declares


k:u(k)=1(1 − PD(k, γ ,M,N, K , SNRtot)) bands as available. Let 0 ≤ α(k) <

1, k = 0, . . . , K − 1, represents the fractional data rate obtained by the CR when it transmits on the bands occupied by
the PUs, after incorrectly declaring them to be free. The value α(k) = 0, ∀k denotes the case where the CR node obtains no
usable throughput when it transmits in bands that are actually occupied by PUs. In practice, the data rate achieved on bands
occupied by PUs would depend on the relative locations of the PU transmitter, CR transmitter, CR receiver, and the CR and
PU transmit powers. Assuming zero rate on such bands is a conservative approach, and serves as an additional protection to
the PUs, along with the interference constraint, which will be elaborated on below.

In this paper, we consider the product of the time available for data transmission and the average bandwidth harvested
by the CR, denoted byΠ , as the performance metric:

Π , E{K (r) + αK (w)}W × (Nh − Ns)

=


(K − L)(1 − PFA(γ ,M,N, K , SNRtot))+


k:u(k)=1

α(k) (1 − PD(k, γ ,M,N, K , SNRtot))

W (Nh − Ns). (8)

Analytically optimizing the sensing duration and detection threshold tomaximize the above cost function for a generalα(k),
although possible, would result in messy expressions. Therefore, for simplicity of exposition, we consider the special case
of α(k) = 0,∀k. Then, the objective function reduces to

Π = (K − L)(1 − PFA(γ ,M,N, K , SNRtot))W (Nh − Ns). (9)

Observe that, in the above, as Ns increases, 1 − PFA(γ ,M,N, K , SNRtot) increases, while Nh − Ns decreases; and hence there
exists an optimal sensing duration that maximizesΠ .

Thus, we state the optimization problem as follows:

max
Ns,γ

{Π} subject to min
k:u(k)=1

PD(k, γ ,M,N, K , SNRtot) ≥ Pmin (10)

where Pmin is the minimum detection probability performance that the CR detector is required to satisfy. Since Ns = NM ,
finding the optimum Ns reduces to finding the optimum M , for a given FFT size N . The value of N can be considered to be
fixed, as it is generally taken to be the largest value supported by the SS hardware. Now, for a given γ , it can be shown that
Π is concave in 0 ≤ M ≤

Nh
N . Also, for a given M , both PD(k, γ ,M,N, K , SNRtot) and PFA(γ ,M,N, K , SNRtot) decrease with

γ . Hence, Π is maximized when γ is such that the constraint in (10) is satisfied with equality. The following lemma gives
the equation which needs to be numerically solved to find the optimumM .

Lemma 2. Let γmin denote the value of γ that satisfies mink:u(k)=1 PD(k, γ ,M,N, K , SNRtot) ≥ Pmin with equality. Then, the
value of M which maximizes the cost function in (9) is the solution to the equation,

G0γmin

2F1 (1, 1 − BM; 1 + AM; −G0γmin)
×


B

1 + AM 2Θ
(1)


1, 1

1 − BM, 2 − BM, 2

2 − BM
2, 2 + AM

;G0γmin, G0γmin



+
A(1 − BM)
(1 + AM)2 2Θ

(1)

1, 1

1 + AM, 2, 2 − BM

2 + AM
2, 2 + AM

;G0γmin, G0γmin


+ (A + B) log (1 + G0γmin)− A log (G0γmin)+ (A + B)ψ (0)(AM + BM)
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Fig. 2. Block diagram for the implementation on Lyrtech SFF SDR DP.

− Aψ (0)(AM)− Bψ (0)(BM)−
Nh

M(Nh − NM)
= 0, (11)

with A ,
N
K
, B ,


N −

N
K


+

1
K SNRtot

2
N −

N
K


+

2
K SNRtot

, (12)

and where ψ (0) is the digamma function, and 2Θ
(1)(·) is a Kampé de Fériet-like function [31], defined below.

2Θ
(1)


a1, a2b1, b2, b3

c1|d1, d2

; x1, x2


,

∞
m=0

(a1)m(b1)m(b2)m(b3)m
(c1)m(d1)m(d2)m

xm1
m!

× 3F2(a2, b2 + m, b3 + m; d1 + m, d2 + m; x2) (13)

Also, 3F2(·, ·, ·; ·, ·; ·) is a hypergeometric function, and (a)m , Γ (a+m)
Γ (a) is the Pochhammer symbol.

Proof. See Appendix A.2.

Note that the infinite series of the function 2Θ
(1)(·) as given by (13) converges very fast. In our simulations, the result

obtained from a truncated series with 30 terms was found to be accurate to four decimal places.

4. FAR algorithm on Lyrtech SFF SDR DP

We now describe our implementation of the FAR algorithm on the Lyrtech SFF SDR DP (from here on, called DP for short).
The block diagram of the DP is as shown in Fig. 2, and the hardware circuitry is shown in Fig. 3. The DP consists of the
following three modules:

1. A Digital Processing Module (DPM), with Xilinx Virtex-4 SX35 FPGA, TMS320 DM6446 system-on-chip DSP, MSP430MCU
for power management.

2. AData ConversionModule (DCM),with a 14-bit, 125Msps input channel (ADC), anddual, 16-bit, 500Msps output channels
(DAC). For synchronization, a 10 MHz onboard reference clock is provided, along with two external clock inputs for ADC
and DAC.

3. An RF module (RFM) with a half-duplex (stackable for full-duplex) receiver operating at RF frequency range of
360–960 MHz, selectable bandwidth of 5/20 MHz, intermediate frequency (IF) at 30 MHz, with an RF input and output
gains of up to 22 dB.

Several software development tools are supported by the DP. In particular, we implemented the FAR algorithm on
the DPM, using a Model Based Design Kit (MBDK) released by Lyrtech. Since the MBDK works in association with
MATLAB R⃝SimulinkTM, the implementation of all the modules are done in MATLAB Simulink.

The parameters chosen for the implementation are as follows. We chose B = 5 MHz with K = 8 bands, denoted (in the
increasing order of their center frequencies) by C4, C5, C6, C7, C0, C1, C2, C3. The center frequencies of these bands are 395.6,
396.1, 396.65, 397.23, 393.5, 394.15, 394.8, 395.1 MHz, respectively, representing a total bandwidth of 3.73 MHz. We set
N = 64,M = 128, 256; larger values were not feasible due to the limitations of the in-built DSPmultipliers, in the DPM.We
use the NI PXIe1062Q instrument to generate sinusoids, that model the primary user signals. Note that we use the sinusoids
as the primary signal, as they are easy to implement as an FH signal on the hardware platform. Similar results would hold
for a general band-limited signal also.
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Fig. 3. Lyrtech SFF SDR DP circuit board.

The received signal is filtered to a passband of 5 MHz at with center frequency 395.4 MHz, and is down-converted to an
Intermediate Frequency (IF) of 30MHz. The IF signal is sampled at a rate of 125Msps. The sampled IF signal is digitally down-
converted to baseband. The signal is then down-sampled by a factor 25 (since the Nyquist rate required is 5 Msps), each
for the in-phase and quadrature components, and is passed to the FFT block, which outputs the corresponding frequency
domain signal in groups ofN samples. These values are sent to the decision statistic block, where the power in the each band
is computed by grouping N

K bins for each band and averaging them over M frames. This calculation corresponds to the FAR
statistic, i.e., calculating TM(k), k = 1, . . . , K , following (4). Then, the detection is carried out by comparing the power in
each bin with a user-defined threshold. The decisions made on each band can be made to be seen on a display (800 × 600)
provided in the DPM (Video Processing Back End (VPBE) and Video Processing Front End (VPFE)).

4.1. Primary hop-instant identification

It is important for the CR user to know, and synchronize its operation to the hopping instants of the frequency-hopping
primary user. A method for estimating the FH boundary for Bluetooth signal, with help of a Short Time Fourier Transform
(STFT), has been discussed in [27]. Based on this approach, we propose a technique to identify the FH boundary by using
the already implemented FAR algorithm. This method works under the assumption that all the primary users are hopping
synchronously.

The time instant at which the CR user powers up and starts sensing the spectrum will be the reference point in time
(from here on, called as the ‘‘reference’’) for all the secondary operations. The operational time of the secondary user is
also divided into successive durations of Nh samples starting from the reference, each of which is termed as Virtual Hopping
Period (VHP) of the secondary user. The CR needs to estimate the difference in time between start of VHP and the start of
the hopping period of the primary, within that particular VHP. Let this time lag be defined as Noffset samples. The idea is to
identify the location in each VHP, where a change in the occupancies of the primary channels occurs. To this end, in each
VHP, the spectrum has to be sensed repeatedly to know the occupancies. Let Nacc be the difference between the start of
successive sensing operations by the CR (ideally, Nacc should be equal to 1, but due to hardware and processing limitations,
one may have to use a larger Nacc). Since the sensing duration of the FAR algorithm is Ns, the samples in the successive
sensing operations will be overlapped when Ns > Nacc.

The procedure to estimate Noffset is as follows. Let an occupancy vector Ū of length K represent the presence or absence
of the primary user on each channel, as declared by the CR, with an initial value set to the all zero vector [0, . . . , 0] for all
the K bands. Suppose, Nest VHPs are used for estimating the hopping boundary. Starting from the reference, the spectrum
is sensed repeatedly after each Nacc samples. The threshold for the FAR algorithm is set to satisfy a given, low value of PFA.
A vector H̄ of length Nh

Nacc
is defined with all elements as zeros. Let id, 0 ≤ id ≤

Nh
Nacc

− 1 denote the index of the sensing
operations performed in one VHP. The occupancy vector (Ū) for (id + 1)th sensing operation is logically XOR-ed with that
of the (id)th operation. If any one or more entries of the resultant vector is one, then H̄(id + 1) is incremented by one. This
process is repeated for all values of id forNest VHPs. Later, each value of H̄ is comparedwith a threshold hthr and the estimated
offset is given by

N̂offset = {Nacc × id : H(id) ≥ hthr}. (14)

The value of hthr is chosen through simulations.
As an example, consider a case where Noffset = 1040. It is assumed that Nh = 212, Nest = 100, and the SNR = 6 dB, for

each active user. Since Nacc = NM , and the choice of N is constrained by the hardware, N = 16 is chosen as the FFT size.
Therefore, the choosing Nacc depends on the choice ofM . Note that asM increases, the detection accuracy increases, but the
resolution of the boundary detection decreases. For this example, we will consider M = 1, and M = 32. A threshold value
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Fig. 4. Comparison of FAR with the conventional ED [6], with and without Noise Variance Uncertainty (NVU). Here, N = 64, M = 128, L = 3, and the
detectors are designed with a target false alarm probability of 0.01.

of 0.3 is chosen for FAR algorithm. The histogram H̄ is computed, and the value of the threshold hthr is set to be 85 (chosen
through simulations). With these values, for the case ofM = 1, it is seen that the above mentioned boundary identification
procedure gave the boundary change index as 65, which results in 65 × 16 × M = 1040 = Noffset. Similar exercise with
M = 32 gave the boundary change index as 2, which implies 2 × 16 × M = 1040 = Noffset.

Thus, a secondary user can identify the hopping boundary of the FH primary signal where all the primary users are hop-
ping synchronously. This method can be applied with slight modifications to the case where the primary users when they
are not hopping synchronously, by suitably choosing the threshold for the histogram. More details can be found in [27].

5. Results

5.1. Monte Carlo simulations

Our simulation setup is chosen to match the hardware setup explained in the previous section, with N = 64,M =

16, K = 8 and L = 2 PUs. We consider the performance of the detector for each of the different bands. For ease of presen-
tation, suppose that the two PUs are active in bands C0 and C7, at a given point in time. For evaluating the algorithms, it is
sufficient to condition on this particular occupying pattern, by the symmetry of the problem. That is, we get the same CR
performance conditioning on any pair of occupied bins.

In Fig. 4, we compare the detection performance of the FAR algorithm with ED [6], with and without uncertainty in the
noise variance. The noise uncertainty model assumed is the same as in past work [7], namely, that the noise variance is
unknown, but lies in a range of [σ 2

n −x dB, σ 2
n +x dB], where x is the noise variance uncertainty, and σ 2

n is the nominal noise
variance. Then, the detector is designed tomeet a false alarmprobability target of 0.01 at a noise variance ofσ 2

n +x dB, and the
probability of detection performance is evaluated at a noise variance of σ 2

n − x dB. The plot shows that the FAR algorithm
outperforms ED, and offers about 0.5–1 dB improvement in the primary SNR required to achieve a given probability of
detection. Thus, the FAR is a better decision statistic compared to the energy in the band, for detection of FH primary signals,
in the presence of noise uncertainty. In Fig. 5, we plot the effective CR throughput as a function of the sensing duration,
with Nh = 1024. For larger primary SNR, the highest CR throughput is obtained at a shorter sensing duration, as expected.
This is because, when Ns is fixed, the detection performance increases with SNR. Given the protection requirement from the
primary, the CR can decreaseNs, while ensuring adequate protection. ThismakesNh−Ns larger and increases the throughput.
Also, in terms of the effective throughput, the FAR and ED perform almost equally well. This is because the throughput is
a relatively insensitive function of the detector performance, and, hence, detectors with similar performance would yield
average throughputs that are only marginally different from each other.

In Fig. 6, we plot the simulated optimal throughput (i.e., simulated value of the cost function in (9)) and its corresponding
theoretical throughput calculated using the expressions in (5) and (6), for various SNR values. It is seen that in the low SNR
regime, the accuracy of theoretical calculations become looser. As SNR increases, the approximation becomes tighter. This
happens because of the approximation used in Lemma 1 [32].

Fig. 7 shows the variation of the optimal value of M as a function of the interference limit Pmin. The hopping duration
Nh is set to 1024, L = 2 primary users, and the SNR values are fixed to be [−5,−5] dB at [C0, C7], respectively. The theo-
retical curves are obtained by numerically solving (11) to obtain a real-valued M . We then evaluate the throughput for the
two nearby integer values of M , and pick the optimal M as the value that offers the better throughput. For obtaining the
simulated curves, we sweep over a range of detection thresholds and different values of M , and pick the combination that
offers the best CR throughput. The good match between theoretical and simulated curves validates the optimization of the
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Fig. 5. Comparison of CR throughput obtained by FAR algorithm with that of ED, obtained through hardware implementation, with N = 64. The two
numbers in the legends, for e.g., [−10,−10] dB, indicate the SNRs of the two PUs present in bands C0 and C7 .

Fig. 6. Optimal throughput for N = 64, Nh = 1024. For the simulation result, the optimal throughput was obtained by sweeping a range of M and
threshold, and choosing the pair that offered the best throughput.

Fig. 7. Comparison of optimal number of frames M for different values of the FFT size N , for L = 2, and Nh = 1024 samples. Notice that as N varies, the
optimalM varies such that NM is roughly the same, for each given Pmin .
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Fig. 8. Comparison of ROCs from simulations and experiments, at different M and SNRs. The implementation loss is about 1 dB. The legends, Sim. and
Expt., indicate the curves obtained due to Monte Carlo simulations and hardware experiments, respectively.

Fig. 9. Optimum CR throughput Vs. Ns , comparing the hardware implementation with simulated curves, for N = 64.

CR throughput presented in Section 3.2. Also, we notice that as N varies, for each given Pmin, the optimalM is such that NM
is roughly constant. For example, at Pmin = 0.9, the optimal M is 5, 10 and 21 for N = 16, 32 and 64, respectively. This
is because the detection performance, and, consequently, the effective throughput, is primarily determined by the sensing
duration, which equals NM .

5.2. Experimental results from the Lyrtech SFF SDR DP

For the experimental results, we generated a pure sinusoidal FH primary signal using the National Instruments PXI signal
generator, and evaluated the performance at the band corresponding to C0, with a center frequency of 393.5 MHz. The SNR
at the CR sensor was set by first calibrating the noise floor in the absence of the primary signal, and then setting the transmit
power of the primary so that the received signal power meets the required target.

In Fig. 8, we plot the Receiver Operating Characteristic (ROC) curves for different values of M and primary SNR. As
expected, the detection performance improves with M and SNR. We observe that the experimental curves follow the same
trends as the theoretical curves, allowing for an implementation loss of about 1 dB in the primary SNR. We attribute the
difference to the effect of quantization in the fixed-point implementation (and perhaps other hardware non-idealities, e.g., in
the RF front-end filters) used in the hardware platform.

Finally, in Fig. 9, we show the normalized optimal throughput of the CR, normalized to its maximum attainable value at
the given Pmin, as a function of the sensing duration Ns, comparing the throughput observed from the DP with that observed
via simulations. The experimental results were generated by using a CR transmitter that sends data at a rate of 20.833Msps,
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a primary transmit power of−107.5 dBm, a hopping duration of Nh = 6.5ms, and about 5 m distance between the primary
transmitter and CR spectrum sensing node. The simulation results were generated using the setup described in the previous
subsection, at a primary SNR of −10 dB at the CR node. The good match between the two sets of plots is clear from the
graph, validating our implementation. Also, the optimal sensing duration is larger for larger minimum detection probability
performance Pmin.

6. Conclusions

In this paper, we considered the problem of spectrum sensing in the presence of a multiuser frequency-hopping primary
network. We theoretically analyzed the performance of the FAR algorithm, and validated the results through simulations.
The sensing duration that maximizes the throughput of the CR system, under a constraint on the interference to the pri-
mary network was derived. A technique to synchronize the CR system with the primary hopping instants was presented.
The FAR algorithm was implemented on Lyrtech SFF SDR DP and its performance was benchmarked by the ROCs obtained
from Monte Carlo simulations. An implementation loss of about 1 dB was observed in the hardware implementation.

Appendix A

A.1. Proof of Lemma 1

UnderH0, Ȳm = Q ȳm = Q z̄m is i.i.d. Gaussian withmean 0 and covariance σ 2IN , since Q is a unitary transform. Similarly,
under H1, Ȳm is jointly Gaussian with mean X̄m = Q x̄m and covariance σ 2IN . Now, the statistic

TM(k) =
P(k)
Ptot

=
P(k)

P(k)+

K−1
y=0,≠k

P(y)
=

1

1 +

K−1
y=0,≠k

P(y)

P(k)

; and therefore,

TM(k)
H1
≷
H0

τ , ⇒
P(k)

Ptot − P(k)

H1
≷
H0

τ

1 − τ
. (15)

Following the above result, Let

Tk ,

M−1
m=0

N
K −1
q=0

Ym
N
K × k + q


σ/

√
2


2

, Sk ,

K−1
ℓ=0,ℓ≠k

Tℓ. (16)

Then, if FH0
TM (k)

(τ ) represents the CDF of TM(k) under H0,

FH0
TM (k)

(τ ) = Pr

Tk
S

≤
τ

1 − τ
| H0


. (17)

Now, let KX2
Θ(Ψ ) represent a chi-squared random variable (RV) with Θ Degrees of Freedom (DoF), non-centrality

parameter Ψ and a scaling factor K . It is easy to see that under H0, Tk ∼ X2
2MN
K
(0), k = 1, 2, . . . , K − 1. Also,

Sk ∼ X2
2M


N−

N
K

 
2M
K

L−1
p=0 SNR(p)


. Next, we use a result due to Patnaik [32,6], which approximates a X2

Θ(Ψ ) RV with

a GX2
Ω(0) RV, whereΩ , (Θ+ψ)2

Θ+2ψ and G , Θ+ψ

Θ+2ψ . Using this and the notations in (7), it follows that Sk|H0 ∼ G0X
2
D0
(0) and

Tk|H0 ∼ X2
2MN
K
(0).

Let γ , τ
1−τ . Since the statistic TM(k) is a ratio of scaled chi-squared RVs, it follows a four-parameter beta prime

distribution, i.e., [33, chap. 25],

TM(k) =
Tk
Sk

∼ β ′


MN
K
,
D0

2
, 1,

1
G0


, with PDF

f H0
TM (k)

(ν) =
(G0 γ )

MN
K (1 + G0γ )

−
MN
K −

D0
2

MN
K B


MN
K ,

D0
2

 (18)

for γ ∈ [0,∞). The expression for PFA follows from calculating the CDF. A similar analysis for the statistic under H1 gives
the expression of PD.

In addition to the above derivation, we have also verified the accuracy of the derived expressions through simulations,
which we do not present in the paper due to lack of space.
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A.2. Proof of Lemma 2

First, note thatΠ is concave in 0 ≤ M ≤
Nh
N . Hence, it suffices to pick the M that satisfies ∂Π

∂M = 0. Define A and B, as in
(12). Using (6), (9), and a transformation result for the Gauss’ hypergeometric function [30, Sec. 9.131],Π can be rewritten
as:

Π = K ′


Γ (AM + BM)

AM Γ (AM)Γ (BM)
× (G0γmin)

AM
× (1 + G0γmin)

1−AM−BM
2F1 (1, 1 − BM; 1 + AM; −G0γmin)


,

where K ′ , (K − L)(Nh − NM). Ancarani and Gasaneo [31] have derived the following partial derivatives of the Gauss’
hypergeometric function 2F1(a, b; c; d)with respect to b and c:

∂2F1

∂b
=

d
b
ab
c 2Θ

(1)

1, 1|b, 1 + b, 1 + a

1 + b|2, 1 + c

; d, d

, (19)

∂2F1

∂c
= −

d
c
ab
c 2Θ

(1)

1, 1|c, 1 + a, 1 + b

1 + c|2, 1 + c

; d, d

. (20)

The rest of the proof follows by calculating ∂Π
∂M , equating it to zero and simplifying further by taking out the common factors.

We skip the details as they are straightforward.
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